1
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
2
|
Rau A, Keri J, Murase JE. Management of Acne in Pregnancy. Am J Clin Dermatol 2024; 25:465-471. [PMID: 38453786 DOI: 10.1007/s40257-024-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Acne is one of the most common dermatological conditions to affect women of childbearing age, so it is important to consider the safety of long-term acne treatments on women who could become pregnant. In this review article, we clarify what management options are available to treat acne during pregnancy. Topical treatments, typically first-line for acne, such as azelaic acid, clindamycin, erythromycin, metronidazole, benzoyl peroxide, salicylic acid, dapsone, and retinoids, were reviewed. Systemic treatments, such as zinc supplements, cephalexin, cefadroxil, amoxicillin, azithromycin, erythromycin, and corticosteroids, typically second-line for acne, were also reviewed. Alternative treatments such as light therapy and cosmetic procedures were also evaluated. Due to recommendation of sunscreen utilization during acne treatments, sunscreen usage during pregnancy was also assessed. Management of acne during unplanned pregnancy was discussed in further detail regarding safety and adverse effects. Through summarized tables and examples of studies demonstrating safety and efficacy of treatments, the following is a resource for providers and patients to utilize for management of acne during pregnancy.
Collapse
Affiliation(s)
- Akash Rau
- Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Jonette Keri
- Department of Cutaneous Surgery and Dermatology, University of Miami, Miami, FL, USA
- Miami VA Hospital, Miami, Florida, USA
| | - Jenny E Murase
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Dermatology, Palo Alto Foundation Medical Group, 701 East El Camino Real (31-104), Mountain View, CA, 94040, USA.
| |
Collapse
|
3
|
Fujihara J, Nishimoto N. Review of Zinc Oxide Nanoparticles: Toxicokinetics, Tissue Distribution for Various Exposure Routes, Toxicological Effects, Toxicity Mechanism in Mammals, and an Approach for Toxicity Reduction. Biol Trace Elem Res 2024; 202:9-23. [PMID: 36976450 DOI: 10.1007/s12011-023-03644-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are widely used as a sunscreen, antibacterial agent, dietary supplement, food additive, and semiconductor material. This review summarizes the biological fate following various exposure routes, toxicological effects, and toxicity mechanism of ZnO NPs in mammals. Furthermore, an approach to reduce the toxicity and biomedical applications of ZnO NPs are discussed. ZnO NPs are mainly absorbed as Zn2+ and partially as particles. Regardless of exposure route, elevated Zn concentration in the liver, kidney, lungs, and spleen are observed following ZnO NP exposure, and these are the target organs for ZnO NPs. The liver is the main organ responsible for ZnO NP metabolism and the NPs are mainly excreted in feces and partly in urine. ZnO NPs induce liver damage (oral, intraperitoneal, intravenous, and intratracheal exposure), kidney damage (oral, intraperitoneal, and intravenous exposure) and lung injury (airway exposure). Reactive oxygen species (ROS) generation and induction of oxidative stress may be a major toxicological mechanism for ZnO NPs. ROS are generated by both excess Zn ion release and the particulate effect resulting from the semiconductor or electronic properties of ZnO NPs. ZnO NP toxicity can be reduced by coating their surface with silica, which prevents Zn2+ release and ROS generation. Due to their superior characteristics, ZnO NPs are expected to be used for biomedical applications, such as bioimaging, drug delivery, and anticancer agents, and surface coatings and modification will expand the biomedical applications of ZnO NPs further.
Collapse
Affiliation(s)
- Junko Fujihara
- Department of Legal Medicine, Shimane University Faculty of Medicine, 89-1 Enya, Izumo , Shimane, 693-8501, Japan.
