1
|
Xu H, Yang S, Liu P, Zhang Y, Zhang T, Lan J, Jiang H, Wu D, Li J, Bai X. The roles and functions of TMEM protein family members in cancers, cardiovascular and kidney diseases (Review). Biomed Rep 2025; 22:63. [PMID: 39991002 PMCID: PMC11843188 DOI: 10.3892/br.2025.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Transmembrane protein (TMEM) is a type of membrane proteins, encoded by TMEM gene, also known as integral membrane protein. TMEM gene family contains various members and its encoded proteins have various functions and expressed in numerous organs. It has been proved to be widely involved in the formation of a lot of organelle membranes, enzymes, receptors and channels, mediating numerous normal physiological functions and regulating various disease processes. At present, accumulating evidences at home and abroad have shown that TMEM is involved in regulating the occurrence and development of different tumors, cardiovascular and kidney diseases. The improved understanding of molecular mechanisms of TMEM genes and proteins may provide new directions and ideas for the prevention, diagnosis and treatment of diseases. In the present review, the roles of TMEM and biological functions in various cancers, cardiovascular and kidney diseases were discussed.
Collapse
Affiliation(s)
- Haosen Xu
- First Clinical College of Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Hong-Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong 510080, P.R. China
| | - Shanzhi Yang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Hong-Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong 510080, P.R. China
| | - Peimin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Hong-Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong 510080, P.R. China
| | - Yan Zhang
- First Clinical College of Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Hong-Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong 510080, P.R. China
| | - Ting Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Hong-Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong 510080, P.R. China
| | - Jinyi Lan
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Hong-Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong 510080, P.R. China
| | - Huan Jiang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Hong-Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong 510080, P.R. China
| | - Danfeng Wu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Hong-Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong 510080, P.R. China
| | - Jiaoqing Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Hong-Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoyan Bai
- First Clinical College of Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Hong-Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
2
|
Huang Z, Iqbal Z, Zhao Z, Chen X, Mahmmod A, Liu J, Li W, Deng Z. TMEM16 proteins: Ca 2+‑activated chloride channels and phospholipid scramblases as potential drug targets (Review). Int J Mol Med 2024; 54:81. [PMID: 39092585 PMCID: PMC11315658 DOI: 10.3892/ijmm.2024.5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 08/04/2024] Open
Abstract
TMEM16 proteins, which function as Ca2+‑activated Cl‑ channels are involved in regulating a wide variety of cellular pathways and functions. The modulators of Cl‑ channels can be used for the molecule‑based treatment of respiratory diseases, cystic fibrosis, tumors, cancer, osteoporosis and coronavirus disease 2019. The TMEM16 proteins link Ca2+ signaling, cellular electrical activity and lipid transport. Thus, deciphering these complex regulatory mechanisms may enable a more comprehensive understanding of the physiological functions of the TMEM16 proteins and assist in ascertaining the applicability of these proteins as potential pharmacological targets for the treatment of a range of diseases. The present review examined the structures, functions and characteristics of the different types of TMEM16 proteins, their association with the pathogenesis of various diseases and the applicability of TMEM16 modulator‑based treatment methods.
Collapse
Affiliation(s)
- Zeqi Huang
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zoya Iqbal
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zhe Zhao
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Xiaoqiang Chen
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Ayesha Mahmmod
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 58240, Pakistan
| | - Jianquan Liu
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Wencui Li
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zhiqin Deng
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
3
|
Shin Y, Kim S, An W. Promoter hypermethylation as a novel regulator of ANO1 expression and function in prostate cancer bone metastasis. Sci Rep 2024; 14:11595. [PMID: 38773164 PMCID: PMC11109272 DOI: 10.1038/s41598-024-62478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Despite growing evidence implicating the calcium-activated chloride channel anoctamin1 (ANO1) in cancer metastasis, its direct impact on the metastatic potential of prostate cancer and the possible significance of epigenetic alteration in this process are not fully understood. Here, we show that ANO1 is minimally expressed in LNCap and DU145 prostate cancer cell lines with low metastatic potential but overexpressed in high metastatic PC3 prostate cancer cell line. The treatment of LNCap and DU145 cells with DNMT inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) potentiates ANO1 expression, suggesting that DNA methylation is one of the mechanisms controlling ANO1 expression. Consistent with this notion, hypermethylation was detected at the CpG island of ANO1 promoter region in LNCap and DU145 cells, and 5-Aza-CdR treatment resulted in a drastic demethylation at promoter CpG methylation sites. Upon 5-Aza-CdR treatment, metastatic indexes, such as cell motility, invasion, and metastasis-related gene expression, were significantly altered in LNCap and DU145 cells. These 5-Aza-CdR-induced metastatic hallmarks were, however, almost completely ablated by stable knockdown of ANO1. These in vitro discoveries were further supported by our in vivo observation that ANO1 expression in xenograft mouse models enhances the metastatic dissemination of prostate cancer cells into tibial bone and the development of osteolytic lesions. Collectively, our results help elucidate the critical role of ANO1 expression in prostate cancer bone metastases, which is epigenetically modulated by promoter CpG methylation.
Collapse
Affiliation(s)
- Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sungmin Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
4
|
Zhang G, Shu Z, Yu J, Li J, Yi P, Wu B, Deng D, Yan S, Li Y, Ren D, Hou Y, Lan C. High ANO1 expression is a prognostic factor and correlated with an immunosuppressive tumor microenvironment in pancreatic cancer. Front Immunol 2024; 15:1341209. [PMID: 38352864 PMCID: PMC10861777 DOI: 10.3389/fimmu.2024.1341209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Background Aminooctylamine (ANO1) plays an oncogenic role in various cancers. However. its role in pancreatic cancer (PC) has rarely been studied. This study investigated the prognostic value of ANO1 and its correlation with the tumor microenvironment (TME) in PC. Methods Consecutive patients with PC (n = 119) were enrolled. The expression of ANO1 in cancer cells, the expression of fibroblast activation protein (FAP) and alpha smooth muscle actin in cancer-associated fibroblasts (CAFs), and the numbers of CD8- and FOXP3-positive tumor-infiltrating lymphocytes (TILs) were evaluated using immunohistochemistry. The prognostic value of ANO1 and its correlation with CAF subgroups and TILs were analyzed. The possible mechanism of ANO1 in the TME of PC was predicted using the the Cancer Genome Atlas (TCGA) dataset. Results The expression of AN01 was correlated with overall survival (OS) and disease-free survival. Multi-factor analysis showed that high ANO1 expression was an independent adverse prognostic factor for OS (hazard ratio, 4.137; P = 0.001). ANO1 expression was positively correlated with the expression of FAP in CAFs (P < 0.001) and negatively correlated with the number of CD8-positive TILs (P = 0.005), which was also validated by bioinformatics analysis in the TCGA dataset. Moreover, bioinformatic analysis of the TCGA dataset revealed that ANO1 may induce an immunosuppressive tumor microenvironment in pancreatic cancer in a paracrine manner. Conclusion ANO1 is a prognostic factor in patients with PC after radical resection. ANO1 may induce an immunosuppressive tumor microenvironment in PC in a paracrine manner, suggesting that ANO1 may be a novel therapeutic target.
