1
|
Chen Y, Ni B, Yang C, Pan J, Zhang J. Long-term Helicobacter pylori infection is associated with an increased risk of carotid plaque formation: a retrospective cohort study. Front Cardiovasc Med 2024; 11:1476435. [PMID: 39512368 PMCID: PMC11540777 DOI: 10.3389/fcvm.2024.1476435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Background Cardiovascular disease significantly impacts human health. The development of carotid plaques elevates the risk of cardiovascular disease, while the influence of Helicobacter pylori (H. pylori) on carotid plaques remains a subject of debate. This study aimed to investigate the association between H. pylori infection and carotid plaque using a cohort study. Methods The study included individuals who underwent multiple physical examinations at the Health Examination Center of Taizhou Hospital. The relationship between H. pylori and carotid plaque was explored using multifactorial logistic regression analysis. Participants were categorized into groups based on their H. pylori infection status at the initial and final examinations, comprising persistent infection, persistent negative, new infection, and eradication infection, to analyze variations in carotid plaque prevalence among these groups. Results In both univariate and multifactorial regression analyses, H. pylori was identified as a risk factor for carotid plaque development. Moreover, when compared to the persistent negative group, both the new infection and persistent infection groups showed a notable increase in the risk of carotid plaque. Additionally, individuals in the persistent infection group exhibited higher blood pressure and blood glucose levels than those in the persistent negative group. Likewise, there was a discrepancy in the impact of insulin resistance on carotid plaque between the H. pylori positive and negative groups. Conclusion H. pylori is a risk factor for carotid plaque, with a long-term infection associated with an increased risk of carotid plaque formation. In addition, H. pylori promoting carotid plaque formation may be related to blood pressure, blood glucose, and insulin resistance.
Collapse
Affiliation(s)
- Yi Chen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Bingqian Ni
- Department of Otolaryngology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Chaoyu Yang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jingjing Pan
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China
| | - Jinshun Zhang
- Home Ward, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
2
|
Ibrahim T, Russel W, Getachew A, Zemene E, Cheneke W, Taye B. Association between infection with Helicobacter pylori and metabolic syndrome among diabetic patients attending Jimma medical center in Jimma city, Ethiopia: a cross-sectional study. BMC Infect Dis 2024; 24:922. [PMID: 39237908 PMCID: PMC11378407 DOI: 10.1186/s12879-024-09840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Previous studies have implicated the role of H. pylori infection in developing the metabolic syndrome. However, findings remain contradictory, and data from developing countries are scarce. METHODS We employed a cross-sectional study design to assess the relationship between H. pylori infection and metabolic syndrome among diabetic patients attending Jimma Hospital, Ethiopia. An interviewer-led questionnaire administered to study participants provided information on sociodemographic factors, and medical records were used to obtain medical history information. Metabolic parameters, including plasma glucose, triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), body-mass index (BMI), waist circumference (WC), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were collected. H. pylori infection status was assessed using IgG Enzyme-linked Immunosorbent Assays (ELISA). The effect of H. pylori infection on metabolic syndrome and metabolic parameters was determined using multivariate linear and logistic regressions. RESULTS We found H. pylori infection status was positively but not significantly associated with metabolic syndrome (AOR = 1.507, 95% CI: 0.570-3.981, p = 0.408). When the analysis was restricted to individual metabolic parameters, H. pylori positivity was significantly associated with lower HDL-c and higher SB, respectively. CONCLUSIONS Our result confirms that individual metabolic parameters, not an overall metabolic syndrome, are significantly associated with H. pylori infection. Future studies should examine the relationship between H. pylori and metabolic syndrome, considering gastrointestinal conditions such as GERD, GU, and DU.
Collapse
Affiliation(s)
- Temam Ibrahim
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - William Russel
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Aklilu Getachew
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Endalew Zemene
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Waqtola Cheneke
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Bineyam Taye
- Department of Biology, Colgate University, Hamilton, NY, USA.
| |
Collapse
|
3
|
Sadighi A, Aghamohammadpour Z, Sadeghpour Heravi F, Somi MH, Masnadi Shirazi Nezhad K, Hosseini S, Bahman Soufiani K, Ebrahimzadeh Leylabadlo H. The protective effects of Helicobacter pylori: A comprehensive review. JOURNAL OF RESEARCH IN CLINICAL MEDICINE 2024; 12:17. [DOI: 10.34172/jrcm.34509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2025] Open
Abstract
Previous reports have estimated that approximately half of the world’s population is infected with Helicobacter pylori, the most prevalent infectious agent responsible for gastrointestinal illnesses. Due to the life-threatening effects of H. pylori infections, numerous studies have focused on developing medical therapies for H. pylori infections, while the commensal relationship and positive impacts of this bacterium on overall human health have been largely overlooked. The inhibitory efficacy of H. pylori on the progression of several chronic inflammatory disorders and gastrointestinal diseases has recently raised concerns about whether this bacterium should be eradicated in affected individuals or maintained in an appropriate balance depending on the patient’s condition. This review investigates the beneficial effects of H. pylori in preventing various diseases and discusses the potential association of conditions such as inflammatory disorders with the absence of H. pylori.
Collapse
Affiliation(s)
- Ali Sadighi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghamohammadpour
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Samaneh Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Katayoun Bahman Soufiani
- Department of Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | | |
Collapse
|
4
|
Barrett KA, Kassama FJ, Surks W, Mulholland AJ, Moulton KD, Dube DH. Helicobacter pylori glycan biosynthesis modulates host immune cell recognition and response. Front Cell Infect Microbiol 2024; 14:1377077. [PMID: 38572314 PMCID: PMC10987845 DOI: 10.3389/fcimb.2024.1377077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The pathogenic bacterium Helicobacter pylori has evolved glycan-mediated mechanisms to evade host immune defenses. This study tests the hypothesis that genetic disruption of H. pylori glycan biosynthesis alters immune recognition and response by human gastric epithelial cells and monocyte-derived dendritic cells. Methods To test this hypothesis, human cell lines were challenged with wildtype H. pylori alongside an array of H. pylori glycosylation mutants. The relative levels of immune response were measured via immature dendritic cell maturation and cytokine secretion. Results Our findings indicate that disruption of lipopolysaccharide biosynthesis diminishes gastric cytokine production, without disrupting dendritic cell recognition and activation. In contrast, variable immune responses were observed in protein glycosylation mutants which prompted us to test the hypothesis that phase variation plays a role in regulating bacterial cell surface glycosylation and subsequent immune recognition. Lewis antigen presentation does not correlate with extent of immune response, while the extent of lipopolysaccharide O-antigen elaboration does. Discussion The outcomes of this study demonstrate that H. pylori glycans modulate the host immune response. This work provides a foundation to pursue immune-based tailoring of bacterial glycans towards modulating immunogenicity of microbial pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
5
|
Martini C, Araba V, Beniani M, Armoa Ortiz P, Simmons M, Chalbi M, Mellouk A, El Bakkouri M, Calmettes C. Unraveling the crystal structure of the HpaA adhesin: insights into cell adhesion function and epitope localization of a Helicobacter pylori vaccine candidate. mBio 2024; 15:e0295223. [PMID: 38376163 PMCID: PMC10936181 DOI: 10.1128/mbio.02952-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Helicobacter pylori is a bacterium that exhibits strict host restriction to humans and non-human primates, and the bacterium is widely acknowledged as a significant etiological factor in the development of chronic gastritis, peptic ulcers, and gastric cancers. The pathogenic potential of this organism lies in its adeptness at colonizing the gastric mucosa, which is facilitated by a diverse repertoire of virulence factors, including adhesins that promote the attachment of the bacteria to the gastric epithelium. Among these adhesins, HpaA stands out due to its conserved nature and pivotal role in establishing H. pylori colonization. Moreover, this lipoprotein holds promise as an antigen for the development of effective H. pylori vaccines, thus attracting considerable attention for in-depth investigations into its molecular function and identification of binding determinants. Here, we present the elucidation of the crystallographic structure of HpaA at 2.9 Å resolution. The folding adopts an elongated protein shape, which is distinctive to the Helicobacteraceae family, and features an apical domain extension that plays a critical role in the cell-adhesion activity on gastric epithelial cells. Our study also demonstrates the ability of HpaA to induce TNF-α expression in macrophages, highlighting a novel role as an immunoregulatory effector promoting the pro-inflammatory response in vitro. These findings not only contribute to a deeper comprehension of the multifaceted role of HpaA in H. pylori pathogenesis but also establish a fundamental basis for the design and development of structure-based derivatives, aimed at enhancing the efficacy of H. pylori vaccines. IMPORTANCE Helicobacter pylori is a bacterium that can cause chronic gastritis, peptic ulcers, and gastric cancers. The bacterium adheres to the lining of the stomach using proteins called adhesins. One of these proteins, HpaA, is particularly important for H. pylori colonization and is considered a promising vaccine candidate against H. pylori infections. In this work, we determined the atomic structure of HpaA, identifying a characteristic protein fold to the Helicobacter family and delineating specific amino acids that are crucial to support the attachment to the gastric cells. Additionally, we discovered that HpaA can trigger the production of TNF-α, a proinflammatory molecule, in macrophages. These findings provide valuable insights into how H. pylori causes disease and suggest that HpaA has a dual role in both attachment and immune activation. This knowledge could contribute to the development of improved vaccine strategies for preventing H. pylori infections.
