1
|
Arici M, Altun B, Araz M, Atmaca A, Demir T, Ecder T, Guz G, Gogas Yavuz D, Yildiz A, Yilmaz T. The significance of finerenone as a novel therapeutic option in diabetic kidney disease: a scoping review with emphasis on cardiorenal outcomes of the finerenone phase 3 trials. Front Med (Lausanne) 2024; 11:1384454. [PMID: 38947237 PMCID: PMC11214281 DOI: 10.3389/fmed.2024.1384454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
This scoping review prepared by endocrinology and nephrology experts aimed to address the significance of finerenone, as a novel therapeutic option, in diabetic kidney disease (DKD), based on the biological prospect of cardiorenal benefit due to non-steroidal mineralocorticoid receptor antagonist (MRA) properties, and the recent evidence from the finerenone phase 3 program clinical trials. The importance of finerenone in slowing DKD progression was critically reviewed in relation to the role of MR overactivation in the pathogenesis of cardiorenal disease and unmet needs in the current practice patterns. The efficacy and safety outcomes of finerenone phase III study program including FIDELIO-DKD, FIGARO-DKD and FIDELITY were presented. Specifically, perspectives on inclusion of patients with preserved estimated glomerular filtration rate (eGFR) or high albuminuria, concomitant use of sodium-glucose co-transporter-2 inhibitor (SGLT2i) or glucagon-like peptide 1 receptor agonist (GLP-1 RA), baseline glycated hemoglobin (HbA1c) level and insulin treatment, clinically meaningful heart failure outcomes and treatment-induced hyperkalemia were addressed. Finerenone has emerged as a new therapeutic agent that slows DKD progression, reduces albuminuria and risk of cardiovascular complications, regardless of the baseline HbA1c levels and concomitant treatments (SGLT2i, GLP-1 RA, or insulin) and with a favorable benefit-risk profile. The evolving data on the benefit of SGLT2is and non-steroidal MRAs in slowing or reducing cardiorenal risk seem to provide the opportunity to use these pillars of therapy in the management of DKD, after a long-period of treatment scarcity in this field. Along with recognition of the albuminuria as a powerful marker to detect those patients at high risk of cardiorenal disease, these important developments would likely to impact standard-of-care options in the setting of DKD.
Collapse
Affiliation(s)
- Mustafa Arici
- Department of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Bulent Altun
- Department of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Mustafa Araz
- Department of Endocrinology and Metabolic Diseases, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Aysegul Atmaca
- Department of Endocrinology and Metabolic Diseases, Ondokuz Mayis University Faculty of Medicine, Samsun, Türkiye
| | - Tevfik Demir
- Department of Endocrinology and Metabolic Diseases, Dokuz Eylul University Faculty of Medicine, Izmir, Türkiye
| | - Tevfik Ecder
- Department of Nephrology, Istinye University Faculty of Medicine, Istanbul, Türkiye
| | - Galip Guz
- Department of Nephrology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Dilek Gogas Yavuz
- Section of Endocrinology and Metabolism, Marmara University School of Medicine, Istanbul, Türkiye
| | - Alaattin Yildiz
- Department of Nephrology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Temel Yilmaz
- Clinics of Endocrinology and Metabolic Diseases, Florence Nightingale Hospital, Istanbul, Türkiye
| |
Collapse
|
2
|
Fadaly WAA, Elshaier YAMM, Ali FEM, El-Bahrawy AH, Abdellatif KRA, Nemr MTM. Vicinal diaryl pyrazole with tetrazole/urea scaffolds as selective angiotensin converting enzyme-1/cyclooxygenase-2 inhibitors: Design, synthesis, anti-hypertensive, anti-fibrotic, and anti-inflammatory. Drug Dev Res 2024; 85:e22217. [PMID: 38845214 DOI: 10.1002/ddr.22217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
As a hybrid weapon, two novel series of pyrazoles, 16a-f and 17a-f, targeting both COX-2 and ACE-1-N-domain, were created and their anti-inflammatory, anti-hypertensive, and anti-fibrotic properties were evaluated. In vitro, 17b and 17f showed COX-2 selectivity (SI = 534.22 and 491.90, respectively) compared to celecoxib (SI = 326.66) and NF-κB (IC50 1.87 and 2.03 μM, respectively). 17b (IC50 0.078 μM) and 17 f (IC50 0.094 μM) inhibited ACE-1 comparable to perindopril (PER) (IC50 0.048 μM). In vivo, 17b decreased systolic blood pressure by 18.6%, 17b and 17f increased serum NO levels by 345.8%, and 183.2%, respectively, increased eNOS expression by 0.97 and 0.52 folds, respectively and reduced NF-κB-p65 and P38-MAPK expression by -0.62, -0.22, -0.53, and -0.24 folds, respectively compared to l-NAME (-0.34, -0.45 folds decline in NF-κB-p65 and P38-MAPK, respectively). 17b reduced ANG-II expression which significantly reversed the cardiac histological changes induced by L-NAME.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yaseen A M M Elshaier
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Ali H El-Bahrawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Khaled R A Abdellatif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah, Kingdom of Saudi Arabia
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Bhattacharjee B, Chakrovorty A, Biswas M, Samadder A, Nandi S. To Explore the Putative Molecular Targets of Diabetic Nephropathy and their Inhibition Utilizing Potential Phytocompounds. Curr Med Chem 2024; 31:3752-3790. [PMID: 37211853 DOI: 10.2174/0929867330666230519112312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND This review critically addresses the putative molecular targets of Diabetic Nephropathy (DN) and screens effective phytocompounds that can be therapeutically beneficial, and highlights their mechanistic modalities of action. INTRODUCTION DN has become one of the most prevalent complications of clinical hyperglycemia, with individual-specific variations in the disease spectrum that leads to fatal consequences. Diverse etiologies involving oxidative and nitrosative stress, activation of polyol pathway, inflammasome formation, Extracellular Matrix (ECM) modifications, fibrosis, and change in dynamics of podocyte functional and mesangial cell proliferation adds up to the clinical complexity of DN. Current synthetic therapeutics lacks target-specific approach, and is associated with the development of inevitable residual toxicity and drug resistance. Phytocompounds provides a vast diversity of novel compounds that can become an alternative therapeutic approach to combat the DN. METHODS Relevant publications were searched and screened from research databases like GOOGLE SCHOLAR, PUBMED and SCISEARCH. Out of 4895 publications, the most relevant publications were selected and included in this article. RESULT This study critically reviews over 60 most promising phytochemical and provides with their molecular targets, that can be of pharmacological significance in context to current treatment and concomitant research in DN. CONCLUSION This review highlights those most promising phytocompounds that have the potential of becoming new safer naturally-sourced therapeutic candidates and demands further attention at clinical level.
Collapse
Affiliation(s)
- Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Maharaj Biswas
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
4
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
5
|
Cure E, Cumhur Cure M. Insulin may increase disease severity and mortality of COVID-19 through Na +/H + exchanger in patients with type 1 and type 2 diabetes mellitus. J Endocrinol Invest 2023; 46:845-847. [PMID: 36318448 PMCID: PMC9628438 DOI: 10.1007/s40618-022-01951-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/22/2022] [Indexed: 11/21/2022]
Affiliation(s)
- E. Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Fevzicakmak Mh, Osmangazi Cd, Istanbul, Turkey
| | - M. Cumhur Cure
- Department of Biochemistry, Private Tanfer Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Al-Ghamdi S, Abu-Alfa A, Alotaibi T, AlSaaidi A, AlSuwaida A, Arici M, Ecder T, El Koraie AF, Ghnaimat M, Hafez MH, Hassan M, Sqalli T. Chronic Kidney Disease Management in the Middle East and Africa: Concerns, Challenges, and Novel Approaches. Int J Nephrol Renovasc Dis 2023; 16:103-112. [PMID: 37051319 PMCID: PMC10084934 DOI: 10.2147/ijnrd.s363133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/22/2022] [Indexed: 04/14/2023] Open
Abstract
The burden of chronic kidney disease (CKD) and other comorbidities, such as hypertension and diabetes, which increase the risk of developing CKD, is on the rise in the Middle East and Africa. The Middle East and Africa CKD (MEA-CKD) steering committee, comprising eminent healthcare specialists from the Middle East and Africa, was formed to identify and propose steps to address the gaps in the management of CKD in these regions. The current article lists the MEA-CKD steering committee meeting outcomes and evaluates the available evidence supporting the role of novel therapeutic options for patients with CKD. The need of the hour is to address the gaps in awareness and screening, early diagnosis, along with referral and management of patients at risk. Measures to bring about appropriate changes in healthcare policies to ensure access to all benefit-proven protective therapies, including novel ones, at community levels are also vital for reducing the overall burden of CKD on the healthcare system as well as governing bodies, especially in developing countries of the Middle East and Africa.
Collapse
Affiliation(s)
- Saeed Al-Ghamdi
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom Saudi of Arabia
| | - Ali Abu-Alfa
- Department of Nephrology and Hypertension, American University of Beirut, Beirut, Lebanon
| | - Turki Alotaibi
- Department of Transplant Nephrology, Hamed Al-Essa Organ Transplant Center, Kuwait City, Kuwait
| | - Ali AlSaaidi
- Department of Nephrology, College of Medicine, University of Baghdad, Nephrology and Transplantation Center, Medical City Complex, Baghdad, Iraq
| | | | - Mustafa Arici
- Department of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tevfik Ecder
- Department of Nephrology, Demiroglu Bilim University Faculty of Medicine, Istanbul, Turkey
| | - Ahmed F El Koraie
- Department of Internal Medicine and Nephrology, Alexandria Faculty of Medicine, Alexandria, Egypt
| | | | - Mohamed H Hafez
- Department of Nephrology and Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Hassan
- Department of Medical Affairs, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
- Correspondence: Mohamed Hassan, Department of Medical Affairs, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates, Tel +971 508187944, Email
| | - Tarik Sqalli
- Department of Nephrology, Moroccan Society of Nephrology, Casablanca, Morocco
| |
Collapse
|
7
|
Pelle MC, Provenzano M, Busutti M, Porcu CV, Zaffina I, Stanga L, Arturi F. Up-Date on Diabetic Nephropathy. Life (Basel) 2022; 12:1202. [PMID: 36013381 PMCID: PMC9409996 DOI: 10.3390/life12081202] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes is one of the leading causes of kidney disease. Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease (ESKD) worldwide, and it is linked to an increase in cardiovascular (CV) risk. Diabetic nephropathy (DN) increases morbidity and mortality among people living with diabetes. Risk factors for DN are chronic hyperglycemia and high blood pressure; the renin-angiotensin-aldosterone system blockade improves glomerular function and CV risk in these patients. Recently, new antidiabetic drugs, including sodium-glucose transport protein 2 inhibitors and glucagon-like peptide-1 agonists, have demonstrated additional contribution in delaying the progression of kidney disease and enhancing CV outcomes. The therapeutic goal is regression of albuminuria, but an atypical form of non-proteinuric diabetic nephropathy (NP-DN) is also described. In this review, we provide a state-of-the-art evaluation of current treatment strategies and promising emerging treatments.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Clara Valentina Porcu
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Isabella Zaffina
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Lucia Stanga
- Oncology Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Yeung MHY, Leung KL, Choi LY, Yoo JS, Yung S, So PK, Wong CM. Lipidomic Analysis Reveals the Protection Mechanism of GLP-1 Analogue Dulaglutide on High-Fat Diet-Induced Chronic Kidney Disease in Mice. Front Pharmacol 2022; 12:777395. [PMID: 35299724 PMCID: PMC8921774 DOI: 10.3389/fphar.2021.777395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022] Open
Abstract
Many clinical studies have suggested that glucagon-like peptide-1 receptor agonists (GLP-1RAs) have renoprotective properties by ameliorating albuminuria and increasing glomerular filtration rate in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) by lowering ectopic lipid accumulation in the kidney. However, the mechanism of GLP-1RAs was hitherto unknown. Here, we conducted an unbiased lipidomic analysis using ultra-high-performance liquid chromatography/electrospray ionization-quadrupole time-of-flight mass spectrometry (UHPLC/ESI-Q-TOF-MS) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to reveal the changes of lipid composition and distribution in the kidneys of high-fat diet-fed mice after treatment with a long-acting GLP-1RA dulaglutide for 4 weeks. Treatment of dulaglutide dramatically improved hyperglycemia and albuminuria, but there was no substantial improvement in dyslipidemia and ectopic lipid accumulation in the kidney as compared with controls. Intriguingly, treatment of dulaglutide increases the level of an essential phospholipid constituent of inner mitochondrial membrane cardiolipin at the cortex region of the kidneys by inducing the expression of key cardiolipin biosynthesis enzymes. Previous studies demonstrated that lowered renal cardiolipin level impairs kidney function via mitochondrial damage. Our untargeted lipidomic analysis presents evidence for a new mechanism of how GLP-1RAs stimulate mitochondrial bioenergetics via increasing cardiolipin level and provides new insights into the therapeutic potential of GLP-1RAs in mitochondrial-related diseases.
Collapse
Affiliation(s)
- Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ka Long Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lai Yuen Choi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Jung Sun Yoo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Susan Yung
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chi-Ming Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Resistance exercise shifts the balance of renin-angiotensin system toward ACE2/Ang 1-7 axis and reduces inflammation in the kidney of diabetic rats. Life Sci 2021; 287:120058. [PMID: 34673118 DOI: 10.1016/j.lfs.2021.120058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS We aimed to determine whether resistance training (RT) regulates renal renin-angiotensin system (RAS) components and inflammatory mediators in diabetic rats. MAIN METHODS Male Wistar rats (3 months old) were randomly assigned into four groups: non-trained (NT), trained (T), non-trained + diabetes (NTD) and trained +diabetes (TD). Diabetes was induced by streptozotocin (50 mg/kg, Sigma Chemical Co., St. Louis, MO, USA), before RT protocol. Trained rats performed RT protocol on a 110-cm ladder (8 ladder climbs, once/day, 5 days/week, 8 weeks), carrying a load corresponding to 50-80% of maximum carrying capacity. Blood glucose, albuminuria and urinary volume were measured. Renal levels of angiotensin peptides (angiotensin I, II and 1-7), inflammatory markers, and also the activities of angiotensin-converting enzyme (ACE) and ACE2 were determined. KEY FINDINGS Blood glucose and urinary volume were elevated in diabetic animals, and RT decreased albuminuria, renal Ang I and Ang II levels in diabetic rats. RT shifted the balance of renal RAS toward ACE2/Ang 1-7 axis in TD group, and mitigated the high levels of interleukin (IL)-10, IL-1β and cytokine-induced neutrophil chemoattractant 1 (CINC) in the context of diabetes. Strong positive correlations were found between albuminuria and Ang II, IL-10 and IL-1β. On the other hand, intrarenal Ang 1-7 levels were negatively correlated with IL-10 and IL-1β levels. SIGNIFICANCE RT improved kidney function by modulating intrarenal RAS toward ACE2/Ang 1-7 axis and inflammatory cytokines. RT represents a reasonable strategy to improve the renal complications induced by diabetes, counteracting nephropathy-associated maladaptive responses.
Collapse
|
10
|
Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1497449. [PMID: 34307650 PMCID: PMC8285185 DOI: 10.1155/2021/1497449] [Citation(s) in RCA: 358] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. Chronic hyperglycemia and high blood pressure are the main risk factors for the development of DN. In general, screening for microalbuminuria should be performed annually, starting 5 years after diagnosis in type 1 diabetes and at diagnosis and annually thereafter in type 2 diabetes. Standard therapy is blood glucose and blood pressure control using the renin-angiotensin system blockade, targeting A1c < 7%, and <130/80 mmHg. Regression of albuminuria remains an important therapeutic goal. However, there are problems in diagnosis and treatment of nonproteinuric DN (NP-DN), which does not follow the classic pattern of DN. In fact, the prevalence of DN continues to increase, and additional therapy is needed to prevent or ameliorate the condition. In addition to conventional therapies, vitamin D receptor activators, incretin-related drugs, and therapies that target inflammation may also be promising for the prevention of DN progression. This review focuses on the role of inflammation and oxidative stress in the pathogenesis of DN, approaches to diagnosis in classic and NP-DN, and current and emerging therapeutic interventions.
Collapse
|
11
|
Bae J, Won YJ, Lee BW. Non-Albumin Proteinuria (NAP) as a Complementary Marker for Diabetic Kidney Disease (DKD). Life (Basel) 2021; 11:life11030224. [PMID: 33802211 PMCID: PMC7998887 DOI: 10.3390/life11030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/06/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common forms of chronic kidney disease. Its pathogenic mechanism is complex, and it can affect entire structures of the kidney. However, conventional approaches to early stage DKD have focused on changes to the glomerulus. Current standard screening tools for DKD, albuminuria, and estimated glomerular filtration rate are insufficient to reflect early tubular injury. Therefore, many tubular biomarkers have been suggested. Non-albumin proteinuria (NAP) contains a wide range of tubular biomarkers and is convenient to measure. We reviewed the clinical meanings of NAP and its significance as a marker for early stage DKD.
Collapse
Affiliation(s)
- Jaehyun Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary’s Hospital, Incheon KS006, Korea; (J.B.); (Y.J.W.)
| | - Young Jun Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary’s Hospital, Incheon KS006, Korea; (J.B.); (Y.J.W.)
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul KS013, Korea
- Correspondence:
| |
Collapse
|
12
|
Piani F, Reinicke T, Lytvyn Y, Melena I, Lovblom LE, Lai V, Tse J, Cham L, Orszag A, Perkins BA, Cherney DZI, Bjornstad P. Vasopressin associated with renal vascular resistance in adults with longstanding type 1 diabetes with and without diabetic kidney disease. J Diabetes Complications 2021; 35:107807. [PMID: 33288413 PMCID: PMC8397596 DOI: 10.1016/j.jdiacomp.2020.107807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Arginine vasopressin (AVP) and its surrogate, copeptin, have been implicated in diabetic kidney disease (DKD) pathogenesis, which develops in a subset of people with longstanding type 1 diabetes, but not in others (DKD Resistors). We hypothesized that patients with DKD would exhibit higher copeptin concentrations vs. DKD Resistors. METHODS Participants with type 1 diabetes (n = 62, duration ≥50 years) were stratified into 42 DKD Resistors and 20 with DKD (eGFR ≤60 mL/min/1.73m2 or ≥30 mg/day urine albumin), and age/sex-matched controls (HC, n = 74) were included. Glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) were calculated by inulin and p-aminohippurate clearance before and after angiotensin II (ang II) infusion. Renal vascular resistance (RVR) was calculated as mean arterial pressure/renal blood flow. Plasma copeptin, renin, aldosterone, neutrophil gelatinase-associated lipocalin (NGAL), and urea concentrations were measured, along with 24-h urine volume. RESULTS DKD resistors had lower copeptin (95% CI: 4.0 [3.4-4.8] pmol/l) compared to DKD (5.8 [4.5-7.6] pmol/l, p = 0.02) and HC (4.8 [4.1-5.5] pmol/l, p = 0.01) adjusting for age, sex and HbA1c. In type 1 diabetes, higher copeptin correlated with lower GFR (r: -0.32, p = 0.01) and higher renin concentration (r: 0.40, p = 0.002) after multivariable adjustments. These relationships were not evident in HC. Copeptin inversely associated with RVR change following exogenous ang II only in participants with type 1 diabetes (β ± SE: -6.9 ± 3.4, p = 0.04). CONCLUSIONS In longstanding type 1 diabetes, copeptin was associated with intrarenal renin-angiotensin-aldosterone system (RAAS) activation and renal hemodynamic function, suggesting interplay between AVP and RAAS in DKD pathogenesis.
Collapse
Affiliation(s)
- Federica Piani
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Trenton Reinicke
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuliya Lytvyn
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Isabella Melena
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Leif E Lovblom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Vesta Lai
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Josephine Tse
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Cham
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Andrej Orszag
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Canada
| | - Petter Bjornstad
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
13
|
Interference of S100A16 suppresses lipid accumulation and inflammation in high glucose-induced HK-2 cells. Int Urol Nephrol 2021; 53:1255-1263. [PMID: 33389513 DOI: 10.1007/s11255-020-02731-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Diabetic nephropathy (DN) is a major complication of diabetic mellitus and usually leads to the end-stage renal disease. Inflammation-induced lipid disorders have been proposed to play an important role in the pathogenesis of DN. S100A16 is a novel adipogenic factor, but has not been investigated in DN. This study aims to explore the role of S100A16 in high glucose (HG)-induced HK-2 cells. METHODS CCK-8 assay was used to detect cell viability. Cell transfection was performed to knockdown S100A16. Oil red staining was performed to assay lipid accumulation. qRT-PCR and western blotting were conducted to examine corresponding gene expression. Intracellular cholesterol was determined by enzymatic assay. Inflammatory cytokines production was measured using ELISA kits. RESULTS The results exhibited lipid accumulation and upregulation of S100A16 in HG-induced HK-2 cells. S100A16 knockdown significantly reduced lipid droplets and cholesterol, and decreased the production of inflammatory cytokines induced by HG. Besides, S100A16 knockdown decreased the expression of SCAP, SREBP1, SCD1 and SCAP. However, the inhibitory effect in HG-induced HK-2 cells made by S100A16 was reversed by SREBP1 overexpression. CONCLUSION These results suggested that S100A16 knockdown might protect against HG-induced lipid accumulation and inflammation in HK-2 cells through regulating SCAP/SREBP1 signaling.
Collapse
|
14
|
Afsar B, Elsurer Afsar R, Sag AA, Kanbay A, Korkmaz H, Cipolla-Neto J, Covic A, Ortiz A, Kanbay M. Sweet dreams: therapeutic insights, targeting imaging and physiologic evidence linking sleep, melatonin and diabetic nephropathy. Clin Kidney J 2020; 13:522-530. [PMID: 32905249 PMCID: PMC7467577 DOI: 10.1093/ckj/sfz198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Melatonin is the main biochronologic molecular mediator of circadian rhythm and sleep. It is also a powerful antioxidant and has roles in other physiologic pathways. Melatonin deficiency is associated with metabolic derangements including glucose and cholesterol dysregulation, hypertension, disordered sleep and even cancer, likely due to altered immunity. Diabetic nephropathy (DN) is a key microvascular complication of both type 1 and 2 diabetes. DN is the end result of a complex combination of metabolic, haemodynamic, oxidative and inflammatory factors. Interestingly, these same factors have been linked to melatonin deficiency. This report will collate in a clinician-oriented fashion the mechanistic link between melatonin deficiency and factors contributing to DN.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Asiye Kanbay
- Department of Pulmonary Medicine, Istanbul Medeniyet University School of Medicine, Istanbul, Turkey
| | - Hakan Korkmaz
- Division of Endocrinology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - José Cipolla-Neto
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adrian Covic
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Nephrology Clinic, Dialysis and Renal Transplant Center, ‘C.I. PARHON’ University Hospital and ‘Grigore T. Popa’ University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
15
|
The Interplay of Renin-Angiotensin System and Toll-Like Receptor 4 in the Inflammation of Diabetic Nephropathy. J Immunol Res 2020; 2020:6193407. [PMID: 32411800 PMCID: PMC7210546 DOI: 10.1155/2020/6193407] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/12/2020] [Indexed: 01/11/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious chronic kidney diseases and the major cause of end-stage renal failure worldwide. The underlying mechanisms of DN are complex and required to be further investigated. Both innate immunity and renin-angiotensin system (RAS) play critical roles in the pathogenesis of DN. Except for traditional functions, abnormally regulated RAS has been proved to be involved in the inflammatory process of DN. Toll-like receptor 4 (TLR4) is the most deeply studied pattern recognition receptor in the innate immune system, and its activation has been reported to mediate the development of DN. In this review, we aim at discussing how dysregulated RAS affects TLR4 activation in the kidney that contributes to the exploration of the pathogenesis of DN. Understanding the interplay of RAS and TLR4 in inducing the progression of DN may provide new insights to develop effective treatments.
Collapse
|
16
|
Massolini BD, Contieri SSG, Lazarini GS, Bellacosa PA, Dobre M, Petroianu G, Brateanu A, Campos LA, Baltatu OC. Therapeutic Renin Inhibition in Diabetic Nephropathy-A Review of the Physiological Evidence. Front Physiol 2020; 11:190. [PMID: 32231590 PMCID: PMC7082742 DOI: 10.3389/fphys.2020.00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
The purpose of this systematic review was to investigate the scientific evidence to support the use of direct renin inhibitors (DRIs) in diabetic nephropathy (DN). MEDLINE was searched for articles reported until 2018. A standardized dataset was extracted from articles describing the effects of DRIs on plasma renin activity (PRA) in DN. A total of three clinical articles studying PRA as an outcome measure for DRIs use in DN were identified. These clinical studies were randomized controlled trials (RCTs): one double-blind crossover, one post hoc of a double-blind and placebo-controlled study, and one open-label and parallel-controlled study. Two studies reported a significant decrease of albuminuria associated with PRA reduction. One study had a DRI as monotherapy compared with placebo, and two studies had DRI as add-in to an angiotensin II (Ang II) receptor blocker (ARB). Of 10,393 patients with DN enrolled in five studies with DRI, 370 (3.6%) patients had PRA measured. Only one preclinical study was identified that determined PRA when investigating the effects of aliskiren in DN. Moreover, most of observational preclinical and clinical studies identified report on a low PRA or hyporeninemic hypoaldosteronism in DM. Renin inhibition has been suggested for DN, but proof-of-concept studies for this are scant. A small number of clinical and preclinical studies assessed the PRA effects of DRIs in DN. For a more successful translational research for DRIs, specific patient population responsive to the treatment should be identified, and PRA may remain a biomarker of choice for patient stratification.
Collapse
Affiliation(s)
- Bianca Domingues Massolini
- Center of Innovation, Technology and Education-CITÉ, São José dos Campos Technology Park, São José dos Campos, São Paulo, Brazil.,Institute of Biomedical Engineering, Anhembi Morumbi University, Laureate International Universities, São José dos Campos, São Paulo, Brazil
| | - Stephanie San Gregorio Contieri
- Center of Innovation, Technology and Education-CITÉ, São José dos Campos Technology Park, São José dos Campos, São Paulo, Brazil.,Institute of Biomedical Engineering, Anhembi Morumbi University, Laureate International Universities, São José dos Campos, São Paulo, Brazil
| | - Giulia Severini Lazarini
- Center of Innovation, Technology and Education-CITÉ, São José dos Campos Technology Park, São José dos Campos, São Paulo, Brazil.,Institute of Biomedical Engineering, Anhembi Morumbi University, Laureate International Universities, São José dos Campos, São Paulo, Brazil
| | - Paula Antoun Bellacosa
- Center of Innovation, Technology and Education-CITÉ, São José dos Campos Technology Park, São José dos Campos, São Paulo, Brazil.,Institute of Biomedical Engineering, Anhembi Morumbi University, Laureate International Universities, São José dos Campos, São Paulo, Brazil
| | - Mirela Dobre
- Division of Nephrology and Hypertension, University Hospitals, Cleveland, OH, United States
| | - Georg Petroianu
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Andrei Brateanu
- Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Luciana Aparecida Campos
- Center of Innovation, Technology and Education-CITÉ, São José dos Campos Technology Park, São José dos Campos, São Paulo, Brazil.,Institute of Biomedical Engineering, Anhembi Morumbi University, Laureate International Universities, São José dos Campos, São Paulo, Brazil.,College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ovidiu Constantin Baltatu
- Center of Innovation, Technology and Education-CITÉ, São José dos Campos Technology Park, São José dos Campos, São Paulo, Brazil.,Institute of Biomedical Engineering, Anhembi Morumbi University, Laureate International Universities, São José dos Campos, São Paulo, Brazil.,College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Alawi LF, Emberesh SE, Owuor BA, Chodavarapu H, Fadnavis R, El‐Amouri SS, Elased KM. Effect of hyperglycemia and rosiglitazone on renal and urinary neprilysin in db/db diabetic mice. Physiol Rep 2020; 8:e14364. [PMID: 32026607 PMCID: PMC7002536 DOI: 10.14814/phy2.14364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Alteration in renin-angiotensin system (RAS) has been implicated in the pathophysiology of diabetic kidney disease (DKD). The deleterious actions of angiotensin II (Ang II) could be antagonized by the formation of Ang-(1-7), generated by the actions of angiotensin-converting enzyme 2 (ACE2) and neprilysin (NEP). NEP degrades several peptides, including natriuretic peptides, bradykinin, amyloid beta, and Ang I. Although combination of Ang II receptor and NEP inhibitor treatment benefits patients with heart failure, the role of NEP in renal pathophysiology is a matter of active research. NEP pathway is a potent enzyme in Ang I to Ang-(1-7) conversion in the kidney of ACE2-deficient mice, suggesting a renoprotective role of NEP. The aim of the study is to test the hypothesis that chronic hyperglycemia downregulates renal NEP protein expression and activity in db/db diabetic mice and treatment with rosiglitazone normalizes hyperglycemia, renal NEP expression, and attenuates albuminuria. Mice received rosiglitazone (20 mg kg-1 day-1 ) for 10 weeks. Western blot analysis, immunohistochemistry, and enzyme activity revealed a significant decrease in renal and urinary NEP expression and activity in 16-wk db/db mice compared with lean control (p < .0001). Rosiglitazone also attenuated albuminuria and increased renal and urinary NEP expressions (p < .0001). In conclusion, data support the hypothesis that diabetes decreases intrarenal NEP, which could have a pivotal role in the pathogenesis of DKD. Urinary NEP may be used as an index of intrarenal NEP status. The renoprotective effects of rosiglitazone could be mediated by upregulation of renal NEP expression and activity in db/db diabetic mice.