Collapse
Affiliation(s)
- Guangnian Zhang
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhihui Shu
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jun Yu
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jianshui Li
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Pengsheng Yi
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bin Wu
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dawei Deng
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shu Yan
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Li
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dongmei Ren
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Lan
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
5
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
6
|
Bai X, Cheng Y, Wan H, Li S, Kang X, Guo S. Natural Compound Allicin Containing Thiosulfinate Moieties as Transmembrane Protein 16A (TMEM16A) Ion Channel Inhibitor for Food Adjuvant Therapy of Lung Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:535-545. [PMID: 36574498 DOI: 10.1021/acs.jafc.2c06723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancer is one of the most serious malignant diseases, and chemotherapy is cancer's main clinical treatment method. However, chemotherapy inevitably produces drug resistance, and side effects accompany them. Adjuvant therapy is an effective way to enhance chemotherapeutic drug sensitivity and reduce side effects. This study found allicin, garlic's active ingredient, is an inhibitor of transmembrane protein 16A (TMEM16A), a novel drug target of lung adenocarcinoma. Allicin concentration-dependently inhibited TMEM16A currents with an IC50 of 24.35 ± 4.14 μM. Allicin thiosulfinate moieties bound with R535A/E624A/E633A residues of TMEM16A blocked the ion transport function and downregulated TMEM16A protein expression affecting the mitogen-activated protein kinase signal transduction. Then, allicin reduced the viability and migration of LA795 cells, and induced cell apoptosis. Moreover, multitarget combination administration results indicated that the therapeutic effect of 3.56 mg/kg allicin and 3 mg/kg cisplatin combined administration was superior to the superposition of the two drugs alone, demonstrating that the anticancer effects of allicin and cisplatin were synergistic. In addition, low-concentration combined administration also avoided the side effects of cisplatin in mice. Based on the good tumor suppressor effect and high biosafety of allicin and cisplatin combination in vivo, allicin can be used for food adjuvant therapy of cisplatin chemotherapy.
Collapse
Affiliation(s)
- Xue Bai
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yana Cheng
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Haifu Wan
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
- Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuting Li
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
- Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China
| |
Collapse
|
7
|
Jiang W, Li J, Cai Y, Liu W, Chen M, Xu X, Deng M, Sun J, Zhou L, Huang Y, Wu S, Cheng X. The Novel lncRNA ENST00000530525 Affects ANO1, Contributing to Blood-Brain Barrier Injury in Cultured hCMEC/D3 Cells Under OGD/R Conditions. Front Genet 2022; 13:873230. [PMID: 35754821 PMCID: PMC9213740 DOI: 10.3389/fgene.2022.873230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke (IS) is a major neurological disease with high fatality and residual disability burdens. Long noncoding RNAs (lncRNAs) have been found to play an important role in IS. However, the roles and significance of most lncRNAs in IS are still unknown. This study was performed to identify differentially expressed (DE) lncRNAs using a lncRNA microarray in whole blood samples of patients suffering from acute cerebral ischemia. Bioinformatics analyses, including GO, KEGG pathway enrichment analysis, and proximity to putative stroke risk location analysis were performed. The novel lncRNA, ENST00000530525, significantly decreased after IS. Furthermore, we evaluated lncRNA ENST00000530525 expression in cultured hCMEC/D3 cells under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions using fluorescent in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (RT-qPCR) analysis. To investigate the function of lncRNA ENST00000530525, its over-expression (OE) and negative control (NC) plasmids were transfected into hCMEC/D3 cells, and cell viability was detected by a cell counting kit-8 (CCK-8) assay after OGD/R. LncRNA ENST00000530525 and ANO1 expression were investigated using RT-qPCR and immunofluorescence. For blood-brain barrier (BBB) permeability, FITC-dextran transendothelial permeability assay and tight junction (TJ) protein immunofluorescence assays were performed. There were 3352 DE lncRNAs in the blood samples of acute IS patients. The validation results were consistent with the gene chip data. The GO and KEGG results showed that these lncRNAs were mainly related to oxygen and glucose metabolism, leukocyte transendothelial migration, mitophagy and cellular senescence. Among these, lncRNA ENST00000530525 was the most highly downregulated lncRNA and it was mapped within the IS-associated gene anoctamin-1 (ANO1). We further found that lncRNA ENST00000530525 was downregulated in hCMEC/D3 cells under 4 h OGD and 20 h reoxygenation (OGD4/R20) conditions. Upregulating lncRNA ENST00000530525 by plasmid transfection decreased cell viability while increasing ANO1 expression and it contributed to BBB injury in hCMEC/D3 cells after OGD4/R20. The lncRNA ENST00000530525 might play deleterious roles in post-stroke pathogenesis. These results show that some DE lncRNAs in humans participate through characteristic roles in post-stroke pathogenesis; thus, the roles and significance of some novel lncRNAs in IS warrant further study.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jie Li
- Department of Anesthesiology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuefang Cai
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Wenchen Liu
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mei Chen
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Xu
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Minzhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingbo Sun
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.,Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Lihua Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Yan Huang
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.,Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Shuang Wu
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xiao Cheng
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.,Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| |
Collapse
|
8
|
Guo S, Zhang L, Li N. ANO1: More Than Just Calcium-Activated Chloride Channel in Cancer. Front Oncol 2022; 12:922838. [PMID: 35734591 PMCID: PMC9207239 DOI: 10.3389/fonc.2022.922838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
ANO1, a calcium-activated chloride channel (CACC), is also known as transmembrane protein 16A (TMEM16A). It plays a vital role in the occurrence, development, metastasis, proliferation, and apoptosis of various malignant tumors. This article reviews the mechanism of ANO1 involved in the replication, proliferation, invasion and apoptosis of various malignant tumors. Various molecules and Stimuli control the expression of ANO1, and the regulatory mechanism of ANO1 is different in tumor cells. To explore the mechanism of ANO1 overexpression and activation of tumor cells by studying the different effects of ANO1. Current studies have shown that ANO1 expression is controlled by 11q13 gene amplification and may also exert cell-specific effects through its interconnected protein network, phosphorylation of different kinases, and signaling pathways. At the same time, ANO1 also resists tumor apoptosis and promotes tumor immune escape. ANO1 can be used as a promising biomarker for detecting certain malignant tumors. Further studies on the channels and the mechanism of protein activity of ANO1 are needed. Finally, the latest inhibitors of ANO1 are summarized, which provides the research direction for the tumor-promoting mechanism of ANO1.
Collapse
Affiliation(s)
- Saisai Guo
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linna Zhang
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
TMEM16A as a potential treatment target for head and neck cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:196. [PMID: 35668455 PMCID: PMC9172006 DOI: 10.1186/s13046-022-02405-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023]
Abstract
Transmembrane protein 16A (TMEM16A) forms a plasma membrane-localized Ca2+-activated Cl- channel. Its gene has been mapped to an area on chromosome 11q13, which is amplified in head and neck squamous cell carcinoma (HNSCC). In HNSCC, TMEM16A overexpression is associated with not only high tumor grade, metastasis, low survival, and poor prognosis, but also deterioration of clinical outcomes following platinum-based chemotherapy. Recent study revealed the interaction between TMEM16A and transforming growth factor-β (TGF-β) has an indirect crosstalk in clarifying the mechanism of TMEM16A-induced epithelial-mesenchymal transition. Moreover, human papillomavirus (HPV) infection can modulate TMEM16A expression along with epidermal growth factor receptor (EGFR), whose phosphorylation has been reported as a potential co-biomarker of HPV-positive cancers. Considering that EGFR forms a functional complex with TMEM16A and is a co-biomarker of HPV, there may be crosstalk between TMEM16A expression and HPV-induced HNSCC. EGFR activation can induce programmed death ligand 1 (PD-L1) synthesis via activation of the nuclear factor kappa B pathway and JAK/STAT3 pathway. Here, we describe an interplay among EGFR, PD-L1, and TMEM16A. Combination therapy using TMEM16A and PD-L1 inhibitors may improve the survival rate of HNSCC patients, especially those resistant to anti-EGFR inhibitor treatment. To the best of our knowledge, this is the first review to propose a biological validation that combines immune checkpoint inhibition with TMEM16A inhibition.
Collapse
|
10
|
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, Hua X, Liu Z. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol 2022; 148:2045-2068. [PMID: 35471604 DOI: 10.1007/s00432-022-04004-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Dysregulation of gene amplification, cell-signaling-pathway transduction, epigenetic and transcriptional regulation, and protein interactions drives tumor-cell proliferation and invasion, while ion channels also play an important role in the generation and development of tumor cells. Overexpression of Ca2+-activated Cl- channel anoctamin 1 (ANO1) is shown in numerous cancer types and correlates with poor prognosis. However, the mechanisms involved in ANO1-mediated malignant cellular transformation and the role of ANO1 in tumor immunity remain unknown. In this review, we discuss recent studies to determine the role of ANO1 in tumorigenesis and provide novel insights into the role of ANO1 in the context of tumor immunity. Furthermore, we analyze the roles and potential mechanisms of ANO1 in different types of cancers, and provide novel notions for the role of ANO1 in the tumor microenvironment and for potential use of ANO1 in clinical applications. Our review shows that ANO1 is involved in tumor immunity and microenvironment, and may, therefore, be an effective biomarker and therapeutic drug target.
Collapse
Affiliation(s)
- Haini Li
- Department of Gastroenterology, Qingdao Sixth People's Hospital, Qingdao, 266001, China
| | - Zongxue Yu
- Department of Endocrinology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266001, China
| | - Haiyan Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Ning Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Xueguo Sun
- Department of Gastroenterology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Shengmei Yang
- Department of Gynecology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Xu Hua
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
11
|
Chloride Channels and Transporters: Roles beyond Classical Cellular Homeostatic pH or Ion Balance in Cancers. Cancers (Basel) 2022; 14:cancers14040856. [PMID: 35205604 PMCID: PMC8870652 DOI: 10.3390/cancers14040856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Roles of chloride-associated transporters have been raised in various cancers. Although complicated ion movements, crosstalk among channels/transporters through homeostatic electric regulation, difficulties with experimental implementation such as activity measurement of intracellular location were disturbed to verify the precise modulation of channels/transporters, recently defined cancerous function and communication with tumor microenvironment of chloride channels/transporters should be highlighted beyond classical homeostatic ion balance. Chloride-associated transporters as membrane-associated components of chloride movement, regulations of transmembrane member 16A, calcium-activated chloride channel regulators, transmembrane member 206, chloride intracellular channels, voltage-gated chloride channels, cystic fibrosis transmembrane conductance regulator, voltage-dependent anion channel, volume-regulated anion channel, and chloride-bicarbonate exchangers are discussed. Abstract The canonical roles of chloride channels and chloride-associated transporters have been physiologically determined; these roles include the maintenance of membrane potential, pH balance, and volume regulation and subsequent cellular functions such as autophagy and cellular proliferative processes. However, chloride channels/transporters also play other roles, beyond these classical function, in cancerous tissues and under specific conditions. Here, we focused on the chloride channel-associated cancers and present recent advances in understanding the environments of various types of cancer caused by the participation of many chloride channel or transporters families and discuss the challenges and potential targets for cancer treatment. The modulation of chloride channels/transporters might promote new aspect of cancer treatment strategies.
Collapse
|
12
|
Bai W, Liu M, Xiao Q. The diverse roles of TMEM16A Ca 2+-activated Cl - channels in inflammation. J Adv Res 2021; 33:53-68. [PMID: 34603778 PMCID: PMC8463915 DOI: 10.1016/j.jare.2021.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Transmembrane protein 16A (TMEM16A) Ca2+-activated Cl- channels have diverse physiological functions, such as epithelial secretion of Cl- and fluid and sensation of pain. Recent studies have demonstrated that TMEM16A contributes to the pathogenesis of infectious and non-infectious inflammatory diseases. However, the role of TMEM16A in inflammation has not been clearly elucidated. Aim of review In this review, we aimed to provide comprehensive information regarding the roles of TMEM16A in inflammation by summarizing the mechanisms underlying TMEM16A expression and activation under inflammatory conditions, in addition to exploring the diverse inflammatory signaling pathways activated by TMEM16A. This review attempts to develop the idea that TMEM16A plays a diverse role in inflammatory processes and contributes to inflammatory diseases in a cellular environment-dependent manner. Key scientific concepts of review Multiple inflammatory mediators, including cytokines (e.g., interleukin (IL)-4, IL-13, IL-6), histamine, bradykinin, and ATP/UTP, as well as bacterial and viral infections, promote TMEM16A expression and/or activity under inflammatory conditions. In addition, TMEM16A activates diverse inflammatory signaling pathways, including the IP3R-mediated Ca2+ signaling pathway, the NF-κB signaling pathway, and the ERK signaling pathway, and contributes to the pathogenesis of many inflammatory diseases. These diseases include airway inflammatory diseases, lipopolysaccharide-induced intestinal epithelial barrier dysfunction, acute pancreatitis, and steatohepatitis. TMEM16A also plays multiple roles in inflammatory processes by increasing vascular permeability and leukocyte adhesion, promoting inflammatory cytokine release, and sensing inflammation-induced pain. Furthermore, TMEM16A plays its diverse pathological roles in different inflammatory diseases depending on the disease severity, proliferating status of the cells, and its interacting partners. We herein propose cellular environment-dependent mechanisms that explain the diverse roles of TMEM16A in inflammation.
Collapse
Affiliation(s)
- Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
13
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
14
|
Wang H, Wang T, Zhang Z, Fan Y, Zhang L, Gao K, Luo S, Xiao Q, Sun C. Simvastatin inhibits oral squamous cell carcinoma by targeting TMEM16A Ca 2+-activated chloride channel. J Cancer Res Clin Oncol 2021; 147:1699-1711. [PMID: 33755783 DOI: 10.1007/s00432-021-03575-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Ca2+-activated chloride channel TMEM16A has been found to be overexpressed in many cancers including head and neck squamous cell carcinoma (HNSCC). Nevertheless, the role of TMEM16A in oral squamous cell carcinoma (OSCC) remains unclear. Although simvastatin is known to produce anti-tumor effect, the mechanisms by which simvastatin inhibits cancer remain unclear. METHODS In this study, we explored the role of TMEM16A expression in human OSCC tissues using both TCGA dataset and immunohistochemistry. CCK-8 assay was applied to evaluate cell proliferation. Patch clamp technique was applied to record TMEM16A Cl- currents. RESULTS We found that high TMEM16A expression is related with large tumor size, lymph node metastasis, and poor clinical outcome in patients with OSCC. In addition, TMEM16A overexpression could promote cell proliferation, and inhibition of TMEM16A channel activities could suppress cell proliferation in OSCC cells. Furthermore, simvastatin could suppress TMEM16A channel activities, and inhibited cell proliferation in OSCC cells via TMEM16A. CONCLUSION Our findings identify a novel anti-tumor mechanism of simvastatin by targeting TMEM16A. Simvastatin may represent an innovative strategy for treating OSCC with high TMEM16A expression.
