1
|
Huang Z, Meng H, Xu L, Pei X, Xiong J, Wang Y, Zhan X, Li S, He Y. Liposomes in the cosmetics: present and outlook. J Liposome Res 2024; 34:715-727. [PMID: 38712581 DOI: 10.1080/08982104.2024.2341139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
Liposomes are small spherical vesicles composed of phospholipid bilayers capable of encapsulating a variety of ingredients, including water- and oil-soluble compound, which are one of the most commonly used piggybacking and delivery techniques for many active ingredients and different compounds in biology, medicine and cosmetics. With the increasing number of active cosmetic ingredients, the concomitant challenge is to effectively protect, transport, and utilize these substances in a judicious manner. Many cosmetic ingredients are ineffective both topically and systemically when applied to the skin, thus changing the method of delivery and interaction with the skin of the active ingredients is a crucial step toward improving their effectiveness. Liposomes can improve the delivery of active ingredients to the skin, enhance their stability, and ultimately, improve the efficacy of cosmetics and and pharmaceuticals. In this review, we summarized the basic properties of liposomes and their recent advances of functionalities in cosmetics and and pharmaceuticals. Also, the current state of the art in the field is discussed and the prospects for future research areas are highlighted. We hope that this review will provide ideas and inspiration on the application and development of cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Zhaohe Huang
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Hong Meng
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Li Xu
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Xiaojing Pei
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Jie Xiong
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Yanan Wang
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Xin Zhan
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Shujing Li
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Yifan He
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| |
Collapse
|
2
|
Zhong J, Zhao N, Song Q, Du Z, Shu P. Topical retinoids: Novel derivatives, nano lipid-based carriers, and combinations to improve chemical instability and skin irritation. J Cosmet Dermatol 2024; 23:3102-3115. [PMID: 38952060 DOI: 10.1111/jocd.16415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Retinoids, defined as synthetic or natural derivatives of vitamin A, have been extensively studied as anti-aging molecules that are widely applied in cosmetics. However, due to their physicochemical property, retinoids are highly unstable and extremely sensitive to light, oxygen, and temperature. Moreover, topical application of retinoids often leads to cutaneous irritation. These instabilities and irritant properties of retinoids limit their application in cosmetic and pharmaceutical products. AIM Our study aimed to provide a systematic review to summarize the mechanisms underlying the instability and irritant properties of retinoids, as well as recent developments in addressing these challenges. METHODS A comprehensive PubMed search was conducted using the following keywords: retinoids, chemical instability, skin irritation, retinoid derivatives, nano lipid-based carriers, liposomes, penetration-enhancer vesicles, ethosomes, niosomes, nanoemulsions, solid lipid nanoparticles, vitamins, soothing and hydrating agents, antioxidants and metal chelator and retinol combinations. Relevant researches published between 1968 and 2023 and studies related to these reports were reviewed. RESULTS The development of new retinoid derivatives, the utilization of new delivery systems like nano lipid-based carriers and the combination with other compounds like vitamins, soothing agents, antioxidants and metal chelator have been explored to improve the stability, bioavailability, and toxicity of the retinoid family. CONCLUSIONS Through advancements in formulation techniques, structure modification of retinoid derivatives and development of novel nano lipid-based carriers, the chemical instability and skin irritation of retinoids has been mitigated, ensuring their efficacy and potency over extended periods.
Collapse
Affiliation(s)
- Jiangming Zhong
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Nan Zhao
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Qingle Song
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
An P, Zhao Q, Hao S, Wang X, Tian J, Ma Z. Recent Advancements and Trends of Topical Drug Delivery Systems in Psoriasis: A Review and Bibliometric Analysis. Int J Nanomedicine 2024; 19:7631-7671. [PMID: 39099792 PMCID: PMC11296365 DOI: 10.2147/ijn.s461514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease where topical therapy is crucial. While various dosage forms have enhanced the efficacy of current treatments, their limited permeability and lack of targeted delivery to the dermis and epidermis remain challenges. We reviewed the evolution of topical therapies for psoriasis and conducted a bibliometric analysis from 1993 to 2023 using a predictive linear regression model. This included a comprehensive statistical and visual evaluation of each model's validity, literature profiles, citation patterns, and collaborations, assessing R variance and mean squared error (MSE). Furthermore, we detailed the structural features and penetration pathways of emerging drug delivery systems for topical treatment, such as lipid-based, polymer-based, metallic nanocarriers, and nanocrystals, highlighting their advantages. This systematic overview indicates that future research should focus on developing novel drug delivery systems characterized by enhanced stability, biocompatibility, and drug-carrying capacity.
Collapse
Affiliation(s)
- Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, People’s Republic of China
| | - Qiyue Zhao
- School of Nursing, Southern Medical University, Guangzhou, People’s Republic of China
| | - Siyu Hao
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jiangtian Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Zhiqiang Ma
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Eissa EM, El Sisi AM, Bekhet MA, El-Ela FIA, Kharshoum RM, Ali AA, Alrobaian M, Ali AMA. pH-Sensitive In Situ Gel of Mirtazapine Invasomes for Rectal Drug Delivery: Protruded Bioavailability and Anti-Depressant Efficacy. Pharmaceuticals (Basel) 2024; 17:978. [PMID: 39204084 PMCID: PMC11357403 DOI: 10.3390/ph17080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
The present research emphasizes fabrication alongside the assessment of an innovative nano-vesicular membranous system known as invasomes (NVMs) laden with Mirtazapine for rectal administration. This system could circumvent the confines of orally administered counterparts regarding dose schedules and bioavailability. Mirtazapine invasomes were tailored by amalgamating phospholipid, cineole, and ethanol through a thin-film hydration approach rooted in the Box-Behnken layout. Optimization of composition parameters used to fabricate desired NVMs' physicochemical attributes was undertaken using the Design-Expert® program. The optimal MRZ-NVMs were subsequently transformed to a pH-triggered in situ rectal gel followed by animal pharmacodynamic and pharmacokinetic investigations relative to rectal plain gel and oral suspension. The optimized NVMs revealed a diameter size of 201.3 nm, a z potential of -28.8 mV, an entrapment efficiency of 81.45%, a cumulative release within 12 h of 67.29%, and a cumulative daily permeated quantity of 468.68 µg/cm2. Compared to the oral suspension, pharmacokinetic studies revealed a 2.85- and 4.45-fold increase in calculated rectal bioavailability in circulation and brain, respectively. Pharmacodynamic and immunohistopathology evaluations exposed superior MRZ-NVMs attributed to the orally administered drug. Consequently, rectal MRZ-NVMs can potentially be regarded as a prospective nanoplatform with valuable pharmacokinetics and tolerability assets.
Collapse
Affiliation(s)
- Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Amani M. El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Marina A. Bekhet
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Rasha M. Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Ahmed M. Abdelhaleem Ali
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
5
|
Dwivedi R, Bala R, Madaan R, Singh S, Sindhu RK. Terpene-based novel invasomes: pioneering cancer treatment strategies in traditional medicine. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2024-0131. [PMID: 38996385 DOI: 10.1515/jcim-2024-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Health care workers have faced a significant challenge because of the rise in cancer incidence around the world during the past 10 years. Among various forms of malignancy skin cancer is most common, so there is need for the creation of an efficient and safe skin cancer treatment that may offer targeted and site-specific tumor penetration, and reduce unintended systemic toxicity. Nanocarriers have thus been employed to get around the issues with traditional anti-cancer drug delivery methods. Invasomes are lipid-based nanovesicles having small amounts of terpenes and ethanol or a mixture of terpenes and penetrate the skin more effectively. Compared to other lipid nanocarriers, invasomes penetrate the skin at a substantially faster rate. Invasomes possess a number of advantages, including improved drug effectiveness, higher compliance, patient convenience, advanced design, multifunctionality, enhanced targeting capabilities, non-invasive delivery methods, potential for combination therapies, and ability to overcome biological barriers,. These attributes position invasomes as a promising and innovative platform for the future of cancer treatment. The current review provides insights into invasomes, with a fresh organizational scheme and incorporates the most recent cancer research, including their composition, historical development and methods of preparation, the penetration mechanism involving effect of various formulation variables and analysis of anticancer mechanism and the application of invasomes.
Collapse
Affiliation(s)
- Renu Dwivedi
- School of Pharmaceutical Sciences, Bahra University, Solan, Himachal Pradesh, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Rakesh K Sindhu
- School of Pharmacy, 193167 Sharda University , Greater Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Iqbal S, Zaman M, Waqar MA, Sarwar HS, Jamshaid M. Vesicular approach of cubosomes, its components, preparation techniques, evaluation and their appraisal for targeting cancer cells. J Liposome Res 2024; 34:368-384. [PMID: 37873797 DOI: 10.1080/08982104.2023.2272643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Cancer has been characterized by abnormal and uncontrolled proliferation of cells. Majority of drugs given through chemotherapy produce unwanted and adverse effects of chemotherapeutic agents to the other healthy cells and tissues of body. Various nanocarriers have now been considered for treatment of cancer. Among various nanocarriers, cubosomes are the nano sized dispersions that have drawn interest of researchers recently. Cubosomes are defined as dispersions of colloidal nature containing cubic crystalline liquid formations in aqueous medium in presence of suitable surfactant molecules. The unique capacity to encapsulate lipophilic, hydrophilic, and amphiphilic compounds inside their structure distinguishes them among others. Top- down method and hydrotrope method are most often employed methods for cubosomes preparation. Cubosomes can be characterized by Polarized light microscopy Photon correlation spectroscopy X-ray scattering (SAXS), Transmission electron microscopy and various stability studies. Cubic lipid nanoparticles have a very stable cubic structure that enables slower dissociation rate, increased retention and site-specific delivery of drugs. Cubosomes containing extracts of cornelian cherry for boosting anti-cancerous effects in cancer of colorectal cells by preventing against GIT destruction. When applied for skin cancer, cubosomes have shown to be having enhanced permeation of the drug. In liver cancer, increased bioavailability of drug was observed via cubosomes. This current review elaborates the advancement of cubosomes and their effective role in the treatment of cancer. This review aims to describe vesicular approach of cubosomes, its composition and method of preparation, characterization tests as well as elaborates various applications of cubosomes in cancer.
Collapse
Affiliation(s)
- Sehrish Iqbal
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Ahsan Waqar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Han W, Liu F, Muhammad M, Liu G, Li H, Xu Y, Sun S. Application of biomacromolecule-based passive penetration enhancement technique in superficial tumor therapy: A review. Int J Biol Macromol 2024; 272:132745. [PMID: 38823734 DOI: 10.1016/j.ijbiomac.2024.132745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Transdermal drug delivery (TDD) has shown great promise in superficial tumor therapy due to its noninvasive and avoidance of the first-pass effect. Especially, passive penetration enhancement technique (PPET) provides the technical basis for TDD by temporarily altering the skin surface structure without requiring external energy. Biomacromolecules and their derived nanocarriers offer a wide range of options for PPET development, with outstanding biocompatibility and biodegradability. Furthermore, the abundant functional groups on biomacromolecule surfaces can be modified to yield functional materials capable of targeting specific sites and responding to stimuli. This enables precise drug delivery to the tumor site and controlled drug release, with the potential to replace traditional drug delivery methods and make PPET-related personalized medicine a reality. This review focuses on the mechanism of biomacromolecules and nanocarriers with skin, and the impact of nanocarriers' surface properties of nanocarriers on PPET efficiency. The applications of biomacromolecule-based PPET in superficial tumor therapy are also summarized. In addition, the advantages and limitations are discussed, and their future trends are projected based on the existing work of biomacromolecule-based PPET.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, China.
| | - Mehdi Muhammad
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China.
| |
Collapse
|
8
|
Hameed H, Faheem S, Khan MA, Hameed A, Ereej N, Ihsan H. Ethosomes: a potential nanovesicular carrier to enhancing the drug delivery against skin barriers. J Microencapsul 2024; 41:204-225. [PMID: 38456667 DOI: 10.1080/02652048.2024.2326085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Ethosomes, which are liposomes like structures, mainly composed primarily of ethanol, have attracted considerable attention due to their potential to enhance the drug permeation via skin. The article discusses the formulation and preparation methods of ethosomes, offering insights into the various factors that influence their size, shape, and stability. Moreover, it explores the techniques used to assess the physicochemical properties of ethosomes and their impact on drug delivery effectiveness. The article also elucidates the mechanism by which ethosomes enhance skin permeation, emphasising their ability to modify the lipid structure and fluidity of the stratum corneum. Additionally, the review investigates the applications of ethosomes in diverse drug delivery scenarios, including the delivery of small molecules, peptides, and phytoconstituents. It highlights the potential of ethosomes to improve drug bioavailability, extend drug release, and achieve targeted delivery to specific skin layers or underlying tissues.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck, Lubeck, Germany
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Hafsa Ihsan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Munir M, Zaman M, Waqar MA, Hameed H, Riaz T. A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route. J Liposome Res 2024; 34:203-218. [PMID: 37338000 DOI: 10.1080/08982104.2023.2221354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Drug delivery through transdermal route is one of the effective methods for the application of drugs. It overcomes many drawbacks which are encountered with the oral route. Moreover, many drugs are not able to pass through the stratum corneum, which is the main barrier for the transdermal drug delivery. Formation of ultra-deformable vesicles (UDVs) is a novel technique for the transdermal applications of the drugs. Transethosomes (TEs), ethosomes, and transferosomes are all part of the UDV. Because of the presence of increased concentrations of ethanol, phospholipids, and edge activators, TEs provide improved drug permeation through the stratum corneum. Because of the elasticity of TEs, drug penetration into the deeper layer of skin also increases. TEs can be prepared using a variety of techniques, including the cold method, hot method, thin film hydration method, and the ethanol injection method. It increases patient adherence and compliance because it is a non-invasive procedure of administering drugs. Characterization of the TEs includes pH determination, size and shape, zeta potential, particle size determination, transition temperature, drug content, vesicle stability, and skin permeation studies. These vesicular systems can be utilized to deliver a variety of medications transdermally, including analgesics, antibiotics, antivirals, and anticancer and arthritis medications. This review aims to describe vesicular approaches that had been used to overcome the barrier for the transdermal delivery of drug and also describes brief composition, method of preparation, characterization tests, mechanism of penetration of TEs, as well as highlighted various applications of TEs in medicine.
Collapse
Affiliation(s)
- Minahal Munir
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Ahsan Waqar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Tehseen Riaz
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Xiao Y, Zhou L, Tao W, Yang X, Li J, Wang R, Zhao Y, Peng C, Zhang C. Preparation of paeoniflorin-glycyrrhizic acid complex transethosome gel and its preventive and therapeutic effects on melasma. Eur J Pharm Sci 2024; 192:106664. [PMID: 38061662 DOI: 10.1016/j.ejps.2023.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Paeoniflorin (PF) and glycyrrhizic acid (GL) have skin beautifying effects of anti-inflammation, anti-oxidation, inhibition of melanin formation, and reduction of skin pigmentation. To improve the transdermal permeability of PF and GL in transdermal drug delivery system (TDDS) and enhance their anti-melasma efficacy, PF-GL transethosome (PF-GL-TE) was prepared by ethanol injection method, and finally gelled with carbomer-940 to form PF-GL-TE gel. Consequently, the obtained PF-GL-TE is small and uniform, with an average particle size and a PDI value of about 167.9 nm and 0.102. PF-GL-TE gel showed sustained release behavior and high transdermal permeability in vitro release and transdermal tests. Meanwhile, PF-GL-TE gel played significant preventive effects on melasma induced by progesterone injection and ultraviolet radiation B (UVB) irradiation. According to the results of H&E staining and Masson staining of rat skin, PF-GL-TE gel can alleviate the skin inflammation of and reduce the loss of collagen fibers of back skin in the melasma model rats. Compared with the PF-GL mixture gel, PF-GL-TE gel significantly attenuated the oxidative damage of liver and skin by increasing the activity of SOD and reducing the content of MDA. The results of Western blot showed that PF-GL-TE gel might down-regulate melanin-related proteins expressions of MITF/TYR/TRP1 and TRP2 to prevent and treat melasma. These findings indicate that PF-GL-TE gel is an effective TDDS for delivering PF and GL into the skin, providing a promising preparation for effective prevention and treatment of melasma.
Collapse
Affiliation(s)
- Yaoyao Xiao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Lele Zhou
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Wenkang Tao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Xuan Yang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Junying Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Rulin Wang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Yanan Zhao
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230000, China.
| | - Can Peng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China.
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China.
| |
Collapse
|
11
|
Ahuja A, Bajpai M. Novel Arena of Nanocosmetics: Applications and their Remarkable Contribution in the Management of Dermal Disorders, Topical Delivery, Future Trends and Challenges. Curr Pharm Des 2024; 30:115-139. [PMID: 38204262 DOI: 10.2174/0113816128288516231228101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Nanocosmetics have attracted a considerable audience towards natural care due to their low cost, target-specific delivery, and reduced toxicity compared to chemical-based cosmetics. Nanofomulations, including nanoemulsions, nanotubes, and polymeric carriers, have become next-generation products explored for the multifaced applications of nanotechnology in skin care. The rise in the cosmetic industry demands innovative and personalized products designed using nanocarriers for better targeting and improving patient compliance. Furthermore, nanocosmetics increase the efficiency of skin permeation active ingredient entrapment, providing better UV protection. Moreover, it offers controlled drug release, targeting active sites and enhancing physical stability. Further, overcoming the drawback of penetration problems makes them sustainable formulations for precision medicine. Skincare nourishment with nanocosmetics using Indian spices helps to maintain, beautify, and rejuvenate human skin. Nanophytopharmaceuticals extracted from plants, including alkaloids, flavonoids, antioxidants, and volatile oils, are essential phyto-products for skin care. Nano herbals and nanocosmetics are a growing market and gift of nature that nourishes and cures skin ailments like acne, pemphigus, anti-aging, albinism, psoriasis, and fungal infections. The emerging concern is highlighted in the investigation of nanoformulation toxicity and safety concerns in skin care. Further, it helps to manifest research, development, and innovation in expanding the scope of herbal industries.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
12
|
Ruan J, Liao S, Tang J, Fang L. Evaluation of Dose-Response Relationship of Permeation Enhancer Isopropyl Myristate Release on Drug Release: Release Enhancement Efficiency and Molecular Mechanism. AAPS PharmSciTech 2023; 25:1. [PMID: 38114839 DOI: 10.1208/s12249-023-02713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023] Open
Abstract
The objective of this study is to investigate the dose-response relationship between various concentrations of permeation enhancers (PEs) and their ability to enhance drug release from a polymer matrix, utilizing an innovative parameter known as release enhancement efficiency (K). Additionally, the molecular mechanism underlying dynamic enhancement was also examined. Isopropyl myristate (IPM) was used as model enhancer and zolmitriptan (ZOL) was used as model drug to investigate dose-effect relationship in pressure sensitive adhesives (PSA). The release behavior of the PEs was determined by LC-MS/MS and verified by confocal laser scanning microscopy (CLSM). The enhancing effect of the PE on ZOL release was evaluated through in vitro release experiments and further validated by pharmacokinetics study. And the molecular mechanism was characterized with thermal analysis (DSC), Fourier transform infrared spectroscopy (FT-IR) and molecular dynamics simulation. K was 0.156, 0.286 and 0.279 at 3%, 6% and 9% IPM concentrations, indicating that the enhancement efficiency reached the maximum when the 6% IPM was applied. According to the mechanism research results, the fluidity of PSA increased linearly with the increase of IPM concentrations, but the interaction between IPM and ZOL reached its strongest point at 6%. In summary, the increase of K value (from 0 to 6% IPM content) was caused by the synergy of increased mobility of PSA and interaction (dipole-dipole and hydrogen-bond) among three components, and when the above two actions were in antagonistic, K no longer increased (6-9% IPM content).
Collapse
Affiliation(s)
- Jiuheng Ruan
- School of Pharmacy, Chengdu Medical College, 783 Xindu Avenue, Chengdu, 610500, Sichuan, China.
| | - Sida Liao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinye Tang
- School of Pharmacy, Chengdu Medical College, 783 Xindu Avenue, Chengdu, 610500, Sichuan, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Shang J, Yang J, Deng Q, Zhou M. Nano-scale drug delivery systems for luteolin: advancements and applications. J Mater Chem B 2023; 11:11198-11216. [PMID: 37986608 DOI: 10.1039/d3tb01753b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Luteolin (Lu) is a naturally occurring flavonoid compound with a diverse array of pharmacological activities, including anti-tumor, anti-inflammatory, antibacterial, and neuroprotective properties. However, the therapeutic efficacy and clinical application of Lu are significantly hindered by inherent limitations, such as poor water solubility, short half-life, low bioavailability, and potential off-target toxicity. Recent studies have demonstrated that the utilization of nanocarriers presents a promising strategy to enhance the solubility of Lu, prolong its circulation time, and improve its targeting ability. Despite numerous reviews over the past few decades having focused on the source, pharmacological activities, and molecular mechanisms of Lu, there exists a conspicuous gap in the literature regarding a comprehensive review of Lu-loaded nanoformulations and their applications. To address this gap, we present an exhaustive overview of the advancements and applications of nano-scale drug delivery systems specifically designed for Lu. These platforms encompass micelles, nanocarrier-based systems, emulsified drug delivery systems, and vesicular drug delivery systems. We provide detailed insights into the synthetic materials, preparation methods, physicochemical properties, and significant outcomes associated with these nanoformulations. This systematic review will be particularly valuable to researchers seeking novel avenues in the field of nano-delivery strategies and exploring the potential clinical applications of Lu.
Collapse
Affiliation(s)
- Jinlu Shang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinmin Deng
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
14
|
Shafique U, Din FU, Sohail S, Batool S, Almari AH, Lahiq AA, Fatease AA, Alharbi HM. Quality by design for sumatriptan loaded nano-ethosomal mucoadhesive gel for the therapeutic management of nitroglycerin induced migraine. Int J Pharm 2023; 646:123480. [PMID: 37797784 DOI: 10.1016/j.ijpharm.2023.123480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Migraine is a progressive neurological condition often accompanied by nausea and vomiting. Various drugs have recently been used in the treatment of migraine, including sumatriptan (SUT). However, SUT has poor pharmacological effects mainly due to its reduced permeability, blood brain barrier (BBB) effect, half-life and bioavailability. Herein, we developed SUT loaded nano-ethosomes (SUT-NEs) for intranasal (IN) delivery, after their incorporation into chitosan based mucoadhesive gel (SUT-NEsG). The observed mean particle size of SUT-NEs was 109.45 ± 4.03 nm with spherical morphology, mono dispersion (0.191 ± 0.001), negatively charged (-20.90 ± 1.98 mV) and with excellent entrapment efficiency (96.90 ± 1.85 %). Fourier-transform infrared (FTIR) spectra have depicted the compatibility of the components. Moreover, SUT-NEsG was homogeneous having suitable viscosity and mucoadhesive strength. In vitro release and ex vivo permeation analysis showed sustained release and improved permeation of the SUT-NEsG, respectively. Additionally, histopathological studies of nasal membrane affirmed the safety of SUT-NEsG after IN application. In vivo pharmacokinetic study demonstrated improved brain bioavailability of SUT-NEsG as compared to orally administered sumatriptan solution (SUT-SL). Furthermore, significantly enhanced pharmacological effect of SUT-NEsG was observed in behavioral and biochemical analysis, immunohistochemistry for NF-κB, and enzyme linked immuno assay (ELISA) for IL-1β and TNF-α in Nitroglycerin (NTG) induced migraine model. It can be concluded that migraine may be successfully managed through IN application of SUT-NEsG owing to the direct targeted delivery to the brain.
Collapse
Affiliation(s)
- Uswa Shafique
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | - Saba Sohail
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Ali H Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ahmed A Lahiq
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66262, Saudi Arabi
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanan M Alharbi
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
15
|
Bin Jardan YA, Ahad A, Raish M, Al-Jenoobi FI. Preparation and Characterization of Transethosome Formulation for the Enhanced Delivery of Sinapic Acid. Pharmaceutics 2023; 15:2391. [PMID: 37896151 PMCID: PMC10609874 DOI: 10.3390/pharmaceutics15102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Sinapic acid (SA) is a bioactive phenolic acid; its diverse properties are its anti-inflammatory, antioxidant, anticancer, and antibacterial activities. The bioactive compound SA is poorly soluble in water. Our goal was to formulate SA-transethosomes using thin-film hydration. The prepared formulations were examined for various parameters. In addition, the optimized formulation was evaluated for surface morphology, in-vitro penetration studies across the Strat M®, and its antioxidant activity. The optimized formulation (F5) exhibited 74.36% entrapment efficacy. The vesicle size, zeta potential, and polydispersity index were found to be 111.67 nm, -7.253 mV, and 0.240, respectively. The surface morphology showed smooth and spherical vesicles of SA-transethosomes. In addition, the prepared SA-transethosomes exhibited enhanced antioxidant activity. The SA-transethosomes demonstrated considerably greater penetration across the Strat M® membrane during the study. The flux of SA and SA-transethosomes through the Strat M® membrane was 1.03 ± 0.07 µg/cm2/h and 2.93 ± 0.16 µg/cm2/h. The enhancement ratio of SA-transethosomes was 2.86 ± 0.35 compared to the control. The SA-transethosomes are flexible nano-sized vesicles and are able to penetrate the entrapped drug in a higher concentration. Hence, it was concluded that SA-transethosome-based approaches have the potential to be useful for accentuating the penetrability of SA across the skin.
