1
|
Oh ES, Lee JW, Song YN, Kim MO, Lee RW, Kang MJ, Lee J, Yun SH, Hong ST, Ro H, Lee SU. Tangeretin inhibits airway inflammatory responses by reducing early growth response 1 (EGR1) expression in mice exposed to cigarette smoke and lipopolysaccharide. Heliyon 2024; 10:e39797. [PMID: 39553588 PMCID: PMC11564960 DOI: 10.1016/j.heliyon.2024.e39797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Background Tangeretin, a natural polymethoxyflavone compound, possesses potent anti-inflammatory activity that improves respiratory inflammation in chronic obstructive pulmonary disease (COPD). However, the molecular mechanisms underlying the anti-COPD effects of tangeretin remain unclear. In this study, we aimed to investigate the key molecular mechanisms by which tangeretin suppresses COPD-related inflammatory responses. Methods We conducted the investigation in phorbol-12-myristate-13-acetate (PMA)-stimulated human airway epithelial cells (in vitro) and cigarette smoke (CS)/lipopolysaccharide (LPS)-exposed mice (in vivo). Results Tangeretin decreased the release of inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and mucin 5AC (MUC5AC), by suppressing early growth response 1 (EGR1) expression in vitro. Tangeretin and EGR1 small interfering ribonucleic acid (siRNA) combination showed a synergistic reduction in MUC5AC and TNF-α secretion. Tangeretin administration significantly inhibited the levels of reactive oxygen species (ROS) production, elastase activity, TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1) secretion, and macrophage and neutrophil numbers in the bronchoalveolar lavage fluid of CS/LPS-exposed mice. Tangeretin also prevented CS/LPS-induced abnormal pathological changes and excessive MUC5AC and EGR1 expression in lung tissue. Conclusion Comprehensively, tangeretin inhibits the lung inflammatory response associated with COPD by reducing EGR1 expression in PMA-induced human epithelial cells and in a CS/LPS-stimulated mouse model. This study shows that tangeretin has anti-COPD properties and can be a promising alternative (or complementary) treatment for inflammatory lung disease.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Ro Woon Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Myung-Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Seok Han Yun
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, 266, Munhwa-Ro, Daejeon, 35015, Republic of Korea
| | - Hyunju Ro
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| |
Collapse
|
2
|
Valle N, Eapen MS, Pillai K, Morris R, Akhter J, Mekkawy AH, Morris DL, Valle SJ. Impact of Nebulized BromAc ® on Mucus Plug Clearance in a Mechanically Ventilated Ex Vivo Ovine Lung Model of Obstructive Respiratory Conditions. Life (Basel) 2024; 14:1111. [PMID: 39337895 PMCID: PMC11433166 DOI: 10.3390/life14091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Mucus plugging of the respiratory tract occurs in airway diseases, including asthma, chronic obstructive pulmonary disease, and cystic fibrosis. It can cause blockage of the airways, leading to breathlessness and lung failure. Here, we used a ventilatory setup to demonstrate the effect of BromAc® in dissolving mucus plugs in a novel ex vivo ovine obstructive lung model. Mucus simulant was filled into the trachea of freshly slaughtered ovine lungs and ventilated via an endotracheal tube (ETT) using Continuous Mandatory Ventilation. Predetermined single or repeated doses of Bromelain, Acetylcysteine (Ac), BromAc®, and saline control were administered via an Aerogen® vibrating nebulizer and ventilated for 30 or 60 min. Ventilatory recording of resistance, compliance, and tidal volume was conducted, and rheology pre- and post-treatment were measured. A significant decline in airway resistance (p < 0.0001) compared to the saline control was observed when treated with Bromelain, Ac, and BromAc®, with the latter showing a stronger mucolytic effect than single agents. The decline in resistance was also effective in shorter time points (p < 0.05) at lower doses of the drugs. Changes in compliance, peak pressure, and tidal volume were not observed after administration of the drugs. Rheology measurements revealed that BromAc®TM significantly reduced the viscosity of the mucin at the end of 30 min and 60 min time points (p < 0.001) compared to the saline control. BromAc® showed complete dissolution of the respiratory mucus simulant and improved ventilatory airflow parameters in the ex vivo ovine model.
Collapse
Affiliation(s)
- Nicole Valle
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (N.V.); (K.P.); (J.A.); (A.H.M.); (D.L.M.)
| | - Mathew Suji Eapen
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (N.V.); (K.P.); (J.A.); (A.H.M.); (D.L.M.)
| | - Krishna Pillai
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (N.V.); (K.P.); (J.A.); (A.H.M.); (D.L.M.)
| | - Richard Morris
- Intensive Care Unit, Shoalhaven District Memorial Hospital, Nowra, NSW 2541, Australia;
| | - Javed Akhter
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (N.V.); (K.P.); (J.A.); (A.H.M.); (D.L.M.)
| | - Ahmed H. Mekkawy
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (N.V.); (K.P.); (J.A.); (A.H.M.); (D.L.M.)
| | - David L. Morris
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (N.V.); (K.P.); (J.A.); (A.H.M.); (D.L.M.)
- Department of Surgery, St George Hospital, Sydney, NSW 2217, Australia
- St George and Sutherland Clinical School of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sarah J. Valle
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (N.V.); (K.P.); (J.A.); (A.H.M.); (D.L.M.)
- St George and Sutherland Clinical School of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Intensive Care Unit, St George Hospital, Sydney, NSW 2217, Australia
| |
Collapse
|
3
|
Zhai G, Fu W, Yuan S, Sun P, Zhu C, Zhao C, Zhang X, Xu J. A fusion protein approach to integrate antiviral and anti-inflammatory activities for developing new therapeutics against influenza A virus infection. Antiviral Res 2024; 228:105924. [PMID: 38862076 DOI: 10.1016/j.antiviral.2024.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Human interferon α2 (IFNα2) is a cytokine with broad-spectrum antiviral activity, and its engineered forms are widely used to treat viral infections. However, IFNα2 may trigger proinflammatory responses and underlying side effects during treatment. Trefoil factor 2 (TFF2) is a secreted protein with anti-inflammatory properties. Here, we explored whether coupling IFNα2 to TFF2 in a two-in-one fusion form could combine the beneficial effects of both molecules on viral infections toward a more desirable treatment outcome. We engineered two forms of human IFNα2 and TFF2 fusion proteins, IFNα2-TFF2-Fc (ITF) and TFF2-IFNα2-Fc (TIF), and examined their properties in vitro in comparison to IFNα2 and TFF2 alone. RNA-Seq was further used to explore such comparison on dynamic gene regulation at transriptomic level. These in vitro assessments collectively indicated that TIF largely retained the antiviral activity of IFNα2 while being a weaker inflammation inducer, consistent with the presence of TFF2 activity. We further demonstrated the superiority of TIF over IFNα2 or TFF2 alone in treating influenza infection using a mouse infection model. Together, our study provided evidence supporting that, by possessing antiviral activity conferred by IFNα2 with complementation from TFF2 in suppressing the inflammatory side effects, the fusion proteins, particularly TIF, represent more effective agents against influenza and other respiratory viral infections than IFNα2 or TFF2 alone. It implies that merging two molecules with complementary functions holds potential for developing novel therapeutics against viral infections.
Collapse
Affiliation(s)
- Guanxing Zhai
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Weihui Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Peng Sun
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Q.B. Alenzi F. Survivin: A key apoptosis inhibitor in COVID-19 infection and its implication for treatment protocol. Saudi J Biol Sci 2024; 31:104021. [PMID: 38831893 PMCID: PMC11145386 DOI: 10.1016/j.sjbs.2024.104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
While the relationship between cellular apoptosis and proliferation rates in COVID patients remains underexplored in existing literature, various viruses are known to impact these fundamental process to modulate response to infection. This paper aims to assess apoptosis and proliferation rates in individuals recently infected with Coronavirus, both before and after vaccination, comparing them with healthy controls. Peripheral blood cells from newly diagnosed COVID-19 patients revealed a significant increase in proliferation and apoptosis levels in fresh lymphocytes and granulocytes compared to healthy donors. Notably, as none of the patients were under corticosteroid therapy or cytotoxic drugs, the study underscores the critical role of white blood (WBC) apoptosis in viral pathogenesis, potentially contributing significantly to COVID-19's pathogenicity. Elevated levels of soluble Fas ligand (FaSL) and the pro-inflatmmatory cytokine IL-38 were identified in COVID-19 patients, indicating potential immune dysregulation. Furthermore, individual who received the vaccine or recovered from COVID-19 exhibited higher survivin rates, suggesting a protective role for survivin in migitating lung damage. These findings suggest the prospect of developing a strategy to prevent WBC apoptosis, offering potential benefits in averting lymphopenia associated with severe COVID-19 ouctomes.
Collapse
Affiliation(s)
- Faris Q.B. Alenzi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
5
|
Sasso-Cerri E, Martinelli VD, de Oliveira SA, da Silva AAS, de Moraes JCG, Cerri PS. Submandibular Gland Pathogenesis Following SARS-CoV-2 Infection and Implications for Xerostomia. Int J Mol Sci 2024; 25:6820. [PMID: 38999930 PMCID: PMC11241347 DOI: 10.3390/ijms25136820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
Although SARS-CoV-2 induces mucin hypersecretion in the respiratory tract, hyposalivation/xerostomia has been reported by COVID-19 patients. We evaluate the submandibular gland (SMGs) pathogenesis in SARS-CoV-2-infected K18-hACE2 mice, focusing on the impact of infection on the mucin production and structural integrity of acini, ductal system, myoepithelial cells (MECs) and telocytes. The spike protein, the nucleocapsid protein, hACE2, actin, EGF, TNF-α and IL-1β were detected by immunofluorescence, and the Egfr and Muc5b expression was evaluated. In the infected animals, significant acinar hypertrophy was observed in contrast to ductal atrophy. Nucleocapsid proteins and/or viral particles were detected in the SMG cells, mainly in the nuclear membrane-derived vesicles, confirming the nuclear role in the viral formation. The acinar cells showed intense TNF-α and IL-1β immunoexpression, and the EGF-EGFR signaling increased, together with Muc5b upregulation. This finding explains mucin hypersecretion and acinar hypertrophy, which compress the ducts. Dying MECs and actin reduction were also observed, indicating failure of contraction and acinar support, favoring acinar hypertrophy. Viral assembly was found in the dying telocytes, pointing to these intercommunicating cells as viral transmitters in SMGs. Therefore, EGF-EGFR-induced mucin hypersecretion was triggered by SARS-CoV-2 in acinar cells, likely mediated by cytokines. The damage to telocytes and MECs may have favored the acinar hypertrophy, leading to ductal obstruction, explaining xerostomia in COVID-19 patients. Thus, acinar cells, telocytes and MECs may be viral targets, which favor replication and cell-to-cell viral transmission in the SMG, corroborating the high viral load in saliva of infected individuals.