| | - Naoki Nishimoto
- Department of Research Planning and Coordination, Shimane Institute for Industrial Technology, 1 Hokuryo, Matsue, Shimane, 690-0816, Japan
| |
Collapse
|
4
|
Ismail A, Raya NR, Orabi A, Ali AM, Abo-zeid Y. Investigating the Antibacterial Activity and Safety of Zinc Oxide Nanoparticles versus a Commercial Alcohol-Based Hand-Sanitizer: Can Zinc Oxide Nanoparticles Be Useful for Hand Sanitation? Antibiotics (Basel) 2022; 11:antibiotics11111606. [PMID: 36421249 PMCID: PMC9686634 DOI: 10.3390/antibiotics11111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Hand hygiene is the key factor to control and prevent the spread of infections, for example, hospital-acquired infections (HAIs). People commonly use alcohol-based hand sanitizers to assure hand hygiene. However, frequent use of alcohol-based hand sanitizers in a pandemic situation (e.g., COVID-19) was associated with serious drawbacks such as skin toxicity including irritation, skin dermatitis, and skin dryness or cracking, along with peeling, redness, or itching with higher possibility of infection. This demands the development of alternative novel products that are effective as alcohol-based hand sanitizers but have no hazardous effects. Zinc oxide nanoparticles (ZnO-NPs) are known to have broad-spectrum antimicrobial activity, be compatible with the biological system and the environment, and have applicable and economic industrial-scale production. Thus, ZnO-NPs might be a good candidate for hand sanitation. To the best of our knowledge, the antibacterial activity of ZnO-NPs in comparison to alcohol-based hand sanitizers has not yet been studied. In the present work, a comparative study of the antibacterial activity of ZnO-NPs vs. Sterillium, a commercial alcohol-based hand sanitizer that is commonly used in Egyptian hospitals, was performed against common microorganisms known to cause HAIs in Egypt, including Acinetobacter baumannii, Klebsiella pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA), and Staphylococcus aureus. The safety profiles of ZnO-NPs and Sterillium were also assessed. The obtained results demonstrated the superior antibacterial activity and safety of ZnO-NPs compared to Sterillium. Therefore, ZnO-NPs could be a promising candidate for hand sanitation in comparison to alcohol-based hand sanitizers; however, several studies related to long-term toxicity and stability of ZnO-NPs and investigations into their antimicrobial activity and safety in healthcare settings are still required in the future to ascertain their antimicrobial activity and safety.
Collapse
Affiliation(s)
- Aliaa Ismail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Nermeen R. Raya
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Ahmed Orabi
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Alaa M. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Yasmin Abo-zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
- Correspondence: ; Tel.: +20-1092792846
| |
Collapse
|
5
|
Liu F, Qu L, Li H, He J, Wang L, Fang Y, Yan X, Yang Q, Peng B, Wu W, Jin L, Sun D. Advances in Biomedical Functions of Natural Whitening Substances in the Treatment of Skin Pigmentation Diseases. Pharmaceutics 2022; 14:2308. [PMID: 36365128 PMCID: PMC9697978 DOI: 10.3390/pharmaceutics14112308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Pigmentation diseases can lead to significant color differences between the affected part and the normal part, resulting in severe psychological and emotional distress among patients. The treatment of pigmentation diseases with good patient compliance is mainly in the form of topical drugs. However, conventional hydroquinone therapy contributes to several pathological conditions, such as erythema, dryness, and skin desquamation, and requires a longer treatment time to show significant results. To address these shortcomings, natural whitening substances represented by kojic acid and arbutin have gradually become the candidate ingredients of traditional local preparations due to their excellent biological safety. This review focuses on several natural whitening substances with potential therapeutic effects in pigmentation disease and their mechanisms, and a thorough discussion has been conducted into the solution methods for the challenges involved in the practical application of natural whitening substances.
Collapse
Affiliation(s)
- Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Hua Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Xiaoqing Yan
- Chinese–American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Wenzhou City and Kunlong Technology Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| |
Collapse
|
6
|
Vilas-Boas V, Vinken M. Hepatotoxicity induced by nanomaterials: mechanisms and in vitro models. Arch Toxicol 2020; 95:27-52. [PMID: 33155068 DOI: 10.1007/s00204-020-02940-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