Collapse
Affiliation(s)
- Cyrielle Martini
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Victoria Araba
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Meriem Beniani
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Paula Armoa Ortiz
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Mimi Simmons
- National Research Council of Canada (NRC), Human Health Therapeutics Research Center, Montréal, Québec, Canada
| | - Mariem Chalbi
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Abdelkader Mellouk
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Majida El Bakkouri
- National Research Council of Canada (NRC), Human Health Therapeutics Research Center, Montréal, Québec, Canada
| | - Charles Calmettes
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Structure, and Engineering, Québec city, Québec, Canada
| |
Collapse
|
6
|
Anthofer M, Windisch M, Haller R, Ehmann S, Wrighton S, Miller M, Schernthanner L, Kufferath I, Schauer S, Jelušić B, Kienesberger S, Zechner EL, Posselt G, Vales-Gomez M, Reyburn HT, Gorkiewicz G. Immune evasion by proteolytic shedding of natural killer group 2, member D ligands in Helicobacter pylori infection. Front Immunol 2024; 15:1282680. [PMID: 38318189 PMCID: PMC10839011 DOI: 10.3389/fimmu.2024.1282680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background Helicobacter pylori (H. pylori) uses various strategies that attenuate mucosal immunity to ensure its persistence in the stomach. We recently found evidence that H. pylori might modulate the natural killer group 2, member 2 (NKG2D) system. The NKG2D receptor and its ligands are a major activation system of natural killer and cytotoxic T cells, which are important for mucosal immunity and tumor immunosurveillance. The NKG2D system allows recognition and elimination of infected and transformed cells, however viruses and cancers often subvert its activation. Here we aimed to identify a potential evasion of the NKG2D system in H. pylori infection. Methods We analyzed expression of NKG2D system genes in gastric tissues of H. pylori gastritis and gastric cancer patients, and performed cell-culture based infection experiments using H. pylori isogenic mutants and epithelial and NK cell lines. Results In biopsies of H. pylori gastritis patients, NKG2D receptor expression was reduced while NKG2D ligands accumulated in the lamina propria, suggesting NKG2D evasion. In vitro, H. pylori induced the transcription and proteolytic shedding of NKG2D ligands in stomach epithelial cells, and these effects were associated with specific H. pylori virulence factors. The H. pylori-driven release of soluble NKG2D ligands reduced the immunogenic visibility of infected cells and attenuated the cytotoxic activity of effector immune cells, specifically the anti-tumor activity of NK cells. Conclusion H. pylori manipulates the NKG2D system. This so far unrecognized strategy of immune evasion by H. pylori could potentially facilitate chronic bacterial persistence and might also promote stomach cancer development by allowing transformed cells to escape immune recognition and grow unimpeded to overt malignancy.
Collapse
Affiliation(s)
- Margit Anthofer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Markus Windisch
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Rosa Haller
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Sandra Ehmann
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Michael Miller
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Iris Kufferath
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Barbara Jelušić
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Interuniversity Cooperation, BioTechMed-Graz, Graz, Austria
| | - Ellen L. Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Interuniversity Cooperation, BioTechMed-Graz, Graz, Austria
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, Madrid, Spain
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, Madrid, Spain
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Graz, Austria
- Interuniversity Cooperation, BioTechMed-Graz, Graz, Austria
| |
Collapse
|
7
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
8
|
Chen Y, You N, Yang C, Zhang J. Helicobacter pylori infection increases the risk of carotid plaque formation: Clinical samples combined with bioinformatics analysis. Heliyon 2023; 9:e20037. [PMID: 37809782 PMCID: PMC10559771 DOI: 10.1016/j.heliyon.2023.e20037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Infection with Helicobacter pylori (H. pylori) may increase atherosclerosis, which can lead to carotid plaque formation. Our study examined the relationship between H. pylori infection and carotid plaque formation, and its underlying mechanisms. Methods A total of 36,470 people who underwent physical examination in Taizhou Hospital Health Examination Center from June 2017 to June 2022 were included in this study. All people participated in the urease test, neck ultrasound, blood pressure detection, anthropometric measurement and biochemical laboratory examination. In addition, the GSE27411 and GSE28829 datasets in the Gene Expression Omnibus (GEO) database were used to analyze the mechanism of H. pylori infection and atherosclerosis progression. Results H. pylori infection, sex, age, blood lipids, blood pressure, fasting blood glucose, glycated hemoglobin and body mass index were risk factors for carotid plaque formation. An independent risk factor was still evident in the multivariate logistic regression analysis, indicating H. pylori infection. Furthermore, after weighted gene coexpression network analysis (WGCNA), we discovered 555 genes linked to both H. pylori infection and the advancement of atherosclerosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed a strong correlation between these genes and immunity, infection, and immune disorders. SsGSEA analysis showed that H. pylori infection and atherosclerosis included changes in the immune microenvironment. Finally, three genes MS4A6A, ADAMDEC1 and AQP9 were identified to be involved in the formation of atherosclerosis after H. pylori infection. Conclusion: Our research affirms that H. pylori is a unique contributor to the formation of carotid plaque, examines the immune microenvironment associated with H. pylori infection and advanced carotid atherosclerosis, and offers fresh perspectives on how H. pylori infection leads to atherosclerosis.
Collapse
Affiliation(s)
- Yi Chen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Ningning You
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Chaoyu Yang
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jinshun Zhang
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
9
|
Malli C, Pandit L, D’Cunha A, Sudhir A. Helicobacter pylori infection may influence prevalence and disease course in myelin oligodendrocyte glycoprotein antibody associated disorder (MOGAD) similar to MS but not AQP4-IgG associated NMOSD. Front Immunol 2023; 14:1162248. [PMID: 37304259 PMCID: PMC10250711 DOI: 10.3389/fimmu.2023.1162248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 06/13/2023] Open
Abstract
Background Helicobacter pylori (Hp) persists after colonizing the gut in childhood, and potentially regulates host immune system through this process. Earlier studies have shown that Hp infection in childhood, may protect against MS in later life. Such an association was not seen with AQP4-IgG positive NMOSD, while the association with MOGAD is unclear. Objective To evaluate frequency of Hp IgG among patients with MOGAD, MS, NMOSD and matched controls and its effect on disease course. To ascertain whether childhood socio economic factors were linked to prevalence of Hp infection. Methods In all, 99 patients diagnosed to have MOGAD, 99 AQP4 IgG+ NMOSD, 254MS and 243 matched controls were included. Patient demographics, diagnosis, age at disease onset, duration and the last recorded expanded disability status scale (EDSS) were obtained from our records. Socioeconomic and educational status was queried using a previously validated questionnaire. Serum HpIgG was detected using ELISA kits (Vircell, Spain). Result Frequency of Hp IgG was significantly lower among MOGAD (28.3% vs 44%, p-0.007) and MS (21.2% vs 44%, p-0.0001) but not AQP4-IgG+ NMOSD patients (42.4% vs 44%, p-0.78) when compared to controls. Frequency of Hp IgG in MOGAD & MS patients combined (MOGAD-MS) was significantly lower than those with NMOSD (23.2% vs 42.4%, p- 0.0001). Seropositive patients with MOGAD- MS were older (p-0.001. OR -1.04, 95% CI- 1.01- 1.06) and had longer disease duration (p- 0.04, OR- 1.04, 95% CI- 1.002- 1.08) at time of testing. Educational status was lower among parents/caregivers of this study cohort (p- 0.001, OR -2.34, 95% CI- 1.48-3.69) who were Hp IgG+. Conclusions In developing countries Hp infection may be a significant environmental factor related to autoimmune demyelinating CNS disease. Our preliminary data suggests that Hp may exert a differential influence - a largely protective role for MS-MOGAD but not NMOSD and may influence disease onset and course. This differential response maybe related to immuno-pathological similarities between MOGAD and MS in contrast to NMOSD. Our study further underscores the role of Hp as a surrogate marker for poor gut hygiene in childhood and its association with later onset of autoimmune diseases.
Collapse
|
10
|
Helicobacter pylori Chronic-Stage Inflammation Undergoes Fluctuations That Are Altered in tlpA Mutants. Infect Immun 2023; 91:e0032222. [PMID: 36533917 PMCID: PMC9872690 DOI: 10.1128/iai.00322-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori colonizes half of the world's population and is responsible for a significant disease burden by causing gastritis, peptic ulcers, and gastric cancer. The development of host inflammation drives these diseases, but there are still open questions in the field about how H. pylori controls this process. We characterized H. pylori inflammation using an 8-month mouse infection time course and comparison of the wild type (WT) and a previously identified mutant lacking the TlpA chemoreceptor that causes elevated inflammation. Our work shows that H. pylori chronic-stage corpus inflammation undergoes surprising fluctuations, with changes in Th17 and eosinophil numbers. The H. pylori tlpA mutant changed the inflammation temporal characteristics, resulting in different inflammation from the wild type at some time points. tlpA mutants have equivalent total and gland colonization in late-stage infections. During early infection, in contrast, they show elevated gland and total colonization compared to those by WT. Our results suggest the chronic inflammation setting is dynamic and may be influenced by colonization properties of early infection.
Collapse
|
11
|
Mărginean CD, Mărginean CO, Meliț LE. Helicobacter pylori-Related Extraintestinal Manifestations—Myth or Reality. CHILDREN 2022; 9:children9091352. [PMID: 36138661 PMCID: PMC9497822 DOI: 10.3390/children9091352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
It is well documented that Helicobacter pylori (H. pylori) can cause both gastrointestinal and extraintestinal manifestations. The latter one represents a major burden in terms of diagnosis and treatment. H. pylori-associated systemic subclinical inflammation is mostly responsible for the development of extraintestinal manifestations, and its early eradication might result in preventing all adverse events related to their occurrence. Thus, it was suggested that H. pylori might be associated with iron deficiency anemia, thrombocytopenia (immune thrombocytopenic purpura), Schonlein Henoch purpura, failure to thrive, vitamin B12 deficiency, diabetes mellitus, body mass index, cardiovascular diseases, as well as certain neurological conditions. Nevertheless, studies showed both pros and cons in terms of the role of H. pylori in the development of previously mentioned clinical entity underlining the crucial need for further studies on these topics. Although most of these extraintestinal manifestations occur during adulthood, we must not forget that H. pylori infection is acquired mainly during childhood, and thus its early diagnosis and eradication might represent the cornerstone in the prevention of H. pylori-induced inflammatory status and consequently of all related extraintestinal conditions.
Collapse
Affiliation(s)
- Cristian Dan Mărginean
- Department of Pediatrics I, County Emergency Hospital Târgu Mureș, Gheorghe Marinescu Street No. 50, 540136 Târgu Mureș, Romania
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
- Correspondence:
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
| |
Collapse
|
12
|
Li L, Du Y, Wang Y, He N, Wang B, Zhang T. Atractylone Alleviates Ethanol-Induced Gastric Ulcer in Rat with Altered Gut Microbiota and Metabolites. J Inflamm Res 2022; 15:4709-4723. [PMID: 35996682 PMCID: PMC9392477 DOI: 10.2147/jir.s372389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Gastric ulcer (GU) is the most common multifactor gastrointestinal disorder affecting millions of people worldwide. There is evidence that gut microbiota is closely related to the development of GU. Atractylone (ATR) has been reported to possess potential biological activities, but research on ATR alleviating GU injury is unprecedented. Methods Helicobacter pylori (H. pylori)-induced GU model in zebrafish and ethanol-induced acute GU model in rat were established to evaluate the anti-inflammatory and ulcer inhibitory effects of ATR. Then, 16S rRNA sequencing and metabolomics analysis were performed to investigate the effect of ATR on the microbiota and metabolites in rat feces and their correlation. Results Therapeutically, ATR inhibited H. pylori-induced gastric mucosal injury in zebrafish. In the ulceration model of rat, ATR mitigated the gastric lesions damage caused by ethanol, decreased the ulcer area, and reduced the production of inflammatory factors. Additionally, ATR alleviated the gastric oxidative stress injury by increasing the activity of superoxide dismutase (SOD) and decreasing the level of malondialdehyde (MDA). Furthermore, ATR played a positive role in relieving ulcer through reshaping gut microbiota composition including Parabacteroides and Bacteroides and regulating the levels of metabolites including amino acids, short-chain fatty acids (SCFAs), and bile acids. Conclusion Our work sheded light on the mechanism of ATR treating GU from the perspective of the gut microbiota and explored the correlation between gut microbiota, metabolites, and host phenotype.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yang Wang
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd, Shanghai, People’s Republic of China
| | - Ning He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, People’s Republic of China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Fakharian F, Asgari B, Nabavi-Rad A, Sadeghi A, Soleimani N, Yadegar A, Zali MR. The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Front Cell Infect Microbiol 2022; 12:953718. [PMID: 36046747 PMCID: PMC9423097 DOI: 10.3389/fcimb.2022.953718] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
The human gut microbiota are critical for preserving the health status because they are required for digestion and nutrient acquisition, the development of the immune system, and energy metabolism. The gut microbial composition is greatly influenced by the colonization of the recalcitrant pathogen Helicobacter pylori (H. pylori) and the conventional antibiotic regimens that follow. H. pylori is considered to be the main microorganism in gastric carcinogenesis, and it appears to be required for the early stages of the process. However, a non-H. pylori microbiota profile is also suggested, primarily in the later stages of tumorigenesis. On the other hand, specific groups of gut microbes may produce beneficial byproducts such as short-chain fatty acids (acetate, butyrate, and propionate) that can modulate inflammation and tumorigenesis pathways. In this review, we aim to present how H. pylori influences the population of the gut microbiota to modify the host immunity and trigger the development of gastric carcinogenesis. We will also highlight the effect of the gut microbiota on immunotherapeutic approaches such as immune checkpoint blockade in cancer treatment to present a perspective for further development of innovative therapeutic paradigms to prevent the progression of H. pylori-induced stomach cancer.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoush Asgari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Abbas Yadegar, ;
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Vahidi S, Mirzajani E, Norollahi SE, Aziminezhad M, Samadani AA. Performance of DNA Methylation on the Molecular Pathogenesis of Helicobacter pylori in Gastric Cancer; targeted therapy approach. J Pharmacopuncture 2022; 25:88-100. [PMID: 35837145 PMCID: PMC9240405 DOI: 10.3831/kpi.2022.25.2.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, Gene Environment Interactions in Cardiovascular Pathophysiology (IGE-PCV), University of Lorraine, Nancy, France
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
15
|
White JR, Banks M. Identifying the pre-malignant stomach: from guidelines to practice. Transl Gastroenterol Hepatol 2022; 7:8. [PMID: 35243117 PMCID: PMC8826400 DOI: 10.21037/tgh.2020.03.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/14/2019] [Indexed: 10/24/2023] Open
Abstract
Gastric adenocarcinoma develops after stepwise progression from normal mucosa through to adenocarcinoma most commonly after being triggered by Helicobacter pylori (H. pylori) infection. As disease is often diagnosed late, the prognosis for gastric adenocarcinoma is poor. Identifying pre-malignant mucosal lesions such as atrophic gastritis, intestinal metaplasia and dysplasia is one strategy adopted by clinicians to reduce cancer related mortality. Surveillance of high-risk individuals and endoscopic resection of dysplastic lesions is recommended by international and UK guidelines. The early detection and endoscopic management reduce the need for invasive surgery. The advancement of image enhanced endoscopy technology, endoscopic training, risk stratification and histological assessment has proven pivotal to the management of pre-malignant lesions. In this review we outline the development of a high-risk stomach, endoscopic assessment and review practical guidelines on identifying pre-malignant gastric mucosa.
Collapse
Affiliation(s)
- Jonathan R. White
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, The University of Nottingham, Nottingham, UK
| | - Matthew Banks
- University College London Hospital, University College London Hospitals NHS Foundation Trust, London, UK
- Research Department of Targeted Intervention, University College London, London, UK
| |
Collapse
|
16
|
Silvan JM, Guerrero-Hurtado E, Gutiérrez-Docio A, Alarcón-Cavero T, Prodanov M, Martinez-Rodriguez AJ. Olive-Leaf Extracts Modulate Inflammation and Oxidative Stress Associated with Human H. pylori Infection. Antioxidants (Basel) 2021; 10:2030. [PMID: 34943133 PMCID: PMC8698654 DOI: 10.3390/antiox10122030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the major human pathogens and the main cause of pathological damages that can progress from chronic gastritis to gastric cancer. During the colonization of gastric mucosa, this bacterium provokes a strong inflammatory response and subsequent oxidative process, which are associated with tissue damage. Therefore, the objective of this research was to evaluate the ability of two olive-leaf extracts (E1 and E2) to modulate the inflammatory response and oxidative stress in H. pylori-infected human gastric AGS cells. The obtained results showed that both extracts significantly decreased interleukin-8 (IL-8) secretion and reactive oxygen species (ROS) production in human gastric AGS cells. Both extracts also showed antibacterial activity against different H. pylori strains. HPLC-PAD-MS characterization demonstrated that extract E1 was mainly composed of highly hydrophilic compounds, such as hydroxytyrosol (HT) and its glucosides, and it was the most effective extract as an antibacterial agent. In contrast, extract E2 was composed mostly of moderately hydrophilic compounds, such as oleuropein (OLE), and it was more effective than extract E1 as an anti-inflammatory agent. Both extracts exhibited similar potential to decrease ROS production. These results show the importance of standardizing the extract composition according to the bioactive properties that should be potentiated.
Collapse
Affiliation(s)
- Jose Manuel Silvan
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), Cantoblanco Campus, Autonomous University of Madrid, C/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Esperanza Guerrero-Hurtado
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CEI, CSIC-UAM), Cantoblanco Campus, Autonomous University of Madrid, C/Nicolás Cabrera 9, 28049 Madrid, Spain; (E.G.-H.); (A.G.-D.); (M.P.)
| | - Alba Gutiérrez-Docio
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CEI, CSIC-UAM), Cantoblanco Campus, Autonomous University of Madrid, C/Nicolás Cabrera 9, 28049 Madrid, Spain; (E.G.-H.); (A.G.-D.); (M.P.)
| | - Teresa Alarcón-Cavero
- Microbiology Department, Hospital Universitario de La Princesa, 28006 Madrid, Spain;
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Marin Prodanov
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CEI, CSIC-UAM), Cantoblanco Campus, Autonomous University of Madrid, C/Nicolás Cabrera 9, 28049 Madrid, Spain; (E.G.-H.); (A.G.-D.); (M.P.)
| | - Adolfo J. Martinez-Rodriguez
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), Cantoblanco Campus, Autonomous University of Madrid, C/Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
17
|
Caulerpin Mitigates Helicobacter pylori-Induced Inflammation via Formyl Peptide Receptors. Int J Mol Sci 2021; 22:ijms222313154. [PMID: 34884957 PMCID: PMC8658387 DOI: 10.3390/ijms222313154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
The identification of novel strategies to control Helicobacter pylori (Hp)-associated chronic inflammation is, at present, a considerable challenge. Here, we attempt to combat this issue by modulating the innate immune response, targeting formyl peptide receptors (FPRs), G-protein coupled receptors that play key roles in both the regulation and the resolution of the innate inflammatory response. Specifically, we investigated, in vitro, whether Caulerpin—a bis-indole alkaloid isolated from algae of the genus Caulerpa—could act as a molecular antagonist scaffold of FPRs. We showed that Caulerpin significantly reduces the immune response against Hp culture filtrate, by reverting the FPR2-related signaling cascade and thus counteracting the inflammatory reaction triggered by Hp peptide Hp(2–20). Our study suggests Caulerpin to be a promising therapeutic or adjuvant agent for the attenuation of inflammation triggered by Hp infection, as well as its related adverse clinical outcomes.