Collapse
Affiliation(s)
- Estela Sasso-Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| | - Vitor Dallacqua Martinelli
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| | - Salmo Azambuja de Oliveira
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo 04023-900, Brazil; (S.A.d.O.); (A.A.S.d.S.)
| | - André Acácio Souza da Silva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo 04023-900, Brazil; (S.A.d.O.); (A.A.S.d.S.)
| | - Juliana Cerini Grassi de Moraes
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| | - Paulo Sérgio Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| |
Collapse
|
6
|
Riyaz Tramboo S, Elkhalifa AM, Quibtiya S, Ali SI, Nazir Shah N, Taifa S, Rakhshan R, Hussain Shah I, Ahmad Mir M, Malik M, Ramzan Z, Bashir N, Ahad S, Khursheed I, Bazie EA, Mohamed Ahmed E, Elderdery AY, Alenazy FO, Alanazi A, Alzahrani B, Alruwaili M, Manni E, E. Hussein S, Abdalhabib EK, Nabi SU. The critical impacts of cytokine storms in respiratory disorders. Heliyon 2024; 10:e29769. [PMID: 38694122 PMCID: PMC11058722 DOI: 10.1016/j.heliyon.2024.e29769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Cytokine storm (CS) refers to the spontaneous dysregulated and hyper-activated inflammatory reaction occurring in various clinical conditions, ranging from microbial infection to end-stage organ failure. Recently the novel coronavirus involved in COVID-19 (Coronavirus disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has been associated with the pathological phenomenon of CS in critically ill patients. Furthermore, critically ill patients suffering from CS are likely to have a grave prognosis and a higher case fatality rate. Pathologically CS is manifested as hyper-immune activation and is clinically manifested as multiple organ failure. An in-depth understanding of the etiology of CS will enable the discovery of not just disease risk factors of CS but also therapeutic approaches to modulate the immune response and improve outcomes in patients with respiratory diseases having CS in the pathogenic pathway. Owing to the grave consequences of CS in various diseases, this phenomenon has attracted the attention of researchers and clinicians throughout the globe. So in the present manuscript, we have attempted to discuss CS and its ramifications in COVID-19 and other respiratory diseases, as well as prospective treatment approaches and biomarkers of the cytokine storm. Furthermore, we have attempted to provide in-depth insight into CS from both a prophylactic and therapeutic point of view. In addition, we have included recent findings of CS in respiratory diseases reported from different parts of the world, which are based on expert opinion, clinical case-control research, experimental research, and a case-controlled cohort approach.
Collapse
Affiliation(s)
- Shahana Riyaz Tramboo
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Ahmed M.E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Syed Quibtiya
- Department of General Surgery, Sher-I-Kashmir Institute of Medical Sciences, Medical College, Srinagar, 190011, Jammu & Kashmir, India
| | - Sofi Imtiyaz Ali
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Naveed Nazir Shah
- Department of Chest Medicine, Govt. Medical College, Srinagar, 191202, Jammu & Kashmir, India
| | - Syed Taifa
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Rabia Rakhshan
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Iqra Hussain Shah
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Muzafar Ahmad Mir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Masood Malik
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Zahid Ramzan
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Nusrat Bashir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Shubeena Ahad
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Ibraq Khursheed
- Department of Zoology, Central University of Kashmir, 191201, Nunar, Ganderbal, Jammu & Kashmir, India
| | - Elsharif A. Bazie
- Pediatric Department, Faculty of Medicine, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Elsadig Mohamed Ahmed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
- Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Fawaz O. Alenazy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Emad Manni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Sanaa E. Hussein
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Ezeldine K. Abdalhabib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Showkat Ul Nabi
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| |
Collapse
|
7
|
Nikiema WA, Ouédraogo M, Ouédraogo WP, Fofana S, Ouédraogo BHA, Delma TE, Amadé B, Abdoulaye GM, Sawadogo AS, Ouédraogo R, Semde R. Systematic Review of Chemical Compounds with Immunomodulatory Action Isolated from African Medicinal Plants. Molecules 2024; 29:2010. [PMID: 38731500 PMCID: PMC11085867 DOI: 10.3390/molecules29092010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 05/13/2024] Open
Abstract
A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.
Collapse
Affiliation(s)
- Wendwaoga Arsène Nikiema
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Moussa Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Windbedma Prisca Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Souleymane Fofana
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Institut des Sciences de la Santé, Université NAZI Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Boris Honoré Amadou Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Talwendpanga Edwige Delma
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Belem Amadé
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Gambo Moustapha Abdoulaye
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Aimé Serge Sawadogo
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Raogo Ouédraogo
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Rasmané Semde
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| |
Collapse
|
8
|
Vajdi M, Karimi A, Hassanizadeh S, Farhangi MA, Bagherniya M, Askari G, Roufogalis BD, Davies NM, Sahebkar A. Effect of polyphenols against complications of COVID-19: current evidence and potential efficacy. Pharmacol Rep 2024; 76:307-327. [PMID: 38498260 DOI: 10.1007/s43440-024-00585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
The COVID-19 pandemic that started in 2019 and resulted in significant morbidity and mortality continues to be a significant global health challenge, characterized by inflammation, oxidative stress, and immune system dysfunction.. Developing therapies for preventing or treating COVID-19 remains an important goal for pharmacology and drug development research. Polyphenols are effective against various viral infections and can be extracted and isolated from plants without losing their therapeutic potential. Researchers have developed methods for separating and isolating polyphenols from complex matrices. Polyphenols are effective in treating common viral infections, including COVID-19, and can also boost immunity. Polyphenolic-based antiviral medications can mitigate SARS-CoV-2 enzymes vital to virus replication and infection. Individual polyphenolic triterpenoids, flavonoids, anthraquinonoids, and tannins may also inhibit the SARS-CoV-2 protease. Polyphenol pharmacophore structures identified to date can explain their action and lead to the design of novel anti-COVID-19 compounds. Polyphenol-containing mixtures offer the advantages of a well-recognized safety profile with few known severe side effects. However, studies to date are limited, and further animal studies and randomized controlled trials are needed in future studies. The purpose of this study was to review and present the latest findings on the therapeutic impact of plant-derived polyphenols on COVID-19 infection and its complications. Exploring alternative approaches to traditional therapies could aid in developing novel drugs and remedies against coronavirus infection.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shirin Hassanizadeh
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Abbasalizad Farhangi
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Zhang X, Li F, Rajaraman PK, Comellas AP, Hoffman EA, Lin CL. Investigating distributions of inhaled aerosols in the lungs of post-COVID-19 clusters through a unified imaging and modeling approach. Eur J Pharm Sci 2024; 195:106724. [PMID: 38340875 PMCID: PMC10948263 DOI: 10.1016/j.ejps.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Recent studies, based on clinical data, have identified sex and age as significant factors associated with an increased risk of long COVID. These two factors align with the two post-COVID-19 clusters identified by a deep learning algorithm in computed tomography (CT) lung scans: Cluster 1 (C1), comprising predominantly females with small airway diseases, and Cluster 2 (C2), characterized by older individuals with fibrotic-like patterns. This study aims to assess the distributions of inhaled aerosols in these clusters. METHODS 140 COVID survivors examined around 112 days post-diagnosis, along with 105 uninfected, non-smoking healthy controls, were studied. Their demographic data and CT scans at full inspiration and expiration were analyzed using a combined imaging and modeling approach. A subject-specific CT-based computational model analysis was utilized to predict airway resistance and particle deposition among C1 and C2 subjects. The cluster-specific structure and function relationships were explored. RESULTS In C1 subjects, distinctive features included airway narrowing, a reduced homothety ratio of daughter over parent branch diameter, and increased airway resistance. Airway resistance was concentrated in the distal region, with a higher fraction of particle deposition in the proximal airways. On the other hand, C2 subjects exhibited airway dilation, an increased homothety ratio, reduced airway resistance, and a shift of resistance concentration towards the proximal region, allowing for deeper particle penetration into the lungs. CONCLUSIONS This study revealed unique mechanistic phenotypes of airway resistance and particle deposition in the two post-COVID-19 clusters. The implications of these findings for inhaled drug delivery effectiveness and susceptibility to air pollutants were explored.