Collapse
Affiliation(s)
- Laale F. Alawi
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Sana E. Emberesh
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Brenda A. Owuor
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Harshita Chodavarapu
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Rucha Fadnavis
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Salim S. El‐Amouri
- Boonshoft School of MedicineDepartment of NeuroscienceCell Biology and PhysiologyWright State UniversityDaytonOHUSA
| | - Khalid M. Elased
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| |
Collapse
|
18
|
Hu F, Xue R, Wei X, Wang Z, Luo S, Lin J, Yan Z, Sun L. Egr1 Knockdown Combined with an ACE Inhibitor Ameliorates Diabetic Kidney Disease in Mice: Blockade of Compensatory Renin Increase. Diabetes Metab Syndr Obes 2020; 13:1005-1013. [PMID: 32308450 PMCID: PMC7136749 DOI: 10.2147/dmso.s238138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/11/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Increased compensatory intrarenal renin diminishes the efficacy of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) in the treatment of diabetic kidney disease (DKD). Early growth response-1 (Egr1) is a crucial transcriptional factor in the progress of DKD and is a potential transcription factor of intrarenal renin according to bioinformatic analysis. However, whether inhibition of Egr1 can suppress compensatory renin increase in DKD is unclear. METHODS We generated a high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mouse model. The mice were treated with either enalapril (an ACEI) or enalapril combined with a shEgr1 plasmid, and age-matched DKD mice were used as controls. Urine microalbumin, urinary renin and kidney TGF-β1 were determined by enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (H&E) and Masson staining were used to determine renal pathological changes. Egr1, renin, TNF-α, and FN were measured by real-time quantitative PCR, Western blot, and immunohistochemistry. The SV40-MES13 murine mesangial cell line was transfected with pENTER-Egr1 plasmid and siEgr1. RESULTS Our results showed that enalapril increased the renin level of urinary and renal in DKD mice, while shEgr1 attenuated this effect. In addition, enalapril treatment reduced the levels of urinary microalbumin, TNF-α, TGF-β1 and FN, and alleviated the pathological changes, while shEgr1 strengthened these effects. The protein and mRNA expression of renin in the SV40 MES13 cells was upregulated and downregulated following overexpression and silence of Egr1, respectively. CONCLUSION Silence of Egr1 could alleviate renal injury in DKD by downregulating intrarenal renin.
Collapse
Affiliation(s)
- Fang Hu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun, Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Rui Xue
- Department of Cardio-Thoracic Surgery, Zhuhai Hospital of Integrated Traditional Chinese Western Medicine, NanFang Medical University, Zhuhai, Guangdong, People’s Republic of China
| | - Xiaohong Wei
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun, Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Zheng Wang
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun, Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Shunkui Luo
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun, Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Jianghong Lin
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun, Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Zhixiang Yan
- Key Laboratory of Biomedical Imaging of Guangdong Province, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
- Correspondence: Zhixiang Yan Key Laboratory of Biomedical Imaging of Guangdong Province, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of ChinaTel +86 13680373940Fax +86 7562528741 Email
| | - Liao Sun
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun, Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
- Liao Sun Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China Tel/Fax +86 7562528741 Email
| |
Collapse
|
19
|
Potential of Renin-Angiotensin-Aldosterone System Modulations in Diabetic Kidney Disease: Old Players to New Hope! Rev Physiol Biochem Pharmacol 2020; 179:31-71. [PMID: 32979084 DOI: 10.1007/112_2020_50] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to a tragic increase in the incidences of diabetes globally, diabetic kidney disease (DKD) has emerged as one of the leading causes of end-stage renal diseases (ESRD). Hyperglycaemia-mediated overactivation of the renin-angiotensin-aldosterone system (RAAS) is key to the development and progression of DKD. Consequently, RAAS inhibition by angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) is the first-line therapy for the clinical management of DKD. However, numerous clinical and preclinical evidences suggested that RAAS inhibition can only halt the progression of the DKD to a certain extent, and they are inadequate to cure DKD completely. Recent studies have improved understanding of the complexity of the RAAS. It consists of two counter-regulatory arms, the deleterious pressor arm (ACE/angiotensin II/AT1 receptor axis) and the beneficial depressor arm (ACE2/angiotensin-(1-7)/Mas receptor axis). These advances have paved the way for the development of new therapies targeting the RAAS for better treatment of DKD. In this review, we aimed to summarise the involvement of the depressor arm of the RAAS in DKD. Moreover, in modern drug discovery and development, an advance approach is the bispecific therapeutics, targeting two independent signalling pathways. Here, we discuss available reports of these bispecific drugs involving the RAAS as well as propose potential treatments based on neurohormonal balance as credible therapeutic strategies for DKD.
Collapse
|
20
|
Satou R, Cypress MW, Woods TC, Katsurada A, Dugas CM, Fonseca VA, Navar LG. Blockade of sodium-glucose cotransporter 2 suppresses high glucose-induced angiotensinogen augmentation in renal proximal tubular cells. Am J Physiol Renal Physiol 2019; 318:F67-F75. [PMID: 31682172 DOI: 10.1152/ajprenal.00402.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Renal proximal tubular angiotensinogen (AGT) is increased by hyperglycemia (HG) in diabetes mellitus, which augments intrarenal angiotensin II formation, contributing to the development of hypertension and kidney injury. Sodium-glucose cotransporter 2 (SGLT2) is abundantly expressed in proximal tubular cells (PTCs). The present study investigated the effects of canagliflozin (CANA), a SGLT2 inhibitor, on HG-induced AGT elevation in cultured PTCs. Mouse PTCs were treated with 5-25 mM glucose. CANA (0-10 µM) was applied 1 h before glucose treatment. Glucose (10 mM) increased AGT mRNA and protein levels at 12 h (3.06 ± 0.48-fold in protein), and 1 and 10 µM CANA as well as SGLT2 shRNA attenuated the AGT augmentation. CANA did not suppress the elevated AGT levels induced by 25 mM glucose. Increased AGT expression induced by treatment with pyruvate, a glucose metabolite that does not require SGLT2 for uptake, was not attenuated by CANA. In HG-treated PTCs, intracellular reactive oxygen species levels were elevated compared with baseline (4.24 ± 0.23-fold), and these were also inhibited by CANA. Furthermore, tempol, an antioxidant, attenuated AGT upregulation in HG-treated PTCs. HG-induced AGT upregulation was not inhibited by an angiotensin II receptor antagonist, indicating that HG stimulates AGT expression in an angiotensin II-independent manner. These results indicate that enhanced glucose entry via SGLT2 into PTCs elevates intracellular reactive oxygen species generation by stimulation of glycolysis and consequent AGT augmentation. SGLT2 blockade limits HG-induced AGT stimulation, thus reducing the development of kidney injury in diabetes mellitus.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Michael W Cypress
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - T Cooper Woods
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Akemi Katsurada
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Courtney M Dugas
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Vivian A Fonseca
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Gabriel Navar
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
21
|
Chelluboina B, Vemuganti R. Chronic kidney disease in the pathogenesis of acute ischemic stroke. J Cereb Blood Flow Metab 2019; 39:1893-1905. [PMID: 31366298 PMCID: PMC6775591 DOI: 10.1177/0271678x19866733] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease has a graded and independent inverse impact on cerebrovascular health. Both thrombotic and hemorrhagic complications are highly prevalent in chronic kidney disease patients. Growing evidence suggests that in chronic kidney disease patients, ischemic strokes are more common than hemorrhagic strokes. Chronic kidney disease is asymptomatic until an advanced stage, but mild to moderate chronic kidney disease incites various pathogenic mechanisms such as inflammation, oxidative stress, neurohormonal imbalance, formation of uremic toxins and vascular calcification which damage the endothelium and blood vessels. Cognitive dysfunction, dementia, transient infarcts, and white matter lesions are widespread in mild to moderate chronic kidney disease patients. Uremic toxins produced after chronic kidney disease can pass through the blood-brain barrier and mediate cognitive dysfunction and neurodegeneration. Furthermore, chronic kidney disease precipitates vascular risk factors that can lead to atherosclerosis, hypertension, atrial fibrillation, and diabetes. Chronic kidney disease also exacerbates stroke pathogenesis, worsens recovery outcomes, and limits the eligibility of stroke patients to receive available stroke therapeutics. This review highlights the mechanisms involved in the advancement of chronic kidney disease and its possible association with stroke.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
22
|
Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol 2019; 34:975-991. [PMID: 30105414 DOI: 10.1007/s00467-018-4005-4] [Citation(s) in RCA: 432] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/03/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
Oxidative stress (OS), defined as disturbances in the pro-/antioxidant balance, is harmful to cells due to the excessive generation of highly reactive oxygen (ROS) and nitrogen (RNS) species. When the balance is not disturbed, OS has a role in physiological adaptations and signal transduction. However, an excessive amount of ROS and RNS results in the oxidation of biological molecules such as lipids, proteins, and DNA. Oxidative stress has been reported in kidney disease, due to both antioxidant depletions as well as increased ROS production. The kidney is a highly metabolic organ, rich in oxidation reactions in mitochondria, which makes it vulnerable to damage caused by OS, and several studies have shown that OS can accelerate kidney disease progression. Also, in patients at advanced stages of chronic kidney disease (CKD), increased OS is associated with complications such as hypertension, atherosclerosis, inflammation, and anemia. In this review, we aim to describe OS and its influence on CKD progression and its complications. We also discuss the potential role of various antioxidants and pharmacological agents, which may represent potential therapeutic targets to reduce OS in both pediatric and adult CKD patients.
Collapse
Affiliation(s)
- Kristien Daenen
- Department of Microbiology and Immunology, Laboratory of Nephrology, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, 3000, Leuven, Belgium.