Collapse
|
18
|
Liang H, Lin S, Ji Y, Xiao Y, Zheng G. Helicobacter pylori increases the risk of carotid plaque formation: a clinical evidence. Ann Med 2021; 53:1448-1454. [PMID: 34431440 PMCID: PMC8405064 DOI: 10.1080/07853890.2021.1927169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background and aim: Since the relation between Helicobacter pylori (H. pylori) and atherosclerosis has been evidenced, we aimed to analyze whether there is a relationship between the patient's H. pylori infection and age, gender, BMI, blood lipids, and carotid plaque formation.Methods: 810 patients from January 2016 to December 2019 were enrolled in this study, and divided the subjects into H. pylori (+) group and H. pylori (-) group based on the results of UBT. To analyze whether H. pylori infection is related to gender, age, BMI, blood lipids, and neck vascular plaque formation.Results: The single-factor analysis showed that the BMI ≥ 25kg/m2, triglycerides >1.7 mmol/l, the formation of cervical plaques were significantly higher in patients infected with H. pylori in compared to normal cases. Also, multi-variant logistic regression analysis showed that H. pylori infection affects the BMI ≥ 25kg/m2 and triglycerides >1.7 mmol/l to induce vascular plaque. Also, we showed that patients with H. pylori infection are 1.424 times higher than the non-infected group to have triglycerides more elevated than 1.7mmol/l.Conclusion: In this study, we conclude that H. pylori infection is an independent risk factor for higher BMI (>25), triglyceride (>1.7 mmol/l), and neck vascular plaque formation. The multi-variant analysis showed that patients with H. pylori infection are prone to have higher BMI, triglycerides, and neck vascular plaque formation over 1.4-times higher in non-infected individuals.KEY MESSAGESH. pylori infection is an independent risk factor for higher BMI, triglyceride, and neck vascular plaque formation.H. pylori can accelerate vascular plaque formation through increasing BMI and triglyceride.
Collapse
Affiliation(s)
- Haiqing Liang
- Department of Internal Medicine, Dezhou People's Hospital, Dezhou, China
| | - Shuzhu Lin
- Department of Clinical Laboratory, Dezhou People's Hospital, Dezhou, China
| | - Yongjian Ji
- Department of Internal Medicine, Dezhou People's Hospital, Dezhou, China
| | - Yang Xiao
- Department of Internal Medicine, Dezhou People's Hospital, Dezhou, China
| | - Guifang Zheng
- Department of Internal Medicine, Dezhou People's Hospital, Dezhou, China
| |
Collapse
|
19
|
Helicobacter pylori-Induced Inflammation: Possible Factors Modulating the Risk of Gastric Cancer. Pathogens 2021; 10:pathogens10091099. [PMID: 34578132 PMCID: PMC8467880 DOI: 10.3390/pathogens10091099] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation and long-term tissue injury are related to many malignancies, including gastric cancer (GC). Helicobacter pylori (H. pylori), classified as a class I carcinogen, induces chronic superficial gastritis followed by gastric carcinogenesis. Despite a high prevalence of H. pylori infection, only about 1–3% of people infected with this bacterium develop GC worldwide. Furthermore, the development of chronic gastritis in some, but not all, H. pylori-infected subjects remains unexplained. These conflicting findings indicate that clinical outcomes of aggressive inflammation (atrophic gastritis) to gastric carcinogenesis are influenced by several other factors (in addition to H. pylori infection), such as gut microbiota, co-existence of intestinal helminths, dietary habits, and host genetic factors. This review has five goals: (1) to assess our current understanding of the process of H. pylori-triggered inflammation and gastric precursor lesions; (2) to present a hypothesis on risk modulation by the gut microbiota and infestation with intestinal helminths; (3) to identify the dietary behavior of the people at risk of GC; (4) to check the inflammation-related genetic polymorphisms and role of exosomes together with other factors as initiators of precancerous lesions and gastric carcinoma; and (5) finally, to conclude and suggest a new direction for future research.
Collapse
|
20
|
The dCache Chemoreceptor TlpA of Helicobacter pylori Binds Multiple Attractant and Antagonistic Ligands via Distinct Sites. mBio 2021; 12:e0181921. [PMID: 34340539 PMCID: PMC8406319 DOI: 10.1128/mbio.01819-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Helicobacter pylori chemoreceptor TlpA plays a role in dampening host inflammation during chronic stomach colonization. TlpA has a periplasmic dCache_1 domain, a structure that is capable of sensing many ligands; however, the only characterized TlpA signals are arginine, bicarbonate, and acid. To increase our understanding of TlpA’s sensing profile, we screened for diverse TlpA ligands using ligand binding arrays. TlpA bound seven ligands with affinities in the low- to middle-micromolar ranges. Three of these ligands, arginine, fumarate, and cysteine, were TlpA-dependent chemoattractants, while the others elicited no response. Molecular docking experiments, site-directed point mutants, and competition surface plasmon resonance binding assays suggested that TlpA binds ligands via both the membrane-distal and -proximal dCache_1 binding pockets. Surprisingly, one of the nonactive ligands, glucosamine, acted as a chemotaxis antagonist, preventing the chemotaxis response to chemoattractant ligands, and acted to block the binding of ligands irrespective of whether they bound the membrane-distal or -proximal dCache_1 subdomains. In total, these results suggest that TlpA senses multiple attractant ligands as well as antagonist ones, an emerging theme in chemotaxis systems.
Collapse
|
21
|
Silvan JM, Gutierrez-Docio A, Guerrero-Hurtado E, Domingo-Serrano L, Blanco-Suarez A, Prodanov M, Alarcon-Cavero T, Martinez-Rodriguez AJ. Pre-Treatment with Grape Seed Extract Reduces Inflammatory Response and Oxidative Stress Induced by Helicobacter pylori Infection in Human Gastric Epithelial Cells. Antioxidants (Basel) 2021; 10:943. [PMID: 34208004 PMCID: PMC8230724 DOI: 10.3390/antiox10060943] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a pathogenic bacteria identified as a potential risk factor for gastritis, gastric ulcers and gastric cancer. During the stomach colonization, H. pylori triggers a strong inflammatory response and subsequent oxidative stress, which are associated with tissue damage. For this reason, it is of particular interest to develop alternative natural tools that enable modulation of the associated damaging immune response. With this purpose, we obtained grape seed extract (GSE) from sweet (not fermented) food grade seeds. The aim of our study was to investigate the effect of GSE and its two enriched procyanidins fractions (OPC and PPC) on the inflammatory process and oxidative stress produced by different H. pylori strains in human gastric epithelial cells (AGS). Anti-inflammatory activity was evaluated by measuring the level of interleukin-8 (IL-8) secretion. IL-8 production was significantly reduced in H. pylori-infected human gastric epithelial cells pre-treated with GSE or its enriched fractions when compared with non-pre-treated infected cells (from 21.6% to 87.8%). Pre-treatment with GSE or its fractions significantly decreased intracellular reactive oxygen species (ROS) production in AGS cells after infection, depending on the H. pylori strain. Our results also showed that GSE and its fractions demonstrate antibacterial activity against all strains of H. pylori used in the study. This work demonstrates the effectiveness of GSE enriched in procyanidins against the main events associated with H. pylori infection.
Collapse
Affiliation(s)
- Jose Manuel Silvan
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9. Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049 Madrid, Spain;
| | - Alba Gutierrez-Docio
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049 Madrid, Spain; (A.G.-D.); (E.G.-H.); (M.P.)
| | - Esperanza Guerrero-Hurtado
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049 Madrid, Spain; (A.G.-D.); (E.G.-H.); (M.P.)
| | - Lucia Domingo-Serrano
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9. Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049 Madrid, Spain;
| | - Ana Blanco-Suarez
- Microbiology Department, Sanitaria Princesa Research Institute, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.B.-S.); (T.A.-C.)
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Marin Prodanov
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049 Madrid, Spain; (A.G.-D.); (E.G.-H.); (M.P.)
| | - Teresa Alarcon-Cavero
- Microbiology Department, Sanitaria Princesa Research Institute, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.B.-S.); (T.A.-C.)
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Adolfo J. Martinez-Rodriguez
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9. Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
22
|
Yulizal OK, Tarigan SB, Isnainul OK, Muttaqin Z. Gastric histopathological features after the administration of omeprazole, amoxicillin, and clarithromycin in gastritis Helicobacter pylori rat model. J Adv Vet Anim Res 2021; 8:158-163. [PMID: 33860026 PMCID: PMC8043333 DOI: 10.5455/javar.2021.h498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE This research work aimed to assess the histopathological features and degree of gastritis severity in a rat model, induced by Helicobacter pylori infection after administering omeprazole, amoxicillin, and clarithromycin as the standard first-line eradication regimen. MATERIAL AND METHODS Twenty-one male rats were adapted for 7 days and randomly divided into three equal groups. Group 1 was considered a negative control. Group 2 and Group 3 were treated as H. pylori-inoculated groups. Group 2 was set as a positive control. Group 3 was administered omeprazole, amoxicillin, and clarithromycin as a first-line eradication regimen. Gastric histopathological examination was conducted. The difference in the severity of gastritis among the groups was examined using the one-way analysis of variance test. The significance was determined to be p < 0.05. RESULTS Gastritis was found in all inoculated groups. The severity of gastritis was highest in Group 2 (p < 0.05). We could see a refinement in gastritis severity after administering omeprazole, amoxicillin, and clarithromycin as a first-line eradication regimen (Group 3 vs. Group 2; p <0.05). CONCLUSION Gastritis, induced by the H. pylori rat model, was found in all inoculated groups. There was a refinement in the degree of gastritis severity after the administration of omeprazole, amoxicillin, and clarithromycin as a first-line eradication regimen.