Collapse
Affiliation(s)
- Hechen Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, 117 Nanjing Bei Jie, Heping District, Shenyang,, 110002, Liaoning, China.,Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Tianyu Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Zeying Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, 117 Nanjing Bei Jie, Heping District, Shenyang,, 110002, Liaoning, China
| | - Yu Fan
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Hospital Infection Management Office, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Kuan Gao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China.
| | - Changfu Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, 117 Nanjing Bei Jie, Heping District, Shenyang,, 110002, Liaoning, China.
| |
Collapse
|
15
|
Li H, Yang Q, Huo S, Du Z, Wu F, Zhao H, Chen S, Yang L, Ma Z, Sui Y. Expression of TMEM16A in Colorectal Cancer and Its Correlation With Clinical and Pathological Parameters. Front Oncol 2021; 11:652262. [PMID: 33816307 PMCID: PMC8017291 DOI: 10.3389/fonc.2021.652262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
TMEM16A is a recently identified calcium-activated chloride channel (CaCC) and its overexpression contributes to tumorigenesis and progression in several human malignancies. However, little is known about expression of TMEM16A and its clinical significance in colorectal cancer (CRC). TMEM16A mRNA expression was determined by quantitative real time-PCR (qRT-PCR) in 67 CRC tissues and 24 para-carcinoma tissues. TMEM16A protein expression was performed by immunohistochemistry in 80 CRC tissues. The correlation between TMEM16A expression and clinicopathological parameters, and known genes and proteins involved in CRC was analyzed. The results showed that TMEM16A mRNA expression was frequently detected in 51 CRC tissues (76%), whereas TMEM16A protein expression was determined at a relatively lower frequency (26%). TMEM16A mRNA expression in tumor tissues was higher than its expression in normal para-carcinoma tissues (P < 0.05). TMEM16A mRNA expression was significantly correlated with TNM stage (p = 0.039) and status of lymph node metastasis (p = 0.047). In addition, there was a strong positive correlation between TMEM16A mRNA expression and MSH2 protein. More importantly, TMEM16A protein expression was positively associated with KRAS mutation, and negatively correlated with mutant p53 protein. Logistic regression analysis demonstrated that TMEM16A mRNA expression was an important independent predictive factor of lymph node metastasis (OR = 16.38, CI: 1.91–140.27, p = 0.01). TMEM16A mRNA and protein expression was not significantly related with patient survival. Our findings provide original evidence demonstrating TMEM16A mRNA expression can be a novel predictive marker of lymph node metastasis and TMEM16A protein expression may be an important regulator of tumor proliferation and metastasis in CRC.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Dermatology, First Hospital of Jilin University, Changchun, China
| | - Qiwei Yang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China
| | - Sibo Huo
- Department of Gastrointestinal Nutrition and Hernia Surgery, Second Hospital of Jilin University, Changchun, China.,Department of General Surgery, Qian Wei Hospital of Jilin Province, Changchun, China
| | - Zhenwu Du
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China.,Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Fei Wu
- Department of Gynecology and Obstetrics, Second Hospital of Jilin University, Changchun, China
| | - Haiyue Zhao
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, First Hospital of Jilin University, Changchun, China
| | - Shifan Chen
- Department of Pathology, Second Hospital of Jilin University, Changchun, China
| | - Longfei Yang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, Second Hospital of Jilin University, Changchun, China
| | - Yujie Sui
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Chen W, Gu M, Gao C, Chen B, Yang J, Xie X, Wang X, Sun J, Wang J. The Prognostic Value and Mechanisms of TMEM16A in Human Cancer. Front Mol Biosci 2021; 8:542156. [PMID: 33681289 PMCID: PMC7930745 DOI: 10.3389/fmolb.2021.542156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
As a calcium ion-dependent chloride channel transmembrane protein 16A (TMEM16A) locates on the cell membrane. Numerous research results have shown that TMEM16A is abnormally expressed in many cancers. Mechanically, TMEM16A participates in cancer proliferation and migration by affecting the MAPK and CAMK signaling pathways. Additionally, it is well documented that TMEM16A exerts a regulative impact on the hyperplasia of cancer cells by interacting with EGFR in head and neck squamous cell carcinoma (HNSCC), an epithelial growth factor receptor in head and neck squamous cell carcinoma respectively. Meanwhile, as an EGFR activator, TMEM16A is considered as an oncogene or a tumor-promoting factor. More and more experimental data showed that down-regulation of TMEM16A or gene targeted therapy may be an effective treatment for cancer. This review summarized its role in various cancers and research advances related to its clinical application included treatment and diagnosis.
Collapse
Affiliation(s)
- Wenjian Chen
- Anhui Province Children's Hospital Affiliated to Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - Meng Gu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Chaobing Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Bangjie Chen
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Junfa Yang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaoli Xie
- Anhui Medicine Centralized Procurement Service Center, Hefei, China
| | - Xinyi Wang
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Jun Sun
- Anhui Province Children's Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jinian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Altamura C, Greco MR, Carratù MR, Cardone RA, Desaphy JF. Emerging Roles for Ion Channels in Ovarian Cancer: Pathomechanisms and Pharmacological Treatment. Cancers (Basel) 2021; 13:668. [PMID: 33562306 PMCID: PMC7914442 DOI: 10.3390/cancers13040668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecologic cancer, due to late diagnosis, development of platinum resistance, and inadequate alternative therapy. It has been demonstrated that membrane ion channels play important roles in cancer processes, including cell proliferation, apoptosis, motility, and invasion. Here, we review the contribution of ion channels in the development and progression of OC, evaluating their potential in clinical management. Increased expression of voltage-gated and epithelial sodium channels has been detected in OC cells and tissues and shown to be involved in cancer proliferation and invasion. Potassium and calcium channels have been found to play a critical role in the control of cell cycle and in the resistance to apoptosis, promoting tumor growth and recurrence. Overexpression of chloride and transient receptor potential channels was found both in vitro and in vivo, supporting their contribution to OC. Furthermore, ion channels have been shown to influence the sensitivity of OC cells to neoplastic drugs, suggesting a critical role in chemotherapy resistance. The study of ion channels expression and function in OC can improve our understanding of pathophysiology and pave the way for identifying ion channels as potential targets for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| | - Maria Raffaella Greco
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| |
Collapse
|
18
|
Zeng X, Cao Z, Luo W, Zheng L, Zhang T. MicroRNA-381-A Key Transcriptional Regulator: Its Biological Function and Clinical Application Prospects in Cancer. Front Oncol 2020; 10:535665. [PMID: 33324542 PMCID: PMC7726430 DOI: 10.3389/fonc.2020.535665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that function by regulating messenger RNAs. Recent studies have shown that miRNAs play important roles in multiple processes of cancer development. MiR-381 is one of the most important miRNAs in cancer progression. MiR-381 is downregulated in some cancers and upregulated in other cancers, including glioma, epithelial sarcoma, and osteosarcoma. MiR-381 regulates epithelial-mesenchymal transition (EMT), chemotherapeutic resistance, radioresistance, and immune responses. Thus, miR-381 participates in tumor initiation, progression, and metastasis. Moreover, miR-381 functions in various oncogenic pathways, including the Wnt/β-catenin, AKT, and p53 pathways. Clinical studies have shown that miR-381 could be considered a biomarker or a novel prognostic factor. Here, we summarize the present studies on the role of miR-381 in cancer development, including its biogenesis and various affected signaling pathways, and its clinical application prospects. MiR-381 expression is associated with tumor stage and survival time, making miR-381 a novel prognostic factor.
Collapse
Affiliation(s)
- Xue Zeng
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Dulin NO. Calcium-Activated Chloride Channel ANO1/TMEM16A: Regulation of Expression and Signaling. Front Physiol 2020; 11:590262. [PMID: 33250781 PMCID: PMC7674831 DOI: 10.3389/fphys.2020.590262] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
Anoctamin-1 (ANO1), also known as TMEM16A, is the most studied member of anoctamin family of calcium-activated chloride channels with diverse cellular functions. ANO1 controls multiple cell functions including cell proliferation, survival, migration, contraction, secretion, and neuronal excitation. This review summarizes the current knowledge of the cellular mechanisms governing the regulation of ANO1 expression and of ANO1-mediated intracellular signaling. This includes the stimuli and mechanisms controlling ANO1 expression, agonists and processes that activate ANO1, and signal transduction mediated by ANO1. The major conclusion is that this field is poorly understood, remains highly controversial, and requires extensive and rigorous further investigation.