Collapse
Affiliation(s)
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
16
|
Abpeikar Z, Safaei M, Akbar Alizadeh A, Goodarzi A, Hatam G. The novel treatments based on tissue engineering, cell therapy and nanotechnology for cutaneous leishmaniasis. Int J Pharm 2023; 633:122615. [PMID: 36657555 DOI: 10.1016/j.ijpharm.2023.122615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Cutaneous leishmaniasis (CL) is a global public health issue. Conventional treatments have substantial costs, side effects, and parasite resistance. Due to easy application and inexpensive cost, topical treatment is the optimal approach for CL. It could be used alone or with systemic treatments. Electrospun fibers as drug release systems in treating skin lesions have various advantages such as adjustable drug release rate, maintaining appropriate humidity and temperature, gas exchange, plasticity at the lesion site, similarity with the skin extracellular matrix (ECM) and drug delivery with high efficiency. Hydrogels are valuable scaffolds in the treatment of skin lesions. The important features of hydrogels include preserving unstable drugs from degradation, absorption of wound secretions, high biocompatibility, improving the re-epithelialization of the wound and preventing the formation of scars. One of the issues in local drug delivery systems for the skin is the low permeability of drugs in the skin. Polymeric scaffolds that are designed as microneedle patches can penetrate the skin and overcome this challenge. Also, drug delivery using nanocarriers increases the effectiveness of drugs in lower and more tolerable doses and reduces the toxicity of drugs. The application of cell therapy in the treatment of parasitic and infectious diseases has been widely investigated. The complexity of leishmaniasis treatment requires identifying new treatment options like cell therapy to overcome the disease. Topics investigated in this study include drug delivery systems based on tissue engineering scaffolds, nanotechnology and cell therapy-based studies to reduce the complications of CL.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohsen Safaei
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Akbar Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Shinde P, Page A, Bhattacharya S. Ethosomes and their monotonous effects on Skin cancer disruption. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2023.1087413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Skin cancer is one of the most prominent diseases, affecting all continents worldwide, and has shown a significant rise in mortality and prevalence. Conventional therapy, including chemotherapy and surgery, has a few drawbacks. The ethosomal systems would be thoroughly reviewed in this compilation, and they would be classified based on constituents: classical ethosomes, binary ethosomes, and transethosomes. Ethosomes systems are model lipid vesicular carriers with a substantial portion of ethanol. The impacts of ethosomal system components, preparation techniques, and their major roles in selecting the final characteristics of these nanocarriers are comprehensively reviewed in this chapter. The special techniques for ethosomes, including the cold approach, hot approach, injection method, mechanical dispersion method, and conventional method, are explained in this chapter. Various evaluation parameters of ethosomes were also explained. Furthermore, ethosomal gels, patches, and creams can be emphasised as innovative pharmaceutical drug formulations. Some hybrid ethosomal vesicles possessing combinatorial cancer therapy using nanomedicine could overcome the current drug resistance of specific cancer cells. Through the use of repurpose therapy, phytoconstituents may be delivered more effectively. A wide range of in vivo models are employed to assess their effectiveness. Ethosomes have provided numerous potential skin cancer therapeutic approaches in the future.
Collapse
|
18
|
Transfersomal eosin topical delivery assisted by fractional CO 2 laser for photodynamic treatment of palmar hyperhidrosis: case study. Drug Deliv Transl Res 2022; 12:3000-3006. [PMID: 35441986 PMCID: PMC9636100 DOI: 10.1007/s13346-022-01164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
Hyperhidrosis is a condition in which the cholinergic receptors on the eccrine glands are overstimulated, resulting in excessive sweating. It is considered a serious cosmetic and psychological problem that affects the patient's quality of life. Searching for novel treatment modalities is required to minimize the side effects and to attain better patient satisfaction.Photodynamic therapy (PDT), using eosin as a photosensitizer, is developed as a promising modality of the treatment of palmar and axillary hyperhidrosis. In this study, we treated six cases suffering palmar hyperhidrosis by applying the fractional CO2 laser prior to PDT session. For PDT, a hydrogel of eosin loaded in a transfersomes as a nano-delivery carrier was applied for 5 min, followed by irradiation by intense pulsed light (IPL). The prepared transfersomes loaded by eosin were spherical in shape with encapsulation efficiency of 33 ± 3.5%, particle size 305.5 ± 5.7 nm, average zeta potential of - 54 ± 7.6 mV with 80 ± 4% of the loaded eosin was released after 3 h. Two cases achieved 90% improvement after four sessions, three patients needed six sessions to show 75% improvement, while one patient showed only 25% improvement after six sessions. This resulted in shortening the time of PS application and decreasing the number of sessions required to achieve acceptable improvement. More clinical studies on large number of patients are required to optimize the results.
Collapse
|
19
|
Allam AA, Fathalla D, Safwat MA, Soliman GM. Transferosomes versus transethosomes for the dermal delivery for minoxidil: Preparation and in vitro/ex vivo appraisal. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1435-1468. [PMID: 35294334 DOI: 10.1080/09205063.2022.2054399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Skin-cancer (SC) is more common than all other cancers affecting large percentage of the population in the world and is increasing in terms of morbidity and mortality. In the United States, 3million people are affected by SC annually whereas millions of people are affected globally. Melanoma is fifth most common cancer in the United States. SC is commonly occurred in white people as per WHO. SC is divided into two groups, i.e. melanoma and non-melanoma. In the previous two decades, management of cancer remains to be a tough and a challenging task for many scholars. Presently, the treatment protocols are mostly based on surgery and chemo-radiation therapy, which sooner or later harm the unaffected cells too. To reduce these limitations, nano scaled materials and its extensive range may be recognized as the probable carriers for the selective drug delivery in response to cancerous cells. Recently, the nanocarriers based drugs and their combinations were found to be a new and interesting approach of study for the management of skin carcinoma to enhance the effectiveness, to lessen the dose-dependent side effects and to avoid the drug resistance. This review may emphasize on the wide-range of information on nanotechnology-based drugs and their combination with physical techniques.
Collapse
Affiliation(s)
- Shweta Kumari
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
21
|
Exploration of Microneedle-assisted Skin Delivery of Cyanocobalamin formulated in Ultraflexible Lipid Vesicles. Eur J Pharm Biopharm 2022; 177:184-198. [PMID: 35787430 DOI: 10.1016/j.ejpb.2022.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Vitamin B12 (cyanocobalamin) deficiency is a widespread condition because of its different aetiologies, like malabsorption syndrome or lifestyles as strict veganism that is increasing its incidence and prevalence in developed countries. It has important haematological consequences that require pharmacological treatment. Current therapy consists of oral or parenteral supplements of cyanocobalamin; however, the oral route is discarded for malabsorption syndrome patients and the parenteral route is not well accepted generally. Topical treatments have been suggested as an alternative, but the molecular weight and hydrophilicity of cyanocobalamin limits its diffusion through the skin. Lipid vesicles can allow the transdermal absorption of molecules >500 Da. The aim of this work was to use different ultraflexible lipid vesicles (transfersomes and ethosomes) to enhance cyanocobalamin transdermal delivery. Vesicles were characterized and lyophilised for long-term stability. The ability to deliver cyanocobalamin through the skin was assessed in vitro using full-thickness porcine skin in Franz diffusion cells. As expected, the best transdermal fluxes were provided by ultraflexible vesicles, in comparison to a drug solution. Moreover, the pre-treatment of the skin with a solid microneedle array boosts the amount of drug that could potentially reach the systemic circulation.
Collapse
|
22
|
Salem HF, Ali AA, Rabea YK, El-Ela FIA, Khallaf RA. Glycerosomal thermosensitive in situ gel of duloxetine HCl as a novel nanoplatform for rectal delivery: in vitro optimization and in vivo appraisal. Drug Deliv Transl Res 2022; 12:3083-3103. [PMID: 35622235 DOI: 10.1007/s13346-022-01172-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Duloxetine HCl (DXH) is a reuptake inhibitor of serotonin and norepinephrine used to treat the major depressive disorder. Following its extensive hepatic metabolism, acid-labile nature, and limited aqueous solubility, DXH has poor oral bioavailability (40%). The rectal route has been suggested as another route of administration to surmount such challenges. The present study aimed to prepare DXH-loaded glycerosomal (DXH-GLYS) in situ gel for rectal administration to increase DXH permeability and improve its bioavailability. Box-Behnken design (BBD) was adopted to prepare and optimize nanoglycerosomes. The impact of Phospholipon 90G (PL90G), Tween 80 concentrations, and glycerol percentage on encapsulation efficiency, nanoglycerosomal size, % cumulative DXH released, and the cumulative DXH permeated per unit area after 24 h were studied by the design. The pharmacokinetic and pharmacodynamic behavior of optimized formulation was investigated in rats. The formulated DXH-GLYS had a vesicle size ranging between 135.9 and 430.6 nm and an entrapment efficiency between 69.11 and 98.12%. The permeation experiment revealed that the optimized DXH-GLYS in situ gel increased DXH permeation by 2.62-fold compared to DXH solution. Pharmacokinetics studies disclosed that the DXH-GLYS in situ rectal gel exhibited 2.24-times increment in DXH bioavailability relative to oral DXH solution. The pharmacodynamic study revealed that the DXH-GLYS rectal treatment significantly improved the behavioral analysis parameters and was more efficacious as an antidepressant than the oral DXH solution. Collectively, these findings demonstrate that GLYS can be considered a potentially valuable rectal nanocarrier that could boost the DXH efficacy.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmine K Rabea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt, 62511, Egypt
| | - Rasha A Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
23
|
Fakhraei S, Sazgarnia A, Taheri A, Rajabi O, Hoseininezhad M, Zamiri F, Ahmadpour F. Evaluating the efficacy of photodynamic therapy with indocyanine green in the treatment of keloid. Photodiagnosis Photodyn Ther 2022; 38:102827. [PMID: 35339721 DOI: 10.1016/j.pdpdt.2022.102827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study aimed to evaluate the efficacy of photodynamic therapy (PDT) with topical indocyanine green (ICG) in the treatment of keloid lesions. METHODS In this pilot study, fifteen keloids (6 lesions on the sternal area, 3 on the shoulders, 2 on the abdomen, 2 on the legs, and 2 on the forearms) were selected. To enhance drug penetration, pretreatment with CO2 laser was performed. Then Lesions were covered with 0.2% transfersomal ICG gel with 1mm thickness and occluded with light-proof plastic nylon for 2 hours. Afterward, it was wiped off and underwent photodynamic therapy with source LumaCare with 730 nm probe and fluence of 23 J/cm2 every week for 6 sessions. Patients were also assessed 6 and 12 weeks after the treatment for any recurrences. The Patient and Observer Scar Assessment Scale (POSAS) was used to evaluate the scars. RESULTS The mean POSAS score significantly reduced by 23.69% from 46.86 at baseline to 35.76 at the 6th treatment session (P< 0.001). The mean scores of patient and observer overall opinion significantly decreased by 16.35% (P< 0.001) and 12.31 % (P= 0.001) respectively. No side effects were observed during treatment and after 3 months of follow-ups. After discontinuation of therapy, the mean score of POSAS significantly increased by 13.77% to 40.80. (P= 0.001) CONCLUSION: : According to our study, ICG-PDT is an effective and safe treatment for keloid. However, due to the recurrence following discontinuation of treatment, further studies are needed.
Collapse
Affiliation(s)
- Sara Fakhraei
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Ameneh Sazgarnia
- Department and Research Center of Medical Physics, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Ahmadreza Taheri
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Omid Rajabi
- Department of Drug and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Masoumeh Hoseininezhad
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Fereshteh Zamiri
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Farnaz Ahmadpour
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
24
|
Chen RP, Chavda VP, Patel AB, Chen ZS. Phytochemical Delivery Through Transferosome (Phytosome): An Advanced Transdermal Drug Delivery for Complementary Medicines. Front Pharmacol 2022; 13:850862. [PMID: 35281927 PMCID: PMC8904565 DOI: 10.3389/fphar.2022.850862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Transdermal drug delivery aims to create a safe and effective method of administering drugs through the skin that attracts a lot of attention and investment due to the constant progress in the field. Transferosomes are flexible or malleable vesicles (having almost the same structure as liposomes but with better skin penetration properties) discovered initially in the early 90s. The name transferosomes, which means "carrying bodies," is coined from the Latin phrase "Transferee," which means "to carry through," and the Greek term "soma," meaning "body." In comparison to typical herbal extracts, phytosomes (Transferosomes) are created by attaching specific herbal extracts to phosphatidylcholine, resulting in a formulation with increased solubility and, hence, better absorption, resulting in improved pharmacokinetic and pharmacodynamic features of the entrapped drugs. We are using the word phytosomes and transferosomes interchangeably as we have consolidated vesicular delivery of herbal drugs through skin. In this mini-review, we have demonstrated the enormous potential of developing nanotechnology to deliver bioactive phytochemicals, with a special emphasis on phytosomes (Transferosomes) as a unique lipid-based nanocarrier for transdermal drug delivery.
Collapse
Affiliation(s)
- Rong-Ping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Aayushi B Patel
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, United States
| |
Collapse
|
25
|
Ultra deformable vesicles for boosting transdermal delivery of 2-arylpropionic acid class drug for management of musculoskeletal pain. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-021-00555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Sriwidodo, Umar AK, Wathoni N, Zothantluanga JH, Das S, Luckanagul JA. Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon 2022; 8:e08934. [PMID: 35243059 PMCID: PMC8861389 DOI: 10.1016/j.heliyon.2022.e08934] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes have been used extensively as micro- and nanocarriers for hydrophobic or hydrophilic molecules. However, conventional liposomes are biodegradable and quickly eliminated, making it difficult to be used for delivery in specific routes, such as the oral and systemic routes. One way to overcome this problem is through complexation with polymers, which is referred to as a liposome complex. The use of polymers can increase the stability of liposome with regard to pH, chemicals, enzymes, and the immune system. In some cases, specific polymers can condition the properties of liposomes to be explicitly used in drug delivery, such as targeted delivery and controlled release. These properties are influenced by the type of polymer, crosslinker, interaction, and bond in the complexation process. Therefore, it is crucial to study and review these parameters for the development of more optimal forms and properties of the liposome complex. This article discusses the use of natural and synthetic polymers, ways of interaction between polymers and liposomes (on the surface, incorporation in lamellar chains, and within liposomes), types of bonds, evaluation standards, and their effects on the stability and pharmacokinetic profile of the liposome complex, drugs, and vaccines. This article concludes that both natural and synthetic polymers can be used in modifying the structure and physicochemical properties of liposomes to specify their use in targeted delivery, controlled release, and stabilizing drugs and vaccines.
Collapse
Affiliation(s)
- Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Sanjoy Das
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
27
|
Marwah MK, Shokr H, Sanchez-Aranguren L, Badhan RKS, Wang K, Ahmad S. Transdermal Delivery of a Hydrogen Sulphide Donor, ADT-OH Using Aqueous Gel Formulations for the Treatment of Impaired Vascular Function: an Ex Vivo Study. Pharm Res 2022; 39:341-352. [PMID: 35088236 PMCID: PMC8881439 DOI: 10.1007/s11095-021-03164-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Hydrogen sulphide (H2S) is an important signalling molecule involved in the regulation of several physiological and pathophysiological processes. The objective of this study was to investigate the feasibility of transdermal delivery of ADT-OH, a H2S donor, by investigating the transdermal flux of aqueous gels loaded with penetration enhancers or liposomes. Furthermore, we explored the ability of permeated ADT-OH to promote angiogenesis and mitochondrial bioenergetics in HUVEC cells. METHODS Aqueous hypromellose gels (5% w/v) were prepared with up to 10% v/v propylene glycol (PG) or deformable liposomes with 0.025% w/w ADT-OH. ADT-OH permeation from formulations across excised murine skin into PBS was quantified over 24 h using HPLC-UV detection. Media was collected and applied to HUVEC cells to evidence ADT-OH functionality following permeation. Tube formation assays were performed as indicative of angiogenesis and mitochondrial oxygen consumption was evaluated using a Seahorse XF24. RESULTS Increasing the loading of PG caused an increase in ADT-OH permeation rate across skin and a decrease in dermal drug retention whereas liposomal gels produced a slow-release profile. Treatment of HUVEC's using conditioned media collected from the ADT-OH loaded permeation studies enhanced tube formation and the basal oxygen consumption rates after 30 min of treatment. CONCLUSIONS These findings demonstrate that transdermal delivery of ADT-OH may provide a promising approach in the treatment of impaired vascular function. Gels prepared with 10% v/v PG have the potential for use in conditions requiring rapid H2S release whereas liposomal loaded gels for treatment requiring sustained H2S release.
Collapse
Affiliation(s)
- Mandeep Kaur Marwah
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Hala Shokr
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
- Pharmacy Division, School of Health Sciences, Manchester University, Manchester, UK
| | | | - Raj Kumar Singh Badhan
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Keqing Wang
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Shakil Ahmad
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
28
|
Kaur H, Kesharwani P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J Control Release 2021; 337:589-611. [PMID: 34364919 DOI: 10.1016/j.jconrel.2021.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Skin-cancer is the commonest malignancy affecting huge proportion of the population, reaching heights in terms of morbidity. The treatment strategies are presently focusing on surgery, radiation and chemotherapy, which eventually cause destruction to unaffected cells. To overcome this limitation, wide range of nanoscaled materials have been recognized as potential carriers for delivering selective response to cancerous cells and neoplasms. Nanotechnological approach has been tremendously exploited in several areas, owing to their functional nanometric dimensions. The alarming incidence of skin cancer engenders burdensome effects worldwide, which is further awakening innovational medicinal approaches, accompanying target specific drug delivery tools for coveted benefits to provide reduced toxicity and tackle proliferative episodes of skin cancer. The developed nanosystems for anti-cancer agents include liposomes, ethosomes, nanofibers, solid lipid nanoparticles and metallic nanoparticles, which exhibit pronounced outcomes for skin carcinoma. In this review, skin cancer with its sub-types is explained in nutshell, followed by compendium of specific nanotechnological tools presented, in addition to therapeutic applications of drug-loaded nano systems for skin cancer.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
29
|
Nayak D, Tippavajhala VK. A Comprehensive Review on Preparation, Evaluation and Applications of Deformable Liposomes. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:186-205. [PMID: 34400952 PMCID: PMC8170744 DOI: 10.22037/ijpr.2020.112878.13997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Elastic or deformable liposomes are phospholipid-based vesicular drug delivery systems that help improve the delivery of therapeutic agents through the intact skin membrane due to their deformable characteristics that overcome the problems of conventional liposomes. In the present review, different types of deformable liposomes such as transfersomes, ethosomes, menthosomes, invasomes and transethosome are studied, and their mechanism of action, characterization, preparation methods, and applications in pharmaceutical technology through topical, transdermal, nasal and oral routes for effective drug delivery are compared for their potential transdermal delivery of poorly permeable drugs. Due to the deformable characteristics of these vehicles, it resulted in modulation of increased drug encapsulation efficiency, permeation and penetration of the drug into or through the skin membrane and are found to be more effective than conventional drug delivery systems. So deformable liposomes can, therefore, be considered as a promising way of delivering the drugs transdermally.