Collapse
Affiliation(s)
- OK Yulizal
- Department of Internal Medicine, Faculty of Medicine, Universitas Prima Indonesia, Medan, Indonesia
| | | | - OK Isnainul
- Postgraduate School, Universitas Prima Indonesia, Medan, Indonesia
| | - Zainul Muttaqin
- Biomedical Research Unit, West Nusa Tenggara General Hospital, Lombok, Indonesia
| |
Collapse
|
23
|
Braga AL, do Nascimento PB, Paz MFCJ, de Lima RMT, Santos JVDO, de Alencar MVOB, de Meneses AAPM, Júnior ALG, Islam MT, Sousa JMDCE, Melo-Cavalcante AADC. Antioxidative defense against omeprazole-induced toxicogenetical effects in Swiss mice. Pharmacol Rep 2021; 73:551-562. [PMID: 33476036 DOI: 10.1007/s43440-021-00219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Omeprazole (OME), a most frequently used proton pump inhibitor in gastric acidosis, is evident to show many adverse effects, including genetic instability. This study evaluated toxicogenic effects of OME in Mus musculus. METHODS For this study, 40 male Swiss mice were divided into 8 groups (n = 5) and treated with OME at doses of 10, 20, and 40 mg/kg and/or treated with the antioxidants retinol palmitate (100 IU/kg) and ascorbic acid (2.0 μM/kg). Cyclophosphamide 50 mg/kg, (cytotoxic agent) and the vehicle were served as positive and negative control group, respectively. After 14 days of treatment, the stomach cells along with the bone marrow and peripheral blood lymphocytes were collected and submitted to the comet assay (alkaline version) and micronucleus test. Additionally, hematological and biochemical parameters of the animals were also determined inspect of vehicle group. RESULTS The results suggest that OME at all doses induced genotoxicity and mutagenicity in the treated cells. However, in association with the antioxidants, these effects were modulated and/or inhibited along with a DNA repair capacity. CONCLUSIONS Taken together, antioxidants (such as retinol palmitate and ascorbic acid) may be one of the best options to counteract OME-induced cytogenetic instability.
Collapse
Affiliation(s)
- Antonio Lima Braga
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | | | - Márcia Fernanda Correia Jardim Paz
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Rosália Maria Tôrres de Lima
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - José Victor de Oliveira Santos
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Ag-Anne Pereira Melo de Meneses
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Antonio Luiz Gomes Júnior
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - João Marcelo de Castro E Sousa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Department of Biological Sciences, Federal University of Piauí, 64.607-670, Picos, Piauí, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| |
Collapse
|
24
|
Ekeuku SO, Thong BKS, Quraisiah A, Annuar F, Hanafiah A, Nur Azlina MF, Chin KY. The Skeletal Effects of Short-Term Triple Therapy in a Rat Model of Gastric Ulcer Induced by Helicobacter pylori Infection. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5359-5366. [PMID: 33324037 PMCID: PMC7732759 DOI: 10.2147/dddt.s287239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Purpose Triple therapy is the standard therapy to eradicate Helicobacter pylori (H.pylori) infection. Chronic use of proton pump inhibitors (PPIs), a component of triple therapy, is associated with osteoporosis. However, the skeletal effects of short-term triple therapy containing PPI remain elusive. This study aims to determine the skeletal effect of short-term triple therapy in a rat model of gastric ulcer induced by H. pylori. Methods Three-month-old male Sprague Dawley rats were assigned to normal control, H. pylori-inoculated group (negative control) and H. pylori-inoculated group receiving triple therapy consisting of omeprazole [2.035 mg/kg body weight (b.w)], amoxicillin (102.80 mg/kg b.w) and clarithromycin (51.37 mg/kg b.w) (n=6/group). H. pylori infection developed for four weeks after inoculation, followed by two-week triple therapy. At the end of the treatment period, femoral bones of the rats were harvested for analysis. Bone mineral density and content of the femurs were determined using dual-energy X-ray absorptiometry, while bone strength was measured with a universal mechanical tester. Results Bone mineral content was significantly lower in the negative control group compared to the triple therapy group (p=0.014). Triple therapy decreased strain (vs negative control, p=0.002) and displacement of the femur (vs normal control, p=0.004; vs untreated control, p=0.005). No significant difference was observed in other parameters among the study groups (p>0.05). Conclusion Short-term triple therapy increases bone mineral content but decreases bone strength of rats. Skeletal prophylaxis should be considered for patients on short-term triple therapy containing PPI.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Benjamin Ka Seng Thong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia.,Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Adam Quraisiah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Fazalda Annuar
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology & Immunology Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
25
|
Cuomo P, Papaianni M, Sansone C, Iannelli A, Iannelli D, Medaglia C, Paris D, Motta A, Capparelli R. An In Vitro Model to Investigate the Role of Helicobacter pylori in Type 2 Diabetes, Obesity, Alzheimer's Disease and Cardiometabolic Disease. Int J Mol Sci 2020; 21:ijms21218369. [PMID: 33171588 PMCID: PMC7664682 DOI: 10.3390/ijms21218369] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (Hp) is a Gram-negative bacterium colonizing the human stomach. Nuclear Magnetic Resonance (NMR) analysis of intracellular human gastric carcinoma cells (MKN-28) incubated with the Hp cell filtrate (Hpcf) displays high levels of amino acids, including the branched chain amino acids (BCAA) isoleucine, leucine, and valine. Polymerase chain reaction (PCR) Array Technology shows upregulation of mammalian Target Of Rapamycin Complex 1 (mTORC1), inflammation, and mitochondrial dysfunction. The review of literature indicates that these traits are common to type 2 diabetes, obesity, Alzheimer’s diseases, and cardiometabolic disease. Here, we demonstrate how Hp may modulate these traits. Hp induces high levels of amino acids, which, in turn, activate mTORC1, which is the complex regulating the metabolism of the host. A high level of BCAA and upregulation of mTORC1 are, thus, directly regulated by Hp. Furthermore, Hp modulates inflammation, which is functional to the persistence of chronic infection and the asymptomatic state of the host. Finally, in order to induce autophagy and sustain bacterial colonization of gastric mucosa, the Hp toxin VacA localizes within mitochondria, causing fragmentation of these organelles, depletion of ATP, and oxidative stress. In conclusion, our in vitro disease model replicates the main traits common to the above four diseases and shows how Hp may potentially manipulate them.
Collapse
Affiliation(s)
- Paola Cuomo
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
| | - Marina Papaianni
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Antonio Iannelli
- Department of Digestive Surgery, Université Côte d’Azur, Campus Valrose, Batiment L, Avenue de Valrose, 28-CEDEX 2, 06108 Nice, France;
- Inserm, U1065, Team 8 “Hepatic Complications of Obesity and Alcohol”, Route Saint Antoine de Ginestière 151, BP 2 3194, CEDEX 3, 06204 Nice, France
| | - Domenico Iannelli
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
- Correspondence: (D.I.); (R.C.)
| | - Chiara Medaglia
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, rue du Général-Dufour, 1211 Genève, Switzerland;
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, via Campi Flegrei, 34-Pozzuoli, 80078 Naples, Italy; (D.P.); (A.M.)
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, via Campi Flegrei, 34-Pozzuoli, 80078 Naples, Italy; (D.P.); (A.M.)
| | - Rosanna Capparelli
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
- Correspondence: (D.I.); (R.C.)
| |
Collapse
|
26
|
Epstein-Barr Virus Promotes B Cell Lymphomas by Manipulating the Host Epigenetic Machinery. Cancers (Basel) 2020; 12:cancers12103037. [PMID: 33086505 PMCID: PMC7603164 DOI: 10.3390/cancers12103037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV)-induced lymphomas have a significant global incidence, given the widespread infection to the human population. EBV adopts several mechanisms to replicate and persist in the host, by hijacking its epigenetic machinery. The main topic of this review details the current insights of EBV interactions with the host epigenetic system, and it will be discussed the potential relationship between the EBV-induced chronic inflammation and the dysregulation of epigenetic modifiers that might lead to tumorigenesis. Promising novel therapies against several types of cancer involve the use of epigenetic modifier inhibitors. To design new therapeutical strategies targeting lymphomas, it is crucial to conduct exhaustive reaserch on the regulation of these enzymes. Abstract During the past decade, the rapid development of high-throughput next-generation sequencing technologies has significantly reinforced our understanding of the role of epigenetics in health and disease. Altered functions of epigenetic modifiers lead to the disruption of the host epigenome, ultimately inducing carcinogenesis and disease progression. Epstein–Barr virus (EBV) is an endemic herpesvirus that is associated with several malignant tumours, including B-cell related lymphomas. In EBV-infected cells, the epigenomic landscape is extensively reshaped by viral oncoproteins, which directly interact with epigenetic modifiers and modulate their function. This process is fundamental for the EBV life cycle, particularly for the establishment and maintenance of latency in B cells; however, the alteration of the host epigenetic machinery also contributes to the dysregulated expression of several cellular genes, including tumour suppressor genes, which can drive lymphoma development. This review outlines the molecular mechanisms underlying the epigenetic manipulation induced by EBV that lead to transformed B cells, as well as novel therapeutic interventions to target EBV-associated B-cell lymphomas.
Collapse
|
27
|
Evaluation of Helicobacter pylori Infection, Neutrophil–Lymphocyte Ratio and Platelet–Lymphocyte Ratio in Dyspeptic Patients. GASTROENTEROLOGY INSIGHTS 2020. [DOI: 10.3390/gastroent11010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies have shown a correlation between Helicobacter pylori (H. Pylori) infection and the neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR). The aim of this study was to investigate the relationship between H. Pylori infection and hematimetric indices in patients with dyspepsia symptoms. Overall, 448 patients who underwent gastroscopy were analyzed retrospectively. Histopathological evaluation of biopsies according to H. pylori presence was classified as H. Pylori positive and negative groups, which are analyzed in relation with hematimetric indices. NLR and PLR measurements did not show a statistically significant difference between H. pylori negative and positive groups (p > 0.05). NLR revealed a negative correlation between hemoglobin (HGB), iron, and ferritin measurements in the correlation analysis of the H. Pylori positive group (r = −0.133, p = 0.031; r = −0.270, p = 0.002; r = −0.162, p = 0.032). Again, with PLR, there was a negative correlation between HGB, mean corpuscular volume (MCV), iron, and ferritin measurements (r = −0.310, p = 0.001, r = −0.187, p = 0.002, r = −0.335, p = 0.001; r = −0.290; p = 0.001). The results of our study do not reveal an association between H. pylori presence and inflammatory response, which is evaluated by NLR and PLR measurements in patients with dyspepsia. However, low serum iron and ferritin values of H. pylori-positive patients suggest the effect of H. pylori on iron metabolism.
Collapse
|
28
|
Yulizal OK, Lelo A, Ilyas S, Kusumawati RL. The effect of Channa striata extract and standard eradication regimen on asymmetric dimethylarginine in Helicobacter pylori gastritis rat model. Vet World 2020; 13:1605-1612. [PMID: 33061234 PMCID: PMC7522937 DOI: 10.14202/vetworld.2020.1605-1612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIM The presence of gastric mucosa or submucosa inflammation due to Helicobacter pylori leads to histological changes. Gastric injury, pro-inflammatory factors, and oxidative stress in H. pylori infection produce asymmetric dimethylarginine (ADMA), which are a competitive inhibitor of nitric oxide synthase. Investigations were carried out aimed at finding new drugs derived from natural products for the treatment of H. pylori. Channa striata is known to have in vitro anti-inflammatory and antimicrobial properties. This study aimed to investigate the effect of C. striata extract and a standard eradication regimen on ADMA levels and histological changes in the H. pylori gastritis rat model. MATERIALS AND METHODS Thirty-five male rats were randomly and equally divided into five groups. Group-1 was the negative control group and Groups-2 to 5 were H. pylori-infected groups. Groups-3 to 5 were administered C. striata extract, a standard eradication regimen, and a combination of standard eradication regimen and C. striata extract, respectively. Histological examination and serum ADMA levels were analyzed. The difference between groups was analyzed using the Kruskal-Wallis and one-way analysis of variance tests. The significance was p<0.05. RESULTS Serum ADMA levels and severity of gastritis were higher in infected groups compared to the negative control group (p<0.05). The severity of gastritis and mean ADMA levels in the group that received a single administration of the C. striata extract was higher than the others (p<0.05). Serum ADMA levels and severity of gastritis were significantly reduced in the group that received a combination of standard eradication regimen and C. striata extract (p<0.05). CONCLUSION Single administration of C. striata extract worsens the severity of gastritis and increased serum ADMA levels in the H. pylori gastritis rat model. The administration of a combination of standard eradication regimen and C. striata extract reduces serum ADMA levels and significantly improves the severity of H. pylori gastritis rat model.
Collapse
Affiliation(s)
- OK Yulizal
- Department of Internal Medicine, Faculty of Medicine, Universitas Prima Indonesia, Medan, Indonesia
- School of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Aznan Lelo
- Department of Pharmacology and Therapeutics, School of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Raden Lia Kusumawati
- Department of Microbiology, School of Medicine, Universitas Sumatera Utara, H. Adam Malik General Hospital, Medan, Indonesia
| |
Collapse
|
29
|
Yulizal OK, Lelo A, Ilyas S, Kusumawati RL. The effect of snakehead fish extract supplementation to first-line eradication regimen on macrophage migration inhibitory factor (MIF) expression in rats induced by Helicobacter pylori infection. J Adv Vet Anim Res 2020; 7:209-217. [PMID: 32607351 PMCID: PMC7320804 DOI: 10.5455/javar.2020.g411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: This work was organized to assess macrophage migration inhibitory factor (MIF) expression in snakehead fish extract supplementation to first-line eradication regimen in rats induced by Helicobacter pylori infection. Materials and methods: A total of 28 manly rats were haphazardly isolated equally into four groups. Group-1 was the control negative, and groups-2–4 were H. pylori-infected groups. Group-2 was the control positive. Groups-3 and 4 were treated with first-line eradication regimen and first-line eradication regimen supplemented with snakehead fish extract, respectively. Immunoreactive scores (IRS) of MIF expression and eradication testing procedure were carried out. The comparison and difference between groups were analyzed by Kruskal–Wallis and post hoc Mann–Whitney U-test. A value of p < 0.05 was considered to be a limit of significance. Results: The average IRS of MIF expression in group-2 was the highest among other groups (p < 0.05). Group-4 (supplemented by snakehead fish extract) had a lower median value IRS of MIF expression compared to group-3 [1.0 (0.0–2.0) vs. 3.5 (2.0–6.0), p = 0.004]. Conclusion: MIF expression was higher in rats induced by H. pylori infection. Snakehead fish extract supplementation to first-line eradication regimen significantly reduces more MIF expression compared to a single administration of first-line eradication regimen in rats induced by H. pylori infection.
Collapse
Affiliation(s)
- O K Yulizal
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Aznan Lelo
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Raden Lia Kusumawati
- Department of Microbiology, Faculty of Medicine, H. Adam Malik General Hospital, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
30
|
Pan W, Zhang H, Wang L, Zhu T, Chen B, Fan J. Association between Helicobacter pylori infection and kidney damage in patients with peptic ulcer. Ren Fail 2020; 41:1028-1034. [PMID: 31755342 PMCID: PMC6882483 DOI: 10.1080/0886022x.2019.1683029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background:Helicobacter pylori (H. pylori) is relevant to several renal diseases. Our previous research indicates that cytotoxin-associated gene A (CagA) of H. pylori increases secretion of serum immunoglobulin A1 (IgA1) and induces the underglycosylation of IgA1, one of the key factors causing IgA nephropathy. Here, we aimed to study the correlation between H. pylori infection and kidney damage in patients with peptic ulcer, and evaluate the effect of H. pylori eradication on kidney damage. Methods:14C-urea breath test and rapid urease tests were applied to H. pylori infection detection. Random urine samples are subjected to the albumin–creatinine ratio (ACR) examination. The correlation between ACR and H. pylori infection was analyzed in patients with peptic ulcer and healthy controls. The levels of IgA and underglycosylated IgA1 in serum are also detected by enzyme-linked immunosorbent assay (ELISA) and Helix aspersa lectin (HAA) binding assay. Results: (1) H. pylori infection rate in patients with peptic ulcer (88.14%) is significantly higher than that in healthy controls (42.68%). (2) There is a positive correlation between H. pylori infection and ACR abnormal in patients with peptic ulcer (p = .025), while showing a negative correlation in healthy individuals (p = .571). (3) Urinary ACR was uncorrelated with the severity of H. pylori infection in the 27 abnormal urinary ACR cases of the patients with peptic ulcer. (4) After H. pylori eradication, the ACR rates of H. pylori-positive patients with peptic ulcer were significantly decreased (p<.01). Conclusions: (1) For the H. pylori-positive patients with peptic ulcer, H. pylori infection may be a risk factor resulting in kidney damage. (2) H. pylori eradication probably benefits to kidney damage relief and chronic kidney disease prevention.
Collapse
Affiliation(s)
- Wei Pan
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.,Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hui Zhang
- The Second People's Hospital of Yibin, Yinbin, China
| | - Li Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Tingting Zhu
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Chen
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Junming Fan
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.,Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Chengdu Medical College, Chengdu, China
| |
Collapse
|
31
|
Pachathundikandi SK, Blaser N, Bruns H, Backert S. Helicobacter pylori Avoids the Critical Activation of NLRP3 Inflammasome-Mediated Production of Oncogenic Mature IL-1β in Human Immune Cells. Cancers (Basel) 2020; 12:E803. [PMID: 32230726 PMCID: PMC7226495 DOI: 10.3390/cancers12040803] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori persistently colonizes the human stomach, and is associated with inflammation-induced gastric cancer. Bacterial crosstalk with the host immune system produces various inflammatory mediators and subsequent reactions in the host, but not bacterial clearance. Interleukin-1β (IL-1β) is implicated in gastric cancer development and certain gene polymorphisms play a role in this scenario. Mature IL-1β production depends on inflammasome activation, and the NLRP3 inflammasome is a major driver in H. pylori-infected mice, while recent studies demonstrated the down-regulation of NLRP3 expression in human immune cells, indicating a differential NLRP3 regulation in human vs. mice. In addition to the formation of mature IL-1β or IL-18, inflammasome activation induces pyroptotic death in cells. We demonstrate that H. pylori infection indeed upregulated the expression of pro-IL-1β in human immune cells, but secreted only very low amounts of mature IL-1β. However, application of exogenous control activators such as Nigericin or ATP to infected cells readily induced NLRP3 inflammasome formation and secretion of high amounts of mature IL-1β. This suggests that chronic H. pylori infection in humans manipulates inflammasome activation and pyroptosis for bacterial persistence. This inflammasome deregulation during H. pylori infection, however, is prone to external stimulation by microbial, environmental or host molecules of inflammasome activators for the production of high amounts of mature IL-1β and signaling-mediated gastric tumorigenesis in humans.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Nicole Blaser
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University, D-91058 Erlangen, Germany;
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| |
Collapse
|
32
|
Lee YI, Kim JS, Cho JS, Kim HK, Hussain A. Standardized Combined Plant Extract, RUG-com, Reduces Bacterial Levels and Suppresses Acute and Chronic Inflammation in Balb/c Mice Infected with CagA + Helicobacter pylori.. Prev Nutr Food Sci 2019; 24:426-433. [PMID: 31915638 PMCID: PMC6941731 DOI: 10.3746/pnf.2019.24.4.426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/23/2019] [Indexed: 01/20/2023] Open
Abstract
Helicobacter pylori are etiological agents in the development of gastritis, gastroduodenal ulcers, gastric cancer, and mucosa-associated lymphoid tumors. Our previous investigations demonstrated that standardized combined plants extracts (Rubus crataegifolius and Ulmus macrocarpa) inhibit the growth of H. pylori in in vitro experiments. Also, we demonstrated that Gardenia jasminoides is effective in preventing gastritis and gastric ulcers in animal experiments. In the present work, we tested the standardized combined three plant extract (RUG-com) on the mouse model of H. pylori infectious disease to examine the effects of RUG-com on both the prevention and curing on the stomachs of infected mice. After the final administrations, biopsy samples of gastric mucus were assayed for bacterial numbers, biochemical analysis, inflammatory scores, and histology. Treatment with standardized plants extracts, single or combined, reduced the H. pylori load compared with the control. Treatment also significantly (P<0.05) reduced both acute and chronic mucosal and subacute inflammation, and epithelial cell degeneration and erosion induced by H. pylori infection. Further investigations demonstrated that H. pylori-induced inflammation was decreased by RUG-com extracts via down regulating cyclooxygenase-2 and inducible nitric oxide synthase pro-inflammatory gene expression. Our results suggest that RUG-com is useful to prevent H. pylori infection, H. pylori-induced inflammation and associated gastric damage.
Collapse
Affiliation(s)
| | - Jong Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365,
Korea
| | | | | | | |
Collapse
|
33
|
Blaser N, Backert S, Pachathundikandi SK. Immune Cell Signaling by Helicobacter pylori: Impact on Gastric Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:77-106. [PMID: 31049845 DOI: 10.1007/5584_2019_360] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori represents a highly successful colonizer of the human stomach. Infections with this Gram-negative bacterium can persist lifelong, and although in the majority of cases colonization is asymptomatic, it can trigger pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The interaction of the bacteria with the human host modulates immune responses in different ways to enable bacterial survival and persistence. H. pylori uses various pathogenicity-associated factors such as VacA, NapA, CGT, GGT, lipopolysaccharide, peptidoglycan, heptose 1,7-bisphosphate, ADP-heptose, cholesterol glucosides, urease and a type IV secretion system for controlling immune signaling and cellular functions. It appears that H. pylori manipulates multiple extracellular immune receptors such as integrin-β2 (CD18), EGFR, CD74, CD300E, DC-SIGN, MINCLE, TRPM2, T-cell and Toll-like receptors as well as a number of intracellular receptors including NLRP3, NOD1, NOD2, TIFA and ALPK1. Consequently, downstream signaling pathways are hijacked, inducing tolerogenic dendritic cells, inhibiting effector T cell responses and changing the gastrointestinal microbiota. Here, we discuss in detail the interplay of bacterial factors with multiple immuno-regulatory cells and summarize the main immune evasion and persistence strategies employed by H. pylori.
Collapse
Affiliation(s)
- Nicole Blaser
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
34
|
Helicobacter pylori Induces IL-33 Production and Recruits ST-2 to Lipid Rafts to Exacerbate Inflammation. Cells 2019; 8:cells8101290. [PMID: 31640262 PMCID: PMC6830106 DOI: 10.3390/cells8101290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori colonizes human gastric epithelial cells and contributes to the development of several gastrointestinal disorders. Interleukin (IL)-33 is involved in various immune responses, with reported proinflammatory and anti-inflammatory effects, which may be associated with colitis and colitis-associated cancer. IL-33 induces the inflammatory cascade through its receptor, suppression of tumorigenicity-2 (ST-2). Binding of IL-33 to membrane-bound ST-2 (mST-2) recruits the IL-1 receptor accessory protein (IL-1RAcP) and activates intracellular signaling pathways. However, whether IL-33/ST-2 is triggered by H. pylori infection and whether this interaction occurs in lipid rafts remain unclear. Our study showed that both IL-33 and ST-2 expression levels were significantly elevated in H. pylori-infected cells. Confocal microscopy showed that ST-2 mobilized into the membrane lipid rafts during infection. Depletion of membrane cholesterol dampened H. pylori-induced IL-33 and IL-8 production. Furthermore, in vivo studies revealed IL-33/ST-2 upregulation, and severe leukocyte infiltration was observed in gastric tissues infected with H. pylori. Together, these results demonstrate that ST-2 recruitment into the lipid rafts serves as a platform for IL-33-dependent H. pylori infection, which aggravates inflammation in the stomach.
Collapse
|
35
|
Gebremariam HG, Qazi KR, Somiah T, Pathak SK, Sjölinder H, Sverremark Ekström E, Jonsson AB. Lactobacillus gasseri Suppresses the Production of Proinflammatory Cytokines in Helicobacter pylori-Infected Macrophages by Inhibiting the Expression of ADAM17. Front Immunol 2019; 10:2326. [PMID: 31636639 PMCID: PMC6788455 DOI: 10.3389/fimmu.2019.02326] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
The ability of Helicobacter pylori to evade the host immune system allows the bacterium to colonize the host for a lifetime. Long-term infection with H. pylori causes chronic inflammation, which is the major risk factor for the development of gastric ulcers and gastric cancer. Lactobacilli are part of the human microbiota and have been studied as an adjunct treatment in H. pylori eradication therapy. However, the molecular mechanisms by which lactobacilli act against H. pylori infection have not been fully characterized. In this study, we investigated the anti-inflammatory effects of Lactobacillus strains upon coincubation of host macrophages with H. pylori. We found that Lactobacillus gasseri Kx110A1 (L. gas), a strain isolated from a human stomach, but not other tested Lactobacillus species, blocked the production of the proinflammatory cytokines TNF and IL-6 in H. pylori-infected macrophages. Interestingly, L. gas also inhibited the release of these cytokines in LPS or LTA stimulated macrophages, demonstrating a general anti-inflammatory property. The inhibition of these cytokines did not occur through the polarization of macrophages from the M1 (proinflammatory) to M2 (anti-inflammatory) phenotype or through the altered viability of H. pylori or host cells. Instead, we show that L. gas suppressed the release of TNF and IL-6 by reducing the expression of ADAM17 (also known as TNF-alpha-converting enzyme, TACE) on host cells. Our findings reveal a novel mechanism by which L. gas prevents the production of the proinflammatory cytokines TNF and IL-6 in host macrophages.
Collapse
Affiliation(s)
- Hanna G Gebremariam
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Khaleda Rahman Qazi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tanvi Somiah
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sushil Kumar Pathak
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Department of Bioscience and Bioinformatics, Khallikote University, Berhampur, India
| | - Hong Sjölinder
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Center for Clinical Research Sörmland, Uppsala University, Eskilstuna, Sweden
| | - Eva Sverremark Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
36
|
Gastric Cancer in the Era of Immune Checkpoint Blockade. JOURNAL OF ONCOLOGY 2019; 2019:1079710. [PMID: 31662748 PMCID: PMC6778883 DOI: 10.1155/2019/1079710] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is one of the most important malignancies worldwide because of its high incidence and mortality. The very low survival rates are mainly related to late diagnosis and limited treatment options. GC is the final clinical outcome of a stepwise process that starts with a chronic and sustained inflammatory reaction mounted in response to Helicobacter pylori infection. The bacterium modulates innate and adaptive immunity presumably as part of the strategies to survive, which favors the creation of an immunosuppressive microenvironment that ultimately facilitates GC progression. T-cell exhaustion, which is characterized by elevated expression of immune checkpoint (IC) proteins, is one of the most salient manifestations of immunosuppressive microenvironments. It has been consistently demonstrated that the tumor-immune microenvironment(TIME)‐exhausted phenotype can be reverted by blocking ICs with monoclonal antibodies. Although these therapies are associated with long-lasting response rates, only a subset of patients derive clinical benefit, which varies according to tumor site. The search for biomarkers to predict the response to IC inhibition is a matter of intense investigation as this may contribute to maximize disease control, reduce side effects, and minimize cost. The approval of pembrolizumab for its use in GC has rocketed immuno-oncology research in this cancer type. In this review, we summarize the current knowledge centered around the immune contexture and recent findings in connection with IC inhibition in GC.
Collapse
|
37
|
Pichon M, Burucoa C. Impact of the Gastro-Intestinal Bacterial Microbiome on Helicobacter-Associated Diseases. Healthcare (Basel) 2019; 7:E34. [PMID: 30813360 PMCID: PMC6473412 DOI: 10.3390/healthcare7010034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori is a bacterium that selectively infects the gastric epithelium of half of the world population. The microbiome, community of microorganisms gained major interest over the last years, due to its modification associated to health and disease states. Even if most of these descriptions have focused on chronic disorders, this review describes the impact of the intestinal bacterial microbiome on host response to Helicobacter associated diseases. Microbiome has a direct impact on host cells, major barrier of the gastro-intestinal tract, but also an indirect impact on immune system stimulation, by enhancing or decreasing non-specific or adaptive response. In microbial infections, especially in precancerous lesions induced by Helicobacter pylori infection, these modifications could lead to different outcome. Associated to data focusing on the microbiome, transcriptomic analyses of the eukaryote response would lead to a complete understanding of these complex interactions and will allow to characterize innovative biomarkers and personalized therapies.
Collapse
Affiliation(s)
- Maxime Pichon
- Bacteriology and Infection Control Laboratory, Infectious Agents Department, University Hospital of Poitiers, 86021 Poitiers, France.
- Laboratoire Inflammation, Tissus Épithéliaux et Cytokines, EA 4331, Faculté de Médecine et de Pharmacie, University of Poitiers, 86022 Poitiers, France.
| | - Christophe Burucoa
- Bacteriology and Infection Control Laboratory, Infectious Agents Department, University Hospital of Poitiers, 86021 Poitiers, France.
- Laboratoire Inflammation, Tissus Épithéliaux et Cytokines, EA 4331, Faculté de Médecine et de Pharmacie, University of Poitiers, 86022 Poitiers, France.
| |
Collapse
|
38
|
Helicobacter pylori infection increases risk of incident metabolic syndrome and diabetes: A cohort study. PLoS One 2019; 14:e0208913. [PMID: 30779804 PMCID: PMC6380540 DOI: 10.1371/journal.pone.0208913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Emerging studies have shed light on the association between Helicobacter pylori (HP) infection and cardiometabolic risk. However, there is no evidence to support a causal link for the relationship in the general population. Our aim was to determine whether HP infection is associated with the risks of incident type II diabetes mellitus (DM) in a population-based cohort consisting of adults from the general population. A total of 69235 adults enrolled in the study obtained health examinations at the Tri-Service General Hospital in Taiwan from 2010 to 2016. HP infection detection was performed by rapid urease tests (RUTs), and endoscopic examinations were used to diagnose gastroesophageal reflux disease (GERD), gastric ulcers (GUs) and duodenal ulcers (DUs). Cross-sectional and longitudinal analyses were performed to examine the association between HP infection and cardiometabolic diseases using logistic regression and Cox regression in a large population-based study. HP infection was significantly associated with the presence of metabolic syndrome (MetS) (OR = 1.26, 95%CI: 1.00-1.57) and DM (OR = 1.59, 95%CI: 1.17-2.17) only in male subjects, and abnormal endoscopic findings were also correlated with cardiometabolic diseases. Our findings demonstrated that participants with HP infection had an elevated risk of developing incident DM (HR = 1.54, 95%CI: 1.11-2.13). In addition, endoscopic findings of a DU (HR = 1.63, 95%CI: 1.02-2.63), rather than GERD or a GU, were also predictive of incident DM. In this cohort, HP infection was a statistically significant predictor of incident DM among male population.
Collapse
|
39
|
Chen Y, Li Y, Lu Y, Ke Y. Interleukin-6 Expression in Serum, Gastric Juice and Gastric Mucosa of Helicobacter pylori Positive Gastric Cancer Patients. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.280.286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267-302. [PMID: 31123893 DOI: 10.1007/978-3-030-15138-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1β and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1β plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1β production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.
Collapse
|
41
|
Whitmire JM, Merrell DS. Helicobacter pylori Genetic Polymorphisms in Gastric Disease Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:173-194. [DOI: 10.1007/5584_2019_365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Wang C, Ren Q, Chen XT, Song ZQ, Ning ZC, Gan JH, Ma XL, Liang DR, Guan DG, Liu ZL, Lu AP. System Pharmacology-Based Strategy to Decode the Synergistic Mechanism of Zhi-zhu Wan for Functional Dyspepsia. Front Pharmacol 2018; 9:841. [PMID: 30127739 PMCID: PMC6087764 DOI: 10.3389/fphar.2018.00841] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
Functional dyspepsia (FD) is a widely prevalent gastrointestinal disorder throughout the world, whereas the efficacy of current treatment in the Western countries is limited. As the symptom is equivalent to the traditional Chinese medicine (TCM) term "stuffiness and fullness," FD can be treated with Zhi-zhu Wan (ZZW) which is a kind of Chinese patent medicine. However, the "multi-component" and "multi-target" feature of Chinese patent medicine makes it challenge to elucidate the potential therapeutic mechanisms of ZZW on FD. Presently, a novel system pharmacology model including pharmacokinetic parameters, pharmacological data, and component contribution score (CS) is constructed to decipher the potential therapeutic mechanism of ZZW on FD. Finally, 61 components with favorable pharmacokinetic profiles and biological activities were obtained through ADME (absorption, distribution, metabolism, and excretion) screening in silico. The related targets of these components are identified by component targeting process followed by GO analysis and pathway enrichment analysis. And systematic analysis found that through acting on the target related to inflammation, gastrointestinal peristalsis, and mental disorder, ZZW plays a synergistic and complementary effect on FD at the pathway level. Furthermore, the component CS showed that 29 components contributed 90.18% of the total CS values of ZZW for the FD treatment, which suggested that the effective therapeutic effects of ZZW for FD are derived from all active components, not a few components. This study proposes the system pharmacology method and discovers the potent combination therapeutic mechanisms of ZZW for FD. This strategy will provide a reference method for other TCM mechanism research.
Collapse
Affiliation(s)
- Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Qing Ren
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Xue-Tong Chen
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China
| | - Zhi-Qian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang-Chi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Jia-He Gan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Ling Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong-Rui Liang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dao-Gang Guan
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Zhen-Li Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ai-Ping Lu
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| |
Collapse
|
43
|
The Effects of L-Arginine on Oxidative and Nitrosative Stress and Inflammation Factors in Patients Infected with Helicobacter pylori. IRANIAN RED CRESCENT MEDICAL JOURNAL 2018. [DOI: 10.5812/ircmj.63590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Rajendra K, Purnachandra SM, Patel PC, Cota J, Singh VR, Vatsal A. A Clinical and Microbiological Evaluation of Helicobacter pylori in Recurrent Aphthous Stomatitis. J Contemp Dent Pract 2017; 18:1194-1197. [PMID: 29208798 DOI: 10.5005/jp-journals-10024-2199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AIM The aim of this study is to evaluate the association of Helicobacter pylori in recurrent aphthous stomatitis (RAS) with or without peptic ulcer. MATERIALS AND METHODS A total of 42 patients were selected for the present study from outpatient Department of Oral Medicine, and divided into control (group I) and test groups (groups II, III). A total number of 15 patients suffering from RAS based on history and clinical examination was selected as group II. A total number of 12 patients suffering concomitantly from RAS and duodenal ulcer based on history and clinical examination were selected as group III. A total number of 15 healthy subjects were selected as controls in group I. All selected subjects belonged to the age group of 16 to 45 years. Data were tabulated and statistically analyzed with Statistical Package for the Social Sciences (SPSS) statistical software version 19 of IBM, Chicago, Illinois, USA. RESULTS Among all three groups, 54.8% was negative and 45.2% was positive for H. pylori. No significant relation was established between H. pylori and RAS. CONCLUSION In the present study, there was no association of H. pylori in patients with RAS and in patients with RAS along with gastric ulcers. CLINICAL SIGNIFICANCE This clinical study evaluated the relation of H. pylori in RAS patients.
Collapse
Affiliation(s)
- Kamala Rajendra
- Department of Oral Medicine & Radiology, ESI-Post Graduate Institute of Medical Science & Research, Bengaluru, Karnataka India, e-mail:
| | - Sadananda M Purnachandra
- Department of Oral and Maxillofacial Surgery, KGF College of Dental Sciences & Hospital, Kolar Gold Fields, Karnataka, India
| | | | - Jochima Cota
- Department of Oral & Maxillofacial Pathology and Forensic Dentistry, Betalbatim, Goa, India
| | - Venkat R Singh
- Department of Preventive & Community Dentistry, Dental College, India
| | - Ankur Vatsal
- Department of Public Health Dentistry, Institute of Dental Education & Advance Studies (IDEAS), Gwalior, Madhya Pradesh, India
| |
Collapse
|
45
|
The Human Stomach in Health and Disease: Infection Strategies by Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:1-26. [PMID: 28124147 DOI: 10.1007/978-3-319-50520-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a bacterial pathogen which commonly colonizes the human gastric mucosa from early childhood and persists throughout life. In the vast majority of cases, the infection is asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer, however, and these outcomes occur in 10-15% of those infected. Gastric adenocarcinoma is the third most common cause of cancer-associated death, and peptic ulcer disease is a significant cause of morbidity. Disease risk is related to the interplay of numerous bacterial host and environmental factors, many of which influence chronic inflammation and damage to the gastric mucosa. This chapter summarizes what is known about health and disease in H. pylori infection, and highlights the need for additional research in this area.
Collapse
|
46
|
Chmiela M, Karwowska Z, Gonciarz W, Allushi B, Stączek P. Host pathogen interactions in Helicobacter pylori related gastric cancer. World J Gastroenterol 2017; 23:1521-1540. [PMID: 28321154 PMCID: PMC5340805 DOI: 10.3748/wjg.v23.i9.1521] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/26/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor.
Collapse
|
47
|
Hussain K, Letley DP, Greenaway AB, Kenefeck R, Winter JA, Tomlinson W, Rhead J, Staples E, Kaneko K, Atherton JC, Robinson K. Helicobacter pylori-Mediated Protection from Allergy Is Associated with IL-10-Secreting Peripheral Blood Regulatory T Cells. Front Immunol 2016; 7:71. [PMID: 27014260 PMCID: PMC4779884 DOI: 10.3389/fimmu.2016.00071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/15/2016] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori infections are usually established in early childhood and continuously stimulate immunity, including T-helper 1 (Th1), Th17, and regulatory T-cell (Treg) responses, throughout life. Although known to be the major cause of peptic ulcer disease and gastric cancer, disease occurs in a minority of those who are infected. Recently, there has been much interest in beneficial effects arising from infection with this pathogen. Published data robustly show that the infection is protective against asthma in mouse models. Epidemiological studies show that H. pylori is inversely associated with human allergy and asthma, but there is a paucity of mechanistic data to explain this. Since Th1 and Treg responses are reported to protect against allergic responses, we investigated if there were links between the human systemic Th1 and Treg response to H. pylori and allergen-specific IgE levels. The human cytokine and T-cell responses were examined using peripheral blood mononuclear cells (PBMCs) from 49 infected and 58 uninfected adult patients. Concentrations of total and allergen-specific plasma IgE were determined by ELISA and ImmunoCAP assays. These responses were analyzed according to major virulence factor genotypes of the patients' colonizing H. pylori strains. An in vitro assay was employed, using PBMCs from infected and uninfected donors, to determine the role of Treg cytokines in the suppression of IgE. Significantly higher frequencies of IL-10-secreting CD4(+)CD25(hi) Tregs, but not H. pylori-specific Th1 cells, were present in the peripheral blood of infected patients. Total and allergen-specific IgE concentrations were lower when there was a strong Treg response, and blocking IL-10 in vitro dramatically restored IgE responses. IgE concentrations were also significantly lower when patients were infected with CagA(+) strains or those expressing the more active i1 form of VacA. The systemic IL-10(+) Treg response is therefore likely to play a role in H. pylori-mediated protection against allergy in humans.
Collapse
Affiliation(s)
- Khiyam Hussain
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Darren P Letley
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - A Borgel Greenaway
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Rupert Kenefeck
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Jody A Winter
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - William Tomlinson
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Joanne Rhead
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Emily Staples
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Kazuyo Kaneko
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - John C Atherton
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Karen Robinson
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|