Collapse
Affiliation(s)
- Xuan Zhang
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
| | - Frank Li
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Prathish K Rajaraman
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
| | | | - Eric A Hoffman
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Ching-Long Lin
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA; Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
10
|
Ferreira GM, Clarindo FA, Ribeiro ÁL, Gomes-de-Pontes L, de Carvalho LD, Martins-Filho OA, da Fonseca FG, Teixeira MM, Sabino ADP, Eapen MS, Morris DL, Valle SJ, Coelho-dos-Reis JGA. Taming the SARS-CoV-2-mediated proinflammatory response with BromAc ®. Front Immunol 2023; 14:1308477. [PMID: 38193087 PMCID: PMC10773902 DOI: 10.3389/fimmu.2023.1308477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction In the present study, the impact of BromAc®, a specific combination of bromelain and acetylcysteine, on the SARS-CoV-2-specific inflammatory response was evaluated. Methods An in vitro stimulation system was standardized using blood samples from 9 healthy donors, luminex assays and flow cytometry were performed. Results and discussion BromAc® demonstrated robust anti-inflammatory activity in human peripheral blood cells upon SARS-CoV-2 viral stimuli, reducing the cytokine storm, composed of chemokines, growth factors, and proinflammatory and regulatory cytokines produced after short-term in vitro culture with the inactivated virus (iSARS-CoV-2). A combined reduction in vascular endothelial growth factor (VEGF) induced by SARS-CoV-2, in addition to steady-state levels of platelet recruitment-associated growth factor-PDGFbb, was observed, indicating that BromAc® may be important to reduce thromboembolism in COVID-19. The immunophenotypic analysis of the impact of BromAc® on leukocytes upon viral stimuli showed that BromAc® was able to downmodulate the populations of CD16+ neutrophils and CD14+ monocytes observed after stimulation with iSARS-CoV-2. Conversely, BromAc® treatment increased steady-state HLA-DR expression in CD14+ monocytes and preserved this activation marker in this subset upon iSARS-CoV-2 stimuli, indicating improved monocyte activation upon BromAc® treatment. Additionally, BromAc® downmodulated the iSARS-CoV-2-induced production of TNF-a by the CD19+ B-cells. System biology approaches, utilizing comprehensive correlation matrices and networks, showed distinct patterns of connectivity in groups treated with BromAc®, suggesting loss of connections promoted by the compound and by iSARS-CoV-2 stimuli. Negative correlations amongst proinflammatory axis and other soluble and cellular factors were observed in the iSARS-CoV-2 group treated with BromAc® as compared to the untreated group, demonstrating that BromAc® disengages proinflammatory responses and their interactions with other soluble factors and the axis orchestrated by SARS-CoV-2. Conclusion These results give new insights into the mechanisms for the robust anti-inflammatory effect of BromAc® in the steady state and SARS-CoV-2-specific immune leukocyte responses, indicating its potential as a therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
- Geovane Marques Ferreira
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Alves Clarindo
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ágata Lopes Ribeiro
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Letícia Gomes-de-Pontes
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Debortoli de Carvalho
- Departamento de Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Rene Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- CT Terapias Avançadas e Inovadoras (CT-Terapias), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano de Paula Sabino
- Laboratório de Hematologia Clínica, Experimental e Molecular, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mathew Suji Eapen
- Research & Development Department, Mucpharm Pty Ltd, Sydney, NSW, Australia
| | - David L. Morris
- Research & Development Department, Mucpharm Pty Ltd, Sydney, NSW, Australia
- St George and Sutherland Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Surgery, St George Hospital, Sydney, NSW, Australia
| | - Sarah J. Valle
- Research & Development Department, Mucpharm Pty Ltd, Sydney, NSW, Australia
- St George and Sutherland Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, St George Hospital, Sydney, NSW, Australia
| | - Jordana Grazziela Alves Coelho-dos-Reis
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- CT Terapias Avançadas e Inovadoras (CT-Terapias), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Vijaykumar K, Leung HM, Barrios A, Fernandez-Petty CM, Solomon GM, Hathorne HY, Wade JD, Monroe K, Slaten KB, Li Q, Leal SM, Moates DB, Pierce HM, Olson KR, Currier P, Foster S, Marsden D, Tearney GJ, Rowe SM. COVID-19 Causes Ciliary Dysfunction as Demonstrated by Human Intranasal Micro-Optical Coherence Tomography Imaging. Am J Respir Cell Mol Biol 2023; 69:592-595. [PMID: 38195114 PMCID: PMC10633845 DOI: 10.1165/rcmb.2023-0177le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Affiliation(s)
- Kadambari Vijaykumar
- University of Alabama at BirminghamBirmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research CenterBirmingham, Alabama
| | - Hui Min Leung
- Massachusetts General HospitalBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| | - Amilcar Barrios
- Massachusetts General HospitalBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| | | | - George M. Solomon
- University of Alabama at BirminghamBirmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research CenterBirmingham, Alabama
| | | | - Justin D. Wade
- Gregory Fleming James Cystic Fibrosis Research CenterBirmingham, Alabama
| | - Kathryn Monroe
- Gregory Fleming James Cystic Fibrosis Research CenterBirmingham, Alabama
| | - Katie Brand Slaten
- Gregory Fleming James Cystic Fibrosis Research CenterBirmingham, Alabama
| | - Qian Li
- Gregory Fleming James Cystic Fibrosis Research CenterBirmingham, Alabama
| | - Sixto M. Leal
- University of Alabama at BirminghamBirmingham, Alabama
| | | | | | - Kristian R. Olson
- Massachusetts General HospitalBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
- Healthcare Innovation PartnersBoston, Massachusetts
| | - Paul Currier
- Healthcare Innovation PartnersBoston, Massachusetts
| | - Sam Foster
- Healthcare Innovation PartnersBoston, Massachusetts
| | - Doug Marsden
- Healthcare Innovation PartnersBoston, Massachusetts
- ELEVEN, LLCBoston, Massachusetts
| | - Guillermo J. Tearney
- Massachusetts General HospitalBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| | - Steven M. Rowe
- University of Alabama at BirminghamBirmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research CenterBirmingham, Alabama
| |
Collapse
|
12
|
Bessonov N, Volpert V. Airway obstruction in respiratory viral infections due to impaired mucociliary clearance. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3707. [PMID: 37073098 DOI: 10.1002/cnm.3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Respiratory viral infections, such as SARS-CoV-2 or influenza, can lead to impaired mucociliary clearance in the bronchial tree due to increased mucus viscosity and its hyper-secretion. We develop in this work a mathematical model to study the interplay between viral infection and mucus motion. The results of numerical simulations show that infection progression can be characterized by three main stages. At the first stage, infection spreads through the most part of mucus producing airways (about 90% of the length) without significant changes in mucus velocity and thickness layer. During the second stage, when it passes through the remaining generations, mucus viscosity increases, its velocity drops down, and it forms a plug. At the last stage, the thickness of the mucus layer gradually increases because mucus is still produced but not removed by the flow. After some time, the thickness of the mucus layer in the small airways becomes comparable with their diameter leading to their complete obstruction.
Collapse
Affiliation(s)
- N Bessonov
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - V Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, France
- S.M. Nikolskii Mathematical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
13
|
Bustos NA, Ribbeck K, Wagner CE. The role of mucosal barriers in disease progression and transmission. Adv Drug Deliv Rev 2023; 200:115008. [PMID: 37442240 DOI: 10.1016/j.addr.2023.115008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/22/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Mucus is a biological hydrogel that coats and protects all non-keratinized wet epithelial surfaces. Mucins, the primary structural components of mucus, are critical components of the gel layer that protect against invading pathogens. For communicable diseases, pathogen-mucin interactions contribute to the pathogen's fate and the potential for disease progression in-host, as well as the potential for onward transmission. We begin by reviewing in-host mucus filtering mechanisms, including size filtering and interaction filtering, which regulate the permeability of mucus barriers to all molecules including pathogens. Next, we discuss the role of mucins in communicable diseases at the point of transmission (i.e. how the encapsulation of pathogens in emitted mucosal droplets externally to hosts may modulate pathogen infectivity and viability). Overall, mucosal barriers modulate both host susceptibility as well as the dynamics of population-level disease transmission. The study of mucins and their use in models and experimental systems are therefore crucial for understanding the mechanistic biophysical principles underlying disease transmission and the early stages of host infection.
Collapse
Affiliation(s)
- Nicole A Bustos
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline E Wagner
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Silva LM, Riani LR, Leite JB, de Assis Chagas JM, Fernandes LS, Fochat RC, Perches CGP, Nascimento TC, Jaeger LH, Silvério MS, dos Santos Pereira-Júnior O, Pittella F. The Influence of the Omicron Variant on RNA Extraction and RT-qPCR Detection of SARS-CoV-2 in a Laboratory in Brazil. Viruses 2023; 15:1690. [PMID: 37632032 PMCID: PMC10458054 DOI: 10.3390/v15081690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
The emergence of SARS-CoV-2 variants can affect their detection via RT-qPCR. The Omicron variant has a greater affinity for the upper respiratory system and causes clinical conditions similar to bronchitis, as opposed to the pneumonitis-like conditions caused by other SARS-CoV-2 variants. This characteristic increases the viscosity of clinical samples collected for diagnosis. Coinciding with the arrival of the Omicron variant, we observed a failure in control gene expression in our laboratory. In this report, we have optimized a rapid nucleic acid extraction step to restore gene expression and detect the presence of the SARS-CoV-2 virus. We reevaluated 3000 samples, compared variant types occurring in different time periods, and confirmed that the presence of the Omicron variant was responsible for changes observed in the characteristics of these clinical samples. For samples with large amounts of mucus, such as those containing the Omicron variant, a modification to the nucleic acid extraction step was sufficient to restore the quality of RT-qPCR results.
Collapse
Affiliation(s)
- Lívia Mara Silva
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n–Campus Universitário, Juiz de Fora 36036-900, MG, Brazil; (L.M.S.); (L.R.R.); (J.B.L.); (J.M.d.A.C.); (L.S.F.); (R.C.F.); (L.H.J.); (M.S.S.); (O.d.S.P.-J.)
| | - Lorena Rodrigues Riani
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n–Campus Universitário, Juiz de Fora 36036-900, MG, Brazil; (L.M.S.); (L.R.R.); (J.B.L.); (J.M.d.A.C.); (L.S.F.); (R.C.F.); (L.H.J.); (M.S.S.); (O.d.S.P.-J.)
| | - Juliana Brovini Leite
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n–Campus Universitário, Juiz de Fora 36036-900, MG, Brazil; (L.M.S.); (L.R.R.); (J.B.L.); (J.M.d.A.C.); (L.S.F.); (R.C.F.); (L.H.J.); (M.S.S.); (O.d.S.P.-J.)
| | - Jessica Mara de Assis Chagas
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n–Campus Universitário, Juiz de Fora 36036-900, MG, Brazil; (L.M.S.); (L.R.R.); (J.B.L.); (J.M.d.A.C.); (L.S.F.); (R.C.F.); (L.H.J.); (M.S.S.); (O.d.S.P.-J.)
| | - Laura Silva Fernandes
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n–Campus Universitário, Juiz de Fora 36036-900, MG, Brazil; (L.M.S.); (L.R.R.); (J.B.L.); (J.M.d.A.C.); (L.S.F.); (R.C.F.); (L.H.J.); (M.S.S.); (O.d.S.P.-J.)
| | - Romário Costa Fochat
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n–Campus Universitário, Juiz de Fora 36036-900, MG, Brazil; (L.M.S.); (L.R.R.); (J.B.L.); (J.M.d.A.C.); (L.S.F.); (R.C.F.); (L.H.J.); (M.S.S.); (O.d.S.P.-J.)
| | - Carmen Gomide Pinto Perches
- Hospital Universitário, Universidade Federal de Juiz de Fora, Av. Eugênio do Nascimento, s/n, Juiz de Fora 36038-330, MG, Brazil;
| | - Thiago César Nascimento
- Faculdade de Enfermagem, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n–Campus Universitário, Juiz de Fora 36036-900, MG, Brazil;
| | - Lauren Hubert Jaeger
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n–Campus Universitário, Juiz de Fora 36036-900, MG, Brazil; (L.M.S.); (L.R.R.); (J.B.L.); (J.M.d.A.C.); (L.S.F.); (R.C.F.); (L.H.J.); (M.S.S.); (O.d.S.P.-J.)
| | - Marcelo Silva Silvério
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n–Campus Universitário, Juiz de Fora 36036-900, MG, Brazil; (L.M.S.); (L.R.R.); (J.B.L.); (J.M.d.A.C.); (L.S.F.); (R.C.F.); (L.H.J.); (M.S.S.); (O.d.S.P.-J.)
| | - Olavo dos Santos Pereira-Júnior
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n–Campus Universitário, Juiz de Fora 36036-900, MG, Brazil; (L.M.S.); (L.R.R.); (J.B.L.); (J.M.d.A.C.); (L.S.F.); (R.C.F.); (L.H.J.); (M.S.S.); (O.d.S.P.-J.)
| | - Frederico Pittella
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n–Campus Universitário, Juiz de Fora 36036-900, MG, Brazil; (L.M.S.); (L.R.R.); (J.B.L.); (J.M.d.A.C.); (L.S.F.); (R.C.F.); (L.H.J.); (M.S.S.); (O.d.S.P.-J.)
| |
Collapse
|
15
|
Li H, Kuga K, Ito K. Visual prediction and parameter optimization of viral dynamics in the mucus milieu of the upper airway based on CFPD-HCD analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 238:107622. [PMID: 37257372 DOI: 10.1016/j.cmpb.2023.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Respiratory diseases caused by viruses are a major human health problem. To better control the infection and understand the pathogenesis of these diseases, this paper studied SARS-CoV-2, a novel coronavirus outbreak, as an example. METHODS Based on coupled computational fluid and particle dynamics (CFPD) and host-cell dynamics (HCD) analyses, we studied the viral dynamics in the mucus layer of the human nasal cavity-nasopharynx. To reproduce the effect of mucociliary movement on the diffusive and convective transport of viruses in the mucus layer, a 3D-shell model was constructed using CT data of the upper respiratory tract (URT) of volunteers. Considering the mucus environment, the HCD model was established by coupling the target cell-limited model with the convection-diffusion term. Parameter optimization of the HCD model is the key problem in the simulation. Therefore, this study focused on the parameter optimization of the viral dynamics model, divided the geometric model into multiple compartments, and used Monolix to perform the nonlinear mixed effects (NLME) of pharmacometrics to discuss the influence of factors such as the number of mucus layers, number of compartments, diffusion rate, and mucus flow velocity on the prediction results. RESULTS The findings showed that sufficient experimental data can be used to estimate the corresponding parameters of the HCD model. The optimized convection-diffusion case with a two-layer multi-compartment low-velocity model could accurately predict the viral dynamics. CONCLUSIONS Its visualization process could explain the symptoms of the disease in the nose and contribute to the prevention and targeted treatment of respiratory diseases.
Collapse
Affiliation(s)
- Hanyu Li
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan.
| | - Kazuki Kuga
- Faculty of Engineering Sciences, Kyushu University, Japan
| | - Kazuhide Ito
- Faculty of Engineering Sciences, Kyushu University, Japan
| |
Collapse
|
16
|
Wei L, Hongping H, Chufang L, Cuomu M, Jintao L, Kaiyin C, Lvyi C, Weiwu C, Zuguang Y, Nanshan Z. Effects of Shiwei Longdanhua formula on LPS induced airway mucus hypersecretion, cough hypersensitivity, oxidative stress and pulmonary inflammation. Biomed Pharmacother 2023; 163:114793. [PMID: 37121151 DOI: 10.1016/j.biopha.2023.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Shiwei Longdanhua Granule (SWLDH) is a classic Tibetan medicine (TM) ranking in the top 20 Chinese patent medicines in prescription rate to treat respiratory diseases like pneumonia, acute and chronic tracheobronchitis, acute exacerbation of COPD and bronchial asthma in solution of inflammation, cough and phlegm obstruction in clinical practice. However, its systematic pharmacological mechanisms have not been elucidated yet. Here, we studied the therapeutic efficacy of SWLDH in treatment of acute respiratory diseases in BALB/c mice by comprehensive analysis of airway inflammation, oxidative stress, mucus hypersecretion, cough hypersensitivities and indicators associated with the development of chronic diseases. Our results show that SWLDH might exhibit its inhibitory effects on pulmonary inflammation by interference with arachidonic acid (AA) metabolism pathways. Oxidative stress that highly related to the degree of tissue injury could be alleviated by enhancing the reductive activities of glutathione redox system, thioredoxin system and the catalytic activities of catalase and superoxide dismutase (SOD) after SWLDH treatment. In addition, SWLDH could significantly abrogate the mucus hypersecretion induced bronchiole obstruction by inactivate the globlet cells and decrease the secretion of gel-forming mucins (MUC5AC and MUC5B) under pathological condition, demonstrating its mucoactive potency. SWLDH also showed reversed effects on the release of neuropeptides that are responsible for airway sensory hypersensitivity. Simultaneously observed inhibition of calcium influx, reduction in in vivo biosynthesis of acetylcholine and the recovery of the content of cyclic adenosine monophosphate (cAMP) might collaboratively contribute to cause airway smooth muscle cells (ASMCs) relexation. These findings indicated that SWLDH might exhibited antitussive potency via suppression of the urge to cough and ASMCs contraction. Moreover, SWLDH might affect airway remodeling. We found SWLDH could retard the elevation of TGF-β1 and α-SMA, which are important indicators for hyperplasia and contraction during the progression of the chronic airway inflammatory diseases like COPD and asthma.
Collapse
Affiliation(s)
- Liu Wei
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hou Hongping
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Mingji Cuomu
- The University of Tibetan Medicine, Lhasa, China
| | - Li Jintao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Cai Kaiyin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Chen Lvyi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Weiwu
- Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Ye Zuguang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhong Nanshan
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Novović K, Kuzmanović Nedeljković S, Poledica M, Nikolić G, Grujić B, Jovčić B, Kojić M, Filipić B. Virulence potential of multidrug-resistant Acinetobacter baumannii isolates from COVID-19 patients on mechanical ventilation: The first report from Serbia. Front Microbiol 2023; 14:1094184. [PMID: 36825087 PMCID: PMC9941878 DOI: 10.3389/fmicb.2023.1094184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Since the WHO declared the COVID-19 pandemic in March 2020, the disease has spread rapidly leading to overload of the health system and many of the patients infected with SARS-CoV-2 needed to be admitted to the intensive care unit (ICU). Around 10% of patients with the severe manifestation of COVID-19 need noninvasive or invasive mechanical ventilation, which represent a risk factor for Acinetobacter baumannii superinfection. The 64 A. baumannii isolates were recovered from COVID-19 patients admitted to ICU at General Hospital "Dr Laza K. Lazarević" Šabac, Serbia, during the period from December 2020 to February 2021. All patients required mechanical ventilation and mortality rate was 100%. The goal of this study was to evaluate antibiotic resistance profiles and virulence potential of A. baumannii isolates recovered from patients with severe form of COVID-19 who had a need for mechanical ventilation. All tested A. baumannii isolates (n = 64) were sensitive to colistin, while resistant to meropenem, imipenem, gentamicin, tobramycin, and levofloxacin according to the broth microdilution method and MDR phenotype was confirmed. In all tested isolates, representatives of international clone 2 (IC2) classified by multiplex PCR for clonal lineage identification, bla AmpC, bla OXA-51, and bla OXA-23 genes were present, as well as ISAba1 insertion sequence upstream of bla OXA-23. Clonal distribution of one dominant strain was found, but individual strains showed phenotypic differences in the level of antibiotic resistance, biofilm formation, and binding to mucin and motility. According to PFGE, four isolates were sequenced and antibiotic resistance genes as well as virulence factors genes were analyzed in these genomes. The results of this study represent the first report on virulence potential of MDR A. baumannii from hospital in Serbia.
Collapse
Affiliation(s)
- Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | - Gordana Nikolić
- General Hospital “Dr Laza K. Lazarević” Šabac, Šabac, Serbia
| | - Bojana Grujić
- General Hospital “Dr Laza K. Lazarević” Šabac, Šabac, Serbia
| | - Branko Jovčić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia,Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Brankica Filipić
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia,*Correspondence: Brankica Filipić,
| |
Collapse
|
18
|
Rajabi H, Mortazavi D, Konyalilar N, Aksoy GT, Erkan S, Korkunc SK, Kayalar O, Bayram H, Rahbarghazi R. Forthcoming complications in recovered COVID-19 patients with COPD and asthma; possible therapeutic opportunities. Cell Commun Signal 2022; 20:173. [PMID: 36320055 PMCID: PMC9623941 DOI: 10.1186/s12964-022-00982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been growing swiftly worldwide. Patients with background chronic pulmonary inflammations such as asthma or chronic obstructive pulmonary diseases (COPD) are likely to be infected with this virus. Of note, there is an argument that COVID-19 can remain with serious complications like fibrosis or other pathological changes in the pulmonary tissue of patients with chronic diseases. Along with conventional medications, regenerative medicine, and cell-based therapy could be alternative approaches to compensate for organ loss or restore injured sites using different stem cell types. Owing to unique differentiation capacity and paracrine activity, these cells can accelerate the healing procedure. In this review article, we have tried to scrutinize different reports related to the harmful effects of SARS-CoV-2 on patients with asthma and COPD, as well as the possible therapeutic effects of stem cells in the alleviation of post-COVID-19 complications. Video abstract.
Collapse
Affiliation(s)
- Hadi Rajabi
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Deniz Mortazavi
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Nur Konyalilar
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Gizem Tuse Aksoy
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Sinem Erkan
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Seval Kubra Korkunc
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Ozgecan Kayalar
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Hasan Bayram
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey.
- Department of Pulmonary Medicine, School of Medicine, Koç University, Istanbul, Turkey.
| | - Reza Rahbarghazi
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Prasher P, Sharma M, Singh SK, Gulati M, Jha NK, Gupta PK, Gupta G, Chellappan DK, Zacconi F, de Jesus Andreoli Pinto T, Chan Y, Liu G, Paudel K, Hansbro PM, George Oliver BG, Dua K. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem Biol Interact 2022; 365:110048. [PMID: 35932910 DOI: 10.1016/j.cbi.2022.110048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Mucus gel constitutes of heavily cross-linked mucin fibers forming a viscoelastic, dense porous network that coats all the exposed epithelia not covered with the skin. The layer provides protection to the underlying gastrointestinal, respiratory, and female reproductive tracts, in addition to the organs such as the surface of eye by trapping the pathogens, irritants, environmental fine particles, and potentially hazardous foreign matter. However, this property of mucus gel poses a substantial challenge for realizing the localized and sustained drug delivery across the mucosal surfaces. The mucus permeating particles that spare the protective properties of mucus gel improve the therapeutic potency of the drugs aimed at the management of diseases, including sexually transmitted infections, lung cancer, irritable bowel disease, degenerative eye diseases and infections, and cystic fibrosis. As such, the mucoadhesive materials conjugated with drug molecules display a prolonged retention time in the mucosal gel that imparts a sustained release of the deliberated drug molecules across the mucosa. The contemporarily developed mucus penetrating materials for drug delivery applications comprise of a finer size, appreciable hydrophilicity, and a neutral surface to escape the entrapment within the cross-inked mucus fibers. Pertaining to the mucus secretion as a first line of defence in respiratory tract in response to the invading physical, chemical, and biological pathogens, the development of mucus penetrating materials hold promise as a stalwart approach for revolutionizing the respiratory drug delivery paradigm. The present review provides an epigrammatic collation of the mucus penetrating/mucoadhesive materials for achieving a controlled/sustained release of the cargo pharmaceutics and drug molecules across the respiratory mucus barrier.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Monica Gulati
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, 201310, UP, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Flavia Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago, 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo, 05508-000, Brazil
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Keshav Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
20
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
21
|
Prasher P, Sharma M. Targeting mucin hypersecretion in COVID-19 therapy. Future Med Chem 2022; 14:681-684. [PMID: 35315705 PMCID: PMC8939459 DOI: 10.4155/fmc-2021-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/11/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005, India
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005, India
- Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun, 248007, India
| |
Collapse
|
22
|
Arsanious MN, Ambrasas E, Phull M, Wickrama T. Congestion in the tube: air trapping in a ventilated patient with COVID-19 secondary to mucinous valves. BMJ Case Rep 2022; 15:15/4/e245625. [PMID: 35418374 PMCID: PMC9013956 DOI: 10.1136/bcr-2021-245625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A woman in her 50s was admitted to the intensive therapy unit with acute hypoxaemic respiratory failure secondary to COVID-19 pneumonitis. The patient was intubated on admission and worsening gas exchange necessitated multiple rounds of proning . She later improved, and her ventilation was switched to spontaneous mode. However, the patient started to develop air trapping with subsequent respiratory and cardiovascular compromise. Routine investigations showed no clear cause for her sudden deterioration and a suction catheter passed easily through the endotracheal tube. Bronchoscopy revealed mucinous/phlegmatic membranes had developed across the inner diameter of the endotracheal tube. This had created a one-way valve that allowed positive pressure ventilation through the tube into her lungs but only allowed a fraction of air to passively escape in expiration. This case report highlights a less commonly regarded complication associated with long-term intubation and lack of circuit humidification in the context of productive lung pathology.
Collapse
Affiliation(s)
- Mina Nasr Arsanious
- Anaesthetics and Critical Care, The Royal London Hospital, London, UK .,Intensive Care, Barking Havering and Redbridge Hospitals NHS Trust, Romford, UK
| | - Eduardas Ambrasas
- Intensive Care, Barking Havering and Redbridge Hospitals NHS Trust, Romford, UK
| | - Mandeep Phull
- Intensive Care, Barking Havering and Redbridge Hospitals NHS Trust, Romford, UK
| | - Thusith Wickrama
- Intensive Care, Barking Havering and Redbridge Hospitals NHS Trust, Romford, UK
| |
Collapse
|
23
|
Uma Reddy B, Routhu NK, Kumar A. Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2. Microb Pathog 2022; 168:105512. [PMID: 35381324 PMCID: PMC8976571 DOI: 10.1016/j.micpath.2022.105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022]
Abstract
Introduction Coronavirus disease 2019 (COVID-19) is an illness caused by the new coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). It has affected public health and the economy globally. Currently approved vaccines and other drug candidates could be associated with several drawbacks which urges developing alternative therapeutic approaches. Aim To provide a comprehensive review of anti-SARS-CoV-2 activities of plants and their bioactive compounds. Methods Information was gathered from diverse bibliographic platforms such as PubMed, Google Scholar, and ClinicalTrials.gov registry. Results The present review highlights the potential roles of crude extracts of plants as well as plant-derived small molecules in inhibiting SARS-CoV-2 infection by targeting viral or host factors essential for viral entry, polyprotein processing, replication, assembly and release. Their anti-inflammatory and antioxidant properties as well as plant-based therapies that are under development in the clinical trial phases-1 to 3 are also covered. Conclusion This knowledge could further help understanding SARS-CoV-2 infection and anti-viral mechanisms of plant-based therapeutics.
Collapse
Affiliation(s)
- B Uma Reddy
- Department of Studies in Botany, Vijayanagara Sri Krishnadevaraya University, Ballari, 583105, India.
| | - Nanda Kishore Routhu
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Anuj Kumar
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS UMR 5286, Lyon, 69008, France.
| |
Collapse
|
24
|
Coelho Dos Reis JGA, Ferreira GM, Lourenço AA, Ribeiro ÁL, da Mata CPDSM, de Melo Oliveira P, Marques DPDA, Ferreira LL, Clarindo FA, da Silva MF, Filho HPP, Oliveira NRR, Sodré MMD, Gadelha SR, Albuquerque GR, Maciel BM, Mariano APM, Silva MDM, Fontana R, Marin LJ, Carlos RSA, Lopes ATS, Ferreira FB, Dos Santos UR, Santana ÍTSD, Fehlberg HF, Rezende RP, Dias JCT, Gross E, Goulart GAC, Santiago MG, de Lemos APML, da Conceição AO, Romano CC, de Carvalho LD, Martins Filho OA, Quadros CA, Morris DL, Valle SJ. Ex-vivo mucolytic and anti-inflammatory activity of BromAc in tracheal aspirates from COVID-19. Biomed Pharmacother 2022; 148:112753. [PMID: 35272139 PMCID: PMC8872962 DOI: 10.1016/j.biopha.2022.112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/05/2022] Open
Abstract
COVID-19 is a lethal disease caused by the pandemic SARS-CoV-2, which continues to be a public health threat. COVID-19 is principally a respiratory disease and is often associated with sputum retention and cytokine storm, for which there are limited therapeutic options. In this regard, we evaluated the use of BromAc®, a combination of Bromelain and Acetylcysteine (NAC). Both drugs present mucolytic effect and have been studied to treat COVID-19. Therefore, we sought to examine the mucolytic and anti-inflammatory effect of BromAc® in tracheal aspirate samples from critically ill COVID-19 patients requiring mechanical ventilation. METHOD Tracheal aspirate samples from COVID-19 patients were collected following next of kin consent and mucolysis, rheometry and cytokine analysis using Luminex kit was performed. RESULTS BromAc® displayed a robust mucolytic effect in a dose dependent manner on COVID-19 sputum ex vivo. BromAc® showed anti-inflammatory activity, reducing the action of cytokine storm, chemokines including MIP-1alpha, CXCL8, MIP-1b, MCP-1 and IP-10, and regulatory cytokines IL-5, IL-10, IL-13 IL-1Ra and total reduction for IL-9 compared to NAC alone and control. BromAc® acted on IL-6, demonstrating a reduction in G-CSF and VEGF-D at concentrations of 125 and 250 µg. CONCLUSION These results indicate robust mucolytic and anti-inflammatory effect of BromAc® ex vivo in tracheal aspirates from critically ill COVID-19 patients, indicating its potential to be further assessed as pharmacological treatment for COVID-19.
Collapse
Affiliation(s)
- Jordana Grazziela A Coelho Dos Reis
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Geovane Marques Ferreira
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alice Aparecida Lourenço
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ágata Lopes Ribeiro
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Patrícia de Melo Oliveira
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daisymara Priscila de Almeida Marques
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Linziane Lopes Ferreira
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe Alves Clarindo
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Murillo Ferreira da Silva
- Department of Biological Sciences, Santa Cruz State University, Ilhéus, BA, Brazil; Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | | | | | - Maisah Meyhr D'Carmo Sodré
- Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | - Sandra Rocha Gadelha
- Department of Biological Sciences, Santa Cruz State University, Ilhéus, BA, Brazil; Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | - George Rego Albuquerque
- Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil; Department of Agricultural and Environmental Sciences (DCAA), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | - Bianca Mendes Maciel
- Department of Biological Sciences, Santa Cruz State University, Ilhéus, BA, Brazil; Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | - Ana Paula Melo Mariano
- Department of Biological Sciences, Santa Cruz State University, Ilhéus, BA, Brazil; Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | - Mylene de Melo Silva
- Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | - Renato Fontana
- Department of Biological Sciences, Santa Cruz State University, Ilhéus, BA, Brazil; Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | - Lauro Juliano Marin
- Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil; Department of Health Sciences (DCS), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | | | - Amanda Teixeira Sampaio Lopes
- Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | - Fabrício Barbosa Ferreira
- Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | | | | | - Hllytchaikra Ferraz Fehlberg
- Laboratory of Pharmacogenomics and Molecular Epidemiology (LAFEM), Santa Cruz State University (UESC), Ilhéus, BA, Brazil
| | | | - João Carlos T Dias
- Department of Biological Sciences, Santa Cruz State University, Ilhéus, BA, Brazil
| | - Eduardo Gross
- Department of Biological Sciences, Santa Cruz State University, Ilhéus, BA, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marie Gabriele Santiago
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Aline O da Conceição
- Department of Biological Sciences, Santa Cruz State University, Ilhéus, BA, Brazil
| | | | | | - Olindo Assis Martins Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | | | - David L Morris
- Mucpharm Pty Ltd, Sydney, NSW, Australia; University of New South Wales, St George & Sutherland Hospital Clinical School, Sydney, NSW, Australia; Department of Surgery, St George Hospital, Sydney, NSW, Australia.
| | - Sarah J Valle
- Mucpharm Pty Ltd, Sydney, NSW, Australia; University of New South Wales, St George & Sutherland Hospital Clinical School, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Multi-omics evaluation of SARS-CoV-2 infected mouse lungs reveals dynamics of host responses. iScience 2022; 25:103967. [PMID: 35224468 PMCID: PMC8863311 DOI: 10.1016/j.isci.2022.103967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
The outbreak of Coronavirus disease 2019 (COVID-19) throughout the world has caused millions of death, while the dynamics of host responses and the underlying regulation mechanisms during SARS-CoV-2 infection are not well depicted. Lung tissues from a mouse model sensitized to SARS-CoV-2 infection were serially collected at different time points for evaluation of transcriptome, proteome, and phosphoproteome. We showed the ebb and flow of several host responses in the lung across the viral infection. The signaling pathways and kinases regulating networks were alternated at different phases of infection. This multiplex evaluation also revealed that many kinases of the CDK and MAPK family were interactive and served as functional hubs in mediating the signal transduction during SARS-CoV-2 infection. Our study not only revealed the dynamics of lung pathophysiology and their underlying molecular mechanisms during SARS-CoV-2 infection, but also highlighted some molecules and signaling pathways that might guide future investigations on COVID-19 therapies. Multi-omics analysis profiles temporal host responses in SARS-CoV-2 infected lungs Signaling pathways and kinase regulating networks are dynamically altered The CDK and MAPK family are interactive and involved in regulating host responses
Collapse
|
26
|
Hidayati N, Hadi F, Suratmi, Maghfiroh IL, Andarini E, Setiawan H, Sandi YDL. Nursing diagnoses in hospitalized patients with COVID-19 in Indonesia. BELITUNG NURSING JOURNAL 2022; 8:44-52. [PMID: 37521083 PMCID: PMC10386809 DOI: 10.33546/bnj.1828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 11/07/2021] [Indexed: 08/01/2023] Open
Abstract
Background The COVID-19 pandemic has become a global public health issue, and the roles of nurses are very much needed in providing nursing services in the current situation. The enforcement of appropriate nursing diagnoses for patients with COVID-19 is also fundamental in determining proper nursing care to help the patients achieve maximum health. Objective This study aimed to describe and analyze nursing diagnoses in patients with COVID-19 treated in the isolation rooms and ICUs. Methods This study used a secondary data analysis from hospital medical record data of patients with COVID-19 from early December 2020 to the end of February 2021. Data were selected using a cluster random sampling technique and analyzed using descriptive statistics. Results The results showed that the signs and symptoms of the patients with COVID-19 that often appeared were fever, cough, shortness of breath, and decreased consciousness. The common nursing diagnoses in the hospitalized patients with COVID-19 were hyperthermia, ineffective airway clearance, gas exchange disorder, self-care deficit, spontaneous ventilation disorder, spontaneous circulation disorder, knowledge deficit, and shock risk. Conclusion This study offers an insight into nursing practices in the hospital setting, which can be used as a basis for nurses to perform complete nursing assessments and nursing diagnoses during the pandemic.
Collapse
Affiliation(s)
- Nur Hidayati
- Faculty of Health Sciences, Universitas Muhammadiyah Lamongan, Lamongan, Indonesia
| | - Farhan Hadi
- Faculty of Health Sciences, Universitas Muhammadiyah Lamongan, Lamongan, Indonesia
| | - Suratmi
- Faculty of Health Sciences, Universitas Muhammadiyah Lamongan, Lamongan, Indonesia
| | | | - Esti Andarini
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Henri Setiawan
- School of Nursing, Fujian Medical University, Fujian, China
- Department of Nursing, STIKes Muhammadiyah Ciamis, West Java, Indonesia
| | - Yudisa Diaz Lutfi Sandi
- Department of Nursing, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Nursing, Akademi Keperawatan Pemerintah Kabupaten Ngawi, East Java, Indonesia
| |
Collapse
|
27
|
Wie sich COVID-19 in der 3D-Zellkultur simulieren lässt. BIOSPEKTRUM 2022; 28:43-46. [PMID: 35194332 PMCID: PMC8853259 DOI: 10.1007/s12268-022-1712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Barbagallo D, Palermo CI, Barbagallo C, Battaglia R, Caponnetto A, Spina V, Ragusa M, Di Pietro C, Scalia G, Purrello M. Competing endogenous RNA network mediated by circ_3205 in SARS-CoV-2 infected cells. Cell Mol Life Sci 2022; 79:75. [PMID: 35039944 PMCID: PMC8763136 DOI: 10.1007/s00018-021-04119-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a new member of the Betacoronaviridae family, responsible for the recent pandemic outbreak of COVID-19. To start exploring the molecular events that follow host cell infection, we queried VirusCircBase and identified a circular RNA (circRNA) predicted to be synthesized by SARS-CoV-2, circ_3205, which we used to probe: (i) a training cohort comprised of two pools of cells from three nasopharyngeal swabs of SARS-CoV-2 infected (positive) or uninfected (negative, UCs) individuals; (ii) a validation cohort made up of 12 positive and 3 negative samples. The expression of circRNAs, miRNAs and miRNA targets was assayed through real-time PCR. CircRNA-miRNA interactions were predicted by TarpMiR, Analysis of Common Targets for circular RNAs (ACT), and STarMir tools. Enrichment of the biological processes and the list of predicted miRNA targets were retrieved from DIANA miRPath v3.0. Our results showed that the predicted SARS-CoV-2 circ_3205 was expressed only in positive samples and its amount positively correlated with that of SARS-CoV-2 Spike (S) mRNA and the viral load (r values = 0.80952 and 0.84867, Spearman's correlation test, respectively). Human (hsa) miR-298 was predicted to interact with circ_3205 by all three predictive tools. KCNMB4 and PRKCE were predicted as hsa-miR-298 targets. Interestingly, the function of both is correlated with blood coagulation and immune response. KCNMB4 and PRKCE mRNAs were upregulated in positive samples as compared to UCs (6 and 8.1-fold, p values = 0.049 and 0.02, Student's t test, respectively) and their expression positively correlated with that of circ_3205 (r values = 0.6 and 0.25, Spearman's correlation test, respectively). We propose that our results convincingly suggest that circ_3205 is a circRNA synthesized by SARS-CoV-2 upon host cell infection and that it may behave as a competitive endogenous RNA (ceRNA), sponging hsa-miR-298 and contributing to the upregulation of KCNMB4 and PRKCE mRNAs.
Collapse
Affiliation(s)
- Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy.
| | - Concetta Ilenia Palermo
- U.O.C. Laboratory Analysis Unit, A.O.U. Policlinico‑Vittorio Emanuele, 95123, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Vittoria Spina
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| | - Guido Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123, Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123, Catania, Italy
| |
Collapse
|
29
|
Zhang Z, Lin F, Liu F, Li Q, Li Y, Zhu Z, Guo H, Liu L, Liu X, Liu W, Fang Y, Wei X, Lu W. Proteomic profiling reveals a distinctive molecular signature for critically ill COVID-19 patients compared with asthma and COPD: A distinctive molecular signature for critically ill COVID-19 patients. Int J Infect Dis 2022; 116:258-267. [PMID: 35017110 PMCID: PMC8743279 DOI: 10.1016/j.ijid.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/15/2021] [Accepted: 01/02/2022] [Indexed: 01/08/2023] Open
Abstract
Objective The mortality rate for critically ill COVID-19 cases was more than 80%. Nonetheless, research about the effect of common respiratory diseases on critically ill COVID-19 expression and outcomes is scarce. Design We performed proteomic analyses on airway mucus obtained by bronchoscopy from patients with severe COVID-19, or induced sputum from patients with chronic obstructive pulmonary disease (COPD), asthma, and healthy controls. Results Of the total identified and quantified proteins, 445 differentially expressed proteins (DEPs) were found in different comparison groups. In comparison with COPD, asthma, and controls, 11 proteins were uniquely present in COVID-19 patients. Apart from DEPs associated with COPD versus controls and asthma versus controls, there was a total of 59 DEPs specific to COVID-19 patients. Finally, the findings revealed that there were 8 overlapping proteins in COVID-19 patients, including C9, FGB, FGG, PRTN3, HBB, HBA1, IGLV3-19, and COTL1. Functional analyses revealed that most of them were associated with complement and coagulation cascades, platelet activation, or iron metabolism, and anemia-related pathways. Conclusions This study provides fundamental data for identifying COVID-19–specific proteomic changes in comparison with COPD and asthma, which may suggest molecular targets for specialized therapy.
Collapse
Affiliation(s)
- Zili Zhang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fanjie Lin
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Liu
- Department of Respiratory and Critical care, Shaoguan First People's Hospital, Guangdong Province, China
| | - Qiongqiong Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhanbei Zhu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hua Guo
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lidong Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Liu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaowei Fang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinguang Wei
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
A Comprehensive Review of the Potential Use of Green Tea Polyphenols in the Management of COVID-19. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7170736. [PMID: 34899956 PMCID: PMC8664505 DOI: 10.1155/2021/7170736] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
Green tea is produced from Camellia sinensis (L.) buds and leaves that have not gone through the oxidation and withering processes used to produce black and oolong teas. It was originated in China, but its cultivation and production have expanded to other Eastern Asian countries. Several polyphenolic compounds, including flavandiols, flavonols, flavonoids, and phenolic acids, are found in green tea and may constitute greater than 30% of the dry weight. Flavonols, especially catechins, represent the majority of green tea polyphenols. Green tea polyphenolic compounds have been reported to confer several health benefits. This review describes the potential use of green tea polyphenols in the management of coronavirus disease 2019 (COVID-19). The immunomodulatory, antibacterial, antioxidant, and anti-inflammatory effects of green tea polyphenols have also been considered in this review. In addition to describing the bioactivities associated with green tea polyphenols, this review discusses the potential delivery of these biomolecules using a nanoparticle drug delivery system. Moreover, the bioavailability and toxicity of green tea polyphenols are also evaluated.
Collapse
|
31
|
Prasher P, Sharma M. Mucoadhesive nanoformulations and their potential for combating COVID-19. Nanomedicine (Lond) 2021; 16:2497-2501. [PMID: 34730403 PMCID: PMC8577509 DOI: 10.2217/nnm-2021-0287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
- Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun, 248007, India
| |
Collapse
|
32
|
Abdo Cuza AA, Ávila JP, Martínez RM, González JJ, Aspuro GP, Gutiérrez Martínez JA, Suzarte MR, Hernández DS, Añé-Kouri AL, Ramos TC. Nimotuzumab for COVID-19: case series. Immunotherapy 2021; 14:10.2217/imt-2021-0269. [PMID: 34806405 PMCID: PMC8628863 DOI: 10.2217/imt-2021-0269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background: In COVID-19, EGFR production is upregulated in the alveolar epithelial cells. EGFR overexpression further activates STAT-3 and increases lung pathology. The EGFR pathway is also one of the major nodes in pulmonary fibrosis. Methods: Nimotuzumab, a humanized anti-EGFR antibody, was used to treat three patients with severe or moderate COVID-19. The antibody was administered in combination with other drugs included in the national COVID-19 protocol. Results: Nimotuzumab was well tolerated. IL-6 decreased from the first antibody infusion. Clinical symptoms significantly improved after nimotuzumab administration, and the CT scans at discharge showed major resolution of the lung lesions and no signs of fibrosis. Conclusion: Safe anti-EGFR antibodies like nimotuzumab may modulate COVID-19-associated hyperinflammation and prevent fibrosis. Clinical Trial Registration: RPCEC00000369 (RPCEC rpcec.sld.cu).
Collapse
Affiliation(s)
- Anselmo A Abdo Cuza
- Intensive Care Unit. Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | - Jonathan Pi Ávila
- Intensive Care Unit. Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | | | | | | | | | - Mayra Ramos Suzarte
- Clinical Research Direction. Center of Molecular Immunology (CIM), Havana, Cuba
| | | | - Ana L Añé-Kouri
- Clinical Research Direction. Center of Molecular Immunology (CIM), Havana, Cuba
| | - Tania Crombet Ramos
- Clinical Research Direction. Center of Molecular Immunology (CIM), Havana, Cuba
| |
Collapse
|
33
|
Abstract
BACKGROUND As with other inflammatory diseases, the (dry) cough in COVID-19 patients indicates that mucociliary clearance (MCC) is at least at risk, if not overloaded, damaged or largely inoperable. Coughing is an important secondary mechanism that only takes over bronchial cleansing as a replacement if the MCC has failed. METHOD The review article describes the physiology and pathophysiology of MCC and its possible role in the pathogenesis of COVID-19. RESULTS AND CONCLUSIONS Human and animal studies as well as autopsy reports indicate that MCC could also be important for the COVID-19 pathogenesis. In primary care, MCC plays a major role in inflammatory respiratory diseases. In Germany, drugs for self-medication are approved for treatment and, due to the high quality of studies, are also recommended in the respective guidelines. A symptomatic approach to stabilize the airway barrier would also be conceivable in the early outpatient phase of COVID-19.
Collapse
Affiliation(s)
- Thomas Wittig
- Leiter Medizin & Klinische Forschung G. Pohl-Boskamp GmbH & Co KG, Arzt für Allgemeinmedizin, Kieler Straße 11, 25551, Hohenlockstedt, Germany.
| |
Collapse
|
34
|
Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 2021; 10:1048. [PMID: 34451513 PMCID: PMC8399076 DOI: 10.3390/pathogens10081048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development. With the help of big data, AI tries to mimic the cognitive capabilities of a human brain, such as problem-solving and learning abilities. Machine Learning (ML), a subset of AI, holds special promise for solving problems based on experiences gained from the curated data. Advances in AI methods have created an unprecedented opportunity for building agile surveillance systems using the deluge of real-time data generated within a short span of time. During the COVID-19 pandemic, many reports have discussed the utility of AI approaches in prioritization, delivery, surveillance, and supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss the clinical utility of AI-based models and will also discuss limitations and challenges faced by AI systems, such as model generalizability, explainability, and trust as pillars for real-life deployment in healthcare.
Collapse
Affiliation(s)
- Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nitisha Shrivastava
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Richa Virmani
- Confo Therapeutics, Technologiepark 94, 9052 Ghent, Belgium;
| | - Tavpritesh Sethi
- Indraprastha Institute of Information Technology, New Delhi 110020, India;
| |
Collapse
|
35
|
Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 2021; 10:1048. [PMID: 34451513 PMCID: PMC8399076 DOI: 10.3390/pathogens10081048,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development. With the help of big data, AI tries to mimic the cognitive capabilities of a human brain, such as problem-solving and learning abilities. Machine Learning (ML), a subset of AI, holds special promise for solving problems based on experiences gained from the curated data. Advances in AI methods have created an unprecedented opportunity for building agile surveillance systems using the deluge of real-time data generated within a short span of time. During the COVID-19 pandemic, many reports have discussed the utility of AI approaches in prioritization, delivery, surveillance, and supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss the clinical utility of AI-based models and will also discuss limitations and challenges faced by AI systems, such as model generalizability, explainability, and trust as pillars for real-life deployment in healthcare.
Collapse
Affiliation(s)
- Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: or
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nitisha Shrivastava
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Richa Virmani
- Confo Therapeutics, Technologiepark 94, 9052 Ghent, Belgium;
| | - Tavpritesh Sethi
- Indraprastha Institute of Information Technology, New Delhi 110020, India;
| |
Collapse
|
36
|
Badhe RV, Nipate SS. The use of negative oxygen ion clusters [O 2-(H 2O) n] and bicarbonate ions [HCO 3-] as the supportive treatment of COVID-19 infections: A possibility. Med Hypotheses 2021; 154:110658. [PMID: 34390895 PMCID: PMC8339564 DOI: 10.1016/j.mehy.2021.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
The COVID-19 or novel coronavirus SARS-CoV-2 pandemic is challenging worldwide healthcare system and severely affecting global economy. Furious efforts to end the pandemic including prevention of spread of SARS-CoV-2, use of antiviral drugs, symptomatic treatments and vaccination are underway. But there are no effective treatments available to save the dying patient in stage 2 (pulmonary) and stage 3 (hyperinflammation) of the infection. The detailed genetic and phenotypical analysis of SARS-CoV-2 revealed that the spike protein (S1) has increased positive charges (compared to SARS-CoV) on them and are responsible for attachment to human angiotensin-converting enzyme 2 (ACE2) receptor and infection by the virus. In addition, it was also reported that the inflammation in the tissue rendered the lung environment more acidic supporting the fusion of SARS-CoV-2 with the cells. We hypothesize that the intermittent use of the oxygen ionizer generating negative oxygen ion clusters [O2-(H2O)n] and sodium bicarbonate nebulizer (generating HCO3-); when connected to ventilator inlet or oxygen concentrator will neutralize the spike protein of the virus in respiratory tract and lungs and change the lung environment to neutral/alkaline condition respectively facilitating improved oxygen pressure in blood. These physical changes can effectively reduce the viral burden and help the patient recover from the infection faster.
Collapse
Affiliation(s)
| | - Sonali S Nipate
- SidIra Laboratories, Moshi, Pune, Maharashtra, India; Pharmacology Department, Modern College of Pharmacy, Nigdi, Pune, Maharashtra, India
| |
Collapse
|
37
|
Posch W, Lass-Flörl C, Wilflingseder D. SARS-CoV-2-infected primary human airway epithelia illustrate mucus hypersecretion. J Allergy Clin Immunol 2021; 148:909. [PMID: 34284045 PMCID: PMC8285928 DOI: 10.1016/j.jaci.2021.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
38
|
Frohman EM, Villemarette-Pittman NR, Rodriguez A, Glanzman R, Rugheimer S, Komogortsev O, Zamvil SS, Cruz RA, Varkey TC, Frohman AN, Frohman AR, Parsons MS, Konkle EH, Frohman TC. Application of an evidence-based, out-patient treatment strategy for COVID-19: Multidisciplinary medical practice principles to prevent severe disease. J Neurol Sci 2021; 426:117463. [PMID: 33971376 PMCID: PMC8055502 DOI: 10.1016/j.jns.2021.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022]
Abstract
The COVID-19 pandemic has devastated individuals, families, and institutions throughout the world. Despite the breakneck speed of vaccine development, the human population remains at risk of further devastation. The decision to not become vaccinated, the protracted rollout of available vaccine, vaccine failure, mutational forms of the SARS virus, which may exhibit mounting resistance to our molecular strike at only one form of the viral family, and the rapid ability of the virus(es) to hitch a ride on our global transportation systems, means that we are will likely continue to confront an invisible, yet devastating foe. The enemy targets one of our human physiology's most important and vulnerable life-preserving body tissues, our broncho-alveolar gas exchange apparatus. Notwithstanding the fear and the fury of this microbe's potential to raise existential questions across the entire spectrum of human endeavor, the application of an early treatment intervention initiative may represent a crucial tool in our defensive strategy. This strategy is driven by evidence-based medical practice principles, those not likely to become antiquated, given the molecular diversity and mutational evolution of this very clever "world traveler".