Collapse
Affiliation(s)
- Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
30
|
Mishra V, Singh M, Mishra Y, Charbe N, Nayak P, Sudhakar K, Aljabali AAA, Shahcheraghi SH, Bakshi H, Serrano-Aroca Á, Tambuwala MM. Nanoarchitectures in Management of Fungal Diseases: An Overview. APPLIED SCIENCES 2021; 11:7119. [DOI: 10.3390/app11157119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Fungal infections, from mild itching to fatal infections, lead to chronic diseases and death. Antifungal agents have incorporated chemical compounds and natural products/phytoconstituents in the management of fungal diseases. In contrast to antibacterial research, novel antifungal drugs have progressed more swiftly because of their mild existence and negligible resistance of infections to antifungal bioactivities. Nanotechnology-based carriers have gained much attention due to their magnificent abilities. Nanoarchitectures have served as excellent carriers/drug delivery systems (DDS) for delivering antifungal drugs with improved antifungal activities, bioavailability, targeted action, and reduced cytotoxicity. This review outlines the different fungal diseases and their treatment strategies involving various nanocarrier-based techniques such as liposomes, transfersomes, ethosomes, transethosomes, niosomes, spanlastics, dendrimers, polymeric nanoparticles, polymer nanocomposites, metallic nanoparticles, carbon nanomaterials, and nanoemulsions, among other nanotechnological approaches.
Collapse
|
31
|
Paiva-Santos AC, Silva AL, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, Mascarenhas-Melo F, Castro R, Veiga F. Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharm Res 2021; 38:947-970. [PMID: 34036520 DOI: 10.1007/s11095-021-03053-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
The use of nanotechnology has been extensively explored for developing efficient drug delivery systems towards topical and transdermal applications. Ethosomes constitute a vesicular nanocarrier containing a relatively high concentration of ethanol (20-45%). Ethanol is a well-known permeation enhancer, which confers ethosomes unique features, including high elasticity and deformability, allowing them to penetrate deeply across the skin and enhance drug permeation and deposition. The improved composition of ethosomes offer, thereby, significant advantages in the delivery of therapeutic agents over particularly the conventional liposomes regarding different pathologies, including acne, psoriasis, alopecia, skin infections, hormonal deficiencies, among others. This review provides a comprehensive overview of the ethosomal system and an assessment of its potential as an efficient nanocarrier towards the skin delivery of active ingredients. Special attention is given to the composition of ethosomes and the mechanism of skin permeation, as well as their potential applications in different pathologies, particularly skin pathologies (acne, psoriasis, atopic dermatitis, skin cancer and skin infections). Some examples of ethosome-based formulations for the management of skin disorders are also highlighted. Besides the need for further studies, particularly in humans, ethosomal-based formulations hold great promise in the skin delivery of active ingredients, which increasingly asserts oneself as a viable alternative to the oral route.
Collapse
Affiliation(s)
- Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Ana Luísa Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Catarina Guerra
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mahdi Zeinali
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ricardo Castro
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- CQC, Department of Chemistry of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf B Biointerfaces 2021; 203:111748. [PMID: 33853001 DOI: 10.1016/j.colsurfb.2021.111748] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
The advent of nanocarriers in the field of pharmaceutical drug delivery, while exhibiting considerable advantages, has created challenges for researchers. Among the applications of nanocarriers, drug delivery to the skin has attracted increasing attention in recent decades due to its advantages over oral and parenteral administration. Accordingly, this work attempts to discuss the major obstacles surrounding topically applied formulations and different nanocarriers' potential to overcome these barriers to investigate whether their passive penetration through the skin is likely. Therefore, skin anatomical views and transcutaneous pathways are briefly reviewed. Factors commonly thought to influence skin penetration are discussed from the perspective of particularly penetrating nanocarriers. The formulation of these nanocarriers is outlined, and promising constituents are highlighted to help investigators optimize nanocarrier formulations.
Collapse
|
33
|
Obeid MA, Aljabali AAA, Rezigue M, Amawi H, Alyamani H, Abdeljaber SN, Ferro VA. Use of Nanoparticles in Delivery of Nucleic Acids for Melanoma Treatment. Methods Mol Biol 2021; 2265:591-620. [PMID: 33704742 DOI: 10.1007/978-1-0716-1205-7_41] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melanoma accounts for 4% of all skin cancer malignancies, with only 14% of diagnosed patients surviving for more than 5 years after diagnosis. Until now, there is no clear understanding of the detailed molecular contributors of melanoma pathogenesis. Accordingly, more research is needed to understand melanoma development and prognosis.All the treatment approaches that are currently applied have several significant limitations that prevent effective use in melanoma. One major limitation in the treatment of cancer is the acquisition of multidrug resistance (MDR). The MDR results in significant treatment failure and poor clinical outcomes in several cancers, including skin cancer. Treatment of melanoma is especially retarded by MDR. Despite the current advances in targeted and immune-mediated therapy, treatment arms of melanoma are severely limited and stand as a significant clinical challenge. Further, the poor pharmacokinetic profile of currently used chemotherapeutic agents is another reason for treatment failure. Therefore, more research is needed to develop novel drugs and carrier tools for more effective and targeted treatment.Nucleic acid therapy is based on nucleic acids or chemical compounds that are closely related, such as antisense oligonucleotides, aptamers, and small-interfering RNAs that are usually used in situations when a specific gene implicated in a disorder is deemed a therapeutically beneficial target for inhibition. However, the proper application for nucleic acid therapies is hampered by the development of an effective delivery system that can maintain their stability in the systemic circulation and enhance their uptake by the target cells. In this chapter, the prognosis of the different types of melanoma along with the currently used medications is highlighted, and the different types of nucleic acids along with the currently available nanoparticle systems for delivering these nucleic acids into melanoma cells are discussed. We also discuss recently conducted research on the use of different types of nanoparticles for nucleic acid delivery into melanoma cells and highlight the most significant outcomes.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Hanin Alyamani
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shatha N Abdeljaber
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
34
|
Fonseca-Santos B, Chorilli M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm 2020; 589:119832. [PMID: 32877730 DOI: 10.1016/j.ijpharm.2020.119832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Neurological disorders have been growing in recent years and are highly prevalent globally. Resveratrol (RES) is a natural product from plant sources such as grape skins. This compound has shown biological activity in many diseases, in particular, those that act on the central nervous system. The mechanism of action and the key points in neurological disorders were described and show the targeted mechanism of action. Due to the insolubility of this compound; the use of nanotechnology-based systems has been proposed for the incorporation of RES and RES-loaded nanocarriers have been designed for intranasal administration, oral or parenteral routes to deliver it to the brain. In general, these nanosystems have shown to be effective in many studies, pharmacological and pharmacokinetic assays, as well as some cell studies. The outcomes show that RES has been reported in human clinical trials for some neurological diseases, although no studies were performed in humans using nanocarriers, animal and/or cellular models have been reported to show good results regarding therapeutics on neurological diseases. Thus, the use of this nutraceutical has shown true for neurological diseases and its loading into nanocarriers displaying good results on the stability, delivery and targeting to the brain.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil
| | - Marlus Chorilli
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil.
| |
Collapse
|
35
|
Fadel M, Kassab K, Samy N, Abdelfadeel D, Yassin G, Nasr M. Nanovesicular Photodynamic Clinical Treatment of Resistant Plantar Warts. Curr Drug Deliv 2020; 17:396-405. [DOI: 10.2174/1567201817666200324142221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/29/2019] [Accepted: 03/10/2020] [Indexed: 11/22/2022]
Abstract
Background:
Photodynamic therapy which involves the use of photosensitizer molecule activated
by a light source was proven very promising for the treatment of dermatological diseases, especially
the resistant ones such as recalcitrant Plantar Warts (PW).
Objective:
However, its efficacy is hindered by the poor permeation of the photosensitizer molecule
required to initiate skin photo-induced effects.
Methods:
In this manuscript, the efficiency of the nano-vesicular system (transfersomes) as a potential
topical drug delivery system for the photosensitizer methylene blue (MB) was investigated following
clinical Photodynamic Therapy (PDT) in patients suffering from PW.
Results:
Results revealed that MB transfersomal gel displayed a higher complete healing percentage for
the lesions compared to the free MB gel (86.67% versus 53.57%) achieved at a lower number of treatment
sessions (2.2 versus 4.14). Patients reported no signs of pain or inflammation, with no recurrence
of the lesions during the follow up period of 8 months.
Conclusion:
PDT using transfersomal MB is an effective and safe therapeutic modality for the treatment
of PW.
