1
|
Abbot S, Williams N. The surgical management of spinal disorders in lysosomal storage diseases: a systematic review. ANZ J Surg 2022; 92:685-690. [PMID: 34984775 DOI: 10.1111/ans.17430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The skeletal manifestations of lysosomal storage diseases (LSDs) are largely refractory to available therapeutic modalities. Consequently, there is an increasing need to manage their spinal deformities. The aim was to perform a systematic review to answer the questions, "What are the reported indications for surgery for spinal deformity in patients with LSDs?" and "what are the published surgical management strategies?". METHODS Articles that made reference to at least one LSD, a spinal abnormality and surgical management were included. Extracted study data included: study type, sample size, methodology and year of publication. The following clinical information was collected: demographics, spinal abnormalities, and surgical indications, details and outcomes. RESULTS Thirty-seven articles were included, with 23 describing surgical management of craniocervical manifestations seen in mucopolysaccharidosis. Radiological evidence of myelopathy at the craniocervical junction and/or progressive clinical neurological compromise were accepted as surgical indications. Prophylactic surgery was proposed by some authors. The recommended surgical technique and whether to stabilise and/or decompress varied between articles and LSD types. Twenty-one articles discussed thoracolumbar pathology, including thoracolumbar kyphosis and scoliosis. Radiological severity, progression of deformity, and presence of neurological deterioration were discussed as surgical indications. Most papers recommended circumferential arthrodesis via combined anterior and posterior approaches. CONCLUSION The surgical management of spinal disorders in LSDs remains controversial. Centres managing these patients should be encouraged to have a standardised system of reporting outcomes, to facilitate recommendations for management of the spinal manifestations.
Collapse
Affiliation(s)
- Samuel Abbot
- Department of Orthopaedics and Trauma, Women's and Children's Hospital, North Adelaide, South Australia, Australia.,Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Orthopaedics and Trauma, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Nicole Williams
- Department of Orthopaedics and Trauma, Women's and Children's Hospital, North Adelaide, South Australia, Australia.,Centre for Orthopaedic and Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Chavananon S, Sripornsawan P, Songthawee N, Chotsampancharoen T. In Reply: Challenging the Use of Hematopoietic Stem Cell Transplantation in Gaucher Disease. J Pediatr Hematol Oncol 2022; 44:28-30. [PMID: 34862356 DOI: 10.1097/mph.0000000000002363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shevachut Chavananon
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University Hat Yai, Thailand
| | | | | | | |
Collapse
|
3
|
Tucker-Bartley A, Lemme J, Gomez-Morad A, Shah N, Veliu M, Birklein F, Storz C, Rutkove S, Kronn D, Boyce AM, Kraft E, Upadhyay J. Pain Phenotypes in Rare Musculoskeletal and Neuromuscular Diseases. Neurosci Biobehav Rev 2021; 124:267-290. [PMID: 33581222 PMCID: PMC9521731 DOI: 10.1016/j.neubiorev.2021.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
For patients diagnosed with a rare musculoskeletal or neuromuscular disease, pain may transition from acute to chronic; the latter yielding additional challenges for both patients and care providers. We assessed the present understanding of pain across a set of ten rare, noninfectious, noncancerous disorders; Osteogenesis Imperfecta, Ehlers-Danlos Syndrome, Achondroplasia, Fibrodysplasia Ossificans Progressiva, Fibrous Dysplasia/McCune-Albright Syndrome, Complex Regional Pain Syndrome, Duchenne Muscular Dystrophy, Infantile- and Late-Onset Pompe disease, Charcot-Marie-Tooth Disease, and Amyotrophic Lateral Sclerosis. Through the integration of natural history, cross-sectional, retrospective, clinical trials, & case studies we described pathologic and genetic factors, pain sources, phenotypes, and lastly, existing therapeutic approaches. We highlight that while rare diseases possess distinct core pathologic features, there are a number of shared pain phenotypes and mechanisms that may be prospectively examined and therapeutically targeted in a parallel manner. Finally, we describe clinical and research approaches that may facilitate more accurate diagnosis, monitoring, and treatment of pain as well as elucidation of the evolving nature of pain phenotypes in rare musculoskeletal or neuromuscular illnesses.
Collapse
Affiliation(s)
- Anthony Tucker-Bartley
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jordan Lemme
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea Gomez-Morad
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nehal Shah
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Miranda Veliu
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, 55131, Germany
| | - Claudia Storz
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital LMU Munich, Munich, Bavaria, 80539, Germany
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - David Kronn
- Department of Pathology and Pediatrics, New York Medical College, Valhalla, NY, 10595, USA; Medical Genetics, Inherited Metabolic & Lysosomal Storage Disorders Center, Boston Children's Health Physicians, Westchester, NY, 10532, USA
| | - Alison M Boyce
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eduard Kraft
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital LMU Munich, Munich, Bavaria, 80539, Germany; Interdisciplinary Pain Unit, University Hospital LMU Munich, Munich, 80539, Germany
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
4
|
Meghdari M, Gao N, Abdullahi A, Stokes E, Calhoun DH. Carboxyl-terminal truncations alter the activity of the human α-galactosidase A. PLoS One 2015; 10:e0118341. [PMID: 25719393 PMCID: PMC4342250 DOI: 10.1371/journal.pone.0118341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022] Open
Abstract
Fabry disease is an X-linked inborn error of glycolipid metabolism caused by deficiency of the human lysosomal enzyme, α-galactosidase A (αGal), leading to strokes, myocardial infarctions, and terminal renal failure, often leading to death in the fourth or fifth decade of life. The enzyme is responsible for the hydrolysis of terminal α-galactoside linkages in various glycolipids. Enzyme replacement therapy (ERT) has been approved for the treatment of Fabry disease, but adverse reactions, including immune reactions, make it desirable to generate improved methods for ERT. One approach to circumvent these adverse reactions is the development of derivatives of the enzyme with more activity per mg. It was previously reported that carboxyl-terminal deletions of 2 to 10 amino acids led to increased activity of about 2 to 6-fold. However, this data was qualitative or semi-quantitative and relied on comparison of the amounts of mRNA present in Northern blots with αGal enzyme activity using a transient expression system in COS-1 cells. Here we follow up on this report by constructing and purifying mutant enzymes with deletions of 2, 4, 6, 8, and 10 C-terminal amino acids (Δ2, Δ4, Δ6, Δ8, Δ10) for unambiguous quantitative enzyme assays. The results reported here show that the kcat/Km approximately doubles with deletions of 2, 4, 6 and 10 amino acids (0.8 to 1.7-fold effect) while a deletion of 8 amino acids decreases the kcat/Km (7.2-fold effect). These results indicate that the mutated enzymes with increased activity constructed here would be expected to have a greater therapeutic effect on a per mg basis, and could therefore reduce the likelihood of adverse infusion related reactions in Fabry patients receiving ERT treatment. These results also illustrate the principle that in vitro mutagenesis can be used to generate αGal derivatives with improved enzyme activity.
Collapse
Affiliation(s)
- Mariam Meghdari
- Chemistry Dept., City College of New York, New York, NY, USA
| | - Nicholas Gao
- Chemistry Dept., City College of New York, New York, NY, USA
| | - Abass Abdullahi
- Biology & Medical Lab Technology, Bronx Community College, Bronx, NY, USA
| | - Erin Stokes
- Chemistry Dept., City College of New York, New York, NY, USA
| | - David H. Calhoun
- Chemistry Dept., