1
|
Plázár D, Metyovinyi Z, Kiss N, Bánvölgyi A, Makra N, Dunai Z, Mayer B, Holló P, Medvecz M, Ostorházi E. Microbial imbalance in Darier disease: Dominance of various staphylococcal species and absence of Cutibacteria. Sci Rep 2024; 14:24039. [PMID: 39402279 PMCID: PMC11473830 DOI: 10.1038/s41598-024-74936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Darier disease (DD) is a rare autosomal dominant genodermatosis characterized by erythematous papules and plaques mainly involving sebaceous areas, such as the face, chest and back. Skin microbiome plays an essential role in maintaining skin homeostasis. A disturbed skin microbiome may contribute to the exacerbation of DD. We investigated the bacterial composition of two predilectional sites in DD patients and healthy individuals. We also measured the microbiome composition of deeper skin layers, where diversity was significantly reduced compared to the superficial layer of the skin from the same area. The microbiome of DD patients at lesional sites differed from that of non-lesional skin areas; moreover, non-lesional sites were different from those of the controls. Lesional areas were dominated by Staphylococcus species, such as S. aureus, S. epidermidis, S. hominis, S. sciuri, and S. equorum. However, levels of Cutibacterium acnes (formerly Propionibacterium acnes) and C. acnes subspecies defendens were significantly lower in lesional sites than in non-lesional sites. A significant decrease was measured in the levels of these two bacteria between non-lesional and control samples. Our findings may indicate that alterations in the skin microbiome could contribute to the inflammation of skin lesions in DD.
Collapse
Affiliation(s)
- Dóra Plázár
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary.
| | - Zseraldin Metyovinyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Nóra Makra
- Institute of Medical Microbiology, Semmelweis University, 4 Nagyvárad Square, Budapest, 1089, Hungary
| | - Zsuzsanna Dunai
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Balázs Mayer
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Márta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Eszter Ostorházi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
- Institute of Medical Microbiology, Semmelweis University, 4 Nagyvárad Square, Budapest, 1089, Hungary
| |
Collapse
|
2
|
Radaschin DS, Tatu A, Iancu AV, Beiu C, Popa LG. The Contribution of the Skin Microbiome to Psoriasis Pathogenesis and Its Implications for Therapeutic Strategies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1619. [PMID: 39459406 PMCID: PMC11509136 DOI: 10.3390/medicina60101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Psoriasis is a common chronic inflammatory skin disease, associated with significant morbidity and a considerable negative impact on the patients' quality of life. The complex pathogenesis of psoriasis is still incompletely understood. Genetic predisposition, environmental factors like smoking, alcohol consumption, psychological stress, consumption of certain drugs, and mechanical trauma, as well as specific immune dysfunctions, contribute to the onset of the disease. Mounting evidence indicate that skin dysbiosis plays a significant role in the development and exacerbation of psoriasis through loss of immune tolerance to commensal skin flora, an altered balance between Tregs and effector cells, and an excessive Th1 and Th17 polarization. While the implications of skin dysbiosis in psoriasis pathogenesis are only starting to be revealed, the progress in the characterization of the skin microbiome changes in psoriasis patients has opened a whole new avenue of research focusing on the modulation of the skin microbiome as an adjuvant treatment for psoriasis and as part of a long-term plan to prevent disease flares. The skin microbiome may also represent a valuable predictive marker of treatment response and may aid in the selection of the optimal personalized treatment. We present the current knowledge on the skin microbiome changes in psoriasis and the results of the studies that investigated the efficacy of the different skin microbiome modulation strategies in the management of psoriasis, and discuss the complex interaction between the host and skin commensal flora.
Collapse
Affiliation(s)
- Diana Sabina Radaschin
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Saint Parascheva” Infectious Disease Clinical Hospital, Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Alin Tatu
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Saint Parascheva” Infectious Disease Clinical Hospital, Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
3
|
Chen Y, Zhuang Z, Rao Z. Causal Relationship of Skin Microbiota on Psoriasis: A Mendelian Randomization Study. Clin Cosmet Investig Dermatol 2024; 17:2089-2096. [PMID: 39309611 PMCID: PMC11414750 DOI: 10.2147/ccid.s484366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Objective Epidemiological investigations have indicated an association between skin microbiota imbalance and psoriasis, however, the causal relationship has not been confirmed through Mendelian randomization (MR). MR employed genetic instrumental variables (IVs) to evaluate the causal relationship between skin microbiota and psoriasis, providing new insights for potential treatments. Methods Summary statistics for psoriasis and related traits were available from FinnGen R10 and United Kingdom Biobank (UKB) consortium. The genome-wide association studies (GWAS) on skin microbiota in three skin microenvironments came from two population-based German cohorts. Several selection processes were used to determine the optimal instrumental variables. Five MR methods were performed and different sensitivity analyses approaches yield robustness evidence under different assumptions. Results 449 SNPs were employed as IVs for 53 bacterial genera, with F-statistics between 20.18 and 42.44, indicating no evidence of weak instrument bias. Bacteroides was associated with psoriasis from UKB in IVW (OR, 95% CI: 0.914, 0.869-0.961; P < 0.001, PB-H = 0.007). The taxon was also associated with psoriasis vulgaris (IVW: OR, 95% CI, 0.918, 0.872-0.967; P = 0.001, P B-H = 0.054) and psoriasis and related disorders (IVW: OR, 95% CI, 0.915, 0.875-0.957; P < 0.001, P B-H = 0.008). Consistent causal estimates were identified in terms of both magnitude and direction, indicating a protective effect of Bacteroides. Conclusion The MR study found that Bacteroides in the antecubital fossa may protect against psoriasis, offering genetic proof that skin microbiota helps prevent the condition.
Collapse
Affiliation(s)
- Yangjia Chen
- Department of Preventive Medicine, School of Health, Quanzhou Medical College, Quanzhou, Fujian, 362011, People’s Republic of China
| | - Zhaocheng Zhuang
- Department of Preventive Medicine, School of Health, Quanzhou Medical College, Quanzhou, Fujian, 362011, People’s Republic of China
| | - Zhixiang Rao
- School of Humanities and Management, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
4
|
Park YC, Choi SY, Cha Y, Yoon HW, Son YM. Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. J Microbiol 2024; 62:709-725. [PMID: 39240507 DOI: 10.1007/s12275-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Collapse
Affiliation(s)
- Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo Yeon Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yunah Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyeong Won Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
5
|
Jauregui W, Abarca YA, Ahmadi Y, Menon VB, Zumárraga DA, Rojas Gomez MC, Basri A, Madala RS, Girgis P, Nazir Z. Shared Pathophysiology of Inflammatory Bowel Disease and Psoriasis: Unraveling the Connection. Cureus 2024; 16:e68569. [PMID: 39364475 PMCID: PMC11449469 DOI: 10.7759/cureus.68569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Psoriasis (PS) and inflammatory bowel disease (IBD) are immune-mediated chronic conditions that share pathophysiological processes, including immune system dysfunction, microbiome dysbiosis, and inflammatory pathways. These pathways result in increased turnover of epithelial cells and compromised barrier function. The assessment of the literature suggests that immunopathogenic mechanisms, such as tumor necrosis factor (TNF)-α signaling and IL-23/IL-17 axis dysregulation, are shared by PS and IBD. Clinical characteristics and diagnostic approaches overlap significantly, and advances in biomarker identification benefit both conditions. Current treatments, namely biologics that target TNF-α, IL-17, and IL-23, show promising results in decreasing inflammation and controlling symptoms. Precision medicine approaches are prioritized in prospective therapeutic procedures to tailor pharmaceuticals based on specific biomarkers, perhaps improving outcomes and minimizing side effects. This study thoroughly examines and evaluates the body of research on PS and IBD. Several papers were examined to compile data on clinical features, diagnosis, therapies, pathophysiology, epidemiology, and potential future therapeutic developments. The selection of articles was based on three methodological qualities: relevance and addition to the knowledge of IBD and PS. The retrieved data were combined to provide a coherent summary of the state of the knowledge and to spot new trends. The overview of the latest studies demonstrates that both PS and IBD share pathophysiological foundations and therapeutic approaches. With a spotlight on particular biomarkers, advances in precision medicine provide a promising path toward enhancing therapeutic effectiveness and minimizing side effects.
Collapse
Affiliation(s)
- Walter Jauregui
- General Medicine, Universidad Nacional Autónoma de Honduras, Tegucigalpa, HND
| | - Yozahandy A Abarca
- Internal Medicine, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, MEX
| | - Yasmin Ahmadi
- School of Medicine, Royal College of Surgeons in Ireland - Medical University of Bahrain, Muharraq, BHR
| | - Vaishnavi B Menon
- Internal Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | | | | | - Aleeza Basri
- Internal Medicine, Liaquat University of Medical and Health Sciences, Hyderabad, PAK
| | | | - Peter Girgis
- Internal Medicine, Ross University School of Medicine, Bridgetown, BRB
| | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, PAK
| |
Collapse
|
6
|
Neurath L, Sticherling M, Schett G, Fagni F. Targeting cytokines in psoriatic arthritis. Cytokine Growth Factor Rev 2024; 78:1-13. [PMID: 39068140 DOI: 10.1016/j.cytogfr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Psoriatic arthritis (PsA) is part of the psoriatic disease spectrum and is characterized by a chronic inflammatory process that affects entheses, tendons and joints. Cytokines produced by immune and non-immune cells play a central role in the pathogenesis of PsA by orchestrating key aspects of the inflammatory response. Pro-inflammatory cytokines such as TNF, IL-23 and IL-17 have been shown to regulate the initiation and progression of PsA, ultimately leading to the destruction of the architecture of the local tissues such as soft tissue, cartilage and bone. The important role of cytokines in PsA has been underscored by the clinical success of antibodies that neutralize their function. In addition to biologic agents targeting individual pro-inflammatory cytokines, signaling inhibitors that block multiple cytokines simultaneously such as JAK inhibitors have been approved for PsA therapy. In this review, we will focus on our current understanding of the role of cytokines in the disease process of PsA and discuss potential new treatment options based on modulation of cytokine function.
