1
|
Yang T, Guo L. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. Cell Biol Toxicol 2024; 40:101. [PMID: 39565472 PMCID: PMC11579161 DOI: 10.1007/s10565-024-09943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide, particularly prevalent in Asia, especially in China, where both its incidence and mortality rates are significantly high. Meanwhile, nanotechnology has demonstrated great potential in the treatment of GC. In particular, nanodrug delivery systems have improved therapeutic efficacy and targeting through various functional modifications, such as targeting peptides, tumor microenvironment responsiveness, and instrument-based methods. For instance, silica (SiO2) has excellent biocompatibility and can be used as a drug carrier, with its porous structure enhancing drug loading capacity. Polymer nanoparticles regulate drug release rates and mechanisms by altering material composition and preparation methods. Lipid nanoparticles efficiently encapsulate hydrophilic drugs and promote cellular uptake, while carbon-based nanoparticles can be used in biosensors and drug delivery. Targets such as integrins, HER2 receptors, and the tumor microenvironment have been used to improve drug efficacy in GC treatment. Nanodrug delivery techniques not only enhance drug efficacy and delivery capabilities but also selectively target tumor cells. Currently, there is a lack of systematic summarization and synthesis regarding the relationship between nanodrug delivery systems and GC treatment, which to some extent hinders researchers and clinicians from efficiently searching for and referencing related studies, thereby reducing work efficiency. This study aims to systematically summarize the existing research on the relationship between nanodrug delivery systems and GC treatment, making it easier for professionals to search and reference, and thereby promoting further research on the role of nanodrug delivery systems and their clinical applications in GC. This review discusses the applications of functionalized nanocarriers in the treatment of GC in recent years, including surface modifications with targeted markers, the combination of phototherapy, chemotherapy, and immunotherapy, along with their advantages and challenges. It also examines the future prospects of targeted nanomaterials in GC treatment. The review particularly focuses on the combined application of nanocarriers in multiple treatment modalities, such as phototherapy, chemotherapy, and immunotherapy, demonstrating their potential in multimodal treatments. Furthermore, it thoroughly explores the specific challenges that nanocarriers face in GC treatment, such as biocompatibility, drug release control, and clinical translation issues, while providing a systematic outlook on future developments. Additionally, this study emphasizes the potential value and feasibility of nanocarriers in clinical applications, contrasting with most reviews that focus on basic research. Through these innovations, we offer new perspectives and directions for the development of nanotechnology in the treatment of GC.
Collapse
Affiliation(s)
- Tengfei Yang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, P. R. China.
| |
Collapse
|
2
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
3
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
4
|
Fu L, Li F, Xue X, Xi H, Sun X, Hu R, Wen H, Liu S. Exploring the potential of thiophene derivatives as dual inhibitors of β-tubulin and Wnt/β-catenin pathways for gastrointestinal cancers in vitro. Heliyon 2024; 10:e32241. [PMID: 38912446 PMCID: PMC11190604 DOI: 10.1016/j.heliyon.2024.e32241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Background Gastrointestinal cancer poses a considerable global health risk, encompassing a heterogeneous spectrum of malignancies that afflict the gastrointestinal tract. It is significant to develop efficacious therapeutic agents, as they are indispensable for both the treatment and prevention of this formidable disease. Methods In this study, we synthesized a novel thiophene derivative, designated as compound 1312. An assessment was performed to investigate its anti-proliferative activity in several cancer cell lines (GES-1, EC9706, SGC7901, and HT-29). Furthermore, we performed molecular biology techniques to investigate the inhibitory impact of compound 1312 on gastrointestinal cell lines SGC-7901 and HT-29. Results Our findings reveal that compound 1312 exhibits significant efficacy in suppressing colony formation of cancer cells. Notably, it triggers cell cycle arrest at the G2/M phase in gastrointestinal cell lines SGC7901 and HT-29. Compound 1312 was confirmed to exert inhibitory effects on cell migration and invasion in SGC7901. Additionally, the compound elicits apoptotic cell death through the activation of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP) and the caspase signaling cascade. Furthermore, in vitro experiments revealed that compound 1312 effectively suppresses both the β-tubulin cytoskeletal network and the Wnt/β-catenin signaling pathway. These multifaceted anti-cancer activities highlight the potential of compound 1312 as a promising therapeutic agent for the treatment of gastrointestinal malignancies. Conclusion This study indicates the promising potential of compound 1312 as a prospective candidate agent for gastrointestinal cancer treatment. Further comprehensive investigations are needed to explore its therapeutic efficacy in greater detail.