The unique physicochemical properties of materials at nanoscale have opened a plethora of opportunities for applications in the pharmaceutical and medical field, but also in consumer products from food and cosmetics industries. As a consequence, daily human exposure to nanomaterials through distinct routes is considerable and, therefore, may raise health concerns. Many nanomaterials have been described to accumulate and induce adversity in the liver. Among these, silica and some types of metallic nanoparticles are the most broadly used in consumer products and, therefore, the most studied and reported. The reviewed literature was collected from PubMed.gov during the month of March 2020 using the search words "nanomaterials induced hepatotoxicity", which yielded 181 papers. This present paper reviews the hepatotoxic effects of nanomaterials described in in vitro and in vivo studies, with emphasis on the underlying mechanisms. The induction of oxidative stress and inflammation are the manifestations of toxicity most frequently reported following exposure of cells or animal models to different nanomaterials. Furthermore, the available in vitro models for the evaluation of the hepatotoxic effects of nanomaterials are discussed, highlighting the continuous interest in the development of more advanced and reliable in vitro models for nanotoxicology.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
7
|
Dkhil MA, Diab MSM, Aljawdah HMA, Murshed M, Hafiz TA, Al-Quraishy S, Bauomy AA. Neuro-biochemical changes induced by zinc oxide nanoparticles. Saudi J Biol Sci 2020; 27:2863-2867. [PMID: 32994747 PMCID: PMC7499291 DOI: 10.1016/j.sjbs.2020.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 01/24/2023] Open
Abstract
Nanoparticles are now widely used in various aspects of life, especially zinc oxide nanoparticles (ZnNPs) that used in mouth washing, cosmetics, sunscreens, toothpaste and root canal flings. This research aims to determine the impact of ZnNPs on healthy mice's brain tissue. ZnNPs have caused major changes in the brain monoamines (dopamine, norepinephrine and serotonin) and ions such as Ca2+, Na+, K+ and Zn2+. Concerning the histological picture, administration of ZnNPs caused some histopathological impairment in brain tissue. In addition, ZnNPs reduced the level of glutathione and catalase in brain tissue, although an increase in the level of nitrite / nitrate and ROS was observed, while the level of malondialdhyde was not significantly altered. Moreover, ZnNPs induced DNA fragmentation in brain of mice. Collectively, the obtained results revealed that ZnNPs affected the brain levels of investigated monamines, ions, enzymatic and non-enzymatic antioxidants thus they may have potential influence on central nervous system.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt
| | - Marwa S M Diab
- Molecular Drug Evaluation Department, National Organization for Drug Control & Research (NODCAR), Egypt
| | - Hossam M A Aljawdah
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Mutee Murshed
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Taghreed A Hafiz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Amira A Bauomy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt
| |
Collapse
|
8
|
Liao C, Jin Y, Li Y, Tjong SC. Interactions of Zinc Oxide Nanostructures with Mammalian Cells: Cytotoxicity and Photocatalytic Toxicity. Int J Mol Sci 2020; 21:E6305. [PMID: 32878253 PMCID: PMC7504403 DOI: 10.3390/ijms21176305] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
This article presents a state-of-the-art review and analysis of literature studies on the morphological structure, fabrication, cytotoxicity, and photocatalytic toxicity of zinc oxide nanostructures (nZnO) of mammalian cells. nZnO with different morphologies, e.g., quantum dots, nanoparticles, nanorods, and nanotetrapods are toxic to a wide variety of mammalian cell lines due to in vitro cell-material interactions. Several mechanisms responsible for in vitro cytotoxicity have been proposed. These include the penetration of nZnO into the cytoplasm, generating reactive oxygen species (ROS) that degrade mitochondrial function, induce endoplasmic reticulum stress, and damage deoxyribonucleic acid (DNA), lipid, and protein molecules. Otherwise, nZnO dissolve extracellularly into zinc ions and the subsequent diffusion of ions into the cytoplasm can create ROS. Furthermore, internalization of nZnO and localization in acidic lysosomes result in their dissolution into zinc ions, producing ROS too in cytoplasm. These ROS-mediated responses induce caspase-dependent apoptosis via the activation of B-cell lymphoma 2 (Bcl2), Bcl2-associated X protein (Bax), CCAAT/enhancer-binding protein homologous protein (chop), and phosphoprotein p53 gene expressions. In vivo studies on a mouse model reveal the adverse impacts of nZnO on internal organs through different administration routes. The administration of ZnO nanoparticles into mice via intraperitoneal instillation and intravenous injection facilitates their accumulation in target organs, such as the liver, spleen, and lung. ZnO is a semiconductor with a large bandgap showing photocatalytic behavior under ultraviolet (UV) light irradiation. As such, photogenerated electron-hole pairs react with adsorbed oxygen and water molecules to produce ROS. So, the ROS-mediated selective killing for human tumor cells is beneficial for cancer treatment in photodynamic therapy. The photoinduced effects of noble metal doped nZnO for creating ROS under UV and visible light for killing cancer cells are also addressed.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (C.L.); (Y.J.)
| | - Yuming Jin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (C.L.); (Y.J.)
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
9
|
Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev 2019; 144:112-132. [PMID: 31295521 PMCID: PMC6745262 DOI: 10.1016/j.addr.2019.07.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022]
Abstract
Inorganic nanoparticles provide the opportunity to localize bioactive agents to the target sites and protect them from degradation. In many cases, acute toxicities of inorganic nanoparticles used for delivery applications have been investigated. However, little information is available regarding the long-term toxicity of such materials. This review focuses on the importance of subchronic and chronic toxicity assessment of inorganic nanoparticles investigated for delivery applications. We have attempted to provide a comprehensive review of the available literature for chronic toxicity assessment of inorganic nanoparticles. Where possible correlations are made between particle composition, physiochemical properties, duration, frequency and route of administration, as well as the sex of animals, with tissue and blood toxicity, immunotoxicity and genotoxicity. A critical gap analysis is provided and important factors that need to be considered for long-term toxicology of inorganic nanoparticles are discussed.
Collapse
Affiliation(s)
- Raziye Mohammadpour
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Darwin L Cheney
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA
| | - Khaled F Greish
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; Nanomedicine Research Unit, Princess Al-Jawhara Centre for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama 329, Bahrain
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
10
|
刘 丽, 韩 凯, 王 琦, 高 琰, 王 晶, 曾 抗. [Acute and chronic toxicity of 0.5% podophyllotoxin-loaded nanostructured lipid carriers to vaginal mucosa in rabbits and rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1527-1532. [PMID: 30613025 PMCID: PMC6744213 DOI: 10.12122/j.issn.1673-4254.2018.12.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To test the acute and chronic toxicity of topical application of 0.5% podophyllotoxin-loaded nanostructured lipid carriers (POD-NLC) to the vaginal mucosa. METHODS Twelve New Zealand rabbits were randomized into 3 groups and subjected to daily topical applications of normal saline (control group), 0.5% podophyllotoxin tincture (POD-T) or 0.5% POD-NLC on the vaginal mucosa for 10 consecutive days, and the pathological changes in the mucosa were graded using the Eckstein scoring system.The acute toxicity of POD-NLC was tested in 20 SD female rats, which received intravaginal administration of POD-NLC or vehicle for 3 times within 24 h; After 14 days of continuous observation, the rats were dissected for calculating the viscera coefficient.For testing the chronic toxicity of POD-NLC, 80 SD female rats were randomized into 4 groups and subjected to daily intravaginal administration of the vehicle or POD-NLC at low, moderate or high doses for 13 consecutive weeks.The rats were weighed once a week and at the end of the experiment, 2/3 of the rats from each group were sacrificed to collect blood samples, calculate the viscera coefficient, and examine the pathological changes in the liver.The remaining 1/3 rats were observed for another 2 weeks without further drug treatment and the same examinations were performed. RESULTS In the rabbits, 0.5% POD-NLC elicited only mild irritation while POD-T caused moderate irritation of the vaginal mucosa.In the acute toxicity test, the organ coefficients were comparable between the rats treated with the vehicle and POD-NLC (P>0.05).Long-term intravaginal administration of POD-NLC did not produce significant changes in the behavior, activity, body weight, blood biochemical profiles or organ coefficient as compared with the vehicle control group (P>0.05). CONCLUSIONS Intravaginal administration of 0.5% POD-NLC causes very mild irritation without obvious acute or chronic toxicity to the vaginal mucosa in rabbits and rats.
Collapse
Affiliation(s)
- 丽诗 刘
- />南方医科大学南方医院皮肤科,广东 广州 510515Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 凯 韩
- />南方医科大学南方医院皮肤科,广东 广州 510515Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 琦 王
- />南方医科大学南方医院皮肤科,广东 广州 510515Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 琰 高
- />南方医科大学南方医院皮肤科,广东 广州 510515Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晶莹 王
- />南方医科大学南方医院皮肤科,广东 广州 510515Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 抗 曾
- />南方医科大学南方医院皮肤科,广东 广州 510515Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Abstract
The field of nanotechnology has grown exponentially during the last few decades, due in part to the use of nanoparticles in many manufacturing processes, as well as their potential as clinical agents for treatment of diseases and for drug delivery. This has created several new avenues by which humans can be exposed to nanoparticles. Unfortunately, investigations assessing the toxicological impacts of nanoparticles (i.e. nanotoxicity), as well as their possible risks to human health and the environment, have not kept pace with the rapid rise in their use. This has created a gap-in-knowledge and a substantial need for more research. Studies are needed to help complete our understanding of the mechanisms of toxicity of nanoparticles, as well as the mechanisms mediating their distribution and accumulation in cells and tissues and their elimination from the body. This review summarizes our knowledge on nanoparticles, including their various applications, routes of exposure, their potential toxicity and risks to human health.
