1
|
Katoh K. Signal Transduction Mechanisms of Focal Adhesions: Src and FAK-Mediated Cell Response. FRONT BIOSCI-LANDMRK 2024; 29:392. [PMID: 39614431 DOI: 10.31083/j.fbl2911392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 12/01/2024]
Abstract
Cell-to-substrate adhesion sites, also known as focal adhesion sites (FAs), are complexes of different proteins on the cell surface. FAs play important roles in communication between cells and the extracellular matrix (ECM), leading to signal transduction involving different proteins that ultimately produce the cell response. This cell response involves cell adhesion, migration, motility, cell survival, and cell proliferation. The most important component of FAs are integrins. Integrins are transmembrane proteins that receive signals from the ECM and communicate them to the cytoplasm, thus activating several downstream proteins in a signaling cascade. Cellular Proto-oncogene tyrosine-protein kinase Src (c-Src) and focal adhesion kinase (FAK) are non-receptor tyrosine kinases that functionally interact to promote crucial roles in FAs. c-Src is a tyrosine kinase, activated by autophosphorylation and, in turn, activates another important protein, FAK. Activated FAK directly interacts with the cytoplasmic domain of integrin and activates other FA proteins by attaching to them. These proteins activated by FAK then activate other downstream pathways such as mitogen-activated protein kinase (MAPK) and Akt pathways involved in cell proliferation, migration, and cell survival. Src can induce detachment of FAK from the integrin to increase the focal adhesion turnover. As a result, the Src-FAK complex in FAs is critical for cell adhesion and survival mechanisms. Overexpression of FA proteins has been linked to a variety of pathological disorders, including cancers, growth retardation, and bone deformities. FAK and Src are overexpressed in various cancers. This review, which focuses on the roles of two important signaling proteins, c-Src and FAK, attempts to provide a thorough and up-to-date examination of the signal transduction mechanisms mediated by focal adhesions. The author also described that FAK and Src may serve as potential targets for future therapies against diseases associated with their overexpression, such as certain types of cancer.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, 305-8521 Tsukuba, Japan
| |
Collapse
|
2
|
Salian VS, Tang X, Thompson KJ, Curan GL, Lowe VJ, Li L, Kalari KR, Kandimalla KK. Molecular Mechanisms Underlying Amyloid Beta Peptide Mediated Upregulation of Vascular Cell Adhesion Molecule-1 in Alzheimer Disease. J Pharmacol Exp Ther 2024; 391:430-440. [PMID: 39455283 PMCID: PMC11585316 DOI: 10.1124/jpet.124.002280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Amyloid β(Aβ) deposition and neurofibrillary tangles are widely considered the primary pathological hallmarks of familial and sporadic forms of Alzheimer disease (AD). However, cerebrovascular inflammation, which is prevalent in 70% of AD patients, is emerging as another core feature of AD pathology. In our current work, we investigated the hypothesis that Aβ42 exposure drives an increase in vascular cell adhesion molecule-1 (VCAM-1) expression, a cerebrovascular inflammatory marker expressed on the blood-brain barrier (BBB) endothelium in humans and murine models. We have demonstrated that the inflammation signaling pathway is upregulated in AD patient brains, and VCAM-1 expression is increased in AD patients compared with healthy controls. Furthermore, dynamic SPEC/CT imaging in APP,PS1 transgenic mice (a mouse model that overexpresses Aβ42) demonstrated VCAM-1 upregulation at the BBB. Although there is a strong association between Aβ42 exposure and an increase in VCAM-1 expression, the underlying mechanisms remain partially understood. Molecular mechanisms driving VCAM-1 expression at the BBB were investigated in polarized human cerebral microvascular endothelial cell monolayers. Moreover, by employing reverse-phase protein array assays and immunocytochemistry we demonstrated that Aβ42 increases VCAM-1 expression via the Src/p38/MEK signaling pathway. Therefore, targeting the Src/p38/MEK pathway may help modulate VCAM-1 expression at the BBB and help mitigate cerebrovascular inflammation in Alzheimer disease. SIGNIFICANCE STATEMENT: Although considered a core pathological feature of Alzheimer disease, molecular pathways leading to cerebrovascular inflammation remain only partially understood. Moreover, clinical diagnostic methods for detecting cerebrovascular inflammation are underdeveloped. This study demonstrated the detection of VCAM-1 using radio-iodinated VCAM-1 antibody and single-photon emission computed tomography/computed tomography imaging. Additionally, exposure to Aβ42 increases VCAM-1 expression on the blood-brain barrier endothelium via the Src/p38/MEK pathway. These findings are expected to aid in the development of diagnostic and therapeutic approaches for addressing cerebrovascular inflammation in AD.
Collapse
Affiliation(s)
- Vrishali S Salian
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Xiaojia Tang
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Kevin J Thompson
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Geoffry L Curan
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Val J Lowe
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Ling Li
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Krishna R Kalari
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| |
Collapse
|
3
|
Hosseini FS, Ahmadi A, Kesharwani P, Hosseini H, Sahebkar A. Regulatory effects of statins on Akt signaling for prevention of cancers. Cell Signal 2024; 120:111213. [PMID: 38729324 DOI: 10.1016/j.cellsig.2024.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Statins, which are primarily used as lipid-lowering drugs, have been found to exhibit anti-tumor effects through modulating and interfering with various signaling pathways. In observational studies, statin use has been associated with a significant reduction in the progression of various cancers, including colon, lung, prostate, pancreas, and esophagus cancer, as well as melanoma and B and T cell lymphoma. The mevalonate pathway, which is affected by statins, plays a crucial role in activating Rho, Ras, and Rab proteins, thereby impacting the proliferation and apoptosis of tumor cells. Statins block this pathway, leading to the inhibition of isoprenoid units, which are critical for the activation of these key proteins, thereby affecting cancer cell behavior. Additionally, statins affect MAPK and Cdk2, which in turn reduce the expression of p21 and p27 cyclin-dependent kinase inhibitors. Akt signaling plays a crucial role in key cancer cell features like proliferation, invasion, and apoptosis by activating multiple effectors in downstream pathways such as FOXO, PTEN, NF-κB, GSK3β, and mTOR. The PI3K/Akt signaling is necessary for many events in the metastatic pathway and has been implicated in the resistance to cytostatic drugs. The Akt/PTEN axis is currently attracting great interest for its role in carcinogenesis. Statins have been shown to activate the purinergic receptor P2X7 and affect Akt signaling, which may have important anti-cancer effects. Hence, targeting Akt shows promise as an effective approach to cancer prevention and therapy. This review aims to provide a comprehensive discussion on the specific impact of statins through Akt signaling in different types of cancer.
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Liu J, Guo F, Chen X, Fu P, Ma L. Integrin αM promotes macrophage alternative M2 polarization in hyperuricemia-related chronic kidney disease. MedComm (Beijing) 2024; 5:e580. [PMID: 38911067 PMCID: PMC11193137 DOI: 10.1002/mco2.580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 06/25/2024] Open
Abstract
Hyperuricemia is an essential risk factor in chronic kidney disease (CKD), while urate-lowering therapy to prevent or delay CKD is controversial. Alternatively activated macrophages in response to local microenvironment play diverse roles in kidney diseases. Here, we aim to investigate whether and how macrophage integrin αM (ITGAM) contributes to hyperuricemia-related CKD. In vivo, we explored dynamic characteristics of renal tissue in hyperuricemia-related CKD mice. By incorporating transcriptomics and phosphoproteomics data, we analyzed gene expression profile, hub genes and potential pathways. In vitro, we validated bioinformatic findings under different conditions with interventions corresponding to core nodes. We found that hyperuricemia-related CKD was characterized by elevated serum uric acid levels, impaired renal function, activation of macrophage alternative (M2) polarization, and kidney fibrosis. Integrated bioinformatic analyses revealed Itgam as the potential core gene, which was associated with focal adhesion signaling. Notably, we confirmed the upregulated expression of macrophage ITGAM, activated pathway, and macrophage M2 polarization in injured kidneys. In vitro, through silencing Itgam, inhibiting p-FAK or p-AKT1 phosphorylation, and concurrent inhibiting of p-FAK while activating p-AKT1 all contributed to the modulation of macrophage M2 polarization. Our results indicated targeting macrophage ITGAM might be a promising therapeutic approach for preventing CKD.
Collapse
Affiliation(s)
- Jing Liu
- Division of Nephrology, Institute of Kidney DiseasesWest China Hospital of Sichuan UniversityChengduChina
| | - Fan Guo
- Division of Nephrology, Institute of Kidney DiseasesWest China Hospital of Sichuan UniversityChengduChina
| | - Xiaoting Chen
- Animal Experimental CenterWest China Hospital of Sichuan UniversityChengduChina
| | - Ping Fu
- Division of Nephrology, Institute of Kidney DiseasesWest China Hospital of Sichuan UniversityChengduChina
| | - Liang Ma
- Division of Nephrology, Institute of Kidney DiseasesWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
5
|
Wang X, Liu F, Wang T, He Y, Guo Y. Applications of hydrogels in tissue-engineered repairing of temporomandibular joint diseases. Biomater Sci 2024; 12:2579-2598. [PMID: 38679944 DOI: 10.1039/d3bm01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Epidemiological studies reveal that symptoms of temporomandibular joint disorders (TMDs) occur in 60-70% of adults. The inflammatory damage caused by TMDs can easily lead to defects in the articular disc, condylar cartilage, subchondral bone and muscle of the temporomandibular joint (TMJ) and cause pain. Despite the availability of various methods for treating TMDs, few existing treatment schemes can achieve permanent recovery. This necessity drives the search for new approaches. Hydrogels, polymers with high water content, have found widespread use in tissue engineering and regeneration due to their excellent biocompatibility and mechanical properties, which resemble those of human tissues. In the context of TMD therapy, numerous experiments have demonstrated that hydrogels show favorable effects in aspects such as articular disc repair, cartilage regeneration, muscle repair, pain relief, and drug delivery. This review aims to summarize the application of hydrogels in the therapy of TMDs based on recent research findings. It also highlights deficiencies in current hydrogel research related to TMD therapy and outlines the broad potential of hydrogel applications in treating TMJ diseases in the future.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
7
|
Prasad P, Billah Khair AM, Venkatesan K, Shahwan M, Shamsi A. Molecular and functional insight into focal adhesion kinases: Therapeutic implications for oral malignancies. Drug Discov Today 2024; 29:103852. [PMID: 38070702 DOI: 10.1016/j.drudis.2023.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Oral carcinoma is the sixth most common cancer globally, with one death occurring every hour. Focal adhesion kinase (FAK) is an intercellular protein tyrosine kinase, a key indicator of the development of oral cancer. FAK overexpression leads to the initiation and significant progression of metastasis in head and neck cancers, indicating its vital role in cancer progression and potential as a biomarker for early oral malignant transformation. The present review elaborates on FAK's function in oral malignancies since it could serve as a biomarker of the initial stages of oral malignant transformation and a possible predictive factor for risk assessment.
Collapse
Affiliation(s)
- Prathibha Prasad
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Al-Moutassem Billah Khair
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Moyad Shahwan
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
8
|
Huang YH, Wang WL, Wang PH, Lee HT, Chang WW. EXOSC5 maintains cancer stem cell activity in endometrial cancer by regulating the NTN4/integrin β1 signalling axis. Int J Biol Sci 2024; 20:265-279. [PMID: 38164180 PMCID: PMC10750274 DOI: 10.7150/ijbs.86275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024] Open
Abstract
Endometrial carcinoma (EC) is a common type of uterine cancer in developed countries, originating from the uterine epithelium. The incidence rate of EC in Taiwan has doubled from 2005. Cancer stem cells (CSCs) are a subpopulation of cancer cells that have high tumorigenicity and play a crucial role in the malignant processes of cancer. Targeting molecules associated with CSCs is essential for effective cancer treatments. This study delves into the role of Exosome component 5 (EXOSC5) in EC. Data from The Cancer Genome Atlas suggests a correlation between high EXOSC5 mRNA expression and unfavorable EC prognosis. EXOSC5 knockdown diminished EC-CSC self-renewal and reduced expression of key cancer stemness proteins, including c-MYC and SOX2. Intriguingly, this knockdown significantly curtailed tumorigenicity and CSC frequency in EC tumor spheres. A mechanistic examination revealed a reduction in netrin4 (NTN4) levels in EXOSC5-depleted EC cells. Moreover, NTN4 treatment amplified EC cell CSC activity and, when secreted, NTN4 partnered with integrin β1, subsequently triggering the FAK/SRC axis to elevate c-MYC activity. A clear positive relation between EXOSC5 and NTN4 was evident in 93 EC tissues. In conclusion, EXOSC5 augments NTN4 expression, activating c-MYC via the integrin β1/FAK/SRC pathway, offering potential avenues for EC diagnosis and treatment.
Collapse
Affiliation(s)
- Yu-Hao Huang
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112304, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Wen-Ling Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Hsueh-Te Lee
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112304, Taiwan
- Institute of Anatomy & Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115024, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| |
Collapse
|
9
|
Zhou F, He K, Cai JJ, Davidson LA, Chapkin RS, Ni Y. A Unified Bayesian Framework for Bi-overlapping-Clustering Multi-omics Data via Sparse Matrix Factorization. STATISTICS IN BIOSCIENCES 2023; 15:669-691. [PMID: 38179127 PMCID: PMC10766378 DOI: 10.1007/s12561-022-09350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/10/2021] [Accepted: 06/06/2022] [Indexed: 11/27/2022]
Abstract
The advances of modern sequencing techniques have generated an unprecedented amount of multi-omics data which provide great opportunities to quantitatively explore functional genomes from different but complementary perspectives. However, distinct modalities/sequencing technologies generate diverse types of data which greatly complicate statistical modeling because uniquely optimized methods are required for handling each type of data. In this paper, we propose a unified framework for Bayesian nonparametric matrix factorization that infers overlapping bi-clusters for multi-omics data. The proposed method adaptively discretizes different types of observations into common latent states on which cluster structures are built hierarchically. The proposed Bayesian nonparametric method is able to automatically determine the number of clusters. We demonstrate the utility of the proposed method using simulation studies and applications to a single-cell RNA-sequencing dataset, a combination of single-cell RNA-sequencing and single-cell ATAC-sequencing dataset, a bulk RNA-sequencing dataset, and a DNA methylation dataset which reveal several interesting findings that are consistent with biological literature.
Collapse
Affiliation(s)
- Fangting Zhou
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
- Department of Statistics, Texas A&M University, College Station, USA
| | - Kejun He
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Laurie A. Davidson
- Department of Nutrition and Food Science, Texas A&M University, College Station, USA
- Program in Integrative Nutrition and Complex Diseases, Texas A &M University, College Station, USA
| | - Robert S. Chapkin
- Department of Nutrition and Food Science, Texas A&M University, College Station, USA
- Program in Integrative Nutrition and Complex Diseases, Texas A &M University, College Station, USA
| | - Yang Ni
- Department of Statistics, Texas A&M University, College Station, USA
| |
Collapse
|
10
|
He R, Zhang X, Wu Y, Weng Z, Li L. TTC7B is a new prognostic biomarker in head and neck squamous cell carcinoma linked to immune infiltration and ferroptosis. Cancer Med 2023; 12:22354-22369. [PMID: 37990988 PMCID: PMC10757123 DOI: 10.1002/cam4.6715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE To investigate the expression of TTC7B and its prognostic significance, biological roles, and impact on the immune system in patients with head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS Clinical and genomic data were obtained from TCGA (The Cancer Genome Atlas), GEO (Gene Expression Omnibus), GEPIA2 (Gene Expression Profiling Interactive Analysis 2.0), and TIMER2.0 (Tumor Immune Estimation Resource 2.0) databases. R software was utilized to process the retrieved data. qPCR and immunohistochemical assays were performed to validate the findings obtained from the databases. RESULTS High expression of TTC7B was observed in HNSCC, and this heightened expression is significantly associated with reduced overall survival (OS) in patients, making it an independent risk factor impacting OS. TTC7B is correlated with focal adhesions and cell migration pathways based on functional enrichment analysis. CIBERSORT analysis and TIMER2.0 show a positive link between TTC7B and multiple immune cells, particularly macrophages. Pearson's analysis reveals a significant correlation between TTC7B and ferroptosis-related genes. CONCLUSION In all, TTC7B could serve as a promising prognostic indicator of HNSCC, and is closely associated with focal adhesions, immune infiltration, and ferroptosis.
Collapse
Affiliation(s)
- Rong He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Xun Zhang
- Guangyuan Hospital of Traditional Chinese MedicineGuangyuanChina
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhijie Weng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
11
|
Zhang G, Gao Z, Guo X, Ma R, Wang X, Zhou P, Li C, Tang Z, Zhao R, Gao P. CAP2 promotes gastric cancer metastasis by mediating the interaction between tumor cells and tumor-associated macrophages. J Clin Invest 2023; 133:e166224. [PMID: 37707957 PMCID: PMC10617780 DOI: 10.1172/jci166224] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
The metastasis of cancer cells is the main cause of death in patients with gastric cancer (GC). Mounting evidence has demonstrated the vital importance of tumor-associated macrophages in promoting tumor invasion and metastasis; however, the interaction between tumor cells and macrophages in GC is largely unknown. In this study, we demonstrated that cyclase-associated protein 2 (CAP2) was upregulated in GC, especially in cases with lymph node metastasis, and was correlated with a poorer prognosis. The transcription factor JUN directly bound to the promoter region of CAP2 and activated CAP2 transcription. The N-terminal domain of CAP2 bound to the WD5 to WD7 domains of receptor for activated C kinase 1 (RACK1) and induced M2 macrophage polarization by activating the SRC/focal adhesion kinase (FAK)/ERK signaling pathway, which resulted in IL-4 and IL-10 secretion. Polarized M2 macrophages induced premetastatic niche formation and promoted GC metastasis by secreting TGFB1, which created a TGFB1/JUN/CAP2 positive-feedback loop to activate CAP2 expression continuously. Furthermore, we identified salvianolic acid B as an inhibitor of CAP2, which effectively inhibited GC cell invasion capabilities by suppressing the SRC/FAK/ERK signaling pathway. Our data suggest that CAP2, a key molecule mediating the interaction between GC cells and tumor-associated macrophages, may be a promising therapeutic target for suppressing tumor metastasis in GC.
Collapse
|
12
|
Creixell M, Taylor SD, Gerritsen J, Bae SY, Jiang M, Augustin T, Loui M, Boixo C, Creixell P, White FM, Meyer AS. Dissecting signaling regulators driving AXL-mediated bypass resistance and associated phenotypes by phosphosite perturbations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563266. [PMID: 37961516 PMCID: PMC10634689 DOI: 10.1101/2023.10.20.563266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Receptor tyrosine kinase (RTK)-targeted therapies are often effective but invariably limited by drug resistance. A major mechanism of acquired resistance involves "bypass" switching to alternative pathways driven by non-targeted RTKs that restore proliferation. One such RTK is AXL whose overexpression, frequently observed in bypass resistant tumors, drives both cell survival and associated malignant phenotypes such as epithelial-to-mesenchymal (EMT) transition and migration. However, the signaling molecules and pathways eliciting these responses have remained elusive. To explore these coordinated effects, we generated a panel of mutant lung adenocarcinoma PC9 cell lines in which each AXL intracellular tyrosine residue was mutated to phenylalanine. By integrating measurements of phosphorylation signaling and other phenotypic changes associated with resistance through multivariate modeling, we mapped signaling perturbations to specific resistant phenotypes. Our results suggest that AXL signaling can be summarized into two clusters associated with progressive disease and poor clinical outcomes in lung cancer patients. These clusters displayed favorable Abl1 and SFK motifs and their phosphorylation was consistently decreased by dasatinib. High-throughput kinase specificity profiling showed that AXL likely activates the SFK cluster through FAK1 which is known to complex with Src. Moreover, the SFK cluster overlapped with a previously established focal adhesion kinase (FAK1) signature conferring EMT-mediated erlotinib resistance in lung cancer cells. Finally, we show that downstream of this kinase signaling, AXL and YAP form a positive feedback loop that sustains drug tolerant persister cells. Altogether, this work demonstrates an approach for dissecting signaling regulators by which AXL drives erlotinib resistance-associated phenotypic changes.
Collapse
Affiliation(s)
- Marc Creixell
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| | - Scott D. Taylor
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| | - Jacqueline Gerritsen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Song Yi Bae
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| | - Mingxuan Jiang
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, United Kingdom
| | - Teresa Augustin
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, United Kingdom
| | - Michelle Loui
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| | - Carmen Boixo
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| | - Pau Creixell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, United Kingdom
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California Los Angeles; Jonsson Comprehensive Cancer Center, University of California Los Angeles
| |
Collapse
|
13
|
Chen T, Wang J, Li M, Wu Q, Cui S. Genistein Inhibits Proliferation and Metastasis in Human Cervical Cancer Cells through the Focal Adhesion Kinase Signaling Pathway: A Network Pharmacology-Based In Vitro Study in HeLa Cells. Molecules 2023; 28:molecules28041919. [PMID: 36838908 PMCID: PMC9963694 DOI: 10.3390/molecules28041919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Previous studies have provided evidence that genistein exerts a therapeutic effect on different tumor cells. However, the mechanism of action of genistein against cervical cancer cells remains largely unknown. The aim of this study was to comprehensively decipher the anti-metastatic effect and molecular mechanism of genistein action on cervical cancer cells. We developed an integrated strategy from genotype to phenotype, combining network pharmacology and a transcriptome screening approach, to elucidate the underlying mechanism of action of genistein against human cervical cancer cells. In silico studies predicted that the focal adhesion pathway may be an important signaling cascade targeted by genistein treatment. Using RNA sequencing analysis, representative genes of the focal adhesion pathway were demonstrated to be significantly downregulated. Phenotypic studies revealed that genistein demonstrated strong anti-proliferative and anti-metastatic activity in HeLa cells. Moreover, genistein modulated this activity in a concentration-dependent manner. Genistein also inhibited both the activation and gene expression of FAK (Focal Adhesion Kinase) and paxillin. In addition, vimentin and β-catenin protein expression, and Snail and Twist gene expression, were strongly inhibited by genistein. Our findings provide strong evidence for a pleiotropic effect of genistein on cervical cancer cells, mediated through the focal adhesion pathway.
Collapse
Affiliation(s)
- Tingting Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Jiangyang Middle Road 136, Yangzhou 225001, China
| | - Juan Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Jiangyang Middle Road 136, Yangzhou 225001, China
| | - Min Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Jiangyang Middle Road 136, Yangzhou 225001, China
| | - Qingqing Wu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Jiangyang Middle Road 136, Yangzhou 225001, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Jiangyang Middle Road 136, Yangzhou 225001, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou 225001, China
- Correspondence:
| |
Collapse
|
14
|
Xue Y, Lin L, Li Q, Liu K, Hu M, Ye J, Cao J, Zhai J, Zheng F, Wang Y, Zhang T, Du L, Gao C, Wang G, Wang X, Qin J, Liao X, Kong X, Sorokin L, Shi Y, Wang Y. SCD1 Sustains Homeostasis of Bulge Niche via Maintaining Hemidesmosomes in Basal Keratinocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2201949. [PMID: 36507562 PMCID: PMC9896058 DOI: 10.1002/advs.202201949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/22/2022] [Indexed: 06/18/2023]
Abstract
Niche for stem cells profoundly influences their maintenance and fate during tissue homeostasis and pathological disorders; however, the underlying mechanisms and tissue-specific features remain poorly understood. Here, it is reported that fatty acid desaturation catabolized by stearoyl-coenzyme A desaturase 1 (SCD1) regulates hair follicle stem cells (HFSCs) and hair growth by maintaining the bulge, niche for HFSCs. Scd1 deletion in mice results in abnormal hair growth, an effect exerted directly on keratin K14+ keratinocytes rather than on HFSCs. Mechanistically, Scd1 deficiency impairs the level of integrin α6β4 complex and thus the assembly of hemidesmosomes (HDs). The disruption of HDs allows the aberrant activation of focal adhesion kinase and PI3K in K14+ keratinocytes and subsequently their differentiation and proliferation. The overgrowth of basal keratinocytes results in downward extension of the outer root sheath and interruption of bulge formation. Then, inhibition of PI3K signaling in Scd1-/- mice normalizes the bulge, HFSCs, and hair growth. Additionally, supplementation of oleic acid to Scd1-/- mice reestablishes HDs and the homeostasis of bulge niche, and restores hair growth. Thus, SCD1 is critical in regulating hair growth through stabilizing HDs in basal keratinocytes and thus sustaining bulge for HFSC residence and periodic activity.
Collapse
Affiliation(s)
- Yueqing Xue
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Keli Liu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jianchang Cao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jingjie Zhai
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Fanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Tao Zhang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Guan Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xinhua Liao
- School of Life SciencesShanghai UniversityShanghai200444China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Lydia Sorokin
- Institute of Physiological Chemistry and PathobiochemistryCells in Motion Interfaculty Centre (CIMIC)University of MünsterD‐48149MünsterGermany
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- The Third Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouJiangsu215123China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
15
|
Mozaffari K, Mekonnen M, Harary M, Lum M, Aguirre B, Chandla A, Wadehra M, Yang I. Epithelial membrane protein 2 (EMP2): A systematic review of its implications in pathogenesis. Acta Histochem 2023; 125:151976. [PMID: 36455339 DOI: 10.1016/j.acthis.2022.151976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Epithelial membrane protein 2 (EMP2) is a cell surface protein composed of approximately 160 amino acids and encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. Although EMP2 expression has been investigated in several diseases, much remains unknown regarding its mechanism of action and the extent of its role in pathogenesis. Our aim was to perform a systematic review on the involvement of EMP2 in disease processes and the current usage of anti-EMP2 therapies. METHODS A Boolean search of the English-language medical literature was performed. PubMed, Scopus, Cochrane, and Web of Science were used to identify relevant citations. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS 52 studies met the inclusion criteria for qualitative analysis. Of those, 28 (53.8%) were human-only studies, 11 (21.2%) were animal-only studies, and 13 (25%) studies included both human and animal models. Furthermore, 34 (65.4%) studies focused on EMP2's role in neoplasms, while the remaining 18 (34.6%) articles evaluated its role in other pathologies. CONCLUSION Overall, the evidence suggests the mechanisms of action of EMP2 are context dependent. Promising results have been produced by utilizing EMP2 as a biomarker and therapeutic target. More studies are warranted to better understand the mechanism and comprehend the role of EMP2 in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Khashayar Mozaffari
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Mahlet Mekonnen
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Maya Harary
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Meachelle Lum
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Brian Aguirre
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Anubhav Chandla
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.
| |
Collapse
|
16
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
17
|
Enzymatic Digestion of Cell-surface Heparan Sulfate Alters the Radiation Response in Triple-negative Breast Cancer Cells. Arch Med Res 2022; 53:826-839. [PMID: 36411172 DOI: 10.1016/j.arcmed.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Radiation resistance represents a major challenge in the treatment of breast cancer. As heparan sulfate (HS) chains are known to contribute to tumorigenesis, we aimed to investigate the interplay between HS degradation and radiation response in triple-negative breast cancer (TNBC) cells. METHODS HS chains were degraded in vitro as TNBC cells MDA-MB-231 and HCC1806 were treated with heparinase I and III. Subsequently, radioresistance was determined via colony formation assay after doses of 2, 4 and 6 Gy. Cell cycle profile, stem cell characteristics, expression of HS, activation of beta integrins, and apoptosis were determined by flow cytometry. Additionally, cell motility was analyzed via wound-healing assays, and expression and activation of FAK, CDK-6, Src, and Erk1/2 were quantified by western blot pre- and post-irradiation. Finally, the expression of cytokines was analyzed using a cytokine array. RESULTS Radiation promoted cell cycle changes, while heparinase treatment induced apoptosis in both cell lines. Colony formation assays showed significantly increased radio-resistance for both cell lines after degradation of HS. Cell migration was similarly upregulated after degradation of HS compared to controls. This effect was even more prominent after irradiation. Interestingly, FAK, a marker of radioresistance, was significantly activated in the heparinase-treated group. Additionally, we found Src to be dysregulated in MDA-MB-231 cells. Finally, we observed differential secretion of GRO, CXCL1, IGFBP1, IL8, Angiogenin, and Osteoprotegerin after HS degradation and radiotherapy. CONCLUSION Our results suggest an influence of HS chains on the development of radioresistance in TNBC.
Collapse
|
18
|
Tungsukruthai S, Sritularak B, Chanvorachote P. Cycloartocarpin Inhibits Migration through the Suppression of Epithelial-to-Mesenchymal Transition and FAK/AKT Signaling in Non-Small-Cell Lung Cancer Cells. Molecules 2022; 27:8121. [PMID: 36500213 PMCID: PMC9737129 DOI: 10.3390/molecules27238121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Lung cancer metastasis is a multifaceted process that accounts for 90% of cancer deaths. According to several studies, the epithelial-mesenchymal transition (EMT) plays an essential role in lung cancer metastasis. Therefore, this study aimed to investigate the potential pharmacological effect of cycloartocarpin on the suppression of metastasis-related behaviors and EMT. An MTT assay was used to examine cell viability. Cell migration was determined using a wound healing assay. Anchorage-independent cell growth was also performed. Western blot analysis was used to identify the key signaling proteins involved in the regulation of EMT and migration. The results found that non-toxic concentrations of cycloartocarpin (10-20 μM) effectively suppressed cell migration and attenuated anchorage-independent growth in H292, A549, and H460 cells. Interestingly, these effects were consistent with the findings of Western blot analysis, which revealed that the level of phosphorylated focal adhesion kinase (p-FAK), phosphorylated ATP-dependent tyrosine kinase (p-AKT), and cell division cycle 42 (Cdc42) were significantly reduced, resulting in the inhibition of the EMT process, as evidenced by decreased N-cadherin, vimentin, and slug expression. Taken together, the results suggest that cycloartocarpin inhibits EMT by suppressing the FAK/AKT signaling pathway, which is involved in Cdc42 attenuation. Our findings demonstrated that cycloartocarpin has antimetastatic potential for further research and development in lung cancer therapy.
Collapse
Affiliation(s)
- Sucharat Tungsukruthai
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
19
|
Zhang M, Chen X, Zhang Y, Zhao X, Zhao J, Wang X. The potential of functionalized dressing releasing flavonoids facilitates scar-free healing. Front Med (Lausanne) 2022; 9:978120. [PMID: 36262272 PMCID: PMC9573991 DOI: 10.3389/fmed.2022.978120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Scars are pathological marks left after an injury heals that inflict physical and psychological harm, especially the great threat to development and aesthetics posed by oral and maxillofacial scars. The differential expression of genes such as transforming growth factor-β, local adherent plaque kinase, and yes-related transcriptional regulators at infancy or the oral mucosa is thought to be the reason of scarless regenerative capacity after tissue defects. Currently, tissue engineering products for defect repair frequently overlook the management of postoperative scars, and inhibitors of important genes alone have negative consequences for the organism. Natural flavonoids have hemostatic, anti-inflammatory, antioxidant, and antibacterial properties, which promote wound healing and have anti-scar properties by interfering with the transmission of key signaling pathways involved in scar formation. The combination of flavonoid-rich drug dressings provides a platform for clinical translation of compounds that aid in drug disintegration, prolonged release, and targeted delivery. Therefore, we present a review of the mechanisms and effects of flavonoids in promoting scar-free regeneration and the application of flavonoid-laden dressings.
