1
|
Gottardo A, Russo TDB, Perez A, Bono M, Di Giovanni E, Di Marco E, Siino R, Bannera CF, Mujacic C, Vitale MC, Contino S, Iannì G, Busuito G, Iacono F, Incorvaia L, Badalamenti G, Galvano A, Russo A, Bazan V, Gristina V. Exploring the potential of multiomics liquid biopsy testing in the clinical setting of lung cancer. Cytopathology 2024; 35:664-670. [PMID: 38822635 DOI: 10.1111/cyt.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
The transformative role of artificial intelligence (AI) and multiomics could enhance the diagnostic and prognostic capabilities of liquid biopsy (LB) for lung cancer (LC). Despite advances, the transition from tissue biopsies to more sophisticated, non-invasive methods like LB has been impeded by challenges such as the heterogeneity of biomarkers and the low concentration of tumour-related analytes. The advent of multiomics - enabled by deep learning algorithms - offers a solution by allowing the simultaneous analysis of various analytes across multiple biological fluids, presenting a paradigm shift in cancer diagnostics. Through multi-marker, multi-analyte and multi-source approaches, this review showcases how AI and multiomics are identifying clinically valuable biomarker combinations that correlate with patients' health statuses. However, the path towards clinical implementation is fraught with challenges, including study reproducibility and lack of methodological standardization, thus necessitating urgent solutions to solve these common issues.
Collapse
Affiliation(s)
- Andrea Gottardo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Enrico Di Marco
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Rita Siino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuliana Iannì
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giulia Busuito
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | | | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Xu X, Zhang Z, Yu H, Shen T, Pan H, Chang D. Dual-Modal Aptasensor for Sensitive Detection of Non-Small Cell Lung Cancer Exosomes Utilizing Two-Dimensional Nanopaper Co@g-C 3N 4@PB. ACS OMEGA 2024; 9:34493-34506. [PMID: 39157104 PMCID: PMC11325523 DOI: 10.1021/acsomega.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 08/20/2024]
Abstract
Nonsmall cell lung cancer (NSCLC), due to its lack of early symptoms, has become one of the leading causes of cancer-related deaths globally. Exosomes, small membrane vesicles secreted by cells, are widely present in human bodily fluids. In the bodily fluids of NSCLC patients, the quantity of extracellular vesicles is double that of healthy individuals, suggesting their potential as biomarkers for screening NSCLC. This study designed a dual-modal aptasensor that integrated excellent sensitivity in electrochemical detection and portability in fluorescence detection into one device. AuNPs were functionalized with exosome-capturing probes containing thiol-modified CD63 aptamers, which were immobilized on screen-printed gold electrodes. On the other hand, the carboxylated CD63 aptamer was immobilized on the surface of PB-modified g-C3N4 loaded with Co-SANs particles (Co@g-C3N4@PB). By combining these components, a sandwich structure (AuNPs/Apt1/Exo/Apt2- Co@g-C3N4@PB) was constructed, forming a probe for specific exosome recognition. First, the samples were preliminarily assessed for their positive or negative status under a fluorescence inverted microscope. Subsequently, a more in-depth quantitative analysis was conducted on suspected positive samples using electrochemical or fluorescence analysis methods. The detection limits for electrochemical analysis and fluorescence analysis were 66.68 and 33.5particles/mL, respectively. In the analysis of clinical serum exosome samples, the developed dual-modal aptasensor effectively distinguished serum specimens from those of NSCLC patients and healthy volunteers. This highlighted the inspection capability of the dual-modal adapter sensor, especially in point-of-care testing, making it a highly suitable tool for clinical applications.
Collapse
Affiliation(s)
- Xin Xu
- Department of Clinical
Laboratory, Shanghai Pudong Hospital, Fudan
University Pudong Medical Center, Shanghai 201399, China
| | - Ze Zhang
- Department of Clinical
Laboratory, Shanghai Pudong Hospital, Fudan
University Pudong Medical Center, Shanghai 201399, China
| | - Hongwei Yu
- Department of Clinical
Laboratory, Shanghai Pudong Hospital, Fudan
University Pudong Medical Center, Shanghai 201399, China
| | - Tong Shen
- Department of Clinical
Laboratory, Shanghai Pudong Hospital, Fudan
University Pudong Medical Center, Shanghai 201399, China
- Hebei Medical University, Shijiazhuang,Hebei 050011, China
| | - Hongzhi Pan
- Collaborative
Research Center, Shanghai University of
Medicine and Health Sciences, Shanghai 201399, China
| | - Dong Chang
- Department of Clinical
Laboratory, Shanghai Pudong Hospital, Fudan
University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
3
|
Yuan P, Xue X, Qiu T, Ying J. MET alterations detection platforms and clinical implications in solid tumors: a comprehensive review of literature. Ther Adv Med Oncol 2024; 16:17588359231221910. [PMID: 38249331 PMCID: PMC10798113 DOI: 10.1177/17588359231221910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
MET alterations, including MET exon 14 skipping variants, MET amplification, MET overexpression, and MET fusion, play pivotal roles in primary tumorigenesis and acquired resistance to targeted therapies, especially EGFR tyrosine kinase inhibitors. They represent important diagnostic, prognostic, and predictive biomarkers in many solid tumor types. However, the detection of MET alterations is challenging due to the complexity of MET alterations and the diversity of platform technologies. Therefore, techniques with high sensitivity, specificity, and reliable molecular detection accuracy are needed to overcome such hindrances and aid in biomarker-guided therapies. The current review emphasizes the role of MET alterations as oncogenic drivers in a variety of cancers and their involvement in the development of resistance to targeted therapies. Moreover, our review provides an overview of and recommendations on the selection of various cross-platform technologies for the detection of MET exon 14 skipping variants, MET amplification, MET overexpression, and MET fusion. Furthermore, challenges and hurdles underlying these common detection platforms are discussed.
Collapse
Affiliation(s)
- Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemin Xue
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Qiu
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| |
Collapse
|
4
|
Kato T, Casarini I, Cobo M, Faivre-Finn C, Hegi-Johnson F, Lu S, Özgüroğlu M, Ramalingam SS. Targeted treatment for unresectable EGFR mutation-positive stage III non-small cell lung cancer: Emerging evidence and future perspectives. Lung Cancer 2024; 187:107414. [PMID: 38088015 DOI: 10.1016/j.lungcan.2023.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 01/08/2024]
Abstract
Epidermal growth factor receptor (EGFR) mutations are detected in up to one third of patients with unresectable stage III non-small cell lung cancer (NSCLC). The current standard of care for unresectable stage III NSCLC is consolidation durvalumab for patients who have not progressed following concurrent chemoradiotherapy (the 'PACIFIC regimen'). However, the benefit of immunotherapy, specifically in patients with EGFR mutation-positive (EGFRm) tumors, is not well characterized, and this treatment approach is not recommended in these patients, based on a recent ESMO consensus statement. EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated significant improvements in patient outcomes in EGFRm metastatic NSCLC. The benefits of these agents have also translated to patients with EGFRm early-stage resectable disease as adjuvant therapy. The role of EGFR-TKIs has yet to be prospectively characterized in the unresectable setting. Preliminary efficacy signals for EGFR-TKIs in unresectable EGFRm stage III NSCLC have been reported from a limited number of subgroup and retrospective studies. Several clinical trials are ongoing assessing the safety and efficacy of EGFR-TKIs in this patient population. Here, we review the current management of unresectable EGFRm stage III NSCLC. We outline the rationale for investigating EGFR-TKI strategies in this setting and discuss ongoing studies. Finally, we discuss the evidence gaps and future challenges for treating patients with unresectable EGFRm stage III NSCLC.
Collapse
Affiliation(s)
- Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Asahi Ward, Yokohama, Japan.
| | - Ignacio Casarini
- Servicio Oncología, Hospital Bernardo Houssay, Mar del Plata, Buenos Aires, Argentina
| | - Manuel Cobo
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Corinne Faivre-Finn
- University of Manchester and The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Shun Lu
- Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mustafa Özgüroğlu
- Department of Internal Medicine, Division of Medical Oncology, Clinical Trial Unit, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
5
|
Franzi S, Seresini G, Borella P, Raviele PR, Bonitta G, Croci GA, Bareggi C, Tosi D, Nosotti M, Tabano S. Liquid biopsy in non-small cell lung cancer: a meta-analysis of state-of-the-art and future perspectives. Front Genet 2023; 14:1254839. [PMID: 38116291 PMCID: PMC10728669 DOI: 10.3389/fgene.2023.1254839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction: To date, tissue biopsy represents the gold standard for characterizing non-small-cell lung cancer (NSCLC), however, the complex architecture of the disease has introduced the need for new investigative approaches, such as liquid biopsy. Indeed, DNA analyzed in liquid biopsy is much more representative of tumour heterogeneity. Materials and methods: We performed a meta-analysis of 17 selected papers, to attest to the diagnostic performance of liquid biopsy in identifying EGFR mutations in NSCLC. Results: In the overall studies, we found a sensitivity of 0.59, specificity of 0.96 and diagnostic odds ratio of 24,69. Since we noticed a high heterogeneity among different papers, we also performed the meta-analysis in separate subsets of papers, divided by 1) stage of disease, 2) experimental design and 3) method of mutation detection. Liquid biopsy has the highest sensitivity/specificity in high-stage tumours, and prospective studies are more reliable than retrospective ones in terms of sensitivity and specificity, both NGS and PCR-based techniques can be used to detect tumour DNA in liquid biopsy. Discussion: Overall, liquid biopsy has the potential to help the management of NSCLC, but at present the non-homogeneous literature data, lack of optimal detection methods, together with relatively high costs make its applicability in routine diagnostics still challenging.
Collapse
Affiliation(s)
- Sara Franzi
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriele Seresini
- Laboratory of Medical Genetics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Borella
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Gianluca Bonitta
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giorgio Alberto Croci
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Bareggi
- Medical Oncology Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Tosi
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Nosotti
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Silvia Tabano
- Laboratory of Medical Genetics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Nishio K, Sakai K, Nishio M, Seto T, Visseren-Grul C, Carlsen M, Matsui T, Enatsu S, Nakagawa K. Impact of ramucirumab plus erlotinib on circulating cell-free DNA from patients with untreated metastatic non-small cell lung cancer with EGFR-activating mutations (RELAY phase 3 randomized study). Transl Lung Cancer Res 2023; 12:1702-1716. [PMID: 37691865 PMCID: PMC10483085 DOI: 10.21037/tlcr-22-736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
Background An exploratory, proof-of-concept, liquid biopsy addendum to examine biomarkers within cell-free DNA (cfDNA) in the RELAY phase 3, randomized, double-blind, placebo-controlled study was conducted. RELAY showed improved progression-free survival (PFS) with ramucirumab (RAM), a human immunoglobulin G1 vascular endothelial growth factor receptor 2 antagonist, plus erlotinib (ERL), a tyrosine kinase inhibitor, compared with placebo (PL) plus ERL. Methods Treatment-naïve patients with endothelial growth factor receptor (EGFR)-mutated metastatic non-small cell lung cancer were randomized (1:1) to RAM + ERL or PL + ERL. Plasma samples were collected at baseline, on treatment, and at 30-day post-study treatment discontinuation follow-up. Baseline and treatment-emergent gene alterations and EGFR-activating mutation allele counts were investigated by next-generation sequencing (NGS) and droplet digital polymerase chain reaction (ddPCR), respectively. cfDNA concentration and fragment size were evaluated by real-time polymerase chain reaction and the BioAnalyzer. Patients with a valid baseline plasma sample were included (70 RAM + ERL, 61 PL + ERL). Results TP53 mutation was the most frequently co-occurring baseline gene alteration (43%). Post-study treatment discontinuation EGFR T790M mutation rates were 54.5% (6/11) and 41.2% (7/17) by ddPCR, and 22.2% (2/9) and 29.4% (5/17) by NGS, in the RAM + ERL and PL + ERL arms, respectively. EGFR-activating mutation allele count decreased at Cycle 4 in both treatment arms and was sustained at follow-up with RAM + ERL. PFS improved for patients with no detectable EGFR-activating mutation at Cycle 4 vs. those with detectable EGFR-activating mutation. Total cfDNA concentration increased from baseline at Cycle 4 and through to follow-up with RAM + ERL. cfDNA fragment size was similar between treatment arms at baseline [mean (standard deviation) base pairs: RAM + ERL, 173.4 (2.6); PL + ERL, 172.9 (3.2)] and was shorter at Cycle 4 with RAM + ERL vs. PL + ERL [169.5 (2.8) vs. 174.1 (3.3), respectively; P<0.0001]. Baseline vs. Cycle 4 paired analysis showed a decrease in cfDNA fragment size for 84% (48/57) and 23% (11/47) of patient samples in the RAM + ERL and PL + ERL arms, respectively. Conclusions EGFR-activating mutation allele count was suppressed, total cfDNA concentration increased, and short fragment-sized cfDNA increased with RAM + ERL, suggesting the additional anti-tumor effect of RAM may contribute to the PFS benefit observed in RELAY with RAM + ERL vs. PL + ERL. Trial Registration ClinicalTrials.gov; identifier: NCT02411448.
Collapse
Affiliation(s)
- Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Seto
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | | | | | | | | | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Brockley LJ, Souza VGP, Forder A, Pewarchuk ME, Erkan M, Telkar N, Benard K, Trejo J, Stewart MD, Stewart GL, Reis PP, Lam WL, Martinez VD. Sequence-Based Platforms for Discovering Biomarkers in Liquid Biopsy of Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:2275. [PMID: 37190212 PMCID: PMC10136462 DOI: 10.3390/cancers15082275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Lung cancer detection and monitoring are hampered by a lack of sensitive biomarkers, which results in diagnosis at late stages and difficulty in tracking response to treatment. Recent developments have established liquid biopsies as promising non-invasive methods for detecting biomarkers in lung cancer patients. With concurrent advances in high-throughput sequencing technologies and bioinformatics tools, new approaches for biomarker discovery have emerged. In this article, we survey established and emerging biomarker discovery methods using nucleic acid materials derived from bodily fluids in the context of lung cancer. We introduce nucleic acid biomarkers extracted from liquid biopsies and outline biological sources and methods of isolation. We discuss next-generation sequencing (NGS) platforms commonly used to identify novel biomarkers and describe how these have been applied to liquid biopsy. We highlight emerging biomarker discovery methods, including applications of long-read sequencing, fragmentomics, whole-genome amplification methods for single-cell analysis, and whole-genome methylation assays. Finally, we discuss advanced bioinformatics tools, describing methods for processing NGS data, as well as recently developed software tailored for liquid biopsy biomarker detection, which holds promise for early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Liam J. Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Michelle E. Pewarchuk
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Melis Erkan
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Jessica Trejo
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Matt D. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Victor D. Martinez
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
8
|
Kim I, Seol HY, Kim SH, Kim MH, Lee MK, Eom JS. Favorable Conditions for the Detection of EGFR T790M Mutation Using Plasma Sample in Patients with Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15051445. [PMID: 36900237 PMCID: PMC10000691 DOI: 10.3390/cancers15051445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Detection of the epidermal growth factor receptor (EGFR) T790M mutation using plasma samples has been considered simple and non-invasive, but the relatively high false negative results lead to additional tissue sampling in some patients. Until now, the characteristics of patients who prefer liquid biopsy have not yet been established. METHODS To evaluate the favorable conditions for the detection of T790M mutations using plasma samples, a multicenter retrospective study was performed between May 2018 and December 2021. Patients whose T790M mutation was detected in a plasma sample were classified as the plasma positive group. Study subjects with a T790M mutation not detected in a plasma sample but only in a tissue sample were grouped as the plasma false negative group. RESULTS Plasma positive and plasma false negative groups were found in 74 and 32 patients, respectively. As a result, 40% of patients with one or two metastatic organs at the time of re-biopsy had false negative plasma sample results, and 69% of patients with three or more metastatic organs at the time of re-biopsy had positive plasma results. In multivariate analysis, three or more metastatic organs at initial diagnosis were independently associated with the detection of a T790M mutation using plasma samples. CONCLUSION Our results demonstrated that the detection rate of a T790M mutation using plasma samples was related to the tumor burden, particularly to the number of metastatic organs.
Collapse
Affiliation(s)
- Insu Kim
- Department of Internal Medicine, Dong-A University Hospital, Busan 49201, Republic of Korea
| | - Hee Yun Seol
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Soo Han Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Busan 49241, Republic of Korea
- Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Mi-Hyun Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Busan 49241, Republic of Korea
- Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Min Ki Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Busan 49241, Republic of Korea
- Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Jung Seop Eom
- Department of Internal Medicine, Pusan National University School of Medicine, Busan 49241, Republic of Korea
- Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
- Correspondence:
| |
Collapse
|
9
|
Xu X, Xiang Y, Yang Y, Liu K, Cui Z, Tong X, Chen J, Hou F, Luo Z. The application of tumor cell-derived vesicles in oncology therapy. Clin Transl Oncol 2023; 25:364-374. [PMID: 36207510 DOI: 10.1007/s12094-022-02966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Tumor cell-derived vesicles are released by tumor cells, have a phospholipid bilayer, and are widely distributed in various biological fluids. In recent years, it has been found that tumor cell-derived vesicles contain proteins, metabolites and nucleic acids and can be delivered to recipient cells to perform their physiological functions, such as mediating specific intercellular communication, activating or inhibiting signaling pathways, participating in regulating the modulation of tumor microenvironment and influencing tumor development, which can be used for early detection and diagnosis of cancer. In addition, tumor cell-derived vesicles exhibit multiple properties in tumor therapeutic applications and may serve as a new class of delivery systems. In this review, we elaborate on the application of tumor cell-derived vesicles in oncology therapy.
Collapse
Affiliation(s)
- Ximei Xu
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China.
| | - Yin Xiang
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Yang Yang
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Kai Liu
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Zhiwei Cui
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Xiaodong Tong
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Junliang Chen
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Fang Hou
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Zhiqiang Luo
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| |
Collapse
|
10
|
Horgan D, Čufer T, Gatto F, Lugowska I, Verbanac D, Carvalho Â, Lal JA, Kozaric M, Toomey S, Ivanov HY, Longshore J, Malapelle U, Hasenleithner S, Hofman P, Alix-Panabières C. Accelerating the Development and Validation of Liquid Biopsy for Early Cancer Screening and Treatment Tailoring. Healthcare (Basel) 2022; 10:1714. [PMID: 36141326 PMCID: PMC9498805 DOI: 10.3390/healthcare10091714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Liquid biopsy (LB) is a minimally invasive method which aims to detect circulating tumor-derived components in body fluids. It provides an alternative to current cancer screening methods that use tissue biopsies for the confirmation of diagnosis. This paper attempts to determine how far the regulatory, policy, and governance framework provide support to LB implementation into healthcare systems and how the situation can be improved. For that reason, the European Alliance for Personalised Medicine (EAPM) organized series of expert panels including different key stakeholders to identify different steps, challenges, and opportunities that need to be taken to effectively implement LB technology at the country level across Europe. To accomplish a change of patient care with an LB approach, it is required to establish collaboration between multiple stakeholders, including payers, policymakers, the medical and scientific community, and patient organizations, both at the national and international level. Regulators, pharma companies, and payers could have a major impact in their own domain. Linking national efforts to EU efforts and vice versa could help in implementation of LB across Europe, while patients, scientists, physicians, and kit manufacturers can generate a pull by undertaking more research into biomarkers.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Tanja Čufer
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Francesco Gatto
- Department of Oncology-Pathology, Karolinska Institute, 171 64 Stockholm, Sweden
| | - Iwona Lugowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute and Oncology Centre (MSCI), 02781 Warsaw, Poland
| | - Donatella Verbanac
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ângela Carvalho
- i3S—nstituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Jonathan A. Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, GROW School of Oncology and Developmental Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Marta Kozaric
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
| | - Sinead Toomey
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Smurfit Building, D09 Dublin, Ireland
| | - Hristo Y. Ivanov
- Department of Paediatric and Medical Genetics, Medical University, 4000 Plovdiv, Bulgaria
| | - John Longshore
- Astra Zeneca, 1800 Concord Pike, Wilmington, DE 19803, USA
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80137 Naples, Italy
| | - Samantha Hasenleithner
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8036 Graz, Austria
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Pasteur Hospital, University Côte d’Azur, CEDEX 01, 06001 Nice, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 641 Avenue du Doyen Gaston Giraud, CEDEX 5, 34093 Montpellier, France
| |
Collapse
|
11
|
Huang J, Ren H, Chen A, Li T, Wang H, Jiang L, Zheng S, Qi H, Ji B, Wang X, Qu J, Zhao J, Qiu L. Perfluorooctane sulfonate induces suppression of testosterone biosynthesis via Sertoli cell-derived exosomal/miR-9-3p downregulating StAR expression in Leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118960. [PMID: 35150797 DOI: 10.1016/j.envpol.2022.118960] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is associated with male reproductive disorder, but the related mechanisms are still unclear. In this study, we used in vivo and in vitro models to explore the role of Sertoli cell-derived exosomes (SC-Exo)/miR-9-3p/StAR signaling pathway on PFOS-induced suppression of testosterone biosynthesis. Forty male ICR mice were orally administrated PFOS (0.5-10 mg/kg/bw) for 4 weeks. Bodyweight, organ index, sperm count, reproductive hormones were evaluated. Primary Sertoli cells and Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently induced a decrease in sperm count, low levels of testosterone, and damage in testicular interstitium morphology. In vitro models, PFOS significantly increased miR-9-3p levels in Sertoli cells and SC-Exo, accompanied by a decrease in testosterone secretion and StAR expression in Leydig cells when Leydig cells were exposed to SC-Exo. Meanwhile, inhibition of SC-Exo or miR-9-3p by their inhibitors significantly rescued PFOS-induced decreases in testosterone secretion and the mRNA and protein expression of the StAR gene in Leydig cells. In summary, the present study highlights the role of the SC-Exo/miR-9-3p/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
Affiliation(s)
- Jiyan Huang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hang Ren
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Anni Chen
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Ting Li
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hongxia Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Han Qi
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Binyan Ji
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Xipei Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China; Jiangsu Province-Hai'an People's Hospital, Hai'an City, Nantong City, 17 Zhongba Middle Road, (Affiliated Haian Hospital of Nantong University), PR China
| | - Jianhua Qu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Jianya Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China.
| |
Collapse
|
12
|
Silva F, Pereira T, Neves I, Morgado J, Freitas C, Malafaia M, Sousa J, Fonseca J, Negrão E, Flor de Lima B, Correia da Silva M, Madureira AJ, Ramos I, Costa JL, Hespanhol V, Cunha A, Oliveira HP. Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. J Pers Med 2022; 12:480. [PMID: 35330479 PMCID: PMC8950137 DOI: 10.3390/jpm12030480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and "motivate" the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.
Collapse
Affiliation(s)
- Francisco Silva
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Inês Neves
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- ICBAS—Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Joana Morgado
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Cláudia Freitas
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Mafalda Malafaia
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Joana Sousa
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - João Fonseca
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Eduardo Negrão
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Beatriz Flor de Lima
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Miguel Correia da Silva
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - António J. Madureira
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isabel Ramos
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - José Luis Costa
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Venceslau Hespanhol
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - António Cunha
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- UTAD—University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Hélder P. Oliveira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
13
|
RELAY+: Exploratory Study of Ramucirumab Plus Gefitinib in Untreated Patients With Epidermal Growth Factor Receptor (EGFR)-Mutated Metastatic Non–Small-Cell Lung Cancer (NSCLC). JTO Clin Res Rep 2022; 3:100303. [PMID: 35369607 PMCID: PMC8966141 DOI: 10.1016/j.jtocrr.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Ramucirumab (RAM) plus erlotinib was found to have superior progression-free survival (PFS) versus placebo plus erlotinib in untreated EGFR-mutated metastatic NSCLC in the global phase 3 RELAY study. RELAY+ was an open-label, two-period, single-arm, exploratory study of RAM plus gefitinib (GEF; period 1) and RAM plus osimertinib (period 2) in East Asia (NCT02411448). Methods Period 1 evaluated RAM (10 mg/kg) plus GEF (250 mg/d) in patients with untreated EGFR-mutated metastatic NSCLC. Period 2 evaluated RAM plus osimertinib (80 mg/d) in patients with disease progression who acquired T790M mutation in period 1. Exploratory end points included 1-year PFS rate (primary), other efficacy parameters, safety, and biomarker analyses of plasma (baseline, on-treatment, follow-up) using next-generation sequencing. Results From December 2017 to August 2018, a total of 82 patients were enrolled and started treatment (period 1, RAM + GEF). The 1-year PFS rate was 62.9% (95% confidence interval: 50.3–73.1). Treatment-emergent adverse events of grade three or higher were reported with RAM plus GEF in 60 of 82 patients (73.2%; five patients [6.1%] grade four). There were two deaths owing to adverse events that occurred (acute cardiac failure, congestive cardiac failure). T790M rate at disease progression in plasma was 81.0% (13 of 16 patients). Conclusions RELAY+ was found to have a favorable benefit–risk profile for RAM plus GEF in first-line treatment of East Asian patients with EGFR-mutated NSCLC.
Collapse
|
14
|
Samanta S, Mahata R, Santra MK. The Cross-Talk between Epigenetic Gene Regulation and Signaling Pathways Regulates Cancer Pathogenesis. Subcell Biochem 2022; 100:427-472. [PMID: 36301502 DOI: 10.1007/978-3-031-07634-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer begins due to uncontrolled cell division. Cancer cells are insensitive to the signals that control normal cell proliferation. This uncontrolled cell division is due to the accumulation of abnormalities in different factors associated with the cell division, including different cyclins, cell cycle checkpoint inhibitors, and cellular signaling. Cellular signaling pathways are aberrantly activated in cancer mainly due to epigenetic regulation and post-translational regulation. In this chapter, the role of epigenetic regulation in aberrant activation of PI3K/AKT, Ras, Wnt, Hedgehog, Notch, JAK/STAT, and mTOR signaling pathways in cancer progression is discussed. The role of epigenetic regulators in controlling the upstream regulatory proteins and downstream effector proteins responsible for abnormal cellular signaling-mediated cancer progression is covered in this chapter. Similarly, the role of signaling pathways in controlling epigenetic gene regulation-mediated cancer progression is also discussed. We have tried to ascertain the current status of potential epigenetic drugs targeting several epigenetic regulators to prevent different cancers.
Collapse
Affiliation(s)
- Snigdha Samanta
- Molecular Oncology Laboratory, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind Road, Pune, Maharashtra, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rumpa Mahata
- Molecular Oncology Laboratory, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind Road, Pune, Maharashtra, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Manas Kumar Santra
- Molecular Oncology Laboratory, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind Road, Pune, Maharashtra, India.
| |
Collapse
|
15
|
Pathak N, Chitikela S, Malik PS. Recent advances in lung cancer genomics: Application in targeted therapy. ADVANCES IN GENETICS 2021; 108:201-275. [PMID: 34844713 DOI: 10.1016/bs.adgen.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genomic characterization of lung cancer has not only improved our understanding of disease biology and carcinogenesis but also revealed several therapeutic opportunities. Targeting tumor dependencies on specific genomic alterations (oncogene addiction) has accelerated the therapeutic developments and significantly improved the outcomes even in advanced stage of disease. Identification of genomic alterations predicting response to specific targeted treatment is the key to success for this "personalized treatment" approach. Availability of multiple choices of therapeutic options for specific genomic alterations highlight the importance of optimum sequencing of drugs. Multiplex gene testing has become mandatory in view of constantly increasing number of therapeutic targets and effective treatment options. Influence of genomic characteristics on response to immunotherapy further makes comprehensive genomic profiling necessary before therapeutic decision making. A comprehensive elucidation of resistance mechanisms and directed treatments have made the continuum of care possible and transformed this deadly disease into a chronic condition. Liquid biopsy-based approach has made the dynamic monitoring of disease possible and enabled treatment optimizations accordingly. Current lung cancer management is the perfect example of "precision-medicine" in clinical oncology.
Collapse
Affiliation(s)
- Neha Pathak
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Sindhura Chitikela
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
16
|
The Role of Exosomes and Their Applications in Cancer. Int J Mol Sci 2021; 22:ijms222212204. [PMID: 34830085 PMCID: PMC8622108 DOI: 10.3390/ijms222212204] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are very small extracellular vesicles secreted by multiple cell types and are extensively distributed in various biological fluids. Recent research indicated that exosomes can participate in regulating the tumor microenvironment and impacting tumor proliferation and progression. Due to the extensive enrollment in cancer development, exosomes have become a focus of the search for a new therapeutic method for cancer. Exosomes can be utilized for the therapeutic delivery of small molecules, proteins and RNAs to target cancer cells with a high efficiency. Exosome-carried proteins, lipids and nucleic acids are being tested as promising biomarkers for cancer diagnosis and prognosis, even as potential treatment targets for cancer. Moreover, different sources of exosomes exhibit multiple performances in cancer applications. In this review, we elaborate on the specific mechanism by which exosomes affect the communication between tumors and the microenvironment and state the therapeutic and diagnostic applications of exosomes in cancers.
Collapse
|
17
|
Ramucirumab Plus Erlotinib Versus Placebo Plus Erlotinib in Patients With Untreated Metastatic EGFR-Mutated NSCLC: RELAY Japanese Subset. JTO Clin Res Rep 2021; 2:100171. [PMID: 34590023 PMCID: PMC8474372 DOI: 10.1016/j.jtocrr.2021.100171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction The phase 3 RELAY global study (NCT02411448) revealed significant improvement in progression-free survival (PFS) with ramucirumab plus erlotinib (RAM + ERL) compared with placebo plus ERL (PL + ERL) in untreated EGFR-mutated metastatic NSCLC (hazard ratio [HR] = 0.59 [95% confidence interval (CI): 0.46-0.76, p < 0.0001]). This prespecified analysis evaluates efficacy, safety, and postprogression EGFR T790M rates of RELAY patients enrolled in Japan. Methods Patients were randomized (1:1) to oral ERL (150 mg/d) plus intravenous RAM (10 mg/kg) or PL every 2 weeks. End points included PFS (primary), safety (secondary), and biomarker analyses (exploratory). Plasma samples collected at baseline and poststudy treatment discontinuation were evaluated for EGFR T790M mutations by next-generation sequencing. Results The Japanese subset included 211 of 449 (47.0%) RELAY patients (RAM + ERL, n = 106; PL + ERL, n = 105). Median PFS was 19.4 versus 11.2 months for RAM + ERL versus PL + ERL treatment (HR = 0.610 [0.431-0.864]) in the Japanese intent-to-treat population, 16.6 versus 12.5 months (HR = 0.701 [0.424-1.159]) in the EGFR exon 19 deletion subgroup, and 19.4 versus 10.9 months (HR = 0.514 [0.317-0.835]) in the EGFR exon 21 L858R subgroup, respectively. Adverse events of grade 3 or above with RAM + ERL included hypertension (24.8%, all grade 3) and dermatitis acneiform (23.8%). Postprogression treatment-emergent T790M rates were similar between arms (RAM + ERL: 47%, 9 of 19 patients; PL + ERL: 50%, 20 of 40 patients). Conclusions Clinically meaningful efficacy was observed with RAM + ERL versus PL + ERL in the RELAY Japanese subset, with no new safety concerns. Postprogression T790M rates were similar across treatment arms, indicating the addition of RAM did not affect the ERL-associated EGFR T790M rates at disease progression.