Collapse
Affiliation(s)
- Nickolai O Dulin
- Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Ma K, Liu S, Liang H, Wang G, Wang T, Luo S, Gao K, Wang H, Liu M, Bai L, Xiao Q. Ca 2+-activated Cl - channel TMEM16A inhibition by cholesterol promotes angiogenesis in endothelial cells. J Adv Res 2020; 29:23-32. [PMID: 33842002 PMCID: PMC8020148 DOI: 10.1016/j.jare.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Ca2+-activated Cl- channel TMEM16A is expressed in endothelial cells, and contributes to many diseases such as hypertension, blood-brain barrier dysfunction, and pulmonary hypertension. It remains unclear whether TMEM16A regulates endothelial angiogenesis, which participates in many physiological and pathological processes. Cholesterol regulates many ion channels including TMEM16A, and high cholesterol levels contribute to endothelial dysfunction. It remains to be determined whether cholesterol regulates TMEM16A expression and function in endothelial cells. Objective This study aimed to investigate whether cholesterol regulated TMEM16A expression and function in endothelial angiogenesis. Methods Whole-cell patch clamp techniques were used to record Ca2+-activated Cl- currents in human aortic endothelial cells (HAECs) and HEK293 cells transfected with TMEM16A-overexpressing plasmids. Western blot was used to examine the expression of TMEM16A and DNA methyltransferase 1 (DNMT1) in HAECs. CCK-8 assay, would healing assay, and tube formation assay were used to test endothelial cell proliferation, migration and angiogenesis, respectively. Results TMEM16A mediates the Ca2+-activated Cl- channel in HAECs. Cholesterol treatment inhibited TMEM16A expression via upregulation of DNMT1 in HAECs, and the inhibitory effect of cholesterol on TMEM16A expression was blocked by 5-aza, the DNMT1 inhibitor. In addition, direct application of cholesterol inhibited TMEM16A currents in heterologous HEK293 cells with an IC50 of 0.1209 μM. Similarly, cholesterol directly inhibited TMEM16A currents in HAECs. Furthermore, TMEM16A knockdown increased in vitro tube formation, cell migration and proliferation of HAECs, and TMEM16A overexpression produced the opposite effect. Conclusion This study reveals a novel mechanism of cholesterol-mediated TMEM16A inhibition, by which cholesterol reduces TMEM16A expression via DNMT1-mediated methylation and directly inhibits channel activities. TMEM16A channel inhibition promotes endothelial cell angiogenesis.
Collapse
Key Words
- 5-aza, 5-Aza-2′-deoxycytidine
- ANOVA, analysis of variance
- Angiogenesis
- CCK-8, Cell Counting Kit-8
- CaCCs, Ca2+-activated Cl− currents
- Cholesterol
- DMEM, Dulbecco’s Modified Eagle Medium
- DNMT1, DNA methyltransferase 1
- EGTA, ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid
- Endothelial cells
- FBS, fetal bovine serum
- HAECs, human aortic endothelial cells
- HEPES, N-2-hydroxyethil-piperazine-N'-2-ethanesulfonic acid
- MβCD, methyl-β cyclodextrin
- NMDG, N-methyl-D-glucamine
- PVDF, polyvinylidene fluoride
- RIPA, radio immunoprecipitation assay
- ROS, reactive oxygen species
- SE, standard error
- TMEM16A
- shRNAs, short hairpin RNAs
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qinghuan Xiao
- Corresponding author at: Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
21
|
Shang L, Wang K, Liu D, Qin S, Huang J, Zhao Y, Pang Y. TMEM16A regulates the cell cycle of pulmonary artery smooth muscle cells in high-flow-induced pulmonary arterial hypertension rat model. Exp Ther Med 2020; 19:3275-3281. [PMID: 32266023 PMCID: PMC7132240 DOI: 10.3892/etm.2020.8589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
High-flow-induced pulmonary arterial hypertension (PAH) has attained global notoriety, the mechanism of which remains elusive. The present study investigated the regulation of Anoctamin-1, also known as transmembrane member 16A (TMEM16A), in the cell cycle progression of pulmonary artery smooth muscle cells (PASMCs) from a PAH rat model induced by high pulmonary blood flow. A total of 30 Sprague-Dawley rats were randomly assigned into control, sham and shunt groups. A rat model of high pulmonary blood flow-induced PAH was established by surgery using abdominal aorta-inferior vena cava fistula. Right ventricular pressure, right ventricular hypertrophy index and pulmonary arteriole structural remodeling were assessed 11 weeks following operation. The cell cycle statuses of PASMCs was assessed via flow cytometry, whereas western blot analysis was performed to measure the expression of cyclin D1, CDK2, p27KIP and cyclin E in primary PASMCs isolated from rats. The expression of cyclin E and cyclin D1 was revealed to be increased in the shunt group compared with the control group, which was accompanied with an increased expression of TMEM16A in the shunt group. Changes in the ratio of PASMCs in the G0/G1, S and G2/M phases of cycle induced by PAH were reversed by TMEM16A knockdown. The expression of cyclin E and cyclin D1 in the shunt group was significantly higher compared with the control group in vitro, which was reversed by TMEM16A-siRNA transfection. In conclusion, TMEM16A may be involved in high pulmonary blood flow-induced PAH by regulating PASMC cell cycle progression.
Collapse
Affiliation(s)
- Lifeng Shang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| | - Kai Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Dongli Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| | - Suyuan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| | - Jinglin Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| | - Yijue Zhao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| | - Yusheng Pang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| |
Collapse
|
22
|
Zhang C, Liu J, Han Z, Cui X, Peng D, Xing Y. Inhibition of TMEM16A suppresses growth and induces apoptosis in hepatocellular carcinoma. Int J Clin Oncol 2020; 25:1145-1154. [PMID: 32240440 DOI: 10.1007/s10147-020-01653-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/03/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Increase of the Ca2+-activated chloride channel TMEM16A is contribute to tumorigenesis. However, the expression level of TMEM16A and its underlying molecular mechanism for TMEM16Apromotingliver carcinogenesis is remains unknown. METHODS In the present study, the expression of TMEM16A in hepatocellular carcinoma (HCC) tissues were measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), Western blot and immunohistochemical. Cell proliferation was detected using CCK-8, EdU staining and colony formation methods. Flow cytometry was carried out for detecting cell cycle distribution and apoptosis rate. Migration and invasion abilities were analyzed using transwell and wound healing assay. Western blot method was performed to analyze protein expression. RESULTS Here, we found TMEM16A was significantly increased in HCC tissues, and a higher TMEM16A expression levels were detected in larger tumor size, higher tumor grade, with distant metastasis and poor differentiation. Moreover, overexpression of TMEM16A promoted HCC growth, migration and invasion, and suppressed apoptosis in vitro and in vivo. Knockdown of TMEM16A inhibited HCC growth, migration and invasion, and induced apoptosis in vitro and in vivo. Furthermore, TMEM16A regulated PI3K/AKT-MAKP signaling pathway. CONCLUSION Our data indicate that TMEM16A may represent a novel biomarker of HCC and may be a potential therapeutic target for diagnosis and therapy.
Collapse
Affiliation(s)
- Chuantao Zhang
- Department of Respiration, Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Jianxiang Liu
- Key Laboratory of Medicinal Biotechnology, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Zhiyi Han
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, NO.1, Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Xiang Cui
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, NO.1, Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Deti Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, NO.1, Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Yufeng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, NO.1, Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
23
|
Crottès D, Jan LY. The multifaceted role of TMEM16A in cancer. Cell Calcium 2019; 82:102050. [PMID: 31279157 PMCID: PMC6711484 DOI: 10.1016/j.ceca.2019.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
The calcium-activated chloride channel TMEM16A is intimately linked to cancers. Over decades, TMEM16A over-expression and contribution to prognosis have been widely studied for multiple cancers strengthening the idea that TMEM16A could be a valuable biomarker and a promising therapeutic target. Surprisingly, from the survey of the literature, it appears that TMEM16A has been involved in multiple cancer-related functions and a large number of molecular targets of TMEM16A have been proposed. Thus, TMEM16A appears to be an ion channel with a multifaceted role in cancers. In this review, we summarize the latest development regarding TMEM16A contribution to cancers. We will survey TMEM16A contribution in cancer prognosis, the origins of its over-expression in cancer cells, the multiple biological functions and molecular pathways regulated by TMEM16A. Then, we will consider the question regarding the molecular mechanism of TMEM16A in cancers and the possible basis for the multifaceted role of TMEM16A in cancers.
Collapse
Affiliation(s)
- David Crottès
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lily Yeh Jan
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
24
|
Liu PY, Zhang Z, Liu Y, Tang XL, Shu S, Bao XY, Zhang Y, Gu Y, Xu Y, Cao X. TMEM16A Inhibition Preserves Blood-Brain Barrier Integrity After Ischemic Stroke. Front Cell Neurosci 2019; 13:360. [PMID: 31447648 PMCID: PMC6691060 DOI: 10.3389/fncel.2019.00360] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022] Open
Abstract
The inflammatory response plays a pivotal role in Blood–Brain Barrier (BBB) destruction following ischemic brain injury. Enhanced leukocyte adhesion to vascular endothelial cells is an essential event in the inflammatory process. TMEM16A, a newly discovered protein regulating calcium-activated chloride channels, is widely expressed in eukaryotes. Recent studies have suggested that upregulated expression of TMEM16A is associated with the occurrence and development of many diseases. However, the role of TMEM16A in regulating BBB integrity after ischemic stroke has not been fully investigated. In this study, we found that TMEM16A is mainly expressed in brain endothelial cells and upregulated after ischemic stroke in the mouse brain. Caccinh-A01, an TMEM16A inhibitor that reduced its upregulation, attenuated brain infarct size and neurological deficits after ischemic stroke. ICAM-1 and MPO expression and BBB permeability were decreased after TMEM16A inhibitor administration. In addition, TMEM16A silencing rescued oxygen-glucose deprivation/reoxygenation (OGD/R)-induced transendothelial permeability in vitro accompanied by decreased ICAM-1 expression and leukocyte adhesion. Furthermore, our mechanistic study showed that TMEM16A knockdown alleviated NF-κB activation and nuclear translocation, indicating that TMEM16A knockdown downregulated OGD/R-induced ICAM-1 expression in an NF-κB-dependent manner. Finally, NF-κB inhibitor treatment also alleviated OGD/ R-induced BBB permeability, confirming that activated NF-κB and increased ICAM-1 are essential factors involved in ischemia-induced BBB damage. Thus, our research provides a promising treatment strategy against BBB destruction after ischemic stroke, and TMEM16A may become a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Pin-Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xue-Lian Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xin-Yu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yan Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
25
|
Detection of ANO1 mRNA in PBMCs is a promising method for GISTs diagnosis. Sci Rep 2019; 9:9525. [PMID: 31266974 PMCID: PMC6606646 DOI: 10.1038/s41598-019-45941-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/17/2019] [Indexed: 01/14/2023] Open
Abstract
ANO1 is a calcium-activated chloride channel protein that has been used to diagnose GISTs after tissue biopsy. Recently, ANO1 mRNA amplification in the blood has received considerable attention as a useful method for the diagnosis of GISTs. The aim of this study was to evaluate the diagnostic ability of ANO1 mRNA in distinguishing GIST patients from healthy subjects. We constructed a logistic regression model for examining the diagnostic ability of ANO1 mRNA in comparison with conventional tumor markers, including CEA, CA199, and CA724. Our results showed that ANO1 mRNA was significantly amplified in PBMCs, the average expression level and range of ANO1 mRNA in the blood were increased along with the expression of ANO1 in the tissues, and the extent of amplification of ANO1 was associated with tumor size. In addition, ROC curve analysis showed that ANO1 mRNA in the blood had the highest specificity when compared with conventional tumor markers. Moreover, a combined analysis with ANO1 mRNA and conventional tumor markers had the highest sensitivity in diagnosing GISTs. Our study indicated that detection of ANO1 mRNA in PBMCs is a promising method for diagnosis of GISTs in vitro.
Collapse
|
26
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
27
|
Zeng J, Chen B, Lv X, Sun L, Zeng X, Zheng H, Du Y, Wang G, Ma M, Guan Y. Transmembrane member 16A participates in hydrogen peroxide-induced apoptosis by facilitating mitochondria-dependent pathway in vascular smooth muscle cells. Br J Pharmacol 2018; 175:3669-3684. [PMID: 29968377 PMCID: PMC6109215 DOI: 10.1111/bph.14432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Transmembrane member 16A (TMEM16A), an intrinsic constituent of the Ca2+ -activated Cl- channel, is involved in vascular smooth muscle cell (VSMC) proliferation and hypertension-induced cerebrovascular remodelling. However, the functional significance of TMEM16A for apoptosis in basilar artery smooth muscle cells (BASMCs) remains elusive. Here, we investigated whether and how TMEM16A contributes to apoptosis in BASMCs. EXPERIMENTAL APPROACH Cell viability assay, flow cytometry, Western blot, mitochondrial membrane potential assay, immunogold labelling and co-immunoprecipitation (co-IP) were performed. KEY RESULTS Hydrogen peroxide (H2 O2 ) induced BASMC apoptosis through a mitochondria-dependent pathway, including by increasing the apoptosis rate, down-regulating the ratio of Bcl-2/Bax and potentiating the loss of the mitochondrial membrane potential and release of cytochrome c from the mitochondria to the cytoplasm. These effects were all reversed by the silencing of TMEM16A and were further potentiated by the overexpression of TMEM16A. Endogenous TMEM16A was detected in the mitochondrial fraction. Co-IP revealed an interaction between TMEM16A and cyclophilin D, a component of the mitochondrial permeability transition pore (mPTP). This interaction was up-regulated by H2 O2 but restricted by cyclosporin A, an inhibitor of cyclophilin D. TMEM16A increased mPTP opening, resulting in the activation of caspase-9 and caspase-3. The results obtained with cultured BASMCs from TMEM16A smooth muscle-specific knock-in mice were consistent with those from rat BASMCs. CONCLUSIONS AND IMPLICATIONS These results suggest that TMEM16A participates in H2 O2 -induced apoptosis via modulation of mitochondrial membrane permeability in VSMCs. This study establishes TMEM16A as a target for therapy of several remodelling-related diseases.
Collapse
MESH Headings
- Animals
- Anoctamin-1/physiology
- Apoptosis/drug effects
- Apoptosis/physiology
- Cells, Cultured
- Peptidyl-Prolyl Isomerase F
- Cyclophilins/metabolism
- Cytochromes c/metabolism
- Hydrogen Peroxide/pharmacology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jia‐Wei Zeng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Department of PharmacyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Bao‐Yi Chen
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xiao‐Fei Lv
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Lu Sun
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xue‐Lin Zeng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Department of PharmacyThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Hua‐Qing Zheng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yan‐Hua Du
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Guan‐Lei Wang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ming‐Ming Ma
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yong‐Yuan Guan
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
28
|
Schenk LK, Buchholz B, Henke SF, Michgehl U, Daniel C, Amann K, Kunzelmann K, Pavenstädt H. Nephron-specific knockout of TMEM16A leads to reduced number of glomeruli and albuminuria. Am J Physiol Renal Physiol 2018; 315:F1777-F1786. [PMID: 30156115 DOI: 10.1152/ajprenal.00638.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TMEM16A is a transmembrane protein from a conserved family of calcium-activated proteins that is highly expressed in the kidney. TMEM16A confers calcium-activated chloride channel activity, which is of importance for various cellular functions in secretory epithelia and involved in secretion-dependent renal cyst growth. However, its specific function in renal physiology has remained elusive so far. Therefore, we generated conditional nephron-specific TMEM16A-knockout mice and found that these animals suffered from albuminuria. Kidney histology demonstrated an intact corticomedullary differentiation and absence of cysts. Electron microscopy showed a normal slit diaphragm. However, the total number of glomeruli and total nephron count was decreased in TMEM16A-knockout animals. At the same time, glomerular diameter was increased, presumably as a result of the hyperfiltration in the remaining glomeruli. TUNEL and PCNA stainings showed increased cell death and increased proliferation. Proximal tubular cilia were intact in young animals, but the number of properly ciliated cells was decreased in older, albuminuric animals. Taken together, our data suggest that TMEM16A may be involved in ureteric bud branching and proper nephron endowment. Loss of TMEM16A resulted in reduced nephron number and, subsequently, albuminuria and tubular damage.