Collapse
Affiliation(s)
- Mengyuan Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiaohang Chen
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yuan Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiangyu Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jing Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China,Jing Zhao,
| | - Xing Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China,*Correspondence: Xing Wang,
| |
Collapse
|
20
|
Scholp AJ, Jensen J, Chinnathambi S, Atluri K, Mendenhall A, Fowler T, Salem AK, Martin JA, Sander EA. Force-Bioreactor for Assessing Pharmacological Therapies for Mechanobiological Targets. Front Bioeng Biotechnol 2022; 10:907611. [PMID: 35928948 PMCID: PMC9343955 DOI: 10.3389/fbioe.2022.907611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue fibrosis is a major health issue that impacts millions of people and is costly to treat. However, few effective anti-fibrotic treatments are available. Due to their central role in fibrotic tissue deposition, fibroblasts and myofibroblasts are the target of many therapeutic strategies centered primarily on either inducing apoptosis or blocking mechanical or biochemical stimulation that leads to excessive collagen production. Part of the development of these drugs for clinical use involves in vitro prescreening. 2D screens, however, are not ideal for discovering mechanobiologically significant compounds that impact functions like force generation and other cell activities related to tissue remodeling that are highly dependent on the conditions of the microenvironment. Thus, higher fidelity models are needed to better simulate in vivo conditions and relate drug activity to quantifiable functional outcomes. To provide guidance on effective drug dosing strategies for mechanoresponsive drugs, we describe a custom force-bioreactor that uses a fibroblast-seeded fibrin gels as a relatively simple mimic of the provisional matrix of a healing wound. As cells generate traction forces, the volume of the gel reduces, and a calibrated and embedded Nitinol wire deflects in proportion to the generated forces over the course of 6 days while overhead images of the gel are acquired hourly. This system is a useful in vitro tool for quantifying myofibroblast dose-dependent responses to candidate biomolecules, such as blebbistatin. Administration of 50 μM blebbistatin reliably reduced fibroblast force generation approximately 40% and lasted at least 40 h, which in turn resulted in qualitatively less collagen production as determined via fluorescent labeling of collagen.
Collapse
Affiliation(s)
- Austin J. Scholp
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Jordan Jensen
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Sathivel Chinnathambi
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Keerthi Atluri
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Alyssa Mendenhall
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Timothy Fowler
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Aliasger K. Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - James A. Martin
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Edward A. Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
21
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
22
|
Does Bentonite Cause Cytotoxic and Whole-Transcriptomic Adverse Effects in Enterocytes When Used to Reduce Aflatoxin B1 Exposure? Toxins (Basel) 2022; 14:toxins14070435. [PMID: 35878173 PMCID: PMC9322703 DOI: 10.3390/toxins14070435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a major food safety concern, threatening the health of humans and animals. Bentonite (BEN) is an aluminosilicate clay used as a feed additive to reduce AFB1 presence in contaminated feedstuff. So far, few studies have characterized BEN toxicity and efficacy in vitro. In this study, cytotoxicity (WST-1 test), the effects on cell permeability (trans-epithelial electrical resistance and lucifer yellow dye incorporation), and transcriptional changes (RNA-seq) caused by BEN, AFB1 and their combination (AFB1 + BEN) were investigated in Caco-2 cells. Up to 0.1 mg/mL, BEN did not affect cell viability and permeability, but it reduced AFB1 cytotoxicity; however, at higher concentrations, BEN was cytotoxic. As to RNA-seq, 0.1 mg/mL BEN did not show effects on cell transcriptome, confirming that the interaction between BEN and AFB1 occurs in the medium. Data from AFB1 and AFB1 + BEN suggested AFB1 provoked most of the transcriptional changes, whereas BEN was preventive. The most interesting AFB1-targeted pathways for which BEN was effective were cell integrity, xenobiotic metabolism and transporters, basal metabolism, inflammation and immune response, p53 biological network, apoptosis and carcinogenesis. To our knowledge, this is the first study assessing the in vitro toxicity and whole-transcriptomic effects of BEN, alone or in the presence of AFB1.
Collapse
|
23
|
Chu SC, Hsieh YS, Hsu LS, Lin CY, Lai YA, Chen PN. Cinnamaldehyde decreases the invasion and u-PA expression of osteosarcoma by down-regulating the FAK signalling pathway. Food Funct 2022; 13:6574-6582. [PMID: 35678522 DOI: 10.1039/d2fo00634k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer metastasis is the major cause of the high mortality risk of patients with osteosarcoma. Cinnamaldehyde has been shown to exhibit multiple tumour-suppressing activities, but its role in human osteosarcoma is not yet completely defined. In this study, the antimetastatic effect of cinnamaldehyde on highly metastatic human osteosarcoma cells was observed in vitro and in vivo using Saos-2 and 143B cells. Cinnamaldehyde reduced the activity and protein level of urokinase-type plasminogen activator (u-PA) and suppressed the invasion ability of osteosarcoma cells by inhibiting the phosphorylation of focal adhesion kinase. In addition, cinnamaldehyde reduced cell movement, cell-matrix adhesion, and the expression of the mesenchymal markers of epithelial-to-mesenchymal transition, namely, fibronectin and N-cadherin. Importantly, the oral administration of cinnamaldehyde remarkably suppressed the pulmonary metastasis of osteosarcoma in mice. Results indicated that cinnamaldehyde has therapeutic potential for inhibiting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Institute and Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Chin-Yin Lin
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Yi-An Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
24
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
25
|
Wang Q, Jiang D, Ye Q, Zhou W, Ma J, Wang C, Geng Z, Chu M, Zheng J, Chen H, Huang J, Dai H, Zhang Y, She ZL, Fu N, Qiu X. A widely expressed free immunoglobulin κ chain with a unique Vκ4-1/Jκ3 pattern promotes colon cancer invasion and metastasis by activating the integrin β1/FAK pathway. Cancer Lett 2022; 540:215720. [DOI: 10.1016/j.canlet.2022.215720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
|
26
|
Qin Z, Zhou C. HOXA13 promotes gastric cancer progression partially via the FN1-mediated FAK/Src axis. Exp Hematol Oncol 2022; 11:7. [PMID: 35197128 PMCID: PMC8864865 DOI: 10.1186/s40164-022-00260-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers causing a poor prognosis worldwide. HOXA13, as a member of the homeobox (HOX) family, is involved in the regulation of cancer progression and has attracted increasing attention, as a potential novel target for anticancer strategies. However, the significance of HOXA13 in GC remains unclear. This article aims to explore the potential mechanism of HOXA13 in GC progression. Methods Quantitative real-time PCR was carried out to detect the expression of HOXA13 and FN1 and the correlation between HOXA13 and FN1 in GC tissues. In vitro assays were conducted to investigate the role of HOXA13 and FN1 in the malignant phenotypes of GC cells and the function of HOXA13 in the activation of the FAK/Src axis in GC cells. Coimmunoprecipitation was performed to reveal the relationship between ITGA5, ITGB1 and FN1 in GC cells. A dual luciferase assay was performed to assess miR-449a-targeted regulation of HOXA13 expression. Results Quantitative real-time PCR verified that HOXA13 was elevated and positively correlated with FN1 in GC. In vitro and in vivo assays demonstrated that high expression of HOXA13 promoted GC progression, especially metastasis. Mechanistically, rescue experiments, chromatin immunoprecipitation and dual luciferase assays revealed that HOXA13 directly bound to the FN1 promoter region to enhance the activation of the FAK/Src axis, leading to GC cell proliferation and metastasis. Furthermore, the result of a dual luciferase assay suggested that HOXA13 was directly targeted by miR-449a. Conclusions Our results show that HOXA13 is a positive regulator of the FAK/Src axis mediated by FN1 in GC and promotes GC progression. Thus, targeting HOXA13, together with FN1, may provide a novel prospective anticancer strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00260-7.
Collapse
Affiliation(s)
- Zhiwei Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, China
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, China.
| |
Collapse
|
27
|
Kaewmeesri P, Pocasap P, Kukongviriyapan V, Prawan A, Kongpetch S, Senggunprai L. Anti-metastatic Potential of Natural Triterpenoid Cucurbitacin B Against Cholangiocarcinoma Cells by Targeting Src Protein. Integr Cancer Ther 2022; 21:15347354221124861. [PMID: 36154723 PMCID: PMC9520142 DOI: 10.1177/15347354221124861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Owing to the crucial role of Src in cancer metastasis, interruption of Src and its signaling has been considered a promising strategy for cancer metastasis treatment. Cucurbitacin B, a dietary triterpenoid, has been shown to possess anti-proliferative and apoptosis-inducing activities in cholangiocarcinoma (CCA) cells via suppressing the activation of FAK which is a main downstream Src effector. We hypothesized that cucurbitacin B might act as a Src suppressant which conferring anti-metastasis effect against CCA cells. To investigate this, the role of Src in regulating metastasis behavior of CCA cells and the effect of cucurbitacin B on Src-mediated metastatic phenotype of these cells were determined. The results showed that activation of Src significantly enhanced the migratory and invasive abilities of CCA cells. Molecular analysis revealed that Src-facilitated metastasis behavior of CCA cells occurred by modifying expression of a wide range of metastasis-related genes in the cells. Consistent with gene expression results, activation of Src significantly induced the protein expression of 2 important metastasis-associated molecules, MMP-9 and VEGF. Cucurbitacin B markedly suppressed activation of Src and its key effector, FAK. As a consequence, the alteration of expression profiles of metastasis-associated genes induced by Src activator in CCA cells was diminished by cucurbitacin B treatment. The compound also down-regulated Src-induced expression of MMP-9 and VEGF proteins in the cells. Moreover, molecular docking analysis revealed that cucurbitacin B could interact with Src kinase domain and possibly restrain the kinase from being activated by hindering the ATP binding. In conclusion, cucurbitacin B exhibited anti-metastatic property in CCA cells via negatively influencing Src and Src-related oncogenic signaling. This compound may therefore be a potential therapeutic drug for further development as an anti-Src agent for treatment of metastatic CCA.
Collapse
Affiliation(s)
- Putthaporn Kaewmeesri
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piman Pocasap
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
28
|
Wei Q, Wang S, Han F, Wang H, Zhang W, Yu Q, Liu C, Ding L, Wang J, Yu L, Zhu C, Li B, Bl, Cz, Cz, Cz, Qw, Sw, Fh, Hw, Wz, Qy, Cl, Ld, Jw, Ly, Cz, Qw. Cellular modulation by the mechanical cues from biomaterials for tissue engineering. BIOMATERIALS TRANSLATIONAL 2021; 2:323-342. [PMID: 35837415 PMCID: PMC9255801 DOI: 10.12336/biomatertransl.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 07/10/2021] [Indexed: 01/17/2023]
Abstract
Mechanical cues from the extracellular matrix (ECM) microenvironment are known to be significant in modulating the fate of stem cells to guide developmental processes and maintain bodily homeostasis. Tissue engineering has provided a promising approach to the repair or regeneration of damaged tissues. Scaffolds are fundamental in cell-based regenerative therapies. Developing artificial ECM that mimics the mechanical properties of native ECM would greatly help to guide cell functions and thus promote tissue regeneration. In this review, we introduce various mechanical cues provided by the ECM including elasticity, viscoelasticity, topography, and external stimuli, and their effects on cell behaviours. Meanwhile, we discuss the underlying principles and strategies to develop natural or synthetic biomaterials with different mechanical properties for cellular modulation, and explore the mechanism by which the mechanical cues from biomaterials regulate cell function toward tissue regeneration. We also discuss the challenges in multimodal mechanical modulation of cell behaviours and the interplay between mechanical cues and other microenvironmental factors.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shenghao Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Changjiang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Luguang Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiayuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cen C, Wang F, Xiong K, Jiang L, Hou X. Protective effects of Coridius chinensis extracts on rat reproductive damage induced by manganese. Andrologia 2021; 54:e14326. [PMID: 34820869 PMCID: PMC9285684 DOI: 10.1111/and.14326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Manganese (Mn2+ ) is an environmental pollutant, and testis is one of the main target organs. Coridius chinensis (C. chinensis), a traditional Chinese medicine, has been shown widely used in treating various kinds of pain, nephropathy and erectile dysfunction. In our recent study, we found that Mn2+ exposure caused testicular injury could be rescued in part by the antioxidant activity of C. chinensis extracts (CcE). However, there is dearth of extensive knowledge on the therapeutic effects of C. chinensis on manganese-induced reproductive toxicity. In the present study, Sprague-Dawley (SD) rats were administered manganese chloride alone or co-treated with CcE for 30 consecutive days. Results indicated that C. chinensis mediated suppression of spermatogenic dysfunction, and the number of apoptotic cells was significantly decreased in CcE-treated groups. Furthermore, the disintegrated testicular ultrastructural structure caused by Mn2+ was partially repaired in CcE-treated groups. C. chinensis significantly inhibited Mn2+ -induced decline in biomarkers of blood-testis barrier (BTB) including occludin, claudin1, zonula occludens-1 and junctional adhesion molecule 1, whereas it decreased the expression of focal adhesion kinase (FAK) and c-Src. This study demonstrated that c-Src and FAK might be involved in the repair of Mn2+ -induced testicular injury by C. chinensis, but further research is needed.
Collapse
Affiliation(s)
- Changhuo Cen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Fengyue Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Keyi Xiong
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Lin Jiang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Xiaohui Hou
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
30
|
Amer M, Shi L, Wolfenson H. The 'Yin and Yang' of Cancer Cell Growth and Mechanosensing. Cancers (Basel) 2021; 13:4754. [PMID: 34638240 PMCID: PMC8507527 DOI: 10.3390/cancers13194754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
In cancer, two unique and seemingly contradictory behaviors are evident: on the one hand, tumors are typically stiffer than the tissues in which they grow, and this high stiffness promotes their malignant progression; on the other hand, cancer cells are anchorage-independent-namely, they can survive and grow in soft environments that do not support cell attachment. How can these two features be consolidated? Recent findings on the mechanisms by which cells test the mechanical properties of their environment provide insight into the role of aberrant mechanosensing in cancer progression. In this review article, we focus on the role of high stiffness on cancer progression, with particular emphasis on tumor growth; we discuss the mechanisms of mechanosensing and mechanotransduction, and their dysregulation in cancerous cells; and we propose that a 'yin and yang' type phenomenon exists in the mechanobiology of cancer, whereby a switch in the type of interaction with the extracellular matrix dictates the outcome of the cancer cells.
Collapse
Affiliation(s)
- Malak Amer
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
31
|
Anti-Cancer Effects of Cyclic Peptide ALOS4 in a Human Melanoma Mouse Model. Int J Mol Sci 2021; 22:ijms22179579. [PMID: 34502483 PMCID: PMC8430629 DOI: 10.3390/ijms22179579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
We examined the effects of ALOS4, a cyclic peptide discovered previously by phage library selection against integrin αvβ3, on a human melanoma (A375) xenograft model to determine its abilities as a potential anti-cancer agent. We found that ALOS4 promoted healthy weight gain in A375-engrafted nude mice and reduced melanoma tumor mass and volume. Despite these positive changes, examination of the tumor tissue did not indicate any significant effects on proliferation, mitotic index, tissue vascularization, or reduction of αSMA or Ki-67 tumor markers. Modulation in overall expression of critical downstream αvβ3 integrin factors, such as FAK and Src, as well as reductions in gene expression of c-Fos and c-Jun transcription factors, indirectly confirmed our suspicions that ALOS4 is likely acting through an integrin-mediated pathway. Further, we found no overt formulation issues with ALOS4 regarding interaction with standard inert laboratory materials (polypropylene, borosilicate glass) or with pH and temperature stability under prolonged storage. Collectively, ALOS4 appears to be safe, chemically stable, and produces anti-cancer effects in a human xenograft model of melanoma. We believe these results suggest a role for ALOS4 in an integrin-mediated pathway in exerting its anti-cancer effects possibly through immune response modulation.
Collapse
|
32
|
Cho H, Shin I, Yoon H, Jeon E, Lee J, Kim Y, Ryu S, Song C, Kwon NH, Moon Y, Kim S, Kim ND, Choi HG, Sim T. Identification of Thieno[3,2- d]pyrimidine Derivatives as Dual Inhibitors of Focal Adhesion Kinase and FMS-like Tyrosine Kinase 3. J Med Chem 2021; 64:11934-11957. [PMID: 34324343 DOI: 10.1021/acs.jmedchem.1c00459] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Focal adhesion kinase (FAK) is overexpressed in highly invasive and metastatic cancers. To identify novel FAK inhibitors, we designed and synthesized various thieno[3,2-d]pyrimidine derivatives. An intensive structure-activity relationship (SAR) study led to the identification of 26 as a lead. Moreover, 26, a multitargeted kinase inhibitor, possesses excellent potencies against FLT3 mutants as well as FAK. Gratifyingly, 26 remarkably inhibits recalcitrant FLT3 mutants, including F691L, that cause drug resistance. Importantly, 26 is superior to PF-562271 in terms of apoptosis induction, anchorage-independent growth inhibition, and tumor burden reduction in the MDA-MB-231 xenograft mouse model. Also, 26 causes regression of tumor growth in the MV4-11 xenograft mouse model, indicating that it could be effective against acute myeloid leukemia (AML). Finally, in an orthotopic mouse model using MDA-MB-231, 26 remarkably prevents metastasis of orthotopic tumors to lymph nodes. Taken together, the results indicate that 26 possesses potential therapeutic value against highly invasive cancers and relapsed AML.
Collapse
Affiliation(s)
- Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Injae Shin
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hojong Yoon
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunhye Jeon
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Younghoon Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - SeongShick Ryu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chiman Song
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Youngji Moon
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Nam Doo Kim
- Voronoibio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Hwan Geun Choi
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- B2Sbio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Taebo Sim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
33
|
Mir H, Kapur N, Gales DN, Sharma PK, Oprea-Ilies G, Johnson AT, Singh R, Singh S. CXCR6-CXCL16 Axis Promotes Breast Cancer by Inducing Oncogenic Signaling. Cancers (Basel) 2021; 13:cancers13143568. [PMID: 34298782 PMCID: PMC8306453 DOI: 10.3390/cancers13143568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Breast cancer (BrCa) is the second leading cause of cancer-related deaths in American women, and its incidence is on the rise. Insufficient understanding of the mechanisms leading to BrCa limits the effectiveness of the treatment. In this article, we show the importance of a chemokine axis-CXCR6/CXCL16 in supporting BrCa progression. We have delineated BrCa-promoting mechanisms induced by this chemokine axis at the molecular level. This work projects the therapeutic significance of CXCR6/CXCL16 signaling for the treatment of BrCa. Abstract Precise mechanisms underlying breast cancer (BrCa) metastasis are undefined, which becomes a challenge for effective treatments. Chemokine signaling instigates the trafficking of cancer cells in addition to leukocytes. This study aimed to ascertain the clinical and biological significance of the CXCR6/CXCL16 signaling axis in the pathobiology of BrCa. Our data show a higher expression of CXCR6 in BrCa cell lines and tissues. Stage-III BrCa tissues express significantly higher CXCR6 compared to stage-II tissues. The ligand, CXCL16, could remain tethered to the cell surface, and, after proteolytic shedding of the ectodomain, the N-terminal fragment is released, converting it to its oncogenic, soluble form. Like CXCR6, N-terminal CXCL16 and ADAM-10 were significantly higher in stage-III than stage-II, but no significant difference was observed in the C-terminal fragment of CXCL16. Further, stimulation of the CXCR6/CXCL16 axis activated Src, FAK, ERK1/2, and PI3K signaling pathways, as per antibody microarray analysis, which also underlie CXCL16-induced F-actin polymerization. The CXCR6/CXCL16 axis induces cytoskeleton rearrangement facilitating migration and invasion and supports BrCa cell survival by activating the PI3K/Akt pathway. This study highlights the significance of the CXCR6/CXCL16 axis and ADAM10 as potential therapeutic targets for advanced-stage BrCa.