Collapse
|
18
|
Jensen SG, Epistolio S, Madsen CL, Kyneb MH, Riva A, Paganotti A, Barizzi J, Petersen RK, Børgesen M, Molinari F, Boldorini R, Lorenzen J, Sørensen E, Christensen UB, Høgdall E, Frattini M. A new sensitive and fast assay for the detection of EGFR mutations in liquid biopsies. PLoS One 2021; 16:e0253687. [PMID: 34166445 PMCID: PMC8224962 DOI: 10.1371/journal.pone.0253687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND A major perspective for the use of circulating tumor DNA (ctDNA) in the clinical setting of non-small cell lung cancer (NSCLC) is expected as predictive factor for resistance and response to EGFR TKI therapy and, especially, as a non-invasive alternative to tissue biopsy. However, ctDNA is both highly fragmented and mostly low concentrated in plasma and serum. On this basis, it is important to use a platform characterized by high sensitivity and linear performance in the low concentration range. This motivated us to evaluate the newly developed and commercially available SensiScreen® EGFR Liquid assay platform (PentaBase) with regard to sensitivity, linearity, repeatability and accuracy and finally to compare it to our already implemented methods. The validation was made in three independent European laboratories using two cohorts on a total of 68 unique liquid biopsies. RESULTS Using artificial samples containing 1600 copies of WT DNA spiked with 50% - 0.1% of mutant copies across a seven-log dilution scale, we assessed the sensitivity, linearity, repeatability and accuracy for the p.T790M, p.L858R and exon 19 deletion assays of the SensiScreen® EGFR Liquid assay platform. The lowest value detectable ranged from 0.5% to 0.1% with R2≥0,97 indicating good linearity. High PCR efficiency was shown for all three assays. In 102 single PCRs each containing theoretical one copy of the mutant at initiating, assays showed repeatable positivity in 75.5% - 80.4% of reactions. At low ctDNA levels, as in plasma, the SensiScreen® EGFR Liquid assay platform showed better sensitivity than the Therascreen® EGFR platform (Qiagen) and equal performance to the ctEGFR Mutation Detection Kit (EntroGen) and the IOT® Oncomine cell-free nucleic acids assay (Thermo Fisher Scientific) with 100% concordance at the sequence level. CONCLUSION For profiling clinical plasma samples, characterized by low ctDNA abundance, the SensiScreen® EGFR Liquid assay is able to identify down to 1 copy of mutant alleles and with its high sensitivity, linearity and accuracy it may be a competitive platform of choice.
Collapse
Affiliation(s)
| | | | | | | | - Alice Riva
- Institute of Pathology, Locarno, Switzerland
| | - Alessia Paganotti
- Department of Pathology, ’Maggiore della Carità’ Hospital, Novara, Italy
| | | | | | | | | | - Renzo Boldorini
- Department of Pathology, ’Maggiore della Carità’ Hospital, Novara, Italy
- Department of Health Sciences, Universitá degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Jan Lorenzen
- Life Science Division, Danish Technological Institute, Aarhus, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Estrid Høgdall
- Department of Pathology, Herlev—Gentofte University Hospital, Herlev, Denmark
| | | |
Collapse
|
19
|
Epistolio S, Cefalì M, Spina P, Molinari F, Movilia A, Cergnul M, Mazzucchelli L, De Dosso S, Frattini M, Saletti P. Occurence of RAS reversion in metastatic colorectal cancer patients treated with bevacizumab. Oncotarget 2021; 12:1046-1056. [PMID: 34084279 PMCID: PMC8169066 DOI: 10.18632/oncotarget.27965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022] Open
Abstract
Background: A disappearance of RAS mutations in the plasma of about 50% of mCRCs (metastatic colorectal cancers) treated with bevacizumab-based chemotherapy has been reported. Our aim was to evaluate the same issue at tissue level. Materials and Methods: Using next-generation sequencing and real-time PCR approaches, we characterized the primary tumor (PT) and paired liver metastases in 28 RAS mutant mCRCs. Patients were subdivided into 3 treatment groups: 1) bevacizumab plus chemotherapy; 2) chemotherapy alone; 3) any systemic therapy (control group). In groups 1 and 2, liver metastases were resected after removal of PT and subsequent neoadjuvant systemic therapy. Results: RAS mutant alleles are at the same percentage in PT and liver metastases in the control group, while a significant reduction of the level of RAS mutations was detected in 57.1% of cases in group 1 and in 8.3% of cases in group 2. Differences among groups are statistically significant (p = 0.038). Conclusions: Most of mCRC patients treated with bevacizumab-containing regimens experience a strong reduction of RAS mutant cells, suggesting bevacizumab as particularly active against RAS mutant cells. This finding might have potential therapeutic implications, as anti-EGFR could be reconsidered in primarily RAS mutant patients reverted to a wild-type status after bevacizumab exposure.
Collapse
Affiliation(s)
- Samantha Epistolio
- Institute of Pathology, EOC, Locarno, Switzerland.,These authors are Joined First Authors
| | - Marco Cefalì
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland.,These authors are Joined First Authors
| | - Paolo Spina
- Institute of Pathology, EOC, Locarno, Switzerland.,Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | | | - Alessandra Movilia
- Department of Pathology, ASST Ovest Milanese, Ospedale di Legnano, Legnano, Italy
| | - Massimiliano Cergnul
- Department of Medical Oncology, ASST Ovest Milanese, Ospedale di Legnano, Legnano, Italy
| | | | - Sara De Dosso
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Milo Frattini
- Institute of Pathology, EOC, Locarno, Switzerland.,These authors are Joint Senior Authors
| | - Piercarlo Saletti
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland.,Current address: Department of Medical Oncology, Clinica Luganese Moncucco, Lugano, Switzerland.,These authors are Joint Senior Authors
| |
Collapse
|
20
|
Christopoulos P, Dietz S, Angeles AK, Rheinheimer S, Kazdal D, Volckmar AL, Janke F, Endris V, Meister M, Kriegsmann M, Zemojtel T, Reck M, Stenzinger A, Thomas M, Sültmann H. Earlier extracranial progression and shorter survival in ALK-rearranged lung cancer with positive liquid rebiopsies. Transl Lung Cancer Res 2021; 10:2118-2131. [PMID: 34164264 PMCID: PMC8182700 DOI: 10.21037/tlcr-21-32] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Liquid rebiopsies can detect resistance mutations to guide therapy of anaplastic lymphoma kinase-rearranged (ALK+) non-small-cell lung cancer (NSCLC) failing tyrosine kinase inhibitors (TKI). Here, we analyze how their results relate to the anatomical pattern of disease progression and patient outcome. METHODS Clinical, molecular, and radiologic characteristics of consecutive TKI-treated ALK+ NSCLC patients were analyzed using prospectively collected plasma samples and the 17-gene targeted AVENIO kit, which covers oncogenic drivers and all TP53 exons. RESULTS In 56 patients, 139 instances of radiologic changes were analyzed, of which 133 corresponded to disease progression. Circulating tumor DNA (ctDNA) alterations were identified in most instances of extracranial progression (58/94 or 62%), especially if concomitant intracranial progression was also present (89%, P<0.001), but rarely in case of isolated central nervous system (CNS) progression (8/39 or 21%, P<0.001). ctDNA detectability correlated with presence of "short" echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion variants (mainly V3, E6:A20) and/or TP53 mutations (P<0.05), and presented therapeutic opportunities in <50% of cases. Patients with extracranial progression and positive liquid biopsies had shorter survival from the start of palliative treatment (mean 52 vs. 69 months, P=0.002), regardless of previous and subsequent therapy and initial ECOG performance status. Furthermore, for patients with extracranial progression, ctDNA detectability was associated with shorter next-line progression-free survival (PFS) (3 vs. 13 months, P=0.003) if they were switched to another systemic therapy (49/86 samples), and with shorter time-to-next-treatment (TNT) (3 vs. 8 months, P=0.004) if they were continued on the same treatment due to oligoprogression (37/86). In contrast, ctDNA detectability was not associated with the outcome of patients showing CNS-only progression. In 6/6 cases with suspicion of non-neoplastic radiologic lung changes (mainly infection or pneumonitis), ctDNA results remained negative. CONCLUSIONS Positive blood-based liquid rebiopsies in ALK+ NSCLC characterize biologically more aggressive disease and are common with extracranial, but rare with CNS-only progression or benign radiologic changes. These results reconcile the increased detection of ALK resistance mutations with other features of the high-risk EML4-ALK V3-associated phenotype. Conversely, most oligoprogressive patients with negative liquid biopsies have a more indolent course without need for early change of systemic treatment.
Collapse
Affiliation(s)
- Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| | - Steffen Dietz
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Arlou K. Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stephan Rheinheimer
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Kazdal
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Meister
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Mark Kriegsmann
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomasz Zemojtel
- Charité – Universitätsmedizin Berlin, BIH - Genomics Core Unit, Berlin, Germany
| | - Martin Reck
- Lungenclinic Großhansdorf, Großhansdorf, Germany
| | - Albrecht Stenzinger
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
21
|
Sugasawa T, Fujita SI, Kuji T, Ishibashi N, Tamai K, Kawakami Y, Takekoshi K. Dynamics of Specific cfDNA Fragments in the Plasma of Full Marathon Participants. Genes (Basel) 2021; 12:genes12050676. [PMID: 33946330 PMCID: PMC8145542 DOI: 10.3390/genes12050676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 01/03/2023] Open
Abstract
Plasma cell-free DNA (cfDNA) is frequently analyzed using liquid biopsy to investigate cancer markers. We hypothesized that this concept might be applicable in exercise physiology. Here, we aimed to identify specific cfDNA (spcfDNA) sequences in the plasma of healthy humans using next-generation sequencing (NGS) and clearly define the dynamics regarding spcfDNA-fragment levels upon extreme exercises, such as running a full marathon. NGS analysis was performed using cfDNA of pooled plasma collected from healthy participants. We confirmed that the TaqMan-qPCR assay had high sensitivity and found that the spcfDNA sequence abundance was 16,600-fold higher than that in a normal genomic region. We then used the TaqMan-qPCR assay to investigate the dynamics of spcfDNA-fragment levels upon running a full marathon. The spcfDNA fragment levels were significantly increased post-marathon. Furthermore, spcfDNA fragment levels were strongly correlated with white blood cell and plasma myoglobin concentrations. These results suggest the spcfDNA fragments identified in this study were highly sensitive as markers of extreme physical stress. The findings of this study may provide new insights into exercise physiology and genome biology in humans.
Collapse
Affiliation(s)
- Takehito Sugasawa
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; (T.S.); (S.-i.F.); (Y.K.)
| | - Shin-ichiro Fujita
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; (T.S.); (S.-i.F.); (Y.K.)
| | - Tomoaki Kuji
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan;
- Research and Development Division, Blue Industries Inc., ArcaCentral Bldg 14F, 1-1-1 Kinshi, Sumida, Tokyo 130-0013, Japan
| | - Noriyo Ishibashi
- Tsukuba i-Laboratory LLP, 2-1-17 Amakubo, Tsukuba 305-0005, Ibaraki, Japan; (N.I.); (K.T.)
| | - Kenshirou Tamai
- Tsukuba i-Laboratory LLP, 2-1-17 Amakubo, Tsukuba 305-0005, Ibaraki, Japan; (N.I.); (K.T.)
| | - Yasushi Kawakami
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; (T.S.); (S.-i.F.); (Y.K.)
| | - Kazuhiro Takekoshi
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; (T.S.); (S.-i.F.); (Y.K.)
- Correspondence: ; Tel.: +81-29-853-3209
| |
Collapse
|
22
|
Xu X, Zhang X, Zhang Y, Wang Z. Curcumin suppresses the malignancy of non-small cell lung cancer by modulating the circ-PRKCA/miR-384/ITGB1 pathway. Biomed Pharmacother 2021; 138:111439. [PMID: 33684690 DOI: 10.1016/j.biopha.2021.111439] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Curcumin exerts a suppressive effect in tumor growth by acting as a modulator of multiple molecular targets. Circular RNA hsa_circ_0007580 (circ-PRKCA) accelerates the tumorigenesis of non-small cell lung cancer (NSCLC). However, whether curcumin can regulate circ-PRKCA to inhibit NSCLC progression is unclear. METHODS Cell viability, colony formation, apoptosis, migration, and invasion were analyzed using Cell Counting Kit-8 (CCK-8), plate clone, flow cytometry, or transwell assay. Expression of circ-PRKCA, microRNA (miR)-384, and ITGB1 mRNA (integrin subunit beta 1) mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Curcumin repressed NSCLC growth through regulating circ-PRKCA expression was validated by xenograft assay. The targeting relationship between circ-PRKCA or ITGB1 and miR-384 was verified by dual-luciferase reporter assay. The level of ITGB1 protein was measured by western blotting. RESULTS Circ-PRKCA and ITGB1 expression were elevated in NSCLC tissues and cells, but miR-384 had an opposing tendency. After curcumin treatment, the expression tendency of circ-PRKCA, miR-384, and ITGB1 in NSCLC cells was overturned. Furthermore, curcumin impeded viability, colony formation, migration, invasion, and accelerated apoptosis of NSCLC cells, but these impacts were partially reversed by circ-PRKCA elevation, miR-384 downregulation, or ITGB1 overexpression. Also, the inhibitory effect of curcumin on xenograft tumor was further enhanced after circ-PRKCA knockdown. Notably, circ-PRKCA regulated ITGB1 expression through sponging miR-384 in curcumin-treated NSCLC cells. CONCLUSIONS Curcumin inhibited NSCLC growth through downregulating circ-PRKCA, which regulated ITGB1 expression by adsorbing miR-384. This study provided a new mechanism to understand how curcumin inhibited the progression of NSCLC.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Department of Clinical Oncology, The Affiliated Hospital of Shandong University of TCM, Jinan, Shandong, China
| | - Xinyue Zhang
- Department of Respiratory Diseases, The First Clinical Medical College of Shandong University of TCM, Jinan, Shandong, China
| | - Yang Zhang
- Department of Respiratory Diseases, The Affiliated Hospital of Shandong University of TCM, Jinan, Shandong, China
| | - Zhipeng Wang
- Department of Clinical Oncology, The Affiliated Hospital of Shandong University of TCM, Jinan, Shandong, China.
| |
Collapse
|
23
|
VanderLaan PA, Roy-Chowdhuri S. Current and future trends in non-small cell lung cancer biomarker testing: The American experience. Cancer Cytopathol 2021; 128:629-636. [PMID: 32885913 DOI: 10.1002/cncy.22313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Biomarker testing in patients with advanced stage non-small cell lung cancer provides essential information that can be used to select the most appropriate therapy. The regular updates of guideline recommendations reflect the growing number of biomarkers that must be assessed, and as such signal the shift from single-gene assays to more comprehensive genomic profiling using next-generation sequencing modalities. Cytology and small biopsy specimens have proven to be more than adequate substrates for these types of ancillary molecular testing; however, other alternative testing substrates are beginning to emerge. These include so-called liquid biopsies as well the supernatant fluid from cytology specimens, both of which have demonstrated promise for use in the clinical realm. This review will briefly cover the current state of non-small cell lung cancer biomarker testing in the United States, with a focus on these novel nonconventional substrates that are increasingly being incorporated into testing paradigms.
Collapse
Affiliation(s)
- Paul A VanderLaan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sinchita Roy-Chowdhuri
- Division of Pathology and Laboratory Medicine, Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Lee JG, Kim HC, Choi CM. Recent Trends of Lung Cancer in Korea. Tuberc Respir Dis (Seoul) 2021; 84:89-95. [PMID: 33587838 PMCID: PMC8010413 DOI: 10.4046/trd.2020.0134] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths in Korea. Although the smoking rate has decreased over time, the prevalence of lung cancer still remains high. In this study, we reviewed recent trends on the incidence, epidemiology, screening, diagnosis, and treatment of lung cancer in Korea by analyzing data from the national lung cancer registry and recently-published studies. Although approximately 40% of patients with non-small cell lung cancer (NSCLC) were diagnosed as stage IV, the 5-year relative survival rate improved from 11.3% (1993-1995) to 30.2% (2013-2017), possibly due to advances in methods of diagnosis and therapy. In addition, the 2019 implementation of the national lung cancer screening program with low-dose computed tomography may have also contributed to these improvements in survival rates. Recently, molecular diagnosis has become more widely used in the identification of genetic mutations in tissue specimens. Target therapy and immune checkpoint inhibitors have also been successfully used, particularly in cases of advanced NSCLC. In the future, further research on the optimal management of lung cancer remains necessary.
Collapse
Affiliation(s)
- Jae Guk Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho Cheol Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Prabhash K, Batra U. Impact of epidermal growth factor receptor T790M testing in relapsed non-small cell lung cancer: A narrative review of the T790M reflex testing algorithm. CANCER RESEARCH, STATISTICS, AND TREATMENT 2021. [DOI: 10.4103/crst.crst_169_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
26
|
Yasukawa M, Sawabata N, Kawaguchi T, Taniguchi S. Wedge Resection of Tumor Before Lobectomy for Lung Cancer Could Be a No-touch Isolation Technique. In Vivo 2020; 34:779-785. [PMID: 32111784 DOI: 10.21873/invivo.11838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIM Circulating tumor cells (CTCs) can be a surrogate biomarker of prospective prognosis. Surgical manipulation can promote the dissemination of CTCs. Prognosis improvement is expected with the no-touch isolation technique (NTIT), preventing surgical manipulation. The Wedge resection of the tumor site before lobectomy could prevent surgical manipulation during lobectomy for non-small cell lung cancer (NSCLC) and reduce the shedding of tumor cells, similar to a NTIT. This study aimed to evaluate the effect of wedge resection technique. PATIENTS AND METHODS A total of 624 resected NSCLC patients were retrospectively analyzed. Patients were divided in two groups: Wedge and Non-Wedge. Overall survival (OS) curves were plotted using the Kaplan-Meier method. RESULTS The 5-year OS rates were 89.9% and 84.0% in the Wedge and Non-Wedge groups, respectively (p=0.033). CONCLUSION The OS in the Wedge group was significantly better than that in the Non-Wedge group. Wedge resection technique for NSCLC may be a NTIT.
Collapse
Affiliation(s)
- Motoaki Yasukawa
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University School of Medicine, Nara, Japan
| | - Noriyoshi Sawabata
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University School of Medicine, Nara, Japan
| | - Takeshi Kawaguchi
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University School of Medicine, Nara, Japan
| | - Shigeki Taniguchi
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
27
|
Iaccarino A, Pisapia P, Pepe F, Sgariglia R, Nacchio M, Russo G, Gragnano G, De Luca C, Troncone G, Malapelle U. Liquid biopsy for BRAF mutations testing in non-small cell lung cancer: a retrospective study. J Clin Pathol 2020; 75:58-60. [PMID: 33277344 DOI: 10.1136/jclinpath-2020-207107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
V-Raf murine sarcoma viral oncogene homolog B (BRAF) gene mutations have recently been approved to select advanced stages non-small cell lung cancer (NSCLC) patients for tyrosine kinase inhibitors treatments. In this setting, liquid biopsy may represent a valuable option for BRAF mutational testing in patients without tissue availability. Here, we reviewed 196 plasma based liquid biopsies analysed by an in-house developed next generation sequencing panel, termed SiRe. On the overall, 6 (3.1%) out of 196 BRAF mutated cases were identified, with an overall median allelic frequency of 3.4%. Exon 15 p.V600E was the most common detected mutation (2/6, 33.3%). Our data highlighted that the SiRe panel is a robust tool for BRAF mutation assessment on circulating tumour DNA. Further investigation is required to develop a diagnostic algorithm to harmonise BRAF testing on tissue and blood in advanced stages NSCLC patients.
Collapse
Affiliation(s)
| | | | - Francesco Pepe
- Public Health, University of Naples Federico II, Naples, Italy
| | | | | | - Gianluca Russo
- Public Health, University of Naples Federico II, Naples, Italy
| | | | | | | | | |
Collapse
|
28
|
Bonanno L, Pavan A, Ferro A, Calvetti L, Frega S, Pasello G, Aprile G, Guarneri V, Conte P. Clinical Impact of Plasma and Tissue Next-Generation Sequencing in Advanced Non-Small Cell Lung Cancer: A Real-World Experience. Oncologist 2020; 25:e1996-e2005. [PMID: 32557976 PMCID: PMC8108051 DOI: 10.1634/theoncologist.2020-0148] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Targeted agents have improved the outcome of a subset of non-small cell lung cancer (NSCLC). Molecular profiling by next-generation sequencing (NGS) allows screening for multiple genetic alterations both in tissue and in plasma, but limited data are available concerning its feasibility and impact in real-world clinical practice. METHODS Patients with advanced NSCLC consecutively referring to our Institution for potential eligibility to VISION trial (NCT02864992) were prospectively enrolled. They were already screened with standard method, and EGFR/ALK/ROS-1 positive cases were excluded. NGS was performed in plasma and tissue using the Guardant360 test covering 73 genes and the Oncomine Focus Assay covering 59 genes, respectively. RESULTS The study included 235 patients. NGS was performed in plasma in 209 (88.9%) cases; 78 of these (37.3%) were evaluated also in tissue; tissue only was analyzed in 26 cases (11.1%). Half of the tissue samples were deemed not evaluable. Druggable alterations were detected in 13 (25%) out of 52 evaluable samples and 31 of 209 (14.8%) of plasma samples. Improved outcome was observed for patients with druggable alterations if treated with matched targeted agents: they had a longer median overall survival (not reached) compared with the ones who did not start any targeted therapy (9.1 months; 95% confidence interval, 4.6-13.6; p = .046). The results of NGS testing potentially also affected the outcome of patients treated with immunotherapy. CONCLUSION Systematic real-life NGS testing showed the limit of tissue analysis in NSCLC and highlighted the potentiality of genetic characterization in plasma in increasing the number of patients who may benefit from NGS screening, both influencing the clinical decision-making process and affecting treatment outcome. IMPLICATIONS FOR PRACTICE Genetic characterization of cancer has become more important with time, having had positive implications for treatment specificity and efficacy. Such analyses changed the natural history of advanced non-small cell lung cancer (aNSCLC) with the introduction of drugs targeted to specific gene alterations (e.g., EGFR mutations, ALK and ROS-1 rearrangements). In the field of cancer molecular characterization, the applicability of the analysis of a wide panel of genes using a high-throughput sequencing approach, such as next-generation sequencing (NGS), is still a matter of research. This study used NGS in a real-world setting to systematically and prospectively profile patients with aNSCLC. The aim was to evaluate its feasibility and reliability, as well as consequent access to targeted agents and impact on clinical outcome whenever a druggable alteration was detected either in tumor tissue samples or through liquid biopsy.
Collapse
Affiliation(s)
- Laura Bonanno
- Medical Oncology 2, Istituto Oncologico Veneto (IOV)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PadovaItaly
| | - Alberto Pavan
- Medical Oncology 2, Istituto Oncologico Veneto (IOV)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PadovaItaly
| | - Alessandra Ferro
- Medical Oncology 2, Istituto Oncologico Veneto (IOV)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PadovaItaly
- Department of Surgery, Oncology, and Gastroenterology, University of PadovaPadovaItaly
| | - Lorenzo Calvetti
- Department of Oncology, San Bortolo General HospitalUnità Locale Socio Sanitaria (ULSS) 8 Berica—East DistrictVicenzaItaly
| | - Stefano Frega
- Medical Oncology 2, Istituto Oncologico Veneto (IOV)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PadovaItaly
| | - Giulia Pasello
- Medical Oncology 2, Istituto Oncologico Veneto (IOV)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PadovaItaly
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General HospitalUnità Locale Socio Sanitaria (ULSS) 8 Berica—East DistrictVicenzaItaly
| | - Valentina Guarneri
- Medical Oncology 2, Istituto Oncologico Veneto (IOV)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PadovaItaly
- Department of Surgery, Oncology, and Gastroenterology, University of PadovaPadovaItaly
| | - PierFranco Conte
- Medical Oncology 2, Istituto Oncologico Veneto (IOV)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PadovaItaly
- Department of Surgery, Oncology, and Gastroenterology, University of PadovaPadovaItaly
| | | |
Collapse
|
29
|
Li G, Wu X, Sun P, Zhang Z, Shao E, Mao J, Cao H, Huang H. Dithiolation indolizine exerts viability suppression effects on A549 cells via triggering intrinsic apoptotic pathways and inducing G2/M phase arrest. Biomed Pharmacother 2020; 133:110961. [PMID: 33190035 DOI: 10.1016/j.biopha.2020.110961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/14/2023] Open
Abstract
Indolizine derivatives have been reported for the treatment of numerous diseases. However, few studies were carried out for non-small cell lung cancer (NSCLC). We synthesized series of indolizine compounds. The results of MTT assay showed compound 8 (C8) markedly inhibited the proliferation of A549 cells, however, C8 (15, 30 μg/mL) had little cytotoxicity in other cell lines (SH-SY5Y, HepG2, and BEAS-2B cells), Hoechst staining and JC-1 staining showed that C8 induced changes in the nucleus morphology, increased the loss in mitochondrial membrane potential in A549 cells. The results of flow cytometry manifested that cell cycle of the cells was arrested in the G2 / M phase by C8, ROS levels and the proportion of apoptosis of cells increased. We performed western blotting analysis to detect the expression levels of apoptosis and cycle-related proteins. These results validated that the apoptosis of cells was triggered by endoplasmic reticulum stress (ERS) and the PI3K/Akt-mediated mitochondrial pathway collaboratively. Besides, the utilization of PI3K/Akt inhibitors and p53 inhibitors further proves the above argument and C8-induced cycle arrest of A549 cells is majorly regulated by p53. C8 induced the accumulation of ROS contents involved in mitochondrial damage. The proliferation of A549 cells was inhibited after treatment with the compound, which induced apoptosis and cycle arrest of cells. It is suggested that C8(dithiolation indolizine) is a potential candidate compound against non-small cell lung cancer.
Collapse
Affiliation(s)
- Guanting Li
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianwei Wu
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Peng Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong Province, 510060, China
| | - Zhiyang Zhang
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Enxian Shao
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianping Mao
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China.
| | - Hongliang Huang
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Baburaj G, Damerla RR, Udupa KS, Parida P, Munisamy M, Kolesar J, Rao M. Liquid biopsy approaches for pleural effusion in lung cancer patients. Mol Biol Rep 2020; 47:8179-8187. [PMID: 33029702 DOI: 10.1007/s11033-020-05869-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Genomic profiling of tumors has become the mainstay for diagnosis, treatment monitoring and a guide to precision medicine. However, in clinical practice, the detection of driver mutations in tumors has several procedural limitations owing to progressive disease and tumor heterogeneity. The current era of liquid biopsy promises a better solution. This diagnostic utility of liquid biopsy has been demonstrated by numerous studies for the detection of cell-free DNA (cfDNA) in plasma for disease diagnosis, prognosis, and prediction. However, cfDNAs are limited in blood circulation and still hurdles to achieve promising precision medicine. Malignant pleural effusion (MPE) is usually detected in advanced lung malignancy, which is rich in tumor cells. Extracellular vesicles and cfDNAs are the two major targets currently explored using MPE. Therefore, MPE can be used as a source of biomarkers in liquid biopsy for investigating tumor mutations. This review focuses on the liquid biopsy approaches for pleural effusion which may be explored as an alternative source for liquid biopsy in lung cancer patients to diagnose early disease progression.
Collapse
Affiliation(s)
- Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rama Rao Damerla
- Department of Medical Genetics, Kasturba Medical College- Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik S Udupa
- Department of Medical Oncology, Kasturba Medical College- Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Preetiparna Parida
- Department of Medical Genetics, Kasturba Medical College- Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Murali Munisamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jill Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky, 567 TODD Building, 789 South Limestone Street, Lexington, KY, 40539-0596, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
31
|
Malapelle U, Rossi G, Pisapia P, Barberis M, Buttitta F, Castiglione F, Cecere FL, Grimaldi AM, Iaccarino A, Marchetti A, Massi D, Medicina D, Mele F, Minari R, Orlando E, Pagni F, Palmieri G, Righi L, Russo A, Tommasi S, Vermi W, Troncone G. BRAF as a positive predictive biomarker: Focus on lung cancer and melanoma patients. Crit Rev Oncol Hematol 2020; 156:103118. [PMID: 33038627 DOI: 10.1016/j.critrevonc.2020.103118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
In the era of personalized medicine, BRAF mutational assessment is mandatory in advanced-stage melanoma and non-small cell lung cancer (NSCLC) patients. The identification of actionable mutations is crucial for the adequate management of these patients. To date various drugs have been implemented in clinical practice. Similarly, various methods may be adopted for the identification of BRAF mutations. Here, we briefly review the current literature on BRAF in melanoma and NSCLC, focusing attention in particular on the different methods and drugs adopted in these patients. In addition, an overview of the real-world practice in different Italian laboratories with high expertise in molecular predictive pathology testing is provided.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giulio Rossi
- Pathology Unit, Azienda USL Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Barberis
- Unit of Histopathology and Molecular Diagnostics, European Institute of Oncology IRCCS, Milano, Italy
| | - Fiamma Buttitta
- Center for Advanced Studies and Technology (CAST) - Department of Medical, Oral and Biotechnological Sciences, University of Chieti, Italy
| | - Francesca Castiglione
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Antonio Maria Grimaldi
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonio Marchetti
- Center for Advanced Studies and Technology (CAST) - Department of Medical, Oral and Biotechnological Sciences, University of Chieti, Italy
| | - Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Daniela Medicina
- Section of Pathology, Asst Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Mele
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Elisabetta Orlando
- Department of Health Promotion, Mother and Child care, Internal Medicine and Medical Specialties (ProMISE), Unit of Anatomic Pathology, University of Palermo, Palermo, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University Milan Bicocca, Milan, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Luisella Righi
- Department of Oncology, San Luigi Hospital, University of Turin, Turin, Italy
| | | | - Stefania Tommasi
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - William Vermi
- Section of Pathology, Asst Spedali Civili di Brescia, Brescia, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
32
|
Negahdaripour M, Owji H, Eskandari S, Zamani M, Vakili B, Nezafat N. Small extracellular vesicles (sEVs): discovery, functions, applications, detection methods and various engineered forms. Expert Opin Biol Ther 2020; 21:371-394. [PMID: 32945228 DOI: 10.1080/14712598.2021.1825677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are cell-created delivery systems of proteins, lipids, or nucleic acids, and means of extracellular communication. Though sEVs were initially considered to be the waste disposal mechanism, today they are at the forefront of research with different biological and pathological functions. Such EVs play a key role in the immunoregulation, CNS development, nervous system physiology, mammary gland development, induction of immunosuppression in pregnancy, the developmental signaling pathways, regeneration of different tissues, inflammation, angiogenesis, coagulation, apoptosis, stem cell differentiation, and extracellular matrix turnover. AREAS COVERED SEVs contribute to the pathogenesis of different cancers and the progression of various neurodegenerative diseases, infections, as well as metabolic and cardiovascular diseases. Expert Opinion: There is no exact classification for EVs; however, according to size, density, morphological features, content, and biogenesis, they can be categorized into three major classes: microvesicles (ectosomes or microparticles), apoptotic bodies, and sEVs. SEVs, as an important class of EVs, have a crucial role in distinct biological functions. Moreover, shedding light on different structural and molecular aspects of sEV has led to their application in various therapeutic, diagnostic, and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of EVs, especially sEVs.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Hajar Owji
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mozhdeh Zamani
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
33
|
Jotatsu T, Izumi H, Morimoto Y, Yatera K. Selection of microRNAs in extracellular vesicles for diagnosis of malignant pleural mesothelioma by in vitro analysis. Oncol Rep 2020; 44:2198-2210. [PMID: 33000251 PMCID: PMC7551269 DOI: 10.3892/or.2020.7778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a malignant tumor which is a challenge for diagnosis and is associated with a poor patient prognosis. Thus, early diagnostic interventions will improve the quality of life and life expectancy of these patients. Recently, cellular microRNAs (miRNAs) have been found to be involved in maintaining homeostasis, and abnormal miRNA expression has often been observed in various diseases including cancer. Extracellular vesicles (EVs) released by many cells contain proteins and nucleic acids. miRNAs are secreted from all cells via EVs and circulate throughout the body. In this study, culture media were passed sequentially through membrane filters 220–50 nm in size, and EVs with diameters of 50 to 220 nm (EVcap50/220) were collected. miRNAs (EV50-miRNAs) in EVcap50/220 were purified, and microarray analysis was performed. EV50-miRNA expression profiles were compared between MPM cells and a normal pleural mesothelial cell line, and six EV50-miRNAs were selected for further investigation. Of these, hsa-miR-193a-5p and hsa-miR-551b-5p demonstrated higher expression in MPM-derived EVcap50/220. These miRNAs reduced the expression of several genes involved in cell-cell interactions and cell-matrix interactions in normal pleural mesothelial cells. Our data suggest that hsa-miR-193a-5p and hsa-miR-551b-5p in EVcap50/220 could be diagnostic markers for MPM.