Collapse
Affiliation(s)
- Laura Neurath
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Sticherling
- Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Dermatology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
7
|
Armari M, Zavattaro E, Trejo CF, Galeazzi A, Grossetti A, Veronese F, Savoia P, Azzimonti B. Vitis vinifera L. Leaf Extract, a Microbiota Green Ally against Infectious and Inflammatory Skin and Scalp Diseases: An In-Depth Update. Antibiotics (Basel) 2024; 13:697. [PMID: 39199997 PMCID: PMC11350673 DOI: 10.3390/antibiotics13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The skin microbiota, with its millions of bacteria, fungi, and viruses, plays a key role in balancing the health of the skin and scalp. Its continuous exposure to potentially harmful stressors can lead to abnormalities such as local dysbiosis, altered barrier function, pathobiont overabundance, and infections often sustained by multidrug-resistant bacteria. These factors contribute to skin impairment, deregulation of immune response, and chronic inflammation, with local and systemic consequences. In this scenario, according to the needs of the bio-circular-green economy model, novel harmless strategies, both for regulating the diverse epidermal infectious and inflammatory processes and for preserving or restoring the host skin eubiosis and barrier selectivity, are requested. Vitis vinifera L. leaves and their derived extracts are rich in plant secondary metabolites, such as polyphenols, with antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties that can be further exploited through microbe-driven fermentation processes. On this premise, this literature review aims to provide an informative summary of the most updated evidence on their interactions with skin commensals and pathogens and on their ability to manage inflammatory conditions and restore microbial biodiversity. The emerging research showcases the potential novel beneficial ingredients for addressing various skincare concerns and advancing the cosmeceutics field as well.
Collapse
Affiliation(s)
- Marta Armari
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Elisa Zavattaro
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | | | - Alice Galeazzi
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Alessia Grossetti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Federica Veronese
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Paola Savoia
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| |
Collapse
|
8
|
Radaschin DS, Iancu AV, Ionescu AM, Gurau G, Niculet E, Bujoreanu FC, Nastase F, Radaschin T, Popa LG, Axente RE, Tatu AL. An Eastern County from an European Eastern Country-The Characteristics of Cutaneous Microbiome in Psoriasis Patients-Preliminary Results. Life (Basel) 2024; 14:678. [PMID: 38929663 PMCID: PMC11205136 DOI: 10.3390/life14060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The cutaneous microbiome represents a topic of high interest nowadays. Multiple studies have suggested the importance of the skin microbiome in different dermatological pathologies, highlighting the possible implications of cutaneous microorganisms in either the pathogenesis or prognosis of skin maladies. Psoriasis represents a common inflammatory skin disease, with a high prevalence in the worldwide population. The role of the cutaneous microbiome in psoriasis could explain a number of pathogenic theories and treatment objectives of this incurable skin disease. Our interest in the characteristics of the cutaneous microbiome, especially in psoriatic patients who attended a tertiary dermatological centre in Galati, Romania, is reflected in our current study, of which the preliminary results are discussed in this article. Using three types of skin sampling techniques (swabs, adhesive tape, and punch biopsies), we tried to characterise the microorganisms harboured in the skin of psoriatic patients and healthy individuals. This study was performed using culture-based probes, which were analysed using MALDI-TOF mass spectrometer equipment. Our preliminary results suggested that the greatest diversity was observed in the perilesional areas of psoriatic patients. The lowest cutaneous diversity was obtained from sampling psoriatic plaques. These results are similar to other studies of the cutaneous microbiome in psoriasis. The most frequent microorganisms found in all groups studied were of the Staphylococcus species: Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus aureus. Analysing the living environment of each individual from this study, our preliminary results suggested different results from other studies, as higher diversity and heterogenicity was observed in urban environments than in rural living areas. Regarding the differences between sexes, our preliminary results showed higher quantitative and qualitative changes in the skin microbiome of male participants than female participants, opposite to the results found in other studies of the cutaneous microbiome in psoriasis. Given these preliminary results, we can conclude that we have found important differences by studying the cutaneous microbiome of psoriatic patients and healthy control individuals from a population that, to our knowledge, has not been yet studied from this point of view. Our results showed important characteristics of the skin microbiome in an Eastern European population, where cultural and environmental living habits could influence the cutaneous microbiome.
Collapse
Affiliation(s)
- Diana Sabina Radaschin
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (A.L.T.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800385 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research (MICDIR), “Dunarea de Jos” University of Galati, 800385 Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800385 Galati, Romania; (A.V.I.)
| | | | - Gabriela Gurau
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800385 Galati, Romania; (A.V.I.)
| | - Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800385 Galati, Romania; (A.V.I.)
| | - Florin Ciprian Bujoreanu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (A.L.T.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800385 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research (MICDIR), “Dunarea de Jos” University of Galati, 800385 Galati, Romania
| | - Florentina Nastase
- Department of Neuropsychomotor Rehabilitation, “Sf. Ioan” Clinical Hospital for Children, 800487 Galati, Romania
| | - Teodora Radaschin
- Radiology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Liliana Gabriela Popa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Roxana Elena Axente
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800385 Galati, Romania;
| | - Alin Laurentiu Tatu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (A.L.T.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800385 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research (MICDIR), “Dunarea de Jos” University of Galati, 800385 Galati, Romania
| |
Collapse
|
9
|
Chaudhary PP, Kaur M, Myles IA. Does "all disease begin in the gut"? The gut-organ cross talk in the microbiome. Appl Microbiol Biotechnol 2024; 108:339. [PMID: 38771520 PMCID: PMC11108886 DOI: 10.1007/s00253-024-13180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
The human microbiome, a diverse ecosystem of microorganisms within the body, plays pivotal roles in health and disease. This review explores site-specific microbiomes, their role in maintaining health, and strategies for their upkeep, focusing on oral, lung, vaginal, skin, and gut microbiota, and their systemic connections. Understanding the intricate relationships between these microbial communities is crucial for unraveling mechanisms underlying human health. Recent research highlights bidirectional communication between the gut and distant microbiome sites, influencing immune function, metabolism, and disease susceptibility. Alterations in one microbiome can impact others, emphasizing their interconnectedness and collective influence on human physiology. The therapeutic potential of gut microbiota in modulating distant microbiomes offers promising avenues for interventions targeting various disorders. Through interdisciplinary collaboration and technological advancements, we can harness the power of the microbiome to revolutionize healthcare, emphasizing microbiome-centric approaches to promote holistic well-being while identifying areas for future research.
Collapse
Affiliation(s)
- Prem Prashant Chaudhary
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mahaldeep Kaur
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
10
|
Zhu G, Tong N, Zhu Y, Wang L, Wang Q. The crosstalk between SUMOylation and immune system in host-pathogen interactions. Crit Rev Microbiol 2024:1-23. [PMID: 38619159 DOI: 10.1080/1040841x.2024.2339259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Pathogens can not only cause infectious diseases, immune system diseases, and chronic diseases, but also serve as potential triggers or initiators for certain tumors. They directly or indirectly damage human health and are one of the leading causes of global deaths. Small ubiquitin-like modifier (SUMO) modification, a type of protein post-translational modification (PTM) that occurs when SUMO groups bond covalently to particular lysine residues on substrate proteins, plays a crucial role in both innate and adaptive immunologic responses, as well as pathogen-host immune system crosstalk. SUMOylation participates in the host's defense against pathogens by regulating immune responses, while numerically vast and taxonomically diverse pathogens have evolved to exploit the cellular SUMO modification system to break through innate defenses. Here, we describe the characteristics and multiple functions of SUMOylation as a pivotal PTM mechanism, the tactics employed by various pathogens to counteract the immune system through targeting host SUMOylation, and the character of the SUMOylation system in the fight between pathogens and the host immune system. We have also included a summary of the potential anti-pathogen SUMO enzyme inhibitors. This review serves as a reference for basic research and clinical practice in the diagnosis, prognosis, and treatment of pathogenic microorganism-caused disorders.
Collapse
Affiliation(s)
- Gangli Zhu
- Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environment Protection Engineering, Foshan, Guangdong, China
| | - Ni Tong
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yipeng Zhu
- Guagnzhou NO.6 Middle school, Guangzhou, Guangdong, China
| | - Lize Wang
- General Department, Institute of Software Chinese Academy of Sciences, Beijing, China
| | - Qirui Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|