Collapse
Affiliation(s)
- Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (H.M.); (N.K.); (D.N.G.); (R.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Neeraj Kapur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (H.M.); (N.K.); (D.N.G.); (R.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Dominique N. Gales
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (H.M.); (N.K.); (D.N.G.); (R.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Praveen K. Sharma
- Centre for Life Sciences, Central University of Jharkhand, Jharkhand 835205, India;
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Anita T. Johnson
- Comprehensive Cancer Care Network, Cancer Treatment Center of America, Atlanta, GA 30265, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (H.M.); (N.K.); (D.N.G.); (R.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (H.M.); (N.K.); (D.N.G.); (R.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Cell and Molecular Biology Program, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-756-5718
| |
Collapse
|
34
|
Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, Zhao H, Xu Z. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:199. [PMID: 34154618 PMCID: PMC8215834 DOI: 10.1186/s13046-021-01999-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Zinc transporters have been found to be associated with the pathogenesis of numerous human diseases including cancer. As the most lethal gynecologic malignancy, ovarian cancer is characterized by rapid progression and widespread metastases. However, the function and underlying mechanism of zinc transporters in ovarian cancer metastasis remain unclear. METHODS The relationship between zinc transporter gene expressions and clinical outcomes of ovarian cancer was assessed with the online database Kaplan-Meier plotter ( http://kmplot.com/analysis/ ). Immunohistochemistry was performed to investigate the prognostic importance of ZIP13. The expression of ZIP13 in ovarian cancer cell lines was depleted to explore its effect on proliferation, adhesion, migration, and invasion both in vitro and in vivo assays. RNA-Seq, quantitative RT-PCR, and western blot analysis were performed to explore ZIP13-regulated downstream target genes. RESULTS The expressions of several zinc transporters were highly associated the clinical outcomes of ovarian cancer patients. Among them, high ZIP13 expression was an independent prognostic factor for poor survival in patients with ovarian cancer. ZIP13 knockout suppressed the malignant phenotypes of ovarian cancer cells both in vitro and in vivo. Further investigation revealed that ZIP13 regulated intracellular zinc distribution and then affected the expressions of genes involved in extracellular matrix organization and cytokine-mediated signaling pathway. This led to the activation of Src/FAK pathway with increased expressions of pro-metastatic genes but decreased expressions of tumor suppressor genes. CONCLUSIONS ZIP13 is shown to be a novel driver of metastatic progression by modulating the Src/FAK signaling pathway, which may serve as a promising biomarker for prognostic evaluation and targeted therapy in ovarian cancer.
Collapse
Affiliation(s)
- Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Jie Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Chunling Liu
- Department of Pathology, North China University of Science and Technology Affiliated Tangshan People's Hospital, 063000, Tangshan, China
| | - Tianduo Jiang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Ningzhi Yang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Dan Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
35
|
Sarwar M, Sykes PH, Chitcholtan K, Evans JJ. Deciphering Biophysical Modulation in Ovarian Cancer Cells. Cell Biochem Biophys 2021; 79:375-386. [PMID: 33433760 DOI: 10.1007/s12013-020-00964-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2020] [Indexed: 02/08/2023]
Abstract
It has been long known that the oncogenic extracellular environment plays an indispensable role in developing and nurturing cancer cell progression and in resistance to standard treatments. However, by how much the biophysical components of tumour extracellular environment contribute to these processes is uncertain. In particular, the topographic environment is scarcely explored. The biophysical modulation of cell behaviour is primarily facilitated through mechanotransduction-associated mechanisms, including focal adhesion and Rho/ROCK signalling. Dysregulation of these pathways is commonly observed in ovarian cancer and, therefore, biophysical modulation of these mechanisms may be of great importance to ovarian cancer development and progression. In this work, aspects of the biophysical environment were explored using a bioimprinting technique. The study showed that topography-mediated substrate sensing delayed cell attachment, however, cell-cell interactions overrode the effect of topography in some cell lines, such as OVCAR-5. Also, 3D topographical cues were shown to modulate the inhibition of focal adhesion and Rho signalling, which resulted in higher MAPK activity in cells on the bioimprints. It was revealed that c-Src is vital to the biophysical modulation of cell proliferation and inhibition of c-Src could downregulate biophysically modulated MAPK activity. This study provides evidence that the biophysical extracellular environment affects key intracellular mechanisms associated with tumourigenicity in ovarian cancer cells.
Collapse
Affiliation(s)
- Makhdoom Sarwar
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand.
| | - Peter H Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand
| | - John J Evans
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand
| |
Collapse
|
36
|
Gupta N, Srivastava SK. Atovaquone Suppresses the Growth of Metastatic Triple-Negative Breast Tumors in Lungs and Brain by Inhibiting Integrin/FAK Signaling Axis. Pharmaceuticals (Basel) 2021; 14:ph14060521. [PMID: 34071408 PMCID: PMC8229709 DOI: 10.3390/ph14060521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered to be the most aggressive and malignant neoplasm and is highly metastatic in nature. In the current study, we investigated the anti-metastatic potential of atovaquone, a protozoal drug prescribed for Pneumocystis pneumonia. We showed that atovaquone induced apoptosis and reduced the survival of several aggressive metastatic TNBC cell lines including metastatic patient-derived cells by reducing the expression of integrin α6, integrin β4, FAK, Src, and Vimentin. In order to study the efficacy of atovaquone in suppressing metastasized breast tumor cells in brain and lungs, we performed three in vivo experiments. We demonstrated that oral administration of 50 mg/kg of atovaquone suppressed MDA-MB-231 breast tumor growth by 90% in lungs in an intravenous metastatic tumor model. Anti-metastatic effect of atovaquone was further determined by intracardiac injection of 4T1-luc breast tumor cells into the left ventricle of mouse heart. Our results showed that atovaquone treatment suppressed the growth of metastatic tumors in lungs, liver and brain by 70%, 50% and 30% respectively. In an intracranial model, the growth of HCC1806-luc brain tumors in atovaquone treated mice was about 55% less than that of control. Taken together, our results indicate the anti-metastatic effects of atovaquone in vitro and in vivo in various breast tumor metastasis models.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K. Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Correspondence: ; Tel.: +1-325-696-0464
| |
Collapse
|
37
|
Lehman CE, Spencer A, Hall S, Shaw JJP, Wulfkuhle J, Petricoin EF, Bekiranov S, Jameson MJ, Gioeli D. IGF1R and Src inhibition induce synergistic cytotoxicity in HNSCC through inhibition of FAK. Sci Rep 2021; 11:10826. [PMID: 34031486 PMCID: PMC8144381 DOI: 10.1038/s41598-021-90289-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
Head and neck cancer is the sixth most common cancer worldwide with a 5-year survival of only 65%. Targeting compensatory signaling pathways may improve therapeutic responses and combat resistance. Utilizing reverse phase protein arrays (RPPA) to assess the proteome and explore mechanisms of synergistic growth inhibition in HNSCC cell lines treated with IGF1R and Src inhibitors, BMS754807 and dasatinib, respectively, we identified focal adhesion signaling as a critical node. Focal Adhesion Kinase (FAK) and Paxillin phosphorylation were decreased as early as 15 min after treatment, and treatment with a FAK inhibitor, PF-562,271, was sufficient to decrease viability in vitro. Treatment of 3D spheroids demonstrated robust cytotoxicity suggesting that the combination of BMS754807 and dasatinib is effective in multiple experimental models. Furthermore, treatment with BMS754807 and dasatinib significantly decreased cell motility, migration, and invasion in multiple HNSCC cell lines. Most strikingly, treatment with BMS754807 and dasatinib, or a FAK inhibitor alone, significantly increased cleaved-PARP in human ex-vivo HNSCC patient tissues demonstrating a potential clinical utility for targeting FAK or the combined targeting of the IGF1R with Src. This ex-vivo result further confirms FAK as a vital signaling node of this combinatorial treatment and demonstrates therapeutic potential for targeting FAK in HNSCC patients.
Collapse
Affiliation(s)
- Christine E Lehman
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Adam Spencer
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah Hall
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jeremy J P Shaw
- Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mark J Jameson
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
- UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Daniel Gioeli
- Department of Microbiology Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
38
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
39
|
Cheng CC, Chao WT, Shih JH, Lai YS, Hsu YH, Liu YH. Sorafenib combined with dasatinib therapy inhibits cell viability, migration, and angiogenesis synergistically in hepatocellular carcinoma. Cancer Chemother Pharmacol 2021; 88:143-153. [PMID: 33860837 DOI: 10.1007/s00280-021-04272-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Sorafenib is a multikinase inhibitor used for treatment of advanced hepatocellular carcinoma. Sorafenib resistance may be related to Src-induced cell migration and angiogenesis, which are regulated by cancer stem cell activation and release of vascular endothelial growth factor. Dasatinib is a Src inhibitor that inhibits Src phosphorylation and suppresses Src-associated cell migration and angiogenesis. This study investigated whether combined treatment with dasatinib can overcome sorafenib resistance. METHODS Hepatoma cell lines were used for sorafenib and/or dasatinib treatment. Cell viability, cell migration, molecular expressions, and release of vascular endothelial growth factor by hepatoma cells were evaluated. Hepatoma cell culture medium was applied on human umbilical vein endothelial cells to monitor angiogenesis promoted by the hepatoma cells. RESULTS Sorafenib and dasatinib combined therapy suppressed cell viability of hepatoma cells synergistically. Dasatinib suppressed sorafenib-induced cell migration via inhibiting sorafenib-induced Src/FAK phosphorylation, cell-to-cell contact and cancer stem cell activation. Culture medium from Chang liver and PLC/PRF/5 cells suppressed angiogenesis of human umbilical vein endothelial cells with any treatment, whereas sorafenib-treated medium of HepG2 cells induced angiogenesis. This sorafenib-induced angiogenesis was then suppressed by dasatinib. Vascular endothelial growth factor released from hepatoma cells was also inhibited by combined treatment. CONCLUSION Src/FAK phosphorylation and cancer stem cell activation inducing cell migration and angiogenesis may be the key factors of sorafenib resistance. Sorafenib and dasatinib combined treatment suppresses cell migration and angiogenesis by inhibiting the Src/FAK phosphorylation, cell-to-cell contact, cancer stem cell activation, and release of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Chiung-Chi Cheng
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, 6, Lugong Road, Lukang Zhen, Changhua County, 505, Taiwan
- Center for General Education, Providence University, 200, Section 7, Taiwan Boulevard, Shalu District, Taichung City, 433, Taiwan
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 407, Taiwan
| | - Jing-Hao Shih
- Department of Life Science, Tunghai University, 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 407, Taiwan
| | - Yih-Shyong Lai
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, 6, Lugong Road, Lukang Zhen, Changhua County, 505, Taiwan
| | - Yung-Hsiang Hsu
- Department of Pathology, Tzu Chi University, 701, Section 3, Jhongyang Road, Hualien, 97004, Taiwan
| | - Yi-Hsiang Liu
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, 6, Lugong Road, Lukang Zhen, Changhua County, 505, Taiwan.