Collapse
Affiliation(s)
- Lina Fu
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450063, Henan, China
| | - Fuhao Li
- The First Clinical Medicine College of Zhejiang Chinese Medical University, Zhejiang 310053, Hangzhou, China
| | - Xia Xue
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Huayuan Xi
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiangdong Sun
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruoyu Hu
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Huijuan Wen
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450063, Henan, China
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Simeng Liu
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450063, Henan, China
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
5
|
Fidan Y, Muçaj S, Timur SS, Gürsoy RN. Recent advances in liposome-based targeted cancer therapy. J Liposome Res 2024; 34:316-334. [PMID: 37814217 DOI: 10.1080/08982104.2023.2268710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Nano-drug delivery systems have opened new pathways for tumor treatment by overcoming some of the limitations of conventional drugs, such as physiological degradation, short half-life, and rapid release. Liposomes are promising nanocarrier systems due to their biocompatibility, low toxicity, and high inclusivity, as well as their enhanced drug bioavailability. Various strategies for active targeting of liposomal formulations have been investigated to achieve the highest drug efficacy. This review aims to summarize current developments in novel liposomal formulations, particularly ligand-targeted liposomes (such as folate, transferrin, hyaluronic acid, antibodies, aptamer, and peptide, etc.) used for the therapy of various cancers and provide an insight on the challenges and future of liposomes for scientists and pharmaceutical companies.
Collapse
Affiliation(s)
- Yeliz Fidan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Stela Muçaj
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Liu BN, Gao XL, Piao Y. Mapping the intellectual structure and emerging trends for the application of nanomaterials in gastric cancer: A bibliometric study. World J Gastrointest Oncol 2024; 16:2181-2199. [PMID: 38764848 PMCID: PMC11099444 DOI: 10.4251/wjgo.v16.i5.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/11/2024] [Accepted: 03/21/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Recent reviews have outlined the main nanomaterials used in relation to gastrointestinal tumors and described the basic properties of these materials. However, the research hotspots and trends in the application of nanomaterials in gastric cancer (GC) remain obscure. AIM To demonstrate the knowledge structure and evolutionary trends of research into the application of nanomaterials in GC. METHODS Publications related to the application of nanomaterials in GC were retrieved from the Web of Science Core Collection for this systematic review and bibliometric study. VOSviewer and CiteSpace were used for bibliometric and visualization analyses. RESULTS From 2000 to 2022, the application of nanomaterials in GC developed rapidly. The keyword co-occurrence analysis showed that the related research topics were divided into three clusters: (1) The application of nanomaterials in GC treatment; (2) The application and toxicity of nanomaterials in GC diagnosis; and (3) The effects of nanomaterials on the biological behavior of GC cells. Complexes, silver nanoparticles, and green synthesis are the latest high-frequency keywords that represent promising future research directions. CONCLUSION The application of nanomaterials in GC diagnosis and treatment and the mechanisms of their effects on GC cells have been major themes in this field over the past 23 years.
Collapse
Affiliation(s)
- Bo-Na Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| | - Xiao-Li Gao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| |
Collapse
|
7
|
Sun B, Zheng X, Zhang X, Zhang H, Jiang Y. Oxaliplatin-Loaded Mil-100(Fe) for Chemotherapy-Ferroptosis Combined Therapy for Gastric Cancer. ACS OMEGA 2024; 9:16676-16686. [PMID: 38617668 PMCID: PMC11007804 DOI: 10.1021/acsomega.4c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Oxaliplatin (Oxa) is a commonly used chemotherapy drug in the treatment of gastric cancer, but its toxic side effects and drug resistance after long-term use have seriously limited its efficacy. Loading chemotherapy drugs with nanomaterials and delivering them to the tumor site are common ways to overcome the above problems. However, nanomaterials as carriers do not have therapeutic functions on their own, and the effect of single chemotherapy is relatively limited, so there is still room for progress in related research. Herein, we construct Oxa@Mil-100(Fe) nanocomposites by loading Oxa with a metal-organic framework (MOF) Mil-100(Fe) with high biocompatibility and a large specific surface area. The pore structure of Mil-100(Fe) is conducive to a large amount of Oxa loading with a drug-loading rate of up to 27.2%. Oxa@Mil-100(Fe) is responsive to the tumor microenvironment (TME) and can release Oxa and Fe3+ under external stimulation. On the one hand, Oxa can inhibit the synthesis of DNA and induce the apoptosis of gastric cancer cells. On the other hand, Fe3+ can clear overexpressed glutathione (GSH) in TME and be reduced to Fe2+, inhibiting the activity of glutathione peroxidase 4 (GPX4), leading to the accumulation of intracellular lipid peroxides (LPO), and at the same time releasing a large number of reactive oxygen species (ROS) through the Fenton reaction, inducing ferroptosis in gastric cancer cells. With the combination of apoptosis and ferroptosis, Oxa@Mil-100(Fe) shows a good therapeutic effect, and the killing effect on gastric cancer cells is obvious. In a nude mouse model of subcutaneous tumor transplantation, Oxa@Mil-100(Fe) shows a significant inhibitory effect on tumor growth, with an inhibition rate of nearly 60%. In addition to its excellent antitumor activity, Oxa@Mil-100(Fe) has no obvious toxic or side effects. This study provides a new idea and method for the combined treatment of gastric cancer.
Collapse
Affiliation(s)
- Boyao Sun
- Department
of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| | - Xuewei Zheng
- Department
of Radiology, China-Japan Union Hospital
of Jilin University, Changchun 130031, P. R. China
| | - Xiaoyu Zhang
- Department
of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| | - Huaiyu Zhang
- Department
of Rehabilitation Medicine, China-Japan
Union Hospital of Jilin University, Changchun 130031, P. R. China
| | - Yang Jiang
- Department
of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| |
Collapse
|
8
|
Moetamani-Ahmadi M, Mahmoud Ahmadzadeh A, Alaei M, Zafari N, Negahbanzaferanloo Z, Pourbagher-Shahri AM, Forouzanfar F, Fiuji H, Mahaki H, Khazaei M, Gataa IS, Ferns GA, Peters GJ, Batra J, Lam AKY, Giovannetti E, TanzadehPanah H, Avan A. Pegylated nanoliposomal cisplatin ameliorates chemotherapy-induced peripheral neuropathy. Int J Pharm 2024; 652:123839. [PMID: 38266944 DOI: 10.1016/j.ijpharm.2024.123839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse effect of cisplatin. The current study aimed to determine whether PEGylated nanoliposomal cisplatin can limit CIPN in an animal model. METHODS Cisplatin-loaded PEGylated liposome nanoparticles (Cis-PL) were produced as a combination of lecithin, cholesterol, and DSPE-mPEG2000 in a molar ratio of 50:45:5 and were characterized by polydispersity index (PDI), zeta potential, Field emission scanning electron microscopy (FESEM) analysis, as well as encapsulation efficiency (EE). Fifteen male rats were provided and randomly divided into 3 groups including Cis-PL group, cisplatin group, and control group. Behavioural tests (hot-plate test and acetone drop test) were used for evaluating CIPN. Moreover, oxidative stress markers and histopathological analysis were applied. Treatment-related toxicity was assessed by haematological analysis as well as liver and renal function tests. RESULTS Cis-PL had an average particle size of 125.4, PDI of 0.127, and zeta potential of -40.9 mV. Moreover, the Cis-PL exhibited a high EE as well as low levels of leakage rate at 25 °C. In a hot-plate test, paw withdrawal latency was longer in Cis-PL group in comparison to rats treated with cisplatin. A lower number of withdrawal responses was detected during acetone drop test in Cis-PL group than in cisplatin-treated rats. Assessment of oxidative stress markers showed that Cis-PL could improve oxidative stress. Additionally, histopathological assessment demonstrated that the number of satellite cells was significantly reduced in the dorsal root ganglion (DRG) of Cis-PL-treated rats compared with those treated with cisplatin. The cisplatin group had elevated white blood cells counts, reduced platelet counts, and higher levels of bilirubin, ALT (alanine aminotransferase, and AST (aspartate aminotransferase), and creatinine compared with the control group, which was ameliorated in Cis-PL group. CONCLUSIONS Data from the current study support the previous hypothesis that Cisplatin-loaded PEGylated liposome could be a promising solution for CIPN in the future by modulating oxidative stress and preventing glial cell activation in DRG, suggesting further clinical studies to investigate the efficacy of this agent and its potential application in clinical practice.
Collapse
Affiliation(s)
- Mehrdad Moetamani-Ahmadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Alaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Godefridus J Peters
- Professor In Biochemistry, Medical University of Gdansk, Gdansk, Poland; Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jyotsna Batra
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, 4059, Australia; Translational Research Institute, Centre for Genomics and Personalised Health, Brisbane, Australia
| | - Alfred King-Yin Lam
- Pathology, School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy; Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hamid TanzadehPanah
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, 4059, Australia; College of Medicine and Health Sciences, National University of Science and Technology, Sultanate of Oman.
| |
Collapse
|
9
|
Bagheri M, Zandieh MA, Daryab M, Samaei SS, Gholami S, Rahmanian P, Dezfulian S, Eary M, Rezaee A, Rajabi R, Khorrami R, Salimimoghadam S, Hu P, Rashidi M, Ardakan AK, Ertas YN, Hushmandi K. Nanostructures for site-specific delivery of oxaliplatin cancer therapy: Versatile nanoplatforms in synergistic cancer therapy. Transl Oncol 2024; 39:101838. [PMID: 38016356 DOI: 10.1016/j.tranon.2023.101838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
As a clinically approved treatment strategy, chemotherapy-mediated tumor suppression has been compromised, and in spite of introducing various kinds of anticancer drugs, cancer eradication with chemotherapy is still impossible. Chemotherapy drugs have been beneficial in improving the prognosis of cancer patients, but after resistance emerged, their potential disappeared. Oxaliplatin (OXA) efficacy in tumor suppression has been compromised by resistance. Due to the dysregulation of pathways and mechanisms in OXA resistance, it is suggested to develop novel strategies for overcoming drug resistance. The targeted delivery of OXA by nanostructures is described here. The targeted delivery of OXA in cancer can be mediated by polymeric, metal, lipid and carbon nanostructures. The advantageous of these nanocarriers is that they enhance the accumulation of OXA in tumor and promote its cytotoxicity. Moreover, (nano)platforms mediate the co-delivery of OXA with drugs and genes in synergistic cancer therapy, overcoming OXA resistance and improving insights in cancer patient treatment in the future. Moreover, smart nanostructures, including pH-, redox-, light-, and thermo-sensitive nanostructures, have been designed for OXA delivery and cancer therapy. The application of nanoparticle-mediated phototherapy can increase OXA's potential in cancer suppression. All of these subjects and their clinical implications are discussed in the current review.
Collapse
Affiliation(s)
- Mohsen Bagheri
- Radiology Resident, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Eary
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Peng Hu
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
10
|
Alaei M, Moetamani-Ahmadi M, Mahaki H, Fiuji H, Maftooh M, Hassanian SM, Khazaei M, Shahri AP, Ferns GA, Frozanfar F, Tanzadehpanah H, Avan A. Nanoliposomal oxaliplatin ameliorates chemotherapy-induced neuropathy. Neurosci Lett 2023; 812:137367. [PMID: 37419304 DOI: 10.1016/j.neulet.2023.137367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is an important adverse effect of treatment with oxaliplatin (OXA). We have developed PEGylated nanoliposomal oxaliplatin (OXA-LIP) and tested its activity in an animal model of CIPN. OXA-LIPs were prepared using a combination of egg yolk lecithin, cholesterol, and DSPE-mPEG2000 (at ratios 400, 80, and 27 mg). These liposomes were characterized using several different methods (e.g., polydispersity index (PDI), and zeta potential, FESEM). The in vivo study was performed in 15 male rats comprising three groups: a negative control (normal saline) OXA, and OXA-LIP. These were injected intraperitoneally at a concentration of 4 mg/kg on two consecutive days every week, for 4 weeks. After that, CIPN was assessed using the hotplate and acetonedropmethods. Oxidative stress biomarkers such as SOD, catalase, MDA, and TTG were measured in the serum samples. The functional disturbances of the liver and kidney were assessed by measuring the serum levels of ALT, AST, creatinine, urea, and bilirubin. Furthermore, hematological parameters were determined in the three groups. The OXA-LIP had an average particle size, PDI, and zeta potential of 111.2 ± 1.35 nm, 0.15 ± 0.045, and -52.4 ± 17 mV, respectively. The encapsulation efficiency of OXA-LIP was 52% with low leakage rates at 25 °C.Thermal hyperalgesia changes showed OXA has significant effects in the induction of neuropathy on days 7, 14, and 21 compared to the control group. OXA had a significantly greater sensitivity than the OXA-LIP and control groups in the thermal allodynia test (P < 0.001). OXA-LIP administration did not show significant effects on the changes of oxidative stress, biochemical factors, and cell count. Our findings provide a proof of concept on the potential application of oxaliplatin encapsulated with PEGylated nanoliposome to ameliorate the severity of neuropathy, supporting further studies in clinical phases to explore the value of this agent for Chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Maryam Alaei
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Moetamani-Ahmadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Fatemeh Frozanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Tanzadehpanah
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
11
|
He K, Wang T, Chen J, Huang X, Wang Z, Yang Z, Wang K, Zhao W, Jiang J, Zhao L. A Pegylated Liposome Loaded with Raddeanin A for Prostate Cancer Therapy. Int J Nanomedicine 2023; 18:4007-4021. [PMID: 37496689 PMCID: PMC10368069 DOI: 10.2147/ijn.s420803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Raddeanin A (RA), a potent triterpenoid extracted from Anemone raddeana Regel, has a moderate therapeutic effect on prostate cancer (PCa), correlating with serious biological toxicity. Therefore, a RA-loaded PEGylated liposome drug delivery system was devised in this study. Methods Hydrogenated soybean phospholipids (HSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-Polyethyleneglycol-2000 (sodium salt) (DSPE-PEG2k), cholesterol (CHO), and RA were utilised to prepare a RA-loaded liposome (LRA) drug delivery system via the thin film hydration technique., The drug loading content was confirmed by high performance liquid chromatography. Dynamic light scattering was employed to evaluate the drug's particle size and stability. Methyl tetrazolium, colony formation, and Western blot (WB) were used in vitro to elucidate the inhibitory effect and mechanism of LRA on prostate cancer cells. Finally, xenograft model was used to confirm the tumor-inhibiting efficacy, clarify the mechanism, and determine the biosafety in mice. Results LRA has stable physicochemical properties and a diameter of 173.5 15.3 nm. LRA inhibited the growth of prostate cancer cells in a dose- and time-dependent manner. LRA can substantially reduce the expression of AR and HMGB1, induce apoptosis, regulate the expression of cell cycle-related proteins in vitro and in vivo. The results of the biosafety tests demonstrated that LRA effectively reduced the adverse effects of RA. Conclusion As a drug delivery system, LRA could effectively and safely inhibit the progression of prostate cancer.