Collapse
Affiliation(s)
- Maha Fadel
- Pharmaceutical Nanotechnology Unit, Department of Medical Laser Applications, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Kawser Kassab
- Photobiology and Cell Photosensitization Unit, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Nevien Samy
- Dermatology Unit, Department of Medical Laser Applications, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Doaa Abdelfadeel
- Pharmaceutical Nanotechnology Unit, Department of Medical Laser Applications, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Ghada Yassin
- Pharmaceutical Nanotechnology Unit, Department of Medical Laser Applications, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
36
|
Nayak D, Tawale RM, Aranjani JM, Tippavajhala VK. Formulation, Optimization and Evaluation of Novel Ultra-deformable Vesicular Drug Delivery System for an Anti-fungal Drug. AAPS PharmSciTech 2020; 21:140. [PMID: 32419032 DOI: 10.1208/s12249-020-01681-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
The present study is aimed at enhancing the skin penetration of ketoconazole by formulating it as transethosome. Ketoconazole-loaded transethosome formulations were prepared by conventional thin film evaporation and hydration method and were optimized using concentration of edge activator (span 80), ethanol and sonication time as factors and particle size, polydispersity index and entrapment efficiency as responses. The optimized formulation was further evaluated for in vitro diffusion, anti-fungal activity, ex vivo penetration and in vivo pharmacodynamic activity. The results of in vitro drug diffusion and ex vivo skin penetration studies demonstrated that the amount of drug diffused and penetrated through the skin was increased. Optimized transethosomes showed enhanced in vitro antifungal and in vivo pharmacodynamic activities against Candida albicans in Wistar albino rats when compared to conventional liposomes. Therefore, the developed ketoconazole encapsulated transethosome formulation is capable of enhancing the skin penetration of the drug by overcoming the stratum corneum barrier function and acting as an effective drug delivery system for ketoconazole through the skin for its anti-fungal activity.
Collapse
|
37
|
Naguib MJ, Salah S, Abdel Halim SA, Badr-Eldin SM. Investigating the potential of utilizing glycerosomes as a novel vesicular platform for enhancing intranasal delivery of lacidipine. Int J Pharm 2020; 582:119302. [PMID: 32276091 DOI: 10.1016/j.ijpharm.2020.119302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Lacidipine is a potent dihydropyridine calcium channel blocker used for management of hypertension and atherosclerosis. The drug has low and fluctuating oral bioavailability owing to its extensive hepatic first-pass metabolism and reduced water solubility. Accordingly, this work aimed at overcoming the aforementioned challenges through the formulation of intranasal nano-sized lacidipine glycerosomes. Box-Behnken was successfully employed for the formulation and in vitro optimization of the glycerosomes. Statistical analysis revealed that cholesterol concentration exhibited a significant effect on the vesicle size, while Phospholipon® 90G and glycerol concentrations exhibited significant effects on both entrapment efficiency and deformability index. The optimized formulation showed spherical shape, good deformability, vesicular size of 220.25 nm, entrapment efficiency of 61.97%, and enhanced ex vivo permeation by 3.65 fold compared to lacidipine suspension. Confocal laser scattering microscope revealed higher penetration depth via nasal mucosa for rhodamine labelled glycerosomes (up to 60 µm) in comparison to rhoadamine dye solution (26 µm). In addition, the optimized lacidipine glycerosomes caused significant reduction in methylprednisolone acetate-induced hypertension in rats for up to 24 h in comparison to oral drug suspension. Histopathological assessment showed intact nasal mucosal epithelial lining with no signs of inflammation or necrosis confirming the safety and tolerability of the proposed glycerosomes. The declared results highlights the potential of utilizing the proposed glycerosomes as safe and effective platform for intranasal delivery of lacidipine.
Collapse
Affiliation(s)
- Marianne J Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally A Abdel Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
38
|
Güven E. Lipid-based nanoparticles in the treatment of erectile dysfunction. Int J Impot Res 2020; 32:578-586. [PMID: 32005938 DOI: 10.1038/s41443-020-0235-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Erectile dysfunction (ED) is a common disorder among men, with significant public health implications. Current therapies have certain limitations including efficacy and safety issues, necessitating the development of novel therapeutic strategies for ED. Nanotechnology-based drug delivery systems are being explored to overcome these limitations with promising in vitro and in vivo efficacies. In particular, lipid-based nanoparticles have generated considerable interest owing to their potential to enhance drug bioavailability, and decrease side effects and drug susceptibility to metabolism. This review summarizes the recent findings using lipid-based nanoparticles in ED therapy.
Collapse
Affiliation(s)
- Eylem Güven
- Nanotechnology and Nanomedicine Division, Hacettepe University, 06800, Ankara, Turkey.
| |
Collapse
|
39
|
Dar MJ, Khalid S, McElroy CA, Satoskar AR, Khan GM. Topical treatment of cutaneous leishmaniasis with novel amphotericin B-miltefosine co-incorporated second generation ultra-deformable liposomes. Int J Pharm 2020; 573:118900. [DOI: 10.1016/j.ijpharm.2019.118900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 01/21/2023]
|
40
|
|
41
|
Dar MJ, McElroy CA, Khan MI, Satoskar AR, Khan GM. Development and evaluation of novel miltefosine-polyphenol co-loaded second generation nano-transfersomes for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv 2019; 17:97-110. [PMID: 31786952 DOI: 10.1080/17425247.2020.1700227] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: To test the hypothesis that miltefosine (MTF)-polyphenol co-loaded second-generation nano-transfersomes (SGNTs) can be an effective approach for the topical treatment of cutaneous leishmaniasis (CL).Methods: The co-loaded SGNTs with various MTF-polyphenol combinations were developed, evaluated and compared for the entrapment efficiency, vesicle size, deformability index, ex-vivo permeation, cytotoxicity, and anti-leishmanial potential, using both in-vitro and in-vivo models.Results: The co-loaded SGNTs were spherical in shape, with an average size of 119 ± 1.5 nm and a high entrapment efficiency of 73.7 ± 3.7%. The ex-vivo study displayed a 3.2-fold higher permeation of MTF when entrapped in co-loaded SGNTs, whereas cytotoxicity potential of co-loaded SGNTs was 43.2% higher than the MTF solution. A synergistic interaction was observed between MTF and apigenin (APG) among all polyphenols and an 8.0-fold lower IC50 was found against amastigotes of DsRed Leishmania mexicana, compared with the plain MTF solution. Moreover, the in-vivo studies displayed a 9.5-fold reduced parasitic burden in the L. mexicana infected BALB/c mice treated with MTF-APG co-loaded SGNTs gel.Conclusions: The potential of MTF-APG co-loaded SGNTs topical formulation is established for the first time as an effective drug delivery strategy against CL.
Collapse
Affiliation(s)
- M Junaid Dar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Craig A McElroy
- Medicinal Chemistry and Pharmacognosy Division, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Muhammad Ijaz Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, USA
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
42
|
Arrúa EC, Seremeta KP, Bedogni GR, Okulik NB, Salomon CJ. Nanocarriers for effective delivery of benznidazole and nifurtimox in the treatment of chagas disease: A review. Acta Trop 2019; 198:105080. [PMID: 31299283 DOI: 10.1016/j.actatropica.2019.105080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
Abstract
Neglected tropical diseases (NTDs) constitute a group of infectious diseases prevalent in countries with tropical and subtropical climate that affect the poorest individuals and produce high chronic disability associated with serious problems for the health system and socioeconomic development. Chagas disease or American trypanosomiasis is included on the NTDs list. However, even though this disease affects more than 10 million people, mostly in Latin America, causing the death of over 10,000 people every year, only two drugs are approved for its treatment, benznidazole and nifurtimox. These antiparasitic agents were developed almost half a century ago and present several biopharmaceutical disadvantages such as low aqueous solubility and permeability limiting their bioavailability. In addition, both therapeutic agents are available only as tablets and a liquid pediatric formulation is still lacking. Therefore, novel pharmaceutical strategies to optimize the pharmacotherapy of Chagas disease are urgently required. In this regard, nanotechnological approaches may be a crucial alternative for the delivery of both drugs ensuring an effective pharmacotherapy although the successful bench-to-bedside translation remains a major challenge. The present work reviews in detail the formulation and in-vitro/in-vivo analysis of different nanoformulations of nifurtimox and benznidazole in order to enhance their solubility, dissolution, bioavailability and trypanocidal activity.
Collapse
|
43
|
Development of an optimized avanafil-loaded invasomal transdermal film: Ex vivo skin permeation and in vivo evaluation. Int J Pharm 2019; 570:118657. [PMID: 31491483 DOI: 10.1016/j.ijpharm.2019.118657] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 11/22/2022]
Abstract
Avanafil (AVA) is a recent FDA approved selective phosphodiesterase type 5 inhibitor used for oral treatment of erectile dysfunction. The oral bioavailability of the drug is challenged by its reduced water solubility, considerable presystemic metabolism, and altered absorption in the presence of food. Accordingly, this work aimed to surmount the aforementioned challenges through the development of optimized nanosized AVA invasomes with enhanced transdermal delivery. AVA invasomes were prepared according to a Box-Behnken experimental design to explore the impact of the following formulation factors: phospholipid % (X1), ethanol % (X2), terpene % (X3), and terpene type (X4) on vesicle size (Y1) and entrapment efficiency (Y2). The three numerical variables were used at three levels, while the categorical variable was used at two levels. The optimized formulation with vesicular size of 109.92 nm and entrapment efficiency of 96.98% was incorporated into a hydroxypropyl methyl cellulose-based transdermal film and characterized for its ex vivo permeation behavior and in vivo performance in rats. The optimized AVA invasomal film showed enhanced ex vivo permeation with an enhancement factor of 2.514 and a more than four-fold increase in relative bioavailability compared to the raw AVA film. These results provide insight into the capability of the optimized invasomal film to enhance the transdermal permeation and bioavailability of AVA.