Collapse
Affiliation(s)
- Elliot M Frohman
- Laboratory of Neuroimmunology, Professor Lawrence Steinman, Stanford University School of Medicine, United States of America.
| | | | - Adriana Rodriguez
- Department of Emergency Medicine, Cook Children's Medical Center, Ft. Worth, TX, United States of America
| | - Robert Glanzman
- Clene Nanomedicine, Inc., Salt Lake City, UT 84121, United States of America.
| | - Sarah Rugheimer
- Department of Physics, University Oxford, Oxford OX1 3PU, UK.
| | - Oleg Komogortsev
- Department of Computer Sciences, Texas State University, San Marcos, TX, United States of America.
| | - Scott S Zamvil
- Department of Neurology and Program in Immunology, University of California San Francisco, San Francisco, CA, United States of America.
| | - Roberto Alejandro Cruz
- Department of Neurology, Doctor's Health at Renaissance Health Neurology Institute, United States of America; Department of Neurology, University of Texas Rio Grande Valley School of Medicine, United States of America.
| | - Thomas C Varkey
- Dell Medical School, University of Texas at Austin, United States of America.
| | | | | | - Matthew S Parsons
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, United States of America; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States of America.
| | | | - Teresa C Frohman
- Laboratory of Neuroimmunology, Professor Lawrence Steinman, Stanford University School of Medicine, United States of America.
| |
Collapse
|
39
|
Singh L, Bajaj S, Gadewar M, Verma N, Ansari MN, Saeedan AS, Kaithwas G, Singh M. Modulation of Host Immune Response Is an Alternative Strategy to Combat SARS-CoV-2 Pathogenesis. Front Immunol 2021; 12:660632. [PMID: 34305892 PMCID: PMC8296981 DOI: 10.3389/fimmu.2021.660632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023] Open
Abstract
The novel SARS-CoV-2virus that caused the disease COVID-19 is currently a pandemic worldwide. The virus requires an alveolar type-2 pneumocyte in the host to initiate its life cycle. The viral S1 spike protein helps in the attachment of the virus on toACE-2 receptors present on type-2 pneumocytes, and the S2 spike protein helps in the fusion of the viral membrane with the host membrane. Fusion of the SARS-CoV-2virus and host membrane is followed by entry of viral RNA into the host cells which is directly translated into the replicase-transcriptase complex (RTC) following viral RNA and structural protein syntheses. As the virus replicates within type-2 pneumocytes, the host immune system is activated and alveolar macrophages start secreting cytokines and chemokines, acting as an inflammatory mediator, and chemotactic neutrophils, monocytes, natural NK cells, and CD8+ T cells initiate the local phagocytosis of infected cells. It is not the virus that kills COVID-19 patients; instead, the aberrant host immune response kills them. Modifying the response from the host immune system could reduce the high mortality due to SARS-CoV-2 infection. The present study examines the viral life cycle intype-2 pneumocytes and resultant host immune response along with possible therapeutic targets.
Collapse
Affiliation(s)
- Lakhveer Singh
- School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | - Sakshi Bajaj
- Chaudhary Devi Lal College of Pharmacy, Yamuna Nagar, India
| | - Manoj Gadewar
- School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | - Nitin Verma
- School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S. Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| |
Collapse
|
40
|
Cao TT, Zhang GQ, Pellegrini E, Zhao Q, Li J, Luo LJ, Pan HQ. COVID-19 and its effects on the digestive system. World J Gastroenterol 2021; 27:3502-3515. [PMID: 34239265 PMCID: PMC8240057 DOI: 10.3748/wjg.v27.i24.3502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by infection of the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with typical respiratory symptoms. SARS-CoV-2 invades not only the respiratory system, but also other organs expressing the cell surface receptor angiotensin converting enzyme 2. In particular, the digestive system is a susceptible target of SARS-CoV-2. Gastrointestinal symptoms of COVID-19 include anorexia, nausea, vomiting, diarrhea, abdominal pain, and liver damage. Patients with digestive damage have a greater chance of progressing to severe or critical illness, a poorer prognosis, and a higher risk of death. This paper aims to summarize the digestive system symptoms of COVID-19 and discuss fecal-oral contagion of SARS-CoV-2. It also describes the characteristics of inflammatory bowel disease patients with SARS-CoV-2 infection and discusses precautions for preventing SARS-CoV-2 infection during gastrointestinal endoscopy procedures. Improved attention to digestive system abnormalities and gastrointestinal symptoms of COVID-19 patients may aid health care providers in the process of clinical diagnosis, treatment, and epidemic prevention and control.
Collapse
Affiliation(s)
- Ting-Ting Cao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Gu-Qin Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | | | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jin Li
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
| | - Lin-jie Luo
- Department of Experimental Radiation Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Hua-Qin Pan
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei Province, China
| |
Collapse
|
41
|
Peter AE, Sandeep BV, Rao BG, Kalpana VL. Nanotechnology to the Rescue: Treatment Perspective for the Immune Dysregulation Observed in COVID-19. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The study of the use of nanotechnology for drug delivery has been extensive. Nanomedical approaches for therapeutics; drug delivery in particular is superior to conventional methods in that it allows for controlled targeted delivery and release, higher stability, extended circulation time, minimal side-effects, and improved pharmacokinetic clearance (of the drug) form the body, to name a few. The magnitude of COVID-19, the current ongoing pandemic has been severe; it has caused widespread the loss of human life. In individuals with severe COVID-19, immune dysregulation and a rampant state of hyperinflammation is observed. This kind of an immunopathological response is detrimental and results in rapid disease progression, development of secondary infections, sepsis and can be fatal. Several studies have pin-pointed the reason for this immune dysregulation; deviations in the signaling pathways involved in the mediation and control of immune responses. In severe COVID-19 patients, many signaling cascades including JAK/STAT, NF-κB, MAPK/ERK, TGF beta, VEGF, and Notch signaling were found to be either upregulated or inactivated. Targeting these aberrant signaling pathways in conjunction with antiviral therapy will effectuate mitigation of the hyperinflammation, hypercytokinemia, and promote faster recovery. The science of the use of nanocarriers as delivery agents to modulate these signaling pathways is not new; it has already been explored for other inflammatory diseases and in particular, cancer therapy. Numerous studies have evaluated the efficacy and potential of nanomedical approaches to modulate these signaling pathways and have been met with positive results. A treatment regime, that includes nanotherapeutics and antiviral therapies will prove effective and holds great promise for the successful treatment of COVID-19. In this article, we review different nanomedical approaches already studied for targeting aberrant signaling pathways, the host immune response to SARS-CoV-2, immunopathology and the dysregulated signaling pathways observed in severe COVID-19 and the current treatment methods in use for targeting signaling cascades in COVID-19. We then conclude by suggesting that the use of nanomedical drug delivery systems for targeting signaling pathways can be extended to effectively target the aberrant signaling pathways in COVID-19 for best treatment results.
Collapse
|
42
|
Zhao S, Huang Z, Zeng H, Chen Z, Luo F, Zhang C, Song B. Combining initial chest CT with clinical variables in differentiating coronavirus disease 2019 (COVID-19) pneumonia from influenza pneumonia. Sci Rep 2021; 11:6422. [PMID: 33742041 PMCID: PMC7979799 DOI: 10.1038/s41598-021-85779-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 03/05/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has spread in more than 100 countries and regions around the world, raising grave global concerns. COVID-19 has a similar pattern of infection, clinical symptoms, and chest imaging findings to influenza pneumonia. In this retrospective study, we analysed clinical and chest CT data of 24 patients with COVID-19 and 79 patients with influenza pneumonia. Univariate analysis demonstrated that the temperature, systolic pressure, cough and sputum production could distinguish COVID-19 from influenza pneumonia. The diagnostic sensitivity and specificity for the clinical features are 0.783 and 0.747, and the AUC value is 0.819. Univariate analysis demonstrates that nine CT features, central-peripheral distribution, superior-inferior distribution, anterior-posterior distribution, patches of GGO, GGO nodule, vascular enlargement in GGO, air bronchogram, bronchiectasis within focus, interlobular septal thickening, could distinguish COVID-19 from influenza pneumonia. The diagnostic sensitivity and specificity for the CT features are 0.750 and 0.962, and the AUC value is 0.927. Finally, a multivariate logistic regression model combined the variables from the clinical variables and CT features models was made. The combined model contained six features: systolic blood pressure, sputum production, vascular enlargement in the GGO, GGO nodule, central-peripheral distribution and bronchiectasis within focus. The diagnostic sensitivity and specificity for the combined features are 0.87 and 0.96, and the AUC value is 0.961. In conclusion, some CT features or clinical variables can differentiate COVID-19 from influenza pneumonia. Moreover, CT features combined with clinical variables had higher diagnostic performance.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Hanjiang Zeng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhixia Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongwei Zhang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
43
|
di Bari I, Franzin R, Picerno A, Stasi A, Cimmarusti MT, Di Chiano M, Curci C, Pontrelli P, Chironna M, Castellano G, Gallone A, Sabbà C, Gesualdo L, Sallustio F. Severe acute respiratory syndrome coronavirus 2 may exploit human transcription factors involved in retinoic acid and interferon-mediated response: a hypothesis supported by an in silico analysis. New Microbes New Infect 2021; 41:100853. [PMID: 33680474 PMCID: PMC7912353 DOI: 10.1016/j.nmni.2021.100853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19), resulting in acute respiratory disease, is a worldwide emergency. Because recently it has been found that SARS-CoV is dependent on host transcription factors (TF) to express the viral genes, efforts are required to understand the molecular interplay between virus and host response. By bioinformatic analysis, we investigated human TF that can bind the SARS-CoV-2 sequence and can be involved in viral transcription. In particular, we analysed the key role of TF involved in interferon (IFN) response. We found that several TF could be induced by the IFN antiviral response, specifically some induced by IFN-stimulated gene factor 3 (ISGF3) and by unphosphorylated ISGF3, which were found to promote the transcription of several viral open reading frame. Moreover, we found 22 TF binding sites present only in the sequence of virus infecting humans but not bat coronavirus RaTG13. The 22 TF are involved in IFN, retinoic acid signalling and regulation of transcription by RNA polymerase II, thus facilitating its own replication cycle. This mechanism, by competition, may steal the human TF involved in these processes, explaining SARS-CoV-2's disruption of IFN-I signalling in host cells and the mechanism of the SARS retinoic acid depletion syndrome leading to the cytokine storm. We identified three TF binding sites present exclusively in the Brazilian SARS-CoV-2 P.1 variant that may explain the higher severity of the respiratory syndrome. These data shed light on SARS-CoV-2 dependence from the host transcription machinery associated with IFN response and strengthen our knowledge of the virus's transcription and replicative activity, thus paving the way for new targets for drug design and therapeutic approaches.
Collapse
Affiliation(s)
- I di Bari
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - R Franzin
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - A Picerno
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - A Stasi
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - M T Cimmarusti
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - M Di Chiano
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - C Curci
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - P Pontrelli
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - M Chironna
- Department of Biomedical Sciences and Human Oncology- Hygiene Section, University of Bari, Bari, Italy
| | - G Castellano
- Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - A Gallone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - C Sabbà
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | - L Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - F Sallustio
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|