Collapse
Affiliation(s)
- Takanobu Jotatsu
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| |
Collapse
|
34
|
Lu X, Zhang Y, Xie G, Ding Y, Cong H, Xuan S. Exosomal non‑coding RNAs: Novel biomarkers with emerging clinical applications in gastric cancer (Review). Mol Med Rep 2020; 22:4091-4100. [PMID: 33000279 PMCID: PMC7533435 DOI: 10.3892/mmr.2020.11519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common types of malignant tumor and it demonstrates high mortality rates. The majority of cases of GC are diagnosed at an advanced stage, which seriously endangers the health of the patient. Therefore, discovering a novel diagnostic method for GC is a current priority. Exosomes are 40 to 150-nm-diameter vesicles consisting of a lipid bilayer secreted by a variety of cells that exist in multiple different types of body fluids. Exosomes contain diverse types of active substances, including RNAs, proteins and lipids, and play important roles in tumor cell communication, metastasis and neovascularization, as well as tumor growth. Non-coding RNAs (ncRNAs) do not code proteins, and instead have roles in a variety of genetic mechanisms, such as regulating the structure, expression and stability of RNAs, and modulating the translation and function of proteins. In recent years, exosomal ncRNAs have become a novel focus in research. An increasing number of studies have demonstrated that exosomal ncRNAs can be used in the prediction and treatment of GC. The present review briefly discusses the role of exosomal ncRNAs as a potential biomarker, and summarizes important regulatory genes involved in the development and progression of GC.
Collapse
Affiliation(s)
- Xu Lu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guangfei Xie
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ye Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shihai Xuan
- Department of Laboratory Medicine, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| |
Collapse
|
35
|
Tran LS, Nguyen QTT, Nguyen CV, Tran VU, Nguyen THT, Le HT, Nguyen MLT, Le VT, Pham LS, Vo BT, Dang ATH, Nguyen LT, Nguyen TCV, Pham HAT, Tran TT, Nguyen LH, Nguyen TTT, Nguyen KHT, Vu YV, Nguyen NH, Bui VQ, Bui HH, Do TTT, Lam NV, Truong Dinh K, Phan MD, Nguyen HN, Giang H. Ultra-Deep Massive Parallel Sequencing of Plasma Cell-Free DNA Enables Large-Scale Profiling of Driver Mutations in Vietnamese Patients With Advanced Non-Small Cell Lung Cancer. Front Oncol 2020; 10:1351. [PMID: 32850431 PMCID: PMC7418519 DOI: 10.3389/fonc.2020.01351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/26/2020] [Indexed: 01/15/2023] Open
Abstract
Population-specific profiling of mutations in cancer genes is of critical importance for the understanding of cancer biology in general as well as the establishment of optimal diagnostics and treatment guidelines for that particular population. Although genetic analysis of tumor tissue is often used to detect mutations in cancer genes, the invasiveness and limited accessibility hinders its application in large-scale population studies. Here, we used ultra-deep massive parallel sequencing of plasma cell free DNA (cfDNA) to identify the mutation profiles of 265 Vietnamese patients with advanced non-small cell lung cancer (NSCLC). Compared to a cohort of advanced NSCLC patients characterized by sequencing of tissue samples, cfDNA genomic testing, despite lower mutation detection rates, was able to detect major mutations in tested driver genes that reflected similar mutation composition and distribution pattern, as well as major associations between mutation prevalence and clinical features. In conclusion, ultra-deep sequencing of plasma cfDNA represents an alternative approach for population-wide genetic profiling of cancer genes where recruitment of patients is limited to the accessibility of tumor tissue site.
Collapse
Affiliation(s)
| | | | | | | | | | - Ha Thu Le
- Ha Noi Oncology Hospital, Hanoi, Vietnam
| | | | | | - Lam-Son Pham
- Vietnam National Cancer Hospital, Hanoi, Vietnam
| | | | - Anh-Thu Huynh Dang
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | | | | - Yen-Vi Vu
- Gene Solutions, Ho Chi Minh City, Vietnam
| | | | | | | | | | - Nien Vinh Lam
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | | | - Hoai-Nghia Nguyen
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoa Giang
- Gene Solutions, Ho Chi Minh City, Vietnam
| |
Collapse
|
36
|
Poggiana C, Rossi E, Zamarchi R. Possible role of circulating tumor cells in early detection of lung cancer. J Thorac Dis 2020; 12:3821-3835. [PMID: 32802464 PMCID: PMC7399415 DOI: 10.21037/jtd.2020.02.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prognosis of lung cancer varies highly depending on the disease stage at diagnosis, from a 5-year survival rate close to 90% in stage I, to 10% or less in stage IV disease. The enhancement of early diagnosis of this malignancy is mandatory to improve prognosis, because lung cancer patients stay long asymptomatic or few symptomatic after disease onset. Nowadays, liquid biopsy has emerged as a minimally-invasive tool to address the urgent need for real time monitoring, stratification, and personalized treatment of malignancies, including lung cancer. Liquid biopsy refers to a class of biomarkers, including circulating tumor cells (CTCs), cell-free circulating tumor DNA (ctDNA) and tumor-derived extracellular vesicles (tdEV). Since CTCs represent a crucial step in disease progression and metastasis, we reviewed here the scientific literature about the use of CTCs in early diagnosis of lung cancer; different techniques, and different strategies (e.g., source of analysis sample or high-risk groups of patients) were discussed showing the potential of implementing liquid biopsy in the clinical routine of non-metastatic lung cancer.
Collapse
Affiliation(s)
| | - Elisabetta Rossi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
37
|
Brassart-Pasco S, Dalstein V, Brassart B, Dewolf M, Clavel C, Oudart JB. Immunotherapy in non-small-cell lung cancer: from targeted molecules to resistance patterns. Pharmacogenomics 2020; 21:705-720. [PMID: 32567537 DOI: 10.2217/pgs-2020-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunotherapies are now considered as a pillar of non-small-cell lung cancer treatment. The main targets of immune-checkpoint inhibitors (ICI) are programmed cell death 1/programmed cell death ligand 1 and cytotoxic T-lymphocyte antigen 4, aiming at restoring antitumor immunity. Despite durable responses observed in some patients, all patients do not benefit from the treatment and almost all responders ultimately relapse after some time. In this review, we discuss the biomarkers that could be used to predict response to ICI, the current indications of ICI in non-small-cell lung cancer, the mechanisms inducing tumor-cell intrinsic or extrinsic resistance to ICI and finally, the potential treatment response monitoring.
Collapse
Affiliation(s)
- Sylvie Brassart-Pasco
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51100 Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, 51100 Reims, France
| | - Véronique Dalstein
- Université de Reims Champagne Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, 51100 Reims, France.,CHU Reims, Service de Pathologie, 51100 Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51100 Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, 51100 Reims, France
| | - Maxime Dewolf
- CHU Reims, Service des maladies respiratoires et allergiques, 51100 Reims, France
| | - Christine Clavel
- Université de Reims Champagne Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, 51100 Reims, France.,CHU Reims, Service de Pathologie, 51100 Reims, France
| | - Jean-Baptiste Oudart
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51100 Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, 51100 Reims, France.,CHU Reims, Service de Biochimie-Pharmacologie-Toxicologie, 51100 Reims, France
| |
Collapse
|
38
|
Frisone D, Friedlaender A, Malapelle U, Banna G, Addeo A. A BRAF new world. Crit Rev Oncol Hematol 2020; 152:103008. [PMID: 32485528 DOI: 10.1016/j.critrevonc.2020.103008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022] Open
Abstract
BRAF is a rare targetable mutation in non-small-cell lung cancer (NSCLC). Emerging evidence underlines that, rather than a single point mutation, BRAF genes present with a wide array of mutations, essentially in lung adenocarcinoma. Different BRAF mutations have divergent clinical and therapeutic implications, with a particular distinction between V600E and non-V600E mutations. The latter are at least as frequent in NSCLC as V600E, but lack any proven targeted therapy. In this paper, we briefly review the current literature and provide an update of scientific knowledge about different types of BRAF mutations in NSCLC.
Collapse
Affiliation(s)
- Daniele Frisone
- IOSI - Oncology Institute of Southern Switzerland, Switzerland
| | | | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples (Naples), Italy
| | - Giuseppe Banna
- Department of Oncology, United Lincolnshire Hospital Trust, UK
| | - Alfredo Addeo
- Department of Oncology, Geneva University Hospital, Switzerland.
| |
Collapse
|
39
|
Shin H, Oh S, Hong S, Kang M, Kang D, Ji YG, Choi BH, Kang KW, Jeong H, Park Y, Hong S, Kim HK, Choi Y. Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes. ACS NANO 2020; 14:5435-5444. [PMID: 32286793 DOI: 10.1021/acsnano.9b09119] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer.