Collapse
Affiliation(s)
- Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Junyu Chen
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Xuemiao Huang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Weixin Zhao
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Jian Jiang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| |
Collapse
|
12
|
Wang Y, Song J, Li Y, Lin C, Chen Y, Zhang X, Yu H. Melatonin inhibited the progression of gastric cancer induced by Bisphenol S via regulating the estrogen receptor 1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115054. [PMID: 37224786 DOI: 10.1016/j.ecoenv.2023.115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
In recent years, Bisphenol S (BPS) has increasingly been used as an alternative to Bisphenol A (BPA) in food, paper, and personal care products. It is imperative to clarify the relationship between BPS and tumors in order to treat and prevent diseases. This study discovered a new method for predicting tumor correlations between BPS interactive genes. According to analyses conducted by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, interactive genes were primarily found in gastric cancer. Based on gene-targeted prediction and molecular docking, BPS appears to exert potential gastric cancer-causing effects through estrogen receptor 1 (ESR1). In addition, gastric cancer patients' prognosis could be accurately predicted by a bisphenol-based prognostic prediction model. Subsequently, the proliferation and migration abilities of gastric cancer cells were further demonstrated to be significantly enhanced by BPS. Similarly, molecular docking analysis revealed that melatonin is also highly correlated with gastric cancer and BPS. In cell proliferation and migration assays, melatonin and BPS exposure inhibited the invasion abilities of gastric cancer cells compared to BPS-exposure. Our research provided a new direction for the exploration the correlation between cancer and environmental toxicity.
Collapse
Affiliation(s)
- Yi Wang
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| | - Jintian Song
- Department of Abdominal Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| | - Yangming Li
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| | - Chen Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Yan Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Xu Zhang
- Nanjing Medical University, Nanjing, 210029, China
| | - Hui Yu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China.
| |
Collapse
|
13
|
Yu D, Chang Z, Liu X, Chen P, Zhang H, Qin Y. Macrophage-derived exosomes regulate gastric cancer cell oxaliplatin resistance by wrapping circ 0008253. Cell Cycle 2023; 22:705-717. [PMID: 36416404 PMCID: PMC9980452 DOI: 10.1080/15384101.2022.2146839] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Oxaliplatin (OXA) is a first-line chemotherapy drug for gastric cancer. We aimed to investigate the effect of circ 0008253, contained in M2 polarized macrophage-derived exosomes, on OXA resistance of gastric carcinoma cells. Flow cytometry was performed to detect the differentiation of macrophages and cell apoptosis. Cell Counting Kit-8 assay was conducted to examine the cell viability. Transmission electron microscopy, Nanoparticle Tracking Analysis, Western bolt, and Immunofluorescence were carried out. Cell proliferation was detected with a colony formation experiment. Levels of CD206, Arg1, IL-10, and TGF-β were increased in M2 polarized macrophages. Cell viability was decreased gradually with the increase of time and OXA concentration. Apoptosis of gastric carcinoma cells was decreased after co-culture with M2-polarized macrophages. Exosomes isolated from M2-polarized macrophages (M2-Exos) could be co-located with gastric carcinoma cells. M2-Exos enhanced drug resistance, reduced apoptosis and OXA resistance. Bioinformatics analysis showed that circ 0008253 could be transferred from M2-Exos to gastric carcinoma cells. Overexpressing circ 0008253 increased cell viability, tumor size, and ABCG2 levels, decreased OXA sensitivity. Circ 0008253, contained in M2-Exos, was directly transferred from tumor-associated macrophage to gastric carcinoma cells, finally enhancing OXA resistance.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Xiaolei Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Pengfei Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Huixian Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
14
|