Collapse
|
12
|
In Vitro Comparative Skin Irritation Induced by Nano and Non-Nano Zinc Oxide. NANOMATERIALS 2017; 7:nano7030056. [PMID: 28336890 PMCID: PMC5388158 DOI: 10.3390/nano7030056] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/25/2017] [Accepted: 02/28/2017] [Indexed: 01/07/2023]
Abstract
This study was designed to determine whether nano-sized ZnO has the potential to cause acute cutaneous irritation using cultured HaCaT keratinocytes and a human skin equivalent as in vitro models, compared to non-nanomaterials. Commercial nano ZnO with different sizes (50 nm and 100 nm) was characterized by dynamic light scattering (DLS) and microscopy (SEM) in different media. Nano ZnO reduced the cell viability of HaCaT in a dose-dependent and time-dependent manner, in a similar way to macro ZnO. However, the 3D-epidermis model revealed no irritation at 1 mg/mL after 24 h of exposure. In conclusion, nano-sized ZnO does not irritate skin, in a similar manner to non-nano ZnO.
Collapse
|
13
|
Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine 2017; 12:1621-1637. [PMID: 28280330 PMCID: PMC5339013 DOI: 10.2147/ijn.s124403] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. Methods In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster. A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. Results For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript (DDIT3) and endoplasmic reticulum (ER) to nucleus signaling 1 (ERN1) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. Conclusion The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in vivo. More extensive studies would be needed to verify the safety issues related to increased usage of ZnO NPs by consumers.
Collapse
Affiliation(s)
- Cheng Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Environmental Research Institute, National University of Singapore, Singapore
| | - Liang Qing Yong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Choon Nam Ong
- Environmental Research Institute, National University of Singapore, Singapore
| | - Liya E Yu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
14
|
Ha NY, Shin HM, Sharma P, Cho HA, Min CK, Kim HI, Yen NTH, Kang JS, Kim IS, Choi MS, Kim YK, Cho NH. Generation of protective immunity against Orientia tsutsugamushi infection by immunization with a zinc oxide nanoparticle combined with ScaA antigen. J Nanobiotechnology 2016; 14:76. [PMID: 27887623 PMCID: PMC5124320 DOI: 10.1186/s12951-016-0229-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/17/2016] [Indexed: 01/31/2023] Open
Abstract
Background Zinc oxide nanoparticle (ZNP) has been applied in various biomedical fields. Here, we investigated the usage of ZNP as an antigen carrier for vaccine development by combining a high affinity peptide to ZNP. Results A novel zinc oxide-binding peptide (ZBP), FPYPGGDA, with high affinity to ZNP (Ka = 2.26 × 106 M−1) was isolated from a random peptide library and fused with a bacterial antigen, ScaA of Orientia tsutsugamushi, the causative agent of scrub typhus. The ZNP/ZBP-ScaA complex was efficiently phagocytosed by a dendritic cell line, DC2.4, in vitro and significantly enhanced anti-ScaA antibody responses in vivo compared to control groups. In addition, immunization with the ZNP/ZBP-ScaA complex promoted the generation of IFN-γ-secreting T cells in an antigen-dependent manner. Finally, we observed that ZNP/ZBP-ScaA immunization provided protective immunity against lethal challenge of O. tsutsugamushi, indicating that ZNP can be used as a potent adjuvant when complexed with ZBP-conjugated antigen. Conclusions ZNPs possess good adjuvant potential as a vaccine carrier when combined with an antigen having a high affinity to ZNP. When complexed with ZBP-ScaA antigen, ZNPs could induce strong antibody responses as well as protective immunity against lethal challenges of O. tsutsugamushi. Therefore, application of ZNPs combined with a specific soluble antigen could be a promising strategy as a novel vaccine carrier system.
Collapse
Affiliation(s)
- Na-Young Ha
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Mu Shin
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea
| | - Prashant Sharma
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ah Cho
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chan-Ki Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hong-Il Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Seung Kang
- Department of Microbiology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Ik-Sang Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release 2016; 240:77-92. [PMID: 26518723 PMCID: PMC4896846 DOI: 10.1016/j.jconrel.2015.10.049] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023]
Abstract
This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has - and will continue to have - a profound impact on both clinical outcomes and the development of new products.
Collapse
Affiliation(s)
- Ritu Goyal
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Lauren K Macri
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|