- Department of Nephrology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, 3000, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD Group, KU Leuven - University of Leuven, 3000, Leuven, Belgium
- Department of Pediatric Nephrology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, 3000, Leuven, Belgium
| | - François Jouret
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital (ULg CHU), Liège, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Science, University of Liège, Liège, Belgium
| | - Bert Bammens
- Department of Microbiology and Immunology, Laboratory of Nephrology, KU Leuven - University of Leuven, 3000, Leuven, Belgium
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, 3000, Leuven, Belgium
| |
Collapse
|
23
|
Influence of high glucose on mesangial cell-derived exosome composition, secretion and cell communication. Sci Rep 2019; 9:6270. [PMID: 31000742 PMCID: PMC6472340 DOI: 10.1038/s41598-019-42746-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
Mesangial cells stimulated with high glucose (HG) exhibit increased intracellular angiotensin II (AngII) synthesis that is correlated with the upregulation of AngII target genes, such as profibrotic cytokines. The intracrine effects of AngII can be mediated by several molecules transferred to other cells via exosomes (Exos), which play a key role in cellular communication under many physiological and pathological conditions. The aim of this study was to investigate the effects of exosomes derived from HG-stimulated human mesangial cells (HG-HMCs) on normal unstimulated HMCs. Exosomes from HMCs (C-Exos) and HG-HMCs (HG-Exos) were obtained from cell culture supernatants. HMCs were incubated with C-Exos or HG-Exos. HG stimulus induced a change in the amount but not the size of Exos. Both C-Exos and HG-Exos contained angiotensinogen and renin, but no angiotensin converting enzyme was detected. Compared with HMCs treated with C-Exos, HMCs treated with HG-Exos presented higher levels of fibronectin, angiotensinogen, renin, AT1 and AT2 receptors, indicating that HG-Exos modified the function of normal HMCs. These results suggest that the intercellular communication through Exos may have pathophysiological implications in the diabetic kidney.
Collapse
|
24
|
Advanced Glycation End Products Stimulate Angiotensinogen Production in Renal Proximal Tubular Cells. Am J Med Sci 2018; 357:57-66. [PMID: 30466736 DOI: 10.1016/j.amjms.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Elevated advanced glycation end products (AGE) in diabetes mellitus (DM) are implicated in the progression of DM-associated tissue injury, including diabetic nephropathy. The intrarenal renin-angiotensin system, in particular augmentation of angiotensinogen (AGT) in proximal tubular cells (PTC), plays a crucial role in the development of diabetic nephropathy. This study investigated hypothesis that AGE stimulates AGT production in PTC. MATERIALS AND METHODS Urinary AGT and AGE levels in streptozotocin-induced DM mice were measured by enzyme-linked immunosorbent assays. AGT expression and secretion were evaluated in cultured rat PTC receiving 0-200 µg/ml AGE-BSA treatments for 24 hours. Furthermore, intracellular signaling pathways activated by AGE were elucidated. RESULTS DM mice exhibited greater urinary AGT and AGE levels compared to control mice (AGT: 21.6 ± 5.5 ng/day vs. 190.1 ± 57.8 ng/day, AGE: 139.1 ± 21.6 μg/day vs. 332.8 ± 102.7 μg/day). In cultured PTC, treatment with AGE-BSA enhanced AGT mRNA expression (3.43 ± 0.11-fold compared to control), intracellular AGT protein levels (3.60 ± 0.38-fold), and secreted AGT levels (2.11 ± 0.18-fold). On the other hand, AGT levels were not altered in PTC receiving nonglycated BSA. Recombinant soluble AGE receptor, which competes with endogenous AGE receptor, diminished the AGE-induced AGT upregulation, suggesting that AGE-BSA stimulates AGT expression via activation of the AGE receptor. Enhanced phosphorylation of ERK1/2 and c-Jun, but not p38 MAP kinase, were observed in AGE-BSA-treated PTC. AGE-induced AGT augmentation was attenuated by an ERK inhibitor. CONCLUSIONS The findings indicate that AGE enhances proximal tubular AGT expression via ERK1/2, which can exacerbate the development of diabetic related kidney injury.
Collapse
|
25
|
Xu JL, Gan XX, Ni J, Shao DC, Shen Y, Miao NJ, Xu D, Zhou L, Zhang W, Lu LM. SND p102 promotes extracellular matrix accumulation and cell proliferation in rat glomerular mesangial cells via the AT1R/ERK/Smad3 pathway. Acta Pharmacol Sin 2018; 39:1513-1521. [PMID: 30150789 DOI: 10.1038/aps.2017.184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023] Open
Abstract
SND p102 was first described as a transcriptional co-activator, and subsequently determined to be a co-regulator of Pim-1, STAT6 and STAT5. We previously reported that SND p102 expression was increased in high glucose-treated mesangial cells (MCs) and plays a role in the extracellular matrix (ECM) accumulation of MCs by regulating the activation of RAS. In this study, we further examined the roles of SND p102 in diabetic nephropathy (DN)-induced glomerulosclerosis. Rats were injected with STZ (50 mg/kg, ip) to induce diabetes. MCs or isolated glomeruli were cultured in normal glucose (NG, 5.5 mmol/L)- or high glucose (HG, 25 mmol/L)-containing DMEM. We found that SND p102 expression was significantly increased in the diabetic kidneys, as well as in HG-treated isolated glomeruli and MCs. In addition, HG treatment induced significant fibrotic changes in MCs evidenced by enhanced protein expression of TGF-β, fbronectin and collagen IV, and significantly increased the proliferation of MCs. We further revealed that overexpression of SND p102 significantly increased the protein expression of angiotensin II (Ang II) type 1 receptor (AT1R) in MCs by increasing its mRNA levels via directly targeting the AT1R 3'-UTR, which resulted in activation of the ERK/Smad3 signaling and subsequently promoted the up-regulation of fbronectin, collagen IV, and TGF-β in MCs, as well as the cell proliferation. These results demonstrate that SND p102 is a key regulator of AT1R-mediating ECM synthesis and cell proliferation in MCs. Thus, small molecule inhibitors of SND p102 may be a novel therapeutic strategy for DN.
Collapse
|
26
|
Hu ZB, Ma KL, Zhang Y, Wang GH, Liu L, Lu J, Chen PP, Lu CC, Liu BC. Inflammation-activated CXCL16 pathway contributes to tubulointerstitial injury in mouse diabetic nephropathy. Acta Pharmacol Sin 2018; 39:1022-1033. [PMID: 29620052 DOI: 10.1038/aps.2017.177] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/19/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammation and lipid disorders play crucial roles in synergistically accelerating the progression of diabetic nephropathy (DN). In this study we investigated how inflammation and lipid disorders caused tubulointerstitial injury in DN in vivo and in vitro. Diabetic db/db mice were injected with 10% casein (0.5 mL, sc) every other day for 8 weeks to cause chronic inflammation. Compared with db/db mice, casein-injected db/db mice showed exacerbated tubulointerstitial injury, evidenced by increased secretion of extracellular matrix (ECM) and cholesterol accumulation in tubulointerstitium, which was accompanied by activation of the CXC chemokine ligand 16 (CXCL16) pathway. In the in vitro study, we treated HK-2 cells with IL-1β (5 ng/mL) and high glucose (30 mmol/L). IL-1β treatment increased cholesterol accumulation in HK-2 cells, leading to greatly increased ROS production, ECM protein expression levels, which was accompanied by the upregulated expression levels of proteins in the CXCL16 pathway. In contrast, after CXCL16 in HK-2 cells was knocked down by siRNA, the IL-1β-deteriorated changes were attenuated. In conclusion, inflammation accelerates renal tubulointerstitial lesions in mouse DN via increasing the activity of CXCL16 pathway.
Collapse
|
27
|
Renoprotective Effect of a Chinese Herbal Formula, Qidan Dihuang Decoction, on Streptozotocin-Induced Diabetes in Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7321086. [PMID: 29849726 PMCID: PMC5924995 DOI: 10.1155/2018/7321086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 01/14/2023]
Abstract
Qidan Dihuang decoction (QDD) is the latest development of Chinese medicine compound and mainly provides renal protection. The study presented was designed to evaluate the renoprotective effects of QDD on streptozotocin-induced diabetes and to explore the possible mechanisms of this action. We established a diabetes rat model. The condition of the rats was observed. The biochemistry indexes for diabetic rats were examined. Renal tissues were stained with HE, PAS, and Masson and we performed immunohistochemical staining for α-SMA and TGF-β. The proteins expressions of α-SMA, TGF-β, renin, and AT1 were detected by western blot. After treatment for 8 weeks, serum creatinine and 24 h proteinuria were significantly reduced in the rats which received losartan and Qidan Dihuang decoction while blood glucose, urine volume, blood urea nitrogen, and KW/BW did not improve. The pathology of renal tissue of rats treated with losartan and Qidan Dihuang decoction was inhibited. In addition, western blot showed that the expression of α-SMA, TGF-β, renin, and AT1 proteins was significantly decreased after receiving Qidan Dihuang decoction and losartan. Taken together, the results indicate that Qidan Dihuang decoction can improve the renal function and inhibit renal fibrosis of DN rat via modulating RAS system.
Collapse
|
28
|
Lewko B, Maryn A, Latawiec E, Daca A, Rybczynska A. Angiotensin II Modulates Podocyte Glucose Transport. Front Endocrinol (Lausanne) 2018; 9:418. [PMID: 30087656 PMCID: PMC6066665 DOI: 10.3389/fendo.2018.00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/02/2018] [Indexed: 11/27/2022] Open
Abstract
Podocytes play a central role in the maintenance of the glomerular filtration barrier and are cellular targets of angiotensin II (AngII). Non-hemodynamic pathways of AngII signaling regulate cellular function and mediate podocyte abnormalities that are associated with various glomerulopathies, including diabetic kidney disease. In this study we investigated the capacity of AngII to modulate glucose uptake in mouse podocytes expressing the human AT1 receptor (AT1R+) after 5 days of exposure to normal (NG, 5.6 mmol/L) or to high (HG, 30 mmol/L) glucose. Short (30 min) as well as long-term (24 h) incubations with AngII markedly enhanced glucose transport in both NG and HG cells. In podocytes cultured under NG conditions, AngII inhibited insulin-stimulated glucose uptake. Regardless of the presence or absence of AngII, no effect of insulin on glucose uptake was observed in HG cells. Stimulation of glucose transport by AngII was mediated by protein kinase C and by phosphoinositide 3-kinase. Glucose dependent surface expression of the glucose transporters GLUT1, GLUT2, and GLUT4 was modulated by AngII in a time and glucose concentration dependent manner. Furthermore, despite its inhibitory effect on insulin's action, AngII elevated the number of podocyte insulin receptors in both NG and HG cultured cells. These findings demonstrate that AngII modulates podocyte basal, as well as insulin-dependent glucose uptake by regulating glucose transporters and insulin signaling.