Yang XY, Geng L, Li R, Song JX, Jia CL, An JR, Sun MF, Xu S, Guo YJ, Zhao Y, Ji ES. Huperzine A-Liposomes Efficiently Improve Neural Injury in the Hippocampus of Mice with Chronic Intermittent Hypoxia. Int J Nanomedicine 2023; 18:843-859. [PMID: 36824413 PMCID: PMC9942512 DOI: 10.2147/ijn.s393346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Background Chronic intermittent hypoxia (CIH) could cause neuronal damage, accelerating the progression of dementia. However, safe and effective therapeutic drugs and delivery are needed for successful CIH therapy. Purpose To investigate the neuroprotective effect of Huperzine A (HuA) packaged with nanoliposomes (HuA-LIP) on neuronal damage induced by CIH. Methods The stability and release of HuA-LIP in vitro were identified. Mice were randomly divided into the Control, CIH, HuA-LIP, and HuA groups. The mice in the HuA and HuA-LIP groups received HuA (0.1 mg/kg, i.p.), and HuA-LIP was administered during CIH exposure for 21 days. HuA-LIP contains the equivalent content of HuA. Results We prepared a novel formulation of HuA-LIP that had good stability and controlled release. First, HuA-LIP significantly ameliorated cognitive dysfunction and neuronal damage in CIH mice. Second, HuA-LIP elevated T-SOD and GSH-Px abilities and decreased MDA content to resist oxidative stress damage induced by CIH. Furthermore, HuA-LIP reduced brain iron levels by downregulating TfR1, hepcidin, and FTL expression. In addition, HuA-LIP activated the PKAα/Erk/CREB/BDNF signaling pathway and elevated MAP2, PSD95, and synaptophysin to improve synaptic plasticity. Most importantly, compared with HuA, HuA-LIP showed a superior performance against neuronal damage induced by CIH. Conclusion HuA-LIP has a good sustained-release effect and targeting ability and efficiently protects against neural injury caused by CIH.
Collapse
Affiliation(s)
- Xin-Yue Yang
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Lina Geng
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, People’s Republic of China
| | - Ronghui Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, People’s Republic of China
| | - Ji-Xian Song
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Cui-Ling Jia
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Ji-Ren An
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
- The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Meng-Fan Sun
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Shan Xu
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Ya-Jing Guo
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Yashuo Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - En-Sheng Ji
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| |
Collapse
|
15
|
Deng S, Gu J, Jiang Z, Cao Y, Mao F, Xue Y, Wang J, Dai K, Qin L, Liu K, Wu K, He Q, Cai K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnology 2022; 20:415. [PMID: 36109734 PMCID: PMC9479390 DOI: 10.1186/s12951-022-01613-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal cancer (GIC) is a common malignant tumour of the digestive system that seriously threatens human health. Due to the unique organ structure of the gastrointestinal tract, endoscopic and MRI diagnoses of GIC in the clinic share the problem of low sensitivity. The ineffectiveness of drugs and high recurrence rates in surgical and drug therapies are the main factors that impact the curative effect in GIC patients. Therefore, there is an urgent need to improve diagnostic accuracies and treatment efficiencies. Nanotechnology is widely used in the diagnosis and treatment of GIC by virtue of its unique size advantages and extensive modifiability. In the diagnosis and treatment of clinical GIC, surface-enhanced Raman scattering (SERS) nanoparticles, electrochemical nanobiosensors and magnetic nanoparticles, intraoperative imaging nanoparticles, drug delivery systems and other multifunctional nanoparticles have successfully improved the diagnosis and treatment of GIC. It is important to further improve the coordinated development of nanotechnology and GIC diagnosis and treatment. Herein, starting from the clinical diagnosis and treatment of GIC, this review summarizes which nanotechnologies have been applied in clinical diagnosis and treatment of GIC in recent years, and which cannot be applied in clinical practice. We also point out which challenges must be overcome by nanotechnology in the development of the clinical diagnosis and treatment of GIC and discuss how to quickly and safely combine the latest nanotechnology developed in the laboratory with clinical applications. Finally, we hope that this review can provide valuable reference information for researchers who are conducting cross-research on GIC and nanotechnology.