- Department of Pathology, Tzu Chi University, 701, Section 3, Jhongyang Road, Hualien, 97004, Taiwan.
| |
Collapse
|
40
|
Derakhshani A, Rostami Z, Safarpour H, Shadbad MA, Nourbakhsh NS, Argentiero A, Taefehshokr S, Tabrizi NJ, Kooshkaki O, Astamal RV, Singh PK, Taefehshokr N, Alizadeh N, Silvestris N, Baradaran B. From Oncogenic Signaling Pathways to Single-Cell Sequencing of Immune Cells: Changing the Landscape of Cancer Immunotherapy. Molecules 2021; 26:2278. [PMID: 33920054 PMCID: PMC8071039 DOI: 10.3390/molecules26082278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, there have been remarkable advances in understanding the signaling pathways involved in cancer development. It is well-established that cancer is caused by the dysregulation of cellular pathways involved in proliferation, cell cycle, apoptosis, cell metabolism, migration, cell polarity, and differentiation. Besides, growing evidence indicates that extracellular matrix signaling, cell surface proteoglycans, and angiogenesis can contribute to cancer development. Given the genetic instability and vast intra-tumoral heterogeneity revealed by the single-cell sequencing of tumoral cells, the current approaches cannot eliminate the mutating cancer cells. Besides, the polyclonal expansion of tumor-infiltrated lymphocytes in response to tumoral neoantigens cannot elicit anti-tumoral immune responses due to the immunosuppressive tumor microenvironment. Nevertheless, the data from the single-cell sequencing of immune cells can provide valuable insights regarding the expression of inhibitory immune checkpoints/related signaling factors in immune cells, which can be used to select immune checkpoint inhibitors and adjust their dosage. Indeed, the integration of the data obtained from the single-cell sequencing of immune cells with immune checkpoint inhibitors can increase the response rate of immune checkpoint inhibitors, decrease the immune-related adverse events, and facilitate tumoral cell elimination. This study aims to review key pathways involved in tumor development and shed light on single-cell sequencing. It also intends to address the shortcomings of immune checkpoint inhibitors, i.e., their varied response rates among cancer patients and increased risk of autoimmunity development, via applying the data from the single-cell sequencing of immune cells.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand 97178-53577, Iran; (Z.R.); (O.K.)
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand 97178-53577, Iran;
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51666-14766, Iran
| | | | | | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand 97178-53577, Iran; (Z.R.); (O.K.)
| | - Reza Vaezi Astamal
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Pankaj Kumar Singh
- Principal Research Technologist, Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA;
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 51666-14766, Iran
| |
Collapse
|
41
|
Yeeravalli R, Kaushik K, Das A. TWIST1-mediated transcriptional activation of PDGFRβ in breast cancer stem cells promotes tumorigenesis and metastasis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166141. [PMID: 33845139 DOI: 10.1016/j.bbadis.2021.166141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022]
Abstract
Triple-negative breast cancer (TNBC) patients often exhibit poor prognosis and breast cancer relapse due to metastasis. This results in secondary tumor generation at distant-unrelated organs that account for the majority of breast cancer-related deaths. Although breast cancer stem cells (CSCs) have been attributed to metastasis, a mechanistic understanding is essential for developing therapeutic interventions to combat breast cancer relapse. Breast CSCs are generated due to Epithelial-to-mesenchymal transition (EMT), regulated by transcription factors (EMT-TF) that are implicated in tumorigenesis and metastasis. However, the underlying mechanisms mediating these processes remain elusive. In the present study, we have reported that TWIST1, an EMT-TF, exhibits positive transcriptional regulation on PDGFRβ promoter, thus identifying PDGFRβ as one of the downstream targets of EMT regulation in breast CSCs. Breast cancer cells overexpressing PDGFRβ exhibited a significant increase in physiological and molecular properties comparable to that of breast CSCs, while molecular silencing of PDGFRβ in breast CSCs perturbed these phenomena. Mechanistically, PDGFRβ overexpression induced the activation of FAK and Src leading to cell migration and invasion. Orthotopic xenograft transplantation of stable breast cancer cells and CSCs with PDGFRβ overexpression in nude mice led to a significant increase in tumorigenesis, and metastasis to lung and liver as depicted by the significant increase in human gene-specific PDGFRβ and CD44 expression, and colocalization along with an expression of human-specific Alu sequences which were perturbed with stable silencing of PDGFRβ in breast CSCs. Thus, PDGFRβ plays a crucial role in inducing breast cancer tumorigenesis and metastasis that can be a plausible therapeutic target to treat TNBC patients.
Collapse
Affiliation(s)
- Ragini Yeeravalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
42
|
Rystsov GK, Antipova TV, Zaitsev KV, Zemskova MY. Antitumor Activity of Monasnicotinic Acid Isolated from the Fungus Aspergillus cavernicola. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Mondaca JM, Guijarro ACC, Flamini MI, Sanchez AM. Heregulin-induced cell migration is prevented by trastuzumab and trastuzumab-emtansine in HER2+ breast cancer. Breast Cancer Res Treat 2021; 186:363-377. [PMID: 33474679 DOI: 10.1007/s10549-020-06089-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Heregulin (HRG) signaling has been implicated in the development of an aggressive phenotype in breast cancer (BC) cells, and HER2 overexpression has been associated with a worse prognosis in BC patients. Nevertheless, the molecular mechanisms through which HRG affects the efficiency of anti-HER2 therapies such as trastuzumab (Tz) and trastuzumab-emtansine (T-DM1) are currently unknown. METHODS In the present study, we evaluate the molecular action of HRG toward fundamental scaffold proteins and several kinases in the signal transduction pathways triggered via HER2/HER3, which integrate precise and sequential steps to promote changes in cell morphology to impulse BC cell migration. In addition, we evaluate the effectiveness of Tz and T-DM1 on the control of key proteins involved in BC cell motility, since the acquisition of a migratory phenotype is essential to promote invasion and metastasis. RESULTS We show that HRG induces actin cytoskeleton reorganization and focal adhesion complex formation, and promotes actin nucleation in BT-474 BC cells. This signaling is triggered by HER2/HER3 to c-Src, FAK and paxillin. When paxillin is phosphorylated, it recruits PAK1, which then phosphorylates cortactin. In parallel, paxillin signals to N-WASP, and both signalings regulate Arp2/3 complex, leading to the local reorganization of actin fibers. CONCLUSIONS Our findings reveal an original mechanism by which HRG increases HER2+ BC cell motility, and show that the latter can be abolished by Tz and T-DM1 treatments. These results provide evidence for the molecular mechanisms involved in cell motility and drug resistance. They will be useful to develop new and more specific therapeutic schemes that interfere with the progression and metastasis of HER2+ BC.
Collapse
Affiliation(s)
- Joselina Magali Mondaca
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal S/N. Parque Gral, San Martin CC855, 5500, Mendoza, Argentina
| | - Ana Carla Castro Guijarro
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal S/N. Parque Gral, San Martin CC855, 5500, Mendoza, Argentina
| | - Marina Inés Flamini
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal S/N. Parque Gral, San Martin CC855, 5500, Mendoza, Argentina.
| | - Angel Matias Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal S/N. Parque Gral, San Martin CC855, 5500, Mendoza, Argentina.
| |
Collapse
|
44
|
Highland H, Thakur M, George LB. Controlling non small cell lung cancer progression by blocking focal adhesion kinase-c-Src active site with Rosmarinus officinalis L. phytocomponents: An in silico and in vitro study. J Cancer Res Ther 2021; 18:1674-1682. [DOI: 10.4103/jcrt.jcrt_1064_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
45
|
Hsieh YS, Chu SC, Huang SC, Kao SH, Lin MS, Chen PN. Gossypol Reduces Metastasis and Epithelial-Mesenchymal Transition by Targeting Protease in Human Cervical Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:181-198. [PMID: 33371817 DOI: 10.1142/s0192415x21500105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metastasis is the most prevalent cause of cancer-associated deaths amongst patients with cervical cancer. Epithelial-mesenchymal transition (EMT) is essential for carcinogenesis, and it confers metastatic properties to cancer cells. Gossypol is a natural polyphenolic compound with anti-inflammation, anti-oxidant, and anticancer activities. In this study, we investigated the antimetastatic and antitumour effects of gossypol on human cervical cancer cells (HeLa and SiHa cells). Gossypol exerted a strong inhibition effect on the migration and invasion of human cervical cancer cells. It reduced the focal adhesion kinase (FAK) pathway-mediated expression of matrix metalloproteinase-2 and urokinase-type plasminogen activator, subsequently inhibiting the invasion of SiHa cells. In addition, gossypol reversed EMT induced by transforming growth factor beta 1 (TGF-[Formula: see text]1) and up-regulated epithelial markers, such as E-cadherin but significantly suppressed Ras homolog family member (Rho)A, RhoB, and p-Samd3. The tail vein injection model showed that gossypol treatment via oral gavage reduced lung metastasis. Gossypol also decreased tumour growth in vivo in the nude mouse xenograft model. All these findings suggest that gossypol suppressed the invasion and migration of human cervical cancer cells by targeting the FAK signaling pathway and reversing TGF-[Formula: see text]1-induced EMT. Hence, gossypol warrants further attention for basic mechanistic studies and drug development.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Clinical Laboratory Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Shu-Chen Chu
- Institute and Department of Food Science Central Taiwan, University of Science and Technology, Taichung, Taiwan, ROC
| | - Shih-Chien Huang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Institute of Medicine Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Meng-Shuan Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Clinical Laboratory Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
- Institute of Medicine Chung Shan Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
46
|
Khajeh E, Rasmi Y, Kheradmand F, Malekinejad H, Aramwit P, Saboory E, Daeihassani B, Nasirzadeh M. Crocetin suppresses the growth and migration in HCT-116 human colorectal cancer cells by activating the p-38 MAPK signaling pathway. Res Pharm Sci 2020; 15:592-601. [PMID: 33828602 PMCID: PMC8020854 DOI: 10.4103/1735-5362.301344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/09/2020] [Accepted: 11/14/2020] [Indexed: 11/08/2022] Open
Abstract
Background and purpose: Crocetin is a natural antioxidant that is found in the crocus flower and Gardenia jasminoides (fruit). Previous studies have reported its anticancer activity both in vivo and in vitro. In addition, crocetin suppresses the growth and migration of human colorectal cancer cells, however, its mechanism of action remains to be elucidated. Therefore, the present study investigated the molecular mechanism of crocetin effect on colorectal cancer cells (HCT-116) in vitro. Experimental approach: HCT-116 cells were treated with different concentrations (0, 200, 400, 600, and 800 μM) of crocetin for 24 h. The cell survival rate was measured by MTT assay. Cell migration capacity was evaluated using the wound healing assay. The expression levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP-9) was monitored by RT-PCR. Phosphorylation of focal adhesion kinase (FAK) and p38 mitogen-activated protein kinase (MAPK) was determined using western blot. Findings/Results: The proliferation of HCT-116 was inhibited by crocetin at 800 μM (P < 0.001). Crocetin prevented migration of HCT-116 cells (P < 0.05) and suppressed VEGF and MMP-9 mRNA expression (P < 0.001) and increased phosphorylation of p38 (MAPK; P < 0.001). However, no significant change in the phosphorylation of FAK was observed. Conclusion and implication: These data suggested that crocetin-induced growth- and migration- suppressing effects on HCT-116 cells may partially depend on the regulation of the p38 (MAPK) signaling pathway.