Collapse
Affiliation(s)
- Barbara Lewko
- Department of Pathophysiology Faculty of Pharmacy, Medical University of Gdansk, Gdańsk, Poland
- *Correspondence: Barbara Lewko
| | - Anna Maryn
- Department of Pathophysiology Faculty of Pharmacy, Medical University of Gdansk, Gdańsk, Poland
| | - Elzbieta Latawiec
- Department of Pathophysiology Faculty of Pharmacy, Medical University of Gdansk, Gdańsk, Poland
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Apolonia Rybczynska
- Department of Pathophysiology Faculty of Pharmacy, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
29
|
Chen DP, Ma YP, Zhuo L, Zhang Z, Zou GM, Yang Y, Gao HM, Li WG. 1,25-Dihydroxyvitamin D 3 inhibits the proliferation of rat mesangial cells induced by high glucose via DDIT4. Oncotarget 2017; 9:418-427. [PMID: 29416624 PMCID: PMC5787477 DOI: 10.18632/oncotarget.23063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022] Open
Abstract
1,25-Dihydroxyvitamin D3(1,25(OH)2 D3) is a secosteroid with antiproliferative property. It also plays a pivotal renoprotective role in diabetic nephropathy. We investigated whether 1,25(OH)2D3 could inhibit the proliferation of rat mesangial cells exposed to high glucose via the DNA-damage-inducible transcript 4/mammalian target of rapamycin(DDIT4/mTOR) pathway. The cell proliferation rate and cell cycle duration were measured using cell counting kit-8 assay and flow cytometry. Protein expression was assayed by Western blot. Glucose acted as a growth factor in rat mesangial cells, promoted cell proliferation. In parallel, the protein expression of DDIT4, TSC1/TSC2, and 4E-BP1 were decreased, and Rheb, mTOR, and p70S6K were increased. Acting via the DDIT4/mTOR signaling, 1,25(OH)2 D3 treatment reversed these pathological changes, upregulated DDIT4, TSC1/TSC2, and 4E-BP1, downregulated Rheb, mTOR, and p70S6K. The short-term overexpression of DDIT4 inhibited the proliferation of rat mesangial cells, similar to 1,25(OH)2 D3 treatment. siRNA knockdown of DDIT4 suppressed antiproliferative responses to 1,25(OH)2 D3. These results suggest that 1,25(OH)2 D3 inhibits the proliferation of rat mesangial cells induced by high glucose via the DDIT4/mTOR signaling pathway.
Collapse
Affiliation(s)
- Da-Peng Chen
- Graduate School of Peking Union Medical College, Beijing 100730, China.,Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China.,These authors share co-first authorship
| | - Ye-Ping Ma
- Graduate School of Peking Union Medical College, Beijing 100730, China.,Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China.,These authors share co-first authorship
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zheng Zhang
- Graduate School of Peking Union Medical College, Beijing 100730, China.,Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Gu-Ming Zou
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yue Yang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hong-Mei Gao
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wen-Ge Li
- Graduate School of Peking Union Medical College, Beijing 100730, China.,Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
30
|
Vejakama P, Ingsathit A, McKay GJ, Maxwell AP, McEvoy M, Attia J, Thakkinstian A. Treatment effects of renin-angiotensin aldosterone system blockade on kidney failure and mortality in chronic kidney disease patients. BMC Nephrol 2017; 18:342. [PMID: 29187194 PMCID: PMC5706339 DOI: 10.1186/s12882-017-0753-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a leading cause of death before and after onset of end-stage renal disease (ESRD). Knowing treatments that can delay disease progression will lead to reduced mortality. We therefore aimed to estimate the effectiveness of renin angiotensin aldosterone system (RAAS) blockade on CKD progression. METHODS We conducted a retrospective CKD cohort at Ubon Ratchathani province, Thailand from 1997 to 2011. ESRD was defined as estimated glomerular filtration rate (eGFR) <15 ml/min/1.73 m2, dialysis, or kidney transplantation. All-cause mortality was verified until December 31, 2011. A counterfactual-framework was applied to estimate the effectiveness of RAAS blockade on outcomes, i.e., ESRD, death before and after ESRD. RAAS blockade was categorized according to duration of use <0.25 year, 0.25-1 year (RAAS1), and >1 year (RAAS2). An augmented inverse-probability weighting (AIPW) method was used to estimate potential-outcome mean (POM) and average treatment-effect (ATE). Multi-logit and Poisson regressions were used for treatment and outcome models, respectively. Analyses were stratified by ESRD, death before/after ESRD for diabetic and non-diabetic groups. STATA 14.0 was used for statistical analyses. RESULTS Among 15,032 diabetic patients, 2346 (15.6%), 2351 (18.5%), and 1607 (68.5%) developed ESRD, died before ESRD, and died after ESRD, respectively. Only RAAS2 effect was significant on ESRD, death before and after ESRD. The ESRD rates were 12.9%, versus 20.0% for RAAS2 and non-RAAS, respectively, resulted in significant risk differences (RD) of -7.2% (95% CI: -8.8%, -5.5%), and a numbers needed-to-treat (NNT) of 14. Death rates before ESRD for these corresponding groups were 14.4% (12.9%, 15.9%) and 19.6% (18.7%, 20.4%) with a NNT of 19. Death rates after ESRD in RAAS2 was lower than non-RASS group (i.e., 62.8% (55.5%, 68.9%) versus 68.1% (65.9%, 70.4%)) but this was not significant. RAAS2 effects on ESRD and death before ESRD were persistently significant in non-diabetic patients (n = 17,074) but not for death after ESRD with the NNT of about 15 and 16 respectively. CONCLUSIONS Receiving RAAS blockade for 1 year or longer could prevent both CKD progression to ESRD and premature mortality.
Collapse
Affiliation(s)
- Phisitt Vejakama
- Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Medicine, Sunpasitthiprasong Hospital, Province, Ubon Ratchathani, Thailand
| | - Atiporn Ingsathit
- Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Gareth J. McKay
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland
| | | | - Mark McEvoy
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, Faculty of Health and Medicine, University of New Castle, NSW, Australia
| | - John Attia
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, Faculty of Health and Medicine, University of New Castle, NSW, Australia
| | - Ammarin Thakkinstian
- Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
31
|
Wang J, Shibayama Y, Kobori H, Liu Y, Kobara H, Masaki T, Wang Z, Nishiyama A. High glucose augments angiotensinogen in human renal proximal tubular cells through hepatocyte nuclear factor-5. PLoS One 2017; 12:e0185600. [PMID: 29053707 PMCID: PMC5650141 DOI: 10.1371/journal.pone.0185600] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/17/2017] [Indexed: 01/01/2023] Open
Abstract
High glucose has been demonstrated to induce angiotensinogen (AGT) synthesis in the renal proximal tubular cells (RPTCs) of rats, which may further activate the intrarenal renin-angiotensin system (RAS) and contribute to diabetic nephropathy. This study aimed to investigate the effects of high glucose on AGT in the RPTCs of human origin and identify the glucose-responsive transcriptional factor(s) that bind(s) to the DNA sequences of AGT promoter in human RPTCs. Human kidney (HK)-2 cells were treated with normal glucose (5.5 mM) and high glucose (15.0 mM), respectively. Levels of AGT mRNA and AGT secretion of HK-2 cells were measured by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Consecutive 5’-end deletion mutant constructs and different site-directed mutagenesis products of human AGT promoter sequences were respectively transfected into HK-2 cells, followed by AGT promoter activity measurement through dual luciferase assay. High glucose significantly augmented the levels of AGT mRNA and AGT secretion of HK-2 cells, compared with normal glucose treatment. High glucose also significantly augmented AGT promoter activity in HK-2 cells transfected with the constructs of human AGT promoter sequences, compared with normal glucose treatment. Hepatocyte nuclear factor (HNF)-5 was found to be one of the glucose-responsive transcriptional factors of AGT in human RPTCs, since the mutation of its binding sites within AGT promoter sequences abolished the above effects of high glucose on AGT promoter activity as well as levels of AGT mRNA and its secretion. The present study has demonstrated, for the first time, that high glucose augments AGT in human RPTCs through HNF-5, which provides a potential therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Immuno-oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yuki Shibayama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroyuki Kobori
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Departments of Pharmacology and of Nephrology, School of Medicine, International University of Health and Welfare, Tokyo, Japan
| | - Ya Liu
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Zhiyu Wang
- Department of Immuno-oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- * E-mail:
| |
Collapse
|
32
|
Sobczuk P, Szczylik C, Porta C, Czarnecka AM. Renin angiotensin system deregulation as renal cancer risk factor. Oncol Lett 2017; 14:5059-5068. [PMID: 29098020 PMCID: PMC5652144 DOI: 10.3892/ol.2017.6826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
For numerous years, the non-cardiovascular role of the renin-angiotensin system (RAS) was underestimated, but recent studies have advanced the understanding of its function in various processes, including carcinogenesis. Numerous evidence comes from preclinical and clinical studies on the use of antihypertensive agents targeting the RAS, including angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers. It has been demonstrated that the use of ACEIs can alter the incidence of renal cell carcinoma (RCC) and may have a positive effect by prolonging patient survival. It has an effect on the complex action of ACEI, resulting in decreased angiotensin II (Ang-II) production and altered levels of bradykinin or Ang 1-7. The present review discusses the existing knowledge on the effects of ACE and its inhibitors on RCC cell lines, xenograft models, and patient survival in clinical studies. A brief introduction to molecular pathways aids in understanding the non-cardiovascular effects of RAS inhibitors and enables the conduction of studies on combined cancer treatment with the application of ACEIs. Recent evidence regarding the treatment of hypertension associated with tyrosine kinase inhibitors, one of the most pronounced and common side effects in modern RCC treatment, are also outlined. Captopril, an ACEI, may be used to lower blood pressure in patients, particularly due to its additional renoprotective actions.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland.,Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Camillo Porta
- Medical Oncology, I.R.C.C.S. San Matteo University Hospital Foundation, I-27100 Pavia, Italy.,Italian Group of Onco-Nephrology/Gruppo Italiano di Onco-Nefrologia (G.I.O.N.), I-27100 Pavia, Italy
| | - Anna M Czarnecka
- Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
| |
Collapse
|
33
|
Makuc J, Šeruga M, Završnik M, Cilenšek I, Petrovič D. Angiotensinogen (AGT) gene missense polymorphisms (rs699 and rs4762) and diabetic nephropathy in Caucasians with type 2 diabetes mellitus. Bosn J Basic Med Sci 2017; 17:262-267. [PMID: 28488548 PMCID: PMC5581976 DOI: 10.17305/bjbms.2017.1823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 12/15/2022] Open
Abstract
Gene polymorphisms associated with the renin-angiotensin-aldosterone system (RAAS) have been extensively studied in diabetic nephropathy (DN) patients, due to therapeutic potential of targeting the RAAS and slowing down the disease progression. The aim of our study was to examine the association between angiotensinogen (AGT) gene polymorphisms (rs699 and rs4762) and DN in Caucasians with type 2 diabetes mellitus (T2DM). A total of 651 unrelated Slovenian (Caucasian) T2DM patients were tested for AGT rs699 and rs4762 polymorphisms using a novel fluorescence-based kompetitive allele-specific polymerase chain reaction (KASPar) assay. A study group consisted of 276 T2DM patients with DN, while control group included 375 patients without DN but who have had T2DM for >10 years. For rs699 polymorphism, the frequencies of GG, GA and AA genotypes were 20.6%, 52.2% and 27.2%, respectively in T2DM patients and 23.4%, 48.1% and 28.5%, respectively in controls. The distributions of GG, GA and AA genotypes for rs4762 polymorphism were 73.9%, 23.2% and 2.9%, respectively in T2DM patients and 70.4%, 27.5% and 2.1%, respectively in controls. No significant differences in the allele frequencies were found between T2DM patients and controls for both polymorphisms. AGT rs699 and rs4762 missense polymorphisms are not associated with DN in our subset of Slovenian T2DM patients.