Collapse
Affiliation(s)
- Laura K Schenk
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Sebastian F Henke
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Ulf Michgehl
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Christoph Daniel
- Institute for Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Kerstin Amann
- Institute for Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg , Regensburg Germany
| | | |
Collapse
|
29
|
Inhibition of ANO1/TMEM16A induces apoptosis in human prostate carcinoma cells by activating TNF-α signaling. Cell Death Dis 2018; 9:703. [PMID: 29899325 PMCID: PMC5999606 DOI: 10.1038/s41419-018-0735-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 12/16/2022]
Abstract
Overexpression of the Ca2+-activated chloride channel ANO1/TMEM16A is implicated in tumorigenesis, and inhibition of ANO1 overexpression suppresses xenograft tumor growth and invasiveness. However, the underlying molecular mechanism for ANO1 inhibition in suppression of tumorigenesis remains unknown. Here, we show that silencing or inhibition of endogenous ANO1 inhibits cell growth, induces apoptosis and upregulates TNF-α expression in prostate cancer PC-3 cells. Enhancement of TNF-α signaling by ANO1 knockdown leads to upregulation of phosphorylated Fas-associated protein with death domain and caspase activation. Furthermore, silencing of ANO1 inhibits growth of PC-3 xenograft tumors in nude mice and induces apoptosis in tumors via upregulation of TNF-α signaling. Taken together, our findings provide mechanistic insight into promoting apoptosis in prostate cancer cells by ANO1 inhibition through upregulation of TNF-α signaling.
Collapse
|
30
|
Xu C, Luo L, Yu Y, Zhang Z, Zhang Y, Li H, Cheng Y, Qin H, Zhang X, Ma H, Li Y. Screening therapeutic targets of ribavirin in hepatocellular carcinoma. Oncol Lett 2018; 15:9625-9632. [PMID: 29805683 PMCID: PMC5958667 DOI: 10.3892/ol.2018.8552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 10/13/2017] [Indexed: 12/16/2022] Open
Abstract
The objective of the present study was to screen the key genes of ribavirin in hepatocellular carcinoma (HCC) and provide novel therapeutic targets for HCC treatment. The mRNA expression datasets of GSE23031 and GSE74656, as well as the microRNA (miRNA) expression dataset of GSE22058 were downloaded from the Gene Expressed Omnibus database. In the GSE23031 dataset, there were three HCC cell lines treated with PBS and three HCC cell lines treated with ribavirin. In the GSE74656 dataset, five HCC tissues and five carcinoma adjacent tissues were selected. In the GSE22058 dataset, 96 HCC tissues and 96 carcinoma adjacent tissues were selected. The differentially expressed genes (DEGs) and differentially expressed miRNAs were identified via the limma package of R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed with the Database for Annotation, Visualization and Integrated Discovery. The target mRNAs of DEMs were obtained with TargetScan. A total of 559 DEGs (designated DEG-Ribavirin) were identified in HCC cells treated with ribavirin compared with PBS and 632 DEGs (designated DEG-Tumor) were identified in HCC tissues compared with carcinoma adjacent tissues. A total of 220 differentially expressed miRNAs were identified in HCC tissues compared with carcinoma adjacent tissues. In addition, 121 GO terms and three KEGG pathways of DEG-Ribavirin were obtained, and 383 GO terms and 25 KEGG pathways of DEG-Tumor were obtained. A total of five key miRNA-mRNA regulated pairs were identified, namely miR-183→CCNB1, miR-96→DEPDC1, miR-96→NTN4, miR-183→NTN4 and miR-145→NTN4. The present study indicated that certain miRNAs (including miR-96, miR-145 and miR-183) and mRNAs (including NAT2, FBXO5, CCNB1, DEPDC1 and NTN4) may be associated with the effects of ribavirin on HCC. Furthermore, they may provide novel therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Liyun Luo
- Department of Cardiology, The Fifth Affiliated Hospital of Sun Yan-Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yi Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Haimei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yue Cheng
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Hai Qin
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Hongmei Ma
- Department of Nursing, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
31
|
Xie P, Horio F, Fujii I, Zhao J, Shinohara M, Matsukura M. A novel polysaccharide derived from algae extract inhibits cancer progression via JNK, not via the p38 MAPK signaling pathway. Int J Oncol 2018; 52:1380-1390. [PMID: 29512724 PMCID: PMC5873927 DOI: 10.3892/ijo.2018.4297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/06/2018] [Indexed: 02/05/2023] Open
Abstract
Cancer has long been one of the most malignant diseases worldwide. Processes in cancer cells are often mediated by Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and other signaling pathways. Traditional therapies are often problematic. Recently, a novel polysaccharide derived from algae extract was investigated due to the increasing interest in biological activities of compounds from marine organisms. The effect of this novel polysaccharide on human MKN45 gastric carcinoma cells was determined previously. The current aimed to determine whether the polysaccharide affects other types of cancer, and the deeper mechanisms involved in the process. Human MCF-7 breast cancer cells were used to investigate the novel polysaccharide for its role in the cell growth and migration, and determine the mechanisms affected. MTT assay, nuclear staining and fluorescence activated cell sorting analysis demonstrated that the novel polysaccharide reduced the viability of MCF-7 cells by inducing cell apoptosis and arresting the cells at G2/M phase. Results of western blot analysis demonstrated that phosphorylation of JNK and expression of p53, caspase-9 and caspase-3 were upregulated in the polysaccharide-treated MCF-7 cells. SP600125, an inhibitor of JNK, maintained MCF-7 cell viability, prevented cell apoptosis and cycle arrest, and downregulated the polysaccharide-induced protein phosphorylation/expression. However, a migration assay demonstrated that the novel polysaccharide did not change the migration of MCF-7 cells, as well as the expression of p38 MAPK, and matrix metalloproteinase-9 and -2. Taken together, the current study demonstrated that the novel polysaccharide suppressed cancer cell growth, induced cancer cell apoptosis and cell cycle arrest via JNK signaling, but had no effect on cancer cell migration and p38 MAPK signaling.
Collapse
Affiliation(s)
- Peiyu Xie
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Kumamoto 860-0822, Japan
| | - Fukuko Horio
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Kumamoto 860-0822, Japan
| | - Isao Fujii
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Kumamoto 860-0822, Japan
| | - Jien Zhao
- Ashikita Institution for Developmental Disabilities, Ashikita, Kumamoto 869-541, Japan
| | - Makoto Shinohara
- Ashikita Institution for Developmental Disabilities, Ashikita, Kumamoto 869-541, Japan
| | - Makoto Matsukura
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Kumamoto 860-0822, Japan
| |
Collapse
|
32
|
Bae JS, Park JY, Park SH, Ha SH, An AR, Noh SJ, Kwon KS, Jung SH, Park HS, Kang MJ, Jang KY. Expression of ANO1/DOG1 is associated with shorter survival and progression of breast carcinomas. Oncotarget 2017; 9:607-621. [PMID: 29416639 PMCID: PMC5787493 DOI: 10.18632/oncotarget.23078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/14/2017] [Indexed: 01/04/2023] Open
Abstract
The expression of ANO1 is considered to have diagnostic specificity for gastrointestinal stromal tumors. However, its function as a calcium-activated chloride channel suggests that the expression of ANO1 is not restricted to gastrointestinal stromal tumors. Recently, it has been reported that ANO1 has roles in the progression of human malignant tumors. However, the role of ANO1 in breast carcinoma has been controversial. Therefore, we investigated the expression of ANO1 in 139 breast carcinoma patients and the role of ANO1 in vitro. The immunohistochemical expression of ANO1 was significantly associated with the expression of β-catenin, cyclin D1, MMP9, snail, and E-cadherin. Especially, ANO1 expression was an independent indicator of poor prognosis of shorter overall survival and relapse-free survival of breast carcinoma patients by multivariate analysis. In MCF7 and MDA-MB-231 breast carcinoma cells, inhibition of ANO1 with T16Ainh-A01 or siRNA for ANO1 significantly suppressed the proliferation of cells. Knock-down of ANO1 with siRNA induced G0/G1 cell cycle arrest and significantly inhibited the invasiveness of breast carcinoma cells. Knock-down of ANO1 decreased the expression of β-catenin, cyclin D1, MMP9, snail, and N-cadherin, and increased the expression of E-cadherin. In conclusion, this study demonstrates that ANO1 expression is an indicator of poor prognosis of breast carcinoma patients and suggests that ANO1 might be a therapeutic target for breast carcinoma patients with ANO1-positive tumors and poor prognosis.
Collapse
Affiliation(s)
- Jun Sang Bae
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Jeong Yeol Park
- Department of Forensic Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Sang Hoon Ha
- Division of Biotechnology, Chonbuk National University, Iksan, Republic of Korea
| | - Ae Ri An
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Sang Jae Noh
- Department of Forensic Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Keun Sang Kwon
- Department of Preventive Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Myoung Jae Kang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| |
Collapse
|
33
|
Zeng X, Huang P, Chen M, Liu S, Wu N, Wang F, Zhang J. TMEM16A regulates portal vein smooth muscle cell proliferation in portal hypertension. Exp Ther Med 2017; 15:1062-1068. [PMID: 29434696 DOI: 10.3892/etm.2017.5466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to elucidate the effect of transmembrane protein 16A (TMEM16A) on portal vein smooth muscle cell (PVSMC) proliferation associated with portal vein remodeling in portal hypertension (PHT). Sprague-Dawley rats were subjected to bile duct ligation to establish a rat model of liver cirrhosis and PHT. Sham-operated animals served as controls. At 8 weeks after bile duct ligation, the extent of liver fibrosis and the portal vein wall thickness were assessed using hematoxylin-eosin staining. The protein expression levels of TMEM16A, extracellular signal-regulated kinase 1 and 2 (ERK1/2) and phosphorylated ERK1/2 (p-ERK1/2) in the portal vein were detected by immunohistochemistry and western blotting. In vitro, the lentivirus vectors were constructed and transfected into PVSMCs to upregulate the expression of TMEM16A. Isolated rat primary PVSMCs were treated with a small molecule inhibitor of TMEM16A, T16A-inhA01. Cell cycle was detected by flow cytometry. The activity of TMEM16A in the portal vein isolated from bile duct ligated rats was decreased, while the expression level of p-ERK1/2 was increased. However, in vitro, upregulation of TMEM16A promoted the proliferation PVSMCs, while inhibition of TMEM16A channels inhibited the proliferation of PVSMCs. The results indicated that TMEM16A contributes to PVSMCs proliferation in vitro, but in vivo, it may be a negative regulator of cell proliferation influenced by numerous factors.
Collapse
Affiliation(s)
- Xi Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ping Huang
- Department of Gastroenterology, People's Hospital of Yichang Center, Yichang, Hubei 443003, P.R. China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shiqian Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Nannan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
34
|
Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, Xiao Q. Cell-specific mechanisms of TMEM16A Ca 2+-activated chloride channel in cancer. Mol Cancer 2017; 16:152. [PMID: 28893247 PMCID: PMC5594453 DOI: 10.1186/s12943-017-0720-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023] Open
Abstract
TMEM16A (known as anoctamin 1) Ca2+-activated chloride channel is overexpressed in many tumors. TMEM16A overexpression can be caused by gene amplification in many tumors harboring 11q13 amplification. TMEM16A expression is also controlled in many cancer cells via transcriptional regulation, epigenetic regulation and microRNAs. In addition, TMEM16A activates different signaling pathways in different cancers, e.g. the EGFR and CAMKII signaling in breast cancer, the p38 and ERK1/2 signaling in hepatoma, the Ras-Raf-MEK-ERK1/2 signaling in head and neck squamous cell carcinoma and bladder cancer, and the NFκB signaling in glioma. Furthermore, TMEM16A overexpression has been reported to promote, inhibit, or produce no effects on cell proliferation and migration in different cancer cells. Since TMEM16A exerts different roles in different cancer cells via activation of distinct signaling pathways, we try to develop the idea that TMEM16A regulates cancer cell proliferation and migration in a cell-dependent mechanism. The cell-specific role of TMEM16A may depend on the cellular environment that is predetermined by TMEM16A overexpression mechanisms specific for a particular cancer type. TMEM16A may exert its cell-specific role via its associated protein networks, phosphorylation by different kinases, and involvement of different signaling pathways. In addition, we discuss the role of TMEM16A channel activity in cancer, and its clinical use as a prognostic and predictive marker in different cancers. This review highlights the cell-type specific mechanisms of TMEM16A in cancer, and envisions the promising use of TMEM16A inhibitors as a potential treatment for TMEM16A-overexpressing cancers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Liang Zou
- Department of Anesthesiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| |
Collapse
|
35
|
Cao Q, Liu F, Ji K, Liu N, He Y, Zhang W, Wang L. MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:29. [PMID: 28193228 PMCID: PMC5307754 DOI: 10.1186/s13046-017-0499-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/07/2017] [Indexed: 12/27/2022]
Abstract
Background MicroRNA-381 (miR-381) has been reported to play suppressive or promoting roles in different malignancies. However, the expression level, biological function, and underlying mechanisms of miR-381 in gastric cancer remain poorly understood. Our previous study indicated that transmembrane protein 16A (TMEM16A) contributed to migration and invasion of gastric cancer and predicted poor prognosis. In this study, we found that miR-381 inhibited the metastasis of gastric cancer through targeting TMEM16A expression. Methods MiR-381 expression was analyzed using bioinformatic software on open microarray datasets from the Gene Expression Omnibus (GEO) and confirmed by quantitative RT-PCR (qRT-PCR) in human gastric cancer tissues and cell lines. Cell proliferation was investigated using MTT and cell count assays, and cell migration and invasion abilities were evaluated by transwell assay. Xenograft nude mouse models were used to observe tumor growth and pulmonary metastasis. Luciferase reporter assay, western blot, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were employed to explore the mechanisms of the effect of miR-381 on gastric cancer cells. Results MiR-381 was significantly down-regulated in gastric cancer tissues and cell lines. Low expression of miR-381 was negatively related to lymph node metastasis, advanced tumor stage and poor prognosis. MiR-381 decreased gastric cancer cell proliferation, migration and invasion in vitro and in vivo. TMEM16A was identified as a direct target of miR-381 and the expression of miR-381 was inversely correlated with TMEM16A expression in gastric cancer tissues. Combination analysis of miR-381 and TMEM16A revealed the improved prognostic accuracy for gastric cancer patients. Moreover, miR-381 inhibited TGF-β signaling pathway and down-regulated epithelial–mesenchymal transition (EMT) phenotype partially by mediating TMEM16A. Conclusions MiR-381 may function as a tumor suppressor by directly targeting TMEM16A and regulating TGF-β pathway and EMT process in the development of progression of gastric cancer. MiR-381/TMEM16A may be a novel therapeutic candidate target in gastric cancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0499-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qinghua Cao
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Fang Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kaiyuan Ji
- Cancer Research Insitute, Southern Medical University, Guangzhou, 510515, China
| | - Ni Liu
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wenhui Zhang
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Liantang Wang
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|