Collapse
Affiliation(s)
- Esmaeil Khajeh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Fatemeh Kheradmand
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, I.R. Iran
| | | | - Mahdieh Nasirzadeh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| |
Collapse
|
47
|
Torrisi F, Vicario N, Spitale FM, Cammarata FP, Minafra L, Salvatorelli L, Russo G, Cuttone G, Valable S, Gulino R, Magro G, Parenti R. The Role of Hypoxia and SRC Tyrosine Kinase in Glioblastoma Invasiveness and Radioresistance. Cancers (Basel) 2020; 12:E2860. [PMID: 33020459 PMCID: PMC7599682 DOI: 10.3390/cancers12102860] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Advances in functional imaging are supporting neurosurgery and radiotherapy for glioblastoma, which still remains the most aggressive brain tumor with poor prognosis. The typical infiltration pattern of glioblastoma, which impedes a complete surgical resection, is coupled with a high rate of invasiveness and radioresistance, thus further limiting efficient therapy, leading to inevitable and fatal recurrences. Hypoxia is of crucial importance in gliomagenesis and, besides reducing radiotherapy efficacy, also induces cellular and molecular mediators that foster proliferation and invasion. In this review, we aimed at analyzing the biological mechanism of glioblastoma invasiveness and radioresistance in hypoxic niches of glioblastoma. We also discussed the link between hypoxia and radiation-induced radioresistance with activation of SRC proto-oncogene non-receptor tyrosine kinase, prospecting potential strategies to overcome the current limitation in glioblastoma treatment.
Collapse
Affiliation(s)
- Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Physiology, University of Catania, 95123 Catania, Italy; (F.T.); (N.V.); (F.M.S.); (R.G.)
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Physiology, University of Catania, 95123 Catania, Italy; (F.T.); (N.V.); (F.M.S.); (R.G.)
| | - Federica M. Spitale
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Physiology, University of Catania, 95123 Catania, Italy; (F.T.); (N.V.); (F.M.S.); (R.G.)
| | - Francesco P. Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy; (L.M.); (G.R.)
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy; (L.M.); (G.R.)
| | - Lucia Salvatorelli
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria “Policlinico-Vittorio Emanuele” Anatomic Pathology, University of Catania, 95125 Catania, Italy; (L.S.); (G.M.)
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy; (L.M.); (G.R.)
| | - Giacomo Cuttone
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95125 Catania, Italy;
| | - Samuel Valable
- ISTCT/CERVOxy Group, GIP Cyceron, CEA, CNRS, Normandie Université, UNICAEN, 14074 Caen, France;
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Physiology, University of Catania, 95123 Catania, Italy; (F.T.); (N.V.); (F.M.S.); (R.G.)
| | - Gaetano Magro
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria “Policlinico-Vittorio Emanuele” Anatomic Pathology, University of Catania, 95125 Catania, Italy; (L.S.); (G.M.)
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Physiology, University of Catania, 95123 Catania, Italy; (F.T.); (N.V.); (F.M.S.); (R.G.)
| |
Collapse
|
48
|
Lobo YA, Bonazza C, Batista FP, Castro RA, Bonturi CR, Salu BR, de Cassia Sinigaglia R, Toma L, Vicente CM, Pidde G, Tambourgi DV, Alvarez-Flores MP, Chudzinski-Tavassi AM, Oliva MLV. EcTI impairs survival and proliferation pathways in triple-negative breast cancer by modulating cell-glycosaminoglycans and inflammatory cytokines. Cancer Lett 2020; 491:108-120. [PMID: 32841713 DOI: 10.1016/j.canlet.2020.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
Breast cancer is the most common malignant tumor among women worldwide, and triple-negative breast cancer is the most aggressive type of breast cancer, which does not respond to hormonal therapies. The protease inhibitor, EcTI, extracted from seeds of Enterolobium contortisiliquum, acts on the main signaling pathways of the MDA-MB-231 triple-negative breast cancer cells. This inhibitor, when bound to collagen I of the extracellular matrix, triggers a series of pathways capable of decreasing the viability, adhesion, migration, and invasion of these cells. This inhibitor can interfere in the cell cycle process through the main signaling pathways such as the adhesion, Integrin/FAK/SRC, Akt, ERK, and the cell death pathway BAX and BCL-2. It also acts by reducing the main inflammatory cytokines such as TGF-α, IL-6, IL-8, and MCP-1, besides NFκB, a transcription factor, responsible for the aggressive and metastatic characteristics of this type of tumor. Thus, the inhibitor was able to reduce the main processes of carcinogenesis of this type of cancer.
Collapse
Affiliation(s)
- Yara A Lobo
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Camila Bonazza
- Gynecology, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Fabrício P Batista
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Rodrigo A Castro
- Gynecology, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Camila R Bonturi
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Bruno R Salu
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Rita de Cassia Sinigaglia
- Electron Microscopy Center at the Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Leny Toma
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Carolina M Vicente
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Giselle Pidde
- Immunochemistry, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Denise V Tambourgi
- Immunochemistry, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Miryam P Alvarez-Flores
- Center of Excellence in New Target Discovery (CENTD), Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Ana M Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Maria Luiza V Oliva
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil.
| |
Collapse
|
49
|
The Role of CTHRC1 in Regulation of Multiple Signaling and Tumor Progression and Metastasis. Mediators Inflamm 2020; 2020:9578701. [PMID: 32848510 PMCID: PMC7441421 DOI: 10.1155/2020/9578701] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Collagen triple helix repeat containing-1 (CTHRC1) has been identified as cancer-related protein. CTHRC1 expresses mainly in adventitial fibroblasts and neointimal smooth muscle cells of balloon-injured vessels and promotes cell migration and tissue repair in response to injury. CTHRC1 plays a pivotal role in some pathophysiological processes, including increasing bone mass, preventing myelination, and reversing collagen synthesis in many tumor cells. The ascended expression of CTHRC1 is related to tumorigenesis, proliferation, invasion, and metastasis in various human malignancies, including gastric cancer, pancreatic cancer, hepatocellular carcinoma, keloid, breast cancer, colorectal cancer, epithelial ovarian cancer, esophageal squamous cell carcinoma, cervical cancer, non-small-cell lung carcinoma, and melanoma. And molecules that regulate the expression of CTHRC1 include miRNAs, lncRNAs, WAIF1, and DPAGT1. Many reports have pointed that CTHRC1 could exert different effects through several signaling pathways such as TGF-β, Wnt, integrin β/FAK, Src/FAK, MEK/ERK, PI3K/AKT/ERK, HIF-1α, and PKC-δ/ERK signaling pathways. As a participant in tissue remodeling or immune response, CTHRC1 may promote early-stage cancer. Several recent studies have identified CTHRC1 as an effectual prognostic biomarker for predicting tumor recurrence or metastasis. It is worth noting that CTHRC1 has different cellular localization and mechanisms of action in different cells and different microenvironments. In this article, we focus on the advances in the signaling pathways mediated by CTHRC1 in tumors.
Collapse
|
50
|
Wang T, Jin H, Hu J, Li X, Ruan H, Xu H, Wei L, Dong W, Teng F, Gu J, Qin W, Luo X, Hao Y. COL4A1 promotes the growth and metastasis of hepatocellular carcinoma cells by activating FAK-Src signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:148. [PMID: 32746865 PMCID: PMC7398077 DOI: 10.1186/s13046-020-01650-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Collagens are the most abundant proteins in extra cellular matrix and important components of tumor microenvironment. Recent studies have showed that aberrant expression of collagens can influence tumor cell behaviors. However, their roles in hepatocellular carcinoma (HCC) are poorly understood. METHODS In this study, we screened all 44 collagen members in HCC using whole transcriptome sequencing data from the public datasets, and collagen type IV alpha1 chain (COL4A1) was identified as most significantly differential expressed gene. Expression of COL4A1 was detected in HCC samples by quantitative real-time polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry (IHC). Finally, functions and potential mechanisms of COL4A1 were explored in HCC progression. RESULTS COL4A1 is the most significantly overexpressed collagen gene in HCC. Upregulation of COL4A1 facilitates the proliferation, migration and invasion of HCC cells through FAK-Src signaling. Expression of COL4A1 is upregulated by RUNX1 in HCC. HCC cells with high COL4A1 expression are sensitive to the treatment with FAK or Src inhibitor. CONCLUSION COL4A1 facilitates growth and metastasis in HCC via activation of FAK-Src signaling. High level of COL4A1 may be a potential biomarker for diagnosis and treatment with FAK or Src inhibitor for HCC.
Collapse
Affiliation(s)
- Ting Wang
- Shanghai Medical College of Fudan University, Shanghai, 200032, People's Republic of China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, People's Republic of China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, People's Republic of China
| | - Jingying Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, People's Republic of China
| | - Xi Li
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.,Changzheng Hospital, Navy Medical University, Shanghai, 200003, People's Republic of China
| | - Haoyu Ruan
- Shanghai Medical College of Fudan University, Shanghai, 200032, People's Republic of China
| | - Huili Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, People's Republic of China
| | - Lin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, People's Republic of China
| | - Weihua Dong
- Changzheng Hospital, Navy Medical University, Shanghai, 200003, People's Republic of China
| | - Fei Teng
- Changzheng Hospital, Navy Medical University, Shanghai, 200003, People's Republic of China
| | - Jianren Gu
- Shanghai Medical College of Fudan University, Shanghai, 200032, People's Republic of China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, People's Republic of China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, People's Republic of China
| | - Xiaoying Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, People's Republic of China.
| | - Yujun Hao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, People's Republic of China.
| |
Collapse
|