Collapse
Affiliation(s)
- Jana Makuc
- Department of Internal Medicine, General Hospital Slovenj Gradec, Slovenj Gradec, Slovenia.
| | | | | | | | | |
Collapse
|
34
|
Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKα-regulated autophagy induction in streptozotocin-induced diabetic nephropathy. Sci Rep 2017; 7:6852. [PMID: 28761152 PMCID: PMC5537362 DOI: 10.1038/s41598-017-07061-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
Aberrant endoplasmic reticulum (ER) stress and autophagy are associated with diabetic nephropathy. Here we investigated the effect of astragaloside IV (AS-IV) on the progression of diabetic nephropathy (DN) and the underlying mechanism involving ER stress and autophagy in streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-incubated podocytes. The diabetic mice developed progressive albuminuria and glomerulosclerosis within 8 weeks, which were significantly ameliorated by AS-IV treatment in a dose-dependent manner. Moreover, diabetes or HG-induced podocyte apoptosis was markedly attenuated by AS-IV, paralleled by a marked remission in ER stress and a remarkable restoration in impaired autophagy, which were associated with a significant improvement in the expression of sarcoendoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) and AMP-activated protein kinase α (AMPKα) phosphorylation, respectively. Knockdown of SERCA2 in podocytes induced ER stress and largely abolished the protective effect of AS-IV, but had no obvious effect on the expression of autophagy-associated proteins. On the other hand, blockade of either autophagy induction or AMPKα activation could also significantly mitigate AS-IV-induced beneficial effect. Collectively, these results suggest that AS-IV prevented the progression of DN, which is mediated at least in part by SERCA2-dependent ER stress attenuation and AMPKα-promoted autophagy induction.
Collapse
|
35
|
Lv J, Wang Z, Wang Y, Sun W, Zhou J, Wang M, Liu WJ, Wang Y. Renoprotective Effect of the Shen-Yan-Fang-Shuai Formula by Inhibiting TNF- α/NF- κB Signaling Pathway in Diabetic Rats. J Diabetes Res 2017; 2017:4319057. [PMID: 28713834 PMCID: PMC5497613 DOI: 10.1155/2017/4319057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/15/2016] [Indexed: 12/02/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and satisfactory therapeutic strategies have not yet been established. The Shen-Yan-Fang-Shuai Formula (SYFSF) is a traditional Chinese formula composed of Astragali radix, Radixangelicae sinensis, Rheum officinale Baill, and four other herbs. It has been widely used as an effective treatment for DKD patients in China. However, little is known about the molecular mechanisms underlying SYFSF's renoprotection. In this study, we compared the protective effect of SYFSF to irbesartan on the histology and renal cells in type 2 DKD rat model and high-glucose (HG) cultured mesangial cells, respectively. We found that SYFSF could significantly decrease urinary albumin, cholesterol, and triglyceride. And a decrease in serum creatinine was also found in SYFSF-treated group compared with irbesartan-treated rats. In addition, SYFSF inhibited the interstitial expansion and glomerulosclerosis in diabetic rats. Notably, SYFSF markedly downregulated the expression of MCP-1, TGF-β1, collagen IV, and fibronectin in diabetic rat models and HG-induced mesangial cell models. The renoprotection was closely associated with a reduced expression of TNF-α and phosphorylated NF-κBp65. Our study suggests that SYFSF may ameliorate diabetic kidney injury. The observed renoprotection is probably attributable to an inhibition of inflammatory response and extracellular matrix (ECM) accumulation mediated by TNF-α/NF-κBp65 signaling pathway.
Collapse
Affiliation(s)
- Jie Lv
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Renal Research Institution, Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhen Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Renal Research Institution, Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Ying Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Renal Research Institution, Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Weiwei Sun
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Renal Research Institution, Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingwei Zhou
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Renal Research Institution, Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mengdi Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Renal Research Institution, Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jing Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Renal Research Institution, Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yaoxian Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Renal Research Institution, Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
36
|
Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK, Arya DS. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am J Physiol Renal Physiol 2017; 313:F414-F422. [PMID: 28566504 DOI: 10.1152/ajprenal.00393.2016] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022] Open
Abstract
Diabetic nephropathy (DN), a microvascular complication of diabetes, has emerged as an important health problem worldwide. There is strong evidence to suggest that oxidative stress, inflammation, and fibrosis play a pivotal role in the progression of DN. Apigenin has been shown to possess antioxidant, anti-inflammatory, antiapoptotic, antifibrotic, as well as antidiabetic properties. Hence, we evaluated whether apigenin halts the development and progression of DN in streptozotocin (STZ)-induced diabetic rats. Male albino Wistar rats were divided into control, diabetic control, and apigenin treatment groups (5-20 mg/kg po, respectively), apigenin per se (20 mg/kg po), and ramipril treatment group (2 mg/kg po). A single injection of STZ (55 mg/kg ip) was administered to all of the groups except control and per se groups to induce type 1 diabetes mellitus. Rats with fasting blood glucose >250 mg/dl were included in the study and randomized to different groups. Thereafter, the protocol was continued for 8 mo in all of the groups. Apigenin (20 mg/kg) treatment attenuated renal dysfunction, oxidative stress, and fibrosis (decreased transforming growth factor-β1, fibronectin, and type IV collagen) in the diabetic rats. It also significantly prevented MAPK activation, which inhibited inflammation (reduced TNF-α, IL-6, and NF-κB expression) and apoptosis (increased expression of Bcl-2 and decreased Bax and caspase-3). Furthermore, histopathological examination demonstrated reduced inflammation, collagen deposition, and glomerulosclerosis in the renal tissue. In addition, all of these changes were comparable with those produced by ramipril. Hence, apigenin ameliorated renal damage due to DN by suppressing oxidative stress and fibrosis and by inhibiting MAPK pathway.
Collapse
Affiliation(s)
- Salma Malik
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Kapil Suchal
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Sana Irfan Khan
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Kamal Kishore
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| |
Collapse
|
37
|
Sun H, Li T, Zhuang R, Cai W, Zheng Y. Do renin-angiotensin system inhibitors influence the recurrence, metastasis, and survival in cancer patients?: Evidence from a meta-analysis including 55 studies. Medicine (Baltimore) 2017; 96:e6394. [PMID: 28353566 PMCID: PMC5380250 DOI: 10.1097/md.0000000000006394] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Renin-angiotensin system inhibitors (RAS inhibitors) are antihypertensive agents with potential antitumor effects. However, various studies have yielded conflicting results on the influence of RAS inhibitors on survival of cancer patients. The aim of this study was to evaluate the effect of RAS inhibitors on recurrence, metastasis, and survival in cancer patients through a meta-analysis. METHODS PubMed, Web of Science, EMBASE, and Cochrane Library were systematically searched from inception to December 2016. The pooled hazard ratio (HR) with its 95% confidence interval (95% CI) was calculated to evaluate the association between RAS inhibitors and recurrence, metastasis, and survival in cancer patients. RESULTS Fifty-five eligible studies were included in the present meta-analysis. Results showed that there were significant improvements in overall survival (OS) (HR = 0.82; 95% CI: 0.77-0.88; P < 0.001), progression-free survival (HR = 0.74; 95% CI: 0.66-0.84; P < 0.001), and disease-free survival (HR = 0.80; 95% CI: 0.67-0.95; P = 0.01) in RAS inhibitor users compared with nonusers. Subgroup analyses revealed that the effect of RAS inhibitors on OS depended on the cancer type or different RAS inhibitors. CONCLUSION This meta-analysis suggests that RAS inhibitors could improve the survival of cancer patients and depend on cancer type and types of RAS inhibitors.
Collapse
Affiliation(s)
- Hong Sun
- Department of Clinical Pharmacy, School of Pharmacy
| | - Tao Li
- Department of Clinical Pharmacy, School of Pharmacy
| | | | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Šeruga M, Makuc J, Završnik M, Cilenšek I, Ekart R, Petrovič D. Polymorphism of angiotensin-converting enzyme (rs4340) and diabetic nephropathy in Caucasians with type 2 diabetes mellitus. Balkan J Med Genet 2016; 19:29-34. [PMID: 28289586 PMCID: PMC5343328 DOI: 10.1515/bjmg-2016-0033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of endstage renal disease (ESRD) in developed countries. Several environmental and genetic factors predict the development and progression of DN. The renin-angiotensin system was demonstrated to be involved in the development of DN. We evaluated the association between rs4340 of the angiotensin-converting enzyme (ACE) gene and DN in Caucasians with type 2 diabetes mellitus (T2DM) in 276 Slovenian patients with T2DM who had DN, and 375 patients without clinical signs of DN. Genetic analysis was performed with either standard polymerase chain reaction (PCR) (for rs4340). Results were analyzed using the χ2 test and multivariate logistic regression analyses. We found no association between rs4340 and DN. Cystatin C was significantly higher in the DN+ group (p <0.001) than in the DN group. Cystatin C was a better marker for the estimation of renal function than estimated glomerular filtration rate (eGFR) according to the modification diet in renal disease (MDRD) equation mL/ min. We concluded that there was no association between the rs4340 of the ACE gene and DN in Caucasian patients who have T2DM.
Collapse
Affiliation(s)
- M Šeruga
- Department of Internal Medicine, General Hospital Murska Sobota, Murska Sobota, Slovenia
| | - J Makuc
- Department of Internal Medicine, General Hospital Slovenj Gradec, Slovenj Gradec, Slovenia
| | - M Završnik
- Department of Endocrinology and Diabetology, University Medical Centre Maribor, Division of Internal Medicine, Maribor, Slovenia
| | - I Cilenšek
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - R Ekart
- Department of Haemodialysis, University Medical Centre Maribor, Division of Internal Medicine, Maribor, Slovenia
| | - D Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
39
|
Wang H, Wang J, Qu H, Wei H, Ji B, Yang Z, Wu J, He Q, Luo Y, Liu D, Duan Y, Liu F, Deng H. In vitro and in vivo inhibition of mTOR by 1,25-dihydroxyvitamin D 3 to improve early diabetic nephropathy via the DDIT4/TSC2/mTOR pathway. Endocrine 2016; 54:348-359. [PMID: 27395420 DOI: 10.1007/s12020-016-0999-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023]
Abstract
We investigated whether 1,25-dihydroxy-vitamin D3 (1,25(OH)2D3) could improve early diabetic nephropathy through the DNA-damage-inducible transcript 4/tuberous sclerosis 2/mammalian target of rapamycin pathway. Rat mesangial cells were cultured in media containing normal glucose or high glucose and were treated with or without 1,25(OH)2D3. Mesangial cells proliferation was measured. Streptozotocin-induced diabetic rats were injected intravenously with a recombinant lentivirus against the rat vitamin D receptor gene. Urinary and serum albumin, fasting plasma glucose, serum triglyceride, total cholesterol, calcium, parathyroid hormone and serum 25-dihydroxy-vitamin D (25(OH)D) levels, mean glomerular volume, glomerular basement membrane thickness and total kidney volume were determined. The expressions of vitamin D receptor, DNA-damage-inducible transcript 4, and mammalian target of rapamycin were measured. 1,25(OH)2D3 inhibited the proliferation of mesangial cells induced by hyperglycemia. 1,25(OH)2D3 also significantly reduced albumin excretion, mean glomerular volume, glomerular basement membrane, and total kidney volume in rats with diabetic nephropathy. The expression of DNA-damage-inducible transcript 4 was elevated by 1,25(OH)2D3 treatment. The phosphorylation of mammalian target of rapamycin was reduced by 1,25(OH)2D3 treatment. Vitamin D receptor gene silencing blocked all of the above results. The current study demonstrates that 1,25(OH)2D3 can effectively inhibit mesangial cells proliferation induced by hyperglycemia, thus suppressing the development of diabetic nephropathy. This study also shows that the nephron-protective effect of 1,25(OH)2D3 occurs partly through the DDIT4/TSC2/mTOR pathway.
Collapse
Affiliation(s)
- Hang Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jianmin Wang
- Department of Nephrology, Chongqing Armed Corps Police Hospital, Chongqing, P.R. China
| | - Hua Qu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Huili Wei
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Baolan Ji
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zesong Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jing Wu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Qin He
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yuanyuan Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Dan Liu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yang Duan
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Fang Liu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Huacong Deng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China.
| |
Collapse
|
40
|
Lin M, Gao P, Zhao T, He L, Li M, Li Y, Shui H, Wu X. Calcitriol regulates angiotensin-converting enzyme and angiotensin converting-enzyme 2 in diabetic kidney disease. Mol Biol Rep 2016; 43:397-406. [PMID: 26968558 DOI: 10.1007/s11033-016-3971-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
To investigate the effects of calcitriol on angiotensin-converting enzyme (ACE) and ACE2 in diabetic nephropathy. Streptozotocin (STZ) induced diabetic rats were treated with calcitriol for 16 weeks. ACE/ACE2 and mitogen activated protein kinase (MAPK) enzymes were measured in the kidneys of diabetic rats and rat renal tubular epithelial cells exposed to high glucose. Calcitriol reduced proteinuria in diabetic rats without affecting calcium-phosphorus metabolism. ACE and ACE2 levels were significantly elevated in diabetic rats compared to those in control rats. The increase in ACE levels was greater than that of ACE2, leading to an elevated ACE/ACE2 ratio. Calcitriol reduced ACE levels and ACE/ACE2 ratio and increased ACE2 levels in diabetic rats. Similarly, high glucose up-regulated ACE expression in NRK-52E cells, which was blocked by the p38 MAPK inhibitor SB203580, but not the extracellular signal-regulated kinase (ERK) inhibitor FR180204 or the c-Jun N-terminal kinase (JNK) inhibitor SP600125. High glucose down-regulated ACE2 expression, which was blocked by FR180204, but not SB203580 or SP600125. Incubation of cells with calcitriol significantly inhibited p38 MAPK and ERK phosphorylation, but not JNK phosphorylation, and effectively attenuated ACE up-regulation and ACE2 down-regulation in high glucose conditions. The renoprotective effects of calcitriol in diabetic nephropathy were related to the regulation of tubular levels of ACE and ACE2, possibly by p38 MAPK or ERK, but not JNK pathways.
Collapse
Affiliation(s)
- Mei Lin
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Ping Gao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Tianya Zhao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Lei He
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Mengshi Li
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yaoyao Li
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Hua Shui
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
41
|
Li X, Li C, Sun G. Histone Acetylation and Its Modifiers in the Pathogenesis of Diabetic Nephropathy. J Diabetes Res 2016; 2016:4065382. [PMID: 27379253 PMCID: PMC4917685 DOI: 10.1155/2016/4065382] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy (DN) remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors contributing to DN is required to develop more effective therapeutic options. It is becoming more evident that histone acetylation (HAc), as one of the epigenetic mechanisms, is thought to be associated with the etiology of diabetic vascular complications such as diabetic retinopathy (DR), diabetic cardiomyopathy (DCM), and DN. Histone acetylases (HATs) and histone deacetylases (HDACs) are the well-known regulators of reversible acetylation in the amino-terminal domains of histone and nonhistone proteins. In DN, however, the roles of histone acetylation (HAc) and these enzymes are still controversial. Some new evidence has revealed that HATs and HDACs inhibitors are renoprotective in cellular and animal models of DN, while, on the other hand, upregulation of HAc has been implicated in the pathogenesis of DN. In this review, we focus on the recent advances on the roles of HAc and their covalent enzymes in the development and progression of DN in certain cellular processes including fibrosis, inflammation, hypertrophy, and oxidative stress and discuss how targeting these enzymes and their inhibitors can ultimately lead to the therapeutic approaches for treating DN.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chaoyuan Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guangdong Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
- *Guangdong Sun:
| |
Collapse
|
42
|
Padda RS, Shi Y, Lo CS, Zhang SL, Chan JSD. Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes? ACTA ACUST UNITED AC 2015; 6. [PMID: 26793405 DOI: 10.4172/2155-6156.1000615] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in mammalian homeostasis physiology. The RAS can be delineated into a classical RAS (the pressor arm) including angiotensinogen (Agt), renin, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R), and a counterbalancing novel RAS (the depressor arm) including Agt, renin, angiotensin-converting enzyme-2 (ACE-2), angiotensin-(1-7) (Ang 1-7) and Ang 1-7 receptor (or Mas receptor (MasR)). Hyperglycemia (diabetes) induces severe tissue oxidative stress, which stimulates the pressor arm of the renal RAS axis and leads to an increase in ACE/ACE-2 ratio, with excessive formation of Ang II. There is a growing body of evidence for beneficial effects of the depressor arm of RAS (ACE-2/Ang 1-7/MasR) axis in diabetes, hypertension and several other diseased conditions. Evidence from in vitro, in vivo and clinical studies reflects anti-oxidant, anti-fibrotic, and anti-inflammatory properties of Ang 1-7. Most of the currently available therapies only target suppression of the pressor arm of RAS with angiotensin receptor blockers (ARBs) and ACE inhibitors (ACEi). However, it is time to consider simultaneous activation of the depressor arm for more effective outcomes. This review summarizes the recent updates on the protective role of Ang 1-7 in hypertension and kidney injury in diabetes, as well as the possible underlying mechanism(s) of Ang 1-7 action, suggesting that the ACE-2/Ang 1-7/MasR axis can be developed as a therapeutic target for the treatment of diabetes-induced hypertension and renal damage.
Collapse
Affiliation(s)
- Ranjit Singh Padda
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 Saint Denis Street, Montreal, Quebec, Canada H2X 0A9
| | - Yixuan Shi
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 Saint Denis Street, Montreal, Quebec, Canada H2X 0A9
| | - Chao-Sheng Lo
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 Saint Denis Street, Montreal, Quebec, Canada H2X 0A9
| | - Shao-Ling Zhang
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 Saint Denis Street, Montreal, Quebec, Canada H2X 0A9
| | - John S D Chan
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 Saint Denis Street, Montreal, Quebec, Canada H2X 0A9
| |
Collapse
|