Collapse
Affiliation(s)
- Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yinghao Cao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Kun Dai
- Department of Neonatal Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Le Qin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qianyuan He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
16
|
Hani U, Osmani RAM, Yasmin S, Gowda BHJ, Ather H, Ansari MY, Siddiqua A, Ghazwani M, Fatease AA, Alamri AH, Rahamathulla M, Begum MY, Wahab S. Novel Drug Delivery Systems as an Emerging Platform for Stomach Cancer Therapy. Pharmaceutics 2022; 14:1576. [PMID: 36015202 PMCID: PMC9416534 DOI: 10.3390/pharmaceutics14081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer has long been regarded as one of the world's most fatal diseases, claiming the lives of countless individuals each year. Stomach cancer is a prevalent cancer that has recently reached a high number of fatalities. It continues to be one of the most fatal cancer forms, requiring immediate attention due to its low overall survival rate. Early detection and appropriate therapy are, perhaps, of the most difficult challenges in the fight against stomach cancer. We focused on positive tactics for stomach cancer therapy in this paper, and we went over the most current advancements and progressions of nanotechnology-based systems in modern drug delivery and therapies in great detail. Recent therapeutic tactics used in nanotechnology-based delivery of drugs aim to improve cellular absorption, pharmacokinetics, and anticancer drug efficacy, allowing for more precise targeting of specific agents for effective stomach cancer treatment. The current review also provides information on ongoing research aimed at improving the curative effectiveness of existing anti-stomach cancer medicines. All these crucial matters discussed under one overarching title will be extremely useful to readers who are working on developing multi-functional nano-constructs for improved diagnosis and treatment of stomach cancer.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India;
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (S.Y.); (H.A.)
| | - B. H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to Be University), Mangalore 575018, Karnataka, India;
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (S.Y.); (H.A.)
| | - Mohammad Yousuf Ansari
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University ), Mullana, Ambala 133203, Haryana, India;
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
- Cancer Research Unit, King Khalid University, Abha 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Ali H. Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia;
| |
Collapse
|
17
|
Wang X, Wang A, Feng W, Wang D, Guo X, Wang X, Miao Q, Liu M, Xia G. Novel 5-Fluorouracil Carbonate-Loaded Liposome: Preparation, In Vitro, and In Vivo Evaluation as an Antitumor Agent. Mol Pharm 2022; 19:2061-2076. [PMID: 35731595 DOI: 10.1021/acs.molpharmaceut.1c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic drug against many types of cancers, especially colorectal cancer. However, its short plasma half-life and serious adverse reactions limit its wide clinical applications. To overcome these shortcomings, a novel lipophilic 5-FU carbonate [XL-01, (5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl) methyl tetradecyl carbonate] was designed, synthesized, and encapsulated into liposome (LipoXL-01) by a thin-film dispersion method through formulation screening and optimization. LipoXL-01 was characterized by a particle size of around 100 nm, polydispersity index of 0.200, ζ-potential value of -41 mV, encapsulation efficiency of 93.9%, and drug-loading efficiency of 11.6%. The cellular uptake of LipoXL-01 was increased in a concentration-dependent manner on HCT15 cells. LipoXL-01 could enhance the induction of cell apoptosis and the inhibition of cell migration and arrest the ability of the cell cycle at the S-phase on HCT15 cells better than 5-FU. Additionally, LipoXL-01 exhibited a slow drug release profile with a cumulative release rate of 12% in 8 h. The results of pharmacokinetic and biodistribution studies revealed that LipoXL-01 had a long plasma half-life (7.21 h) and a high tumor accumulation (733 nmol/g at 8 h). The in vivo antitumor effect study also showed that LipoXL-01 had more potent efficacy than 5-FU (65 vs 48% of the tumor-inhibition rate). Simultaneously, negligible systemic toxicity was observed via analyzing the body weight as well as hematological and pathological parameters in the tested mice. The current study suggested that LipoXL-01 might be a promising nanocandidate for chemotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoru Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingfang Miao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
18
|
Matsuo NCA, Ando H, Doi Y, Shimizu T, Ishima Y, Ishida T. The Challenge to Deliver Oxaliplatin (l-OHP) to Solid Tumors: Development of Liposomal l-OHP Formulations. Chem Pharm Bull (Tokyo) 2022; 70:351-358. [DOI: 10.1248/cpb.c22-00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yusuke Doi
- Formulation Research Laboratory, CMC Division, Taiho Pharmaceutical Co., Ltd
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|