Collapse
|
44
|
Yang C, Dai X, Yang S, Ma L, Chen L, Gao R, Wu X, Shi X. Coarse-grained molecular dynamics simulations of the effect of edge activators on the skin permeation behavior of transfersomes. Colloids Surf B Biointerfaces 2019; 183:110462. [PMID: 31479973 DOI: 10.1016/j.colsurfb.2019.110462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 11/30/2022]
Abstract
Transfersomes (TRS) can provide sustained drug delivery and themselves are biocompatible, biodegradable and nontoxic. Edge activators (EAs) are key factors for increasing the deformability of TRS, and this active deformation mechanism is of commercial interest, especially at the molecular level. Accordingly, in this paper, the deformability of pure dipalmitoyl phosphatidylcholine (DPPC) vesicles, TRS with sodium cholate as an EA, and DPPC vesicles containing pogostone (POG) were compared via umbrella sampling technology. The DPPC conformation and membrane fluidity of these three types of bilayer systems were evaluated, and the changes in the membrane properties of vesicles caused by EAs were studied. EAs could increase the deformability of TRS by decreasing the deformation energy barrier due to their amphiphilic structures, which was similar to those of DPPC molecules. The membrane properties also changed via treatment with EAs including altering the tail chain angle, disturbing the ordered tail chain arrangement and prompting lateral diffusion of DPPC molecules. In addition, the impact of EAs on DPPC bilayers was further demonstrated to be concentration dependent. An ideal concentration was identified for the lowest amount of EA that offered a gel-liquid-crystalline phase transition of DPPC bilayers. Importantly, POG, a lipophobic transdermal drug, can also affect the skin permeation behavior of vesicles but had weaker effects than EA.
Collapse
Affiliation(s)
- Chang Yang
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Xingxing Dai
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory of TCM-Information Engineer of State Administration of TCM, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Shufang Yang
- Sinopharm Zhijun (Shenzhen) Pharmaceutical Co., Ltd., No. 16 of Lanqing 1stRoad, Guanlan Hi-tech Industrial Park, Longhua District, Shenzhen, 518109, China.
| | - Lina Ma
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory of TCM-Information Engineer of State Administration of TCM, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Liping Chen
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Ruilin Gao
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Xiaowen Wu
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Xinyuan Shi
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory of TCM-Information Engineer of State Administration of TCM, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| |
Collapse
|
45
|
Marwah M, Perrie Y, Badhan RKS, Lowry D. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer. J Liposome Res 2019; 30:136-149. [PMID: 31010367 DOI: 10.1080/08982104.2019.1604746] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caucasian population groups have a higher propensity to develop skin cancer, and associated clinical interventions often present substantial financial burden on healthcare services. Conventional treatments are often not suitable for all patient groups as a result of poor efficacy and toxicity profiles. The primary objective of this study was to develop a deformable liposomal formulation, the properties of which being dictated by the surfactant Tween 20, for the dermal cellular delivery of epigallocatechin gallatein (EGCG), a compound possessing antineoplastic properties. The results demonstrated a significant (p ≤ 0.05) decrease in liposome deformability index (74 ± 8 to 37 ± 7) as Tween 20 loading increased from 0 to 10% w/w, indicating an increase in elasticity. EGCG release over 24-h demonstrated Tween 20 incorporation directly increased release from 13.7% ± 1.1% to 94.4% ± 4.9% (for 0 and 10% w/w Tween 20 respectively). Finally, we demonstrated DilC-loaded deformable liposomes were localized intracellularly within human dermal fibroblast and keratinocyte cells within 2 h. Thus, it was evident that deformable liposomes may aid drug penetration into dermal cells and would be useful in developing a controlled-release formulation.
Collapse
Affiliation(s)
- M Marwah
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Y Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - R K S Badhan
- Life and Health Sciences, Aston University Aston Health Research Group, Birmingham, UK
| | - D Lowry
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK
| |
Collapse
|
46
|
Bangia R, Sharma G, Dogra S, Katare OP. Nanotechnological interventions in dermatophytosis: from oral to topical, a fresh perspective. Expert Opin Drug Deliv 2019; 16:377-396. [DOI: 10.1080/17425247.2019.1593962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Riya Bangia
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| |
Collapse
|
47
|
Zhang Z, Liu Y, Chen Y, Li L, Lan P, He D, Song J, Zhang Y. Transdermal Delivery of 5-Aminolevulinic Acid by Nanoethosome Gels for Photodynamic Therapy of Hypertrophic Scars. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3704-3714. [PMID: 30589527 DOI: 10.1021/acsami.8b17498] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
5-Aminolevulinic acid (ALA)-loaded nanoethosome (ALA-ES) gels are successfully prepared to realize a transdermal delivery of ALA, and they provide a feasible approach for the photodynamic therapy (PDT) of hypertrophic scars (HS). Herein, the morphological and physicochemical features indicate that ALA-ES is stable in gel matrix. In vitro transdermal penetration studies suggest ALA-ES gels can overcome the compact dermal barrier and deliver more ALA into human HS tissue. In vivo delivery studies further reveal that ALA-ES gels can penetrate into rabbit HS tissue to facilitate ALA accumulating in hypertrophic scar fibroblast (HSF) and converting into protoporphyrin IX in the cytoplasm. Utilizing transmission electron microscopy, the visual in vivo penetration process indicates ALA-ES penetrate into HS tissue utilizing its deformable membrane, enters HSF by a pinocytotic-like mechanism, and then releases ALA in the cytoplasm. Subsequently, PDT efficacy is assessed using rabbit HS models. The morphological and histological analysis reveal that ALA-ES gels can improve HS by promoting HSF apoptosis, remodelling collagen fibers and increasing MMP3 expression. The results demonstrate that ALA-ES gels are suitable in clinical treatment of HS and make a substantial progress within the field.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine , Shanghai Jiao Tong University , 639 Zhizaoju Road , Shanghai 200011 , P.R. China
| | - Ying Liu
- Cosmetic Laser Center, Shanghai Ninth People's Hospital, School of Medicine , Shanghai Jiao Tong University , 639 Zhizaoju Roadd , Shanghai 200011 , P.R. China
| | - Yunsheng Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine , Shanghai Jiao Tong University , 639 Zhizaoju Road , Shanghai 200011 , P.R. China
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, 800 Dongchuan Rd , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Lexiang Li
- Department of Orthopedic, Changzheng Hospital , Second Military Medical University , Shanghai 200240 , China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai , 519070 , China
| | - Dannong He
- Shanghai National Engineering Research Center for Nanotechnology , 245 Jiachuan Road , Shanghai 200237 , PR China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, 800 Dongchuan Rd , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine , Shanghai Jiao Tong University , 639 Zhizaoju Road , Shanghai 200011 , P.R. China
- Shanghai National Engineering Research Center for Nanotechnology , 245 Jiachuan Road , Shanghai 200237 , PR China
| |
Collapse
|
48
|
Potential of nanoparticulate carriers for improved drug delivery via skin. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-00418-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Zhou X, Hao Y, Yuan L, Pradhan S, Shrestha K, Pradhan O, Liu H, Li W. Nano-formulations for transdermal drug delivery: A review. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.10.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci 2018; 14:117-129. [PMID: 32104444 PMCID: PMC7042486 DOI: 10.1016/j.ajps.2018.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/22/2018] [Accepted: 05/21/2018] [Indexed: 11/18/2022] Open
Abstract
Occurrence of skin fungal infections is increasing nowadays and their presence is more prominent in patients suffering from immunocompromised diseases like AIDS. Skin fungal infections are a major cause of visits by patients to dermatology clinics. Although, a large number of antifungal agents are available for treatment of skin fungal infections, but, their toxic profile and physicochemical characteristics reduce therapeutic outcome. When these antifungal agents are delivered topically using conventional formulations like creams and gels, they may cause various side effects like redness, burning, and swelling at the site of application. Therefore, various vesicular formulations (phospholipid based or non phospholipid based) have been explored by pharmaceutical scientists to treat skin fungal infections topically. Vesicular formulation explored for the purpose are liposomes, ethosomes, transfersomes, transethosomes, niosomes, spanlastics, oleic acid vesicles, and nanoparticles. These formulations show various advantages like bioavailability enhancement of bioactives, high skin permeation power, no side effects at application site, dosing frequency reduction, and sustained drug release. Therefore, in the present article, we have discussed about the utility of various vesicular nanocarrier systems to treat skin fungal infections.
Collapse
Affiliation(s)
- Shivani Verma
- Department of Pharmaceutics, Rayat-Bahra College of Pharmacy, Hoshiarpur, Punjab 146001, India.,I. K. Gujral Punjab Technical University, Jalandhar, Punjab 144601, India
| | - Puneet Utreja
- I. K. Gujral Punjab Technical University, Jalandhar, Punjab 144601, India.,Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, PCTE Group of Institutes, Ludhiana, Punjab 142021, India
| |
Collapse
|