Collapse
Affiliation(s)
- Hyunku Shin
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seunghyun Oh
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soonwoo Hong
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minsung Kang
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| | - Daehyeon Kang
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yong-Gu Ji
- Exopert Corporation, Seoul 02841, Republic of Korea
| | - Byeong Hyeon Choi
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Ka-Won Kang
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyesun Jeong
- School of Biosystems and Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yong Park
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sunghoi Hong
- School of Biosystems and Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Koo Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- Exopert Corporation, Seoul 02841, Republic of Korea
| |
Collapse
|
40
|
Zhou JY, Liu SY, Wu YL. Safety of EGFR-TKIs for EGFR mutation-positive non-small cell lung cancer. Expert Opin Drug Saf 2020; 19:589-599. [PMID: 32267188 DOI: 10.1080/14740338.2020.1753697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Lung cancer is the most prevalent malignant tumors worldwide. Over the past decade, the emergence of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has ushered in a new era of lung cancer treatment. Therefore, clinical trials investigating the efficacy and safety of these drugs are important.Areas covered: This review provides an overview on the safety of three classes of EGFR-TKIs and discusses the adverse events (AEs) and reactions reported in the literature.Expert opinion: EGFR-TKIs significantly improve progression-free survival and overall survival in non-small cell lung cancer (NSCLC) patients with an activating mutation of EGFR. However, EGFR-TKIs also block the EGFR-regulating pathways in the skin and gastrointestinal tract and cause AEs, including diarrhea, liver toxicity, skin disease, stomatitis, interstitial lung disease, and ocular toxicity, which have detrimental effects on quality of life and drug compliance. Clinicians should understand how to prevent and control these adverse reactions, which can often be achieved by dose reduction, discontinuation of treatment, or switching to another drug.
Collapse
Affiliation(s)
- Jia-Ying Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
41
|
Tetik Vardarli A, Pelit L, Aldag C, Korba K, Celebi C, Dizdas TN, Uzun UC, Tayfur E, Aykut A, Karakus HS, Baysal E, Goksel O, Pelit F, Yalcin F, Ertas FN, Basbinar Y, Veral A, Gunduz C, Goksel T. Concordance in molecular genetic analysis of tumour tissue, plasma, and exhaled breath condensate samples from lung cancer patients. J Breath Res 2020; 14:036001. [PMID: 32031993 DOI: 10.1088/1752-7163/ab739b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AIM Lung adenocarcinoma is characterized by poor prognosis and short survival rates. Therefore, tools to identify the tumoural molecular structure and guide effective diagnosis and therapy decisions are essential. Surgical biopsies are highly invasive and not conducive for patient follow-up. To better understand disease prognosis, novel non-invasive analytic methods are needed. The aim of the present study is to identify the genetic mutations in formalin-fixed paraffin-embedded (FFPE) tissue, plasma, and exhaled breath condensate (EBC) samples by next-generation sequencing and evaluate their utility in the diagnosis and follow-up of patients with lung adenocarcinoma. METHOD FFPE, plasma, and EBC samples were collected from 12 lung adenocarcinoma patients before treatment. DNA was extracted from the specimens using an Invitrogen PureLink Genomic DNA Kit according to the manufacturer's instructions. Amplicon-based sequencing was performed using Ion AmpliSeq Colon and Lung Cancer Research Panel v2. RESULTS Genetic alterations were detected in all FFPE, plasma, and EBC specimens. The mutations in PIK3CA, MET, PTEN, SMAD4, and FGFR2 genes were highly correlated in six patients. Somatic and novel mutations detected in tissue and EBC samples were highly correlated in one additional patient. The EGFR p.L858R and KRAS p.G12C driver mutations were found in both the FFPE tissue specimens and the corresponding EBC samples of the lung adenocarcinoma patients. CONCLUSION The driver mutations were detected in EBC samples from lung adenocarcinoma patients. The analysis of EBC samples represents a promising non-invasive method to detect mutations in lung cancer and guide diagnosis and follow-up.
Collapse
Affiliation(s)
- Aslı Tetik Vardarli
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir-Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Srivastava A, Amreddy N, Pareek V, Chinnappan M, Ahmed R, Mehta M, Razaq M, Munshi A, Ramesh R. Progress in extracellular vesicle biology and their application in cancer medicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1621. [PMID: 32131140 PMCID: PMC7317410 DOI: 10.1002/wnan.1621] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Under the broader category of extracellular vesicles (EVs), exosomes are now well recognized for their contribution and potential for biomedical research. During the last ten years, numerous technologies for purification and characterization of EVs have been developed. This enhanced knowledge has resulted in the development of novel applications of EVs. This review is an attempt to capture the exponential growth observed in EV science in the last decade and discuss the future potential to improve our understanding of EVs, develop technologies to overcome current limitations, and advance their utility for human benefit, especially in cancer medicine. This article is categorized under:Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Narsireddy Amreddy
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Vipul Pareek
- Department of Hematology and Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mahendran Chinnappan
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rebaz Ahmed
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Meghna Mehta
- Department of Radiation Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mohammad Razaq
- Department of Hematology and Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anupama Munshi
- Department of Radiation Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rajagopal Ramesh
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
43
|
Park HJ, Lee SH, Chang YS. Recent advances in diagnostic technologies in lung cancer. Korean J Intern Med 2020; 35:257-268. [PMID: 32131569 PMCID: PMC7060993 DOI: 10.3904/kjim.2020.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
The increase in lung cancer incidence of Korea has been dampened since 2000; however, increased human lifespan, interest in health care and the widespread implementation of health examinations have resulted in a considerable rise in detection of small lesions that need to be differentiated from lung cancer. Detection of lung cancer at an early stage rather than at a symptomatic advanced stage is also increasing, suggesting that there are increasing diagnostic demands for small peripheral lung lesions. The development of new molecular diagnostics, including next generation sequencing, companion diagnostics that accompany development of new anti-cancer drugs, and re-biopsy for application of new therapeutic modality accelerate the development of lung cancer diagnostics. In this review, we extensively describe the current available diagnostic tools in lung cancer.
Collapse
Affiliation(s)
- Hye Jung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Correspondence to Yoon Soo Chang, M.D. Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea Tel: +82-2-2019-3310 Fax: +82-2-3463-3882 E-mail:
| |
Collapse
|
44
|
Xu C, Cao H, Shi C, Feng J. The Role Of Circulating Tumor DNA In Therapeutic Resistance. Onco Targets Ther 2019; 12:9459-9471. [PMID: 31807023 PMCID: PMC6850686 DOI: 10.2147/ott.s226202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
The application of precision medicine in cancer treatment has partly succeeded in reducing the side effects of unnecessary chemotherapeutics and in improving the survival rate of patients. However, with the long-term use of therapy, the dynamically changing intratumoral and intertumoral heterogeneity eventually gives rise to therapeutic resistance. In recent years, a novel testing technology (termed liquid biopsy) using circulating tumor DNAs (ctDNAs) extracted from peripheral blood samples from patients with cancer has brought about new expectations to the medical community. Using ctDNAs, clinicians can trace the heterogeneity pattern to duly adjust individual therapy and prolong overall survival for patients with cancer. Technological advances in detecting and characterizing ctDNAs (eg, development of next-generation sequencing) have provided clinicians with a valuable tool for genotyping tumors individually and identifying genetic and epigenetic alterations of the entire tumor to capture mutations associated with therapeutic resistance.
Collapse
Affiliation(s)
- Chenxin Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| | - Haixia Cao
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Chen Shi
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
45
|
Canale M, Pasini L, Bronte G, Delmonte A, Cravero P, Crinò L, Ulivi P. Role of liquid biopsy in oncogene-addicted non-small cell lung cancer. Transl Lung Cancer Res 2019; 8:S265-S279. [PMID: 31857950 DOI: 10.21037/tlcr.2019.09.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The discovery of actionable oncogene in non-small cell lung cancer (NSCLC) allowed the identification of a subgroup of patients who benefit from targeted tyrosine kinase inhibitors more than others. Mutations in the epidermal growth factor receptor (EGFR), translocations in the anaplastic lymphoma kinase (ALK) and rearrangements in the ROS proto-oncogene 1 (ROS1) must be identified in tumor tissue to guide the proper treatment choice. Liquid biopsy is based on the analysis of tumor materials released in the circulation. Liquid biopsy can be complementary to tissue biopsy, both at baseline and at progression, especially in the detection of somatic gene alterations emerging during the treatment with tyrosine kinase inhibitors (TKIs). Particularly, circulating DNA is used to find mutations in driver oncogenes, while circulating tumor cells, extracellular vesicles (EVs) and cell-free microRNAs (cfmiRNAs) are still under investigation. To help the unbiased use of liquid biopsy in the choice of the appropriate therapy, some recommendations were delivered by expert panels. Currently, analysis of EGFR mutations in cell-free DNA (cfDNA) is recommended at baseline when tissue biopsy harbors scarce tumor cells, and at progression before performing tissue biopsy; liquid biopsy analysis for other oncogenic drivers is not indicated in the clinical practice.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Luigi Pasini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Cravero
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
46
|
Ma DB, Qin MM, Shi L, Ding XM. MicroRNA-6077 enhances the sensitivity of patients-derived lung adenocarcinoma cells to anlotinib by repressing the activation of glucose transporter 1 pathway. Cell Signal 2019; 64:109391. [PMID: 31421224 DOI: 10.1016/j.cellsig.2019.109391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Anlotinib is a novel molecular targeted agent targeting the vascular endothelial growth factor receptor, which differs from the other currently available non-small cell lung cancer (NSCLC) molecular targeted drugs targeting this receptor. Although the application of anlotinib may bring new hope for patients with advanced NSCLC, the cost of treatment is high. The results of this study showed that microRNA-6077 (miR-6077) represses the expression of GLUT1 (glucose transporter 1) and enhances the sensitivity of patient-derived lung adenocarcinoma (AC) cells to anlotinib. The miR-6077, which potentially binds to the 3'untranslated region of GLUT1, was identified and screened by miRDB, an online tool; sequences of miR-6077 were prepared as lentivirus particles. A549 cells (a lung adenocarcinoma cell line) and five patient-derived AC cell lines were infected with control miRNA or miR-6077, and subsequently treated with the indicated concentration of anlotinib. The expression of proteins, such as GLUT1, was determined by western blotting. The antitumor effect of anlotinib was identified through in-vitro (e.g., MTT) or in-vivo methods (e.g., subcutaneous tumor model). Overexpression of miR-6077 repressed the expression of GLUT1 and decreased the glucose uptake, lactate production, or ATP generation in AC cells. In addition, MiR-6077 may enhance the antitumor effect of anlotinib on A549 or patient-derived AC cell lines. Therefore, our results indicated that miR-6077 represses the expression of GLUT1 and enhances the sensitivity of patients-derived lung AC cells to anlotinib.
Collapse
Affiliation(s)
- De-Bin Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Meng-Meng Qin
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Liang Shi
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang 110016, China.
| | - Xin-Min Ding
- Department of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital affiliated to Capital Medical University, Beijing 100038, China.
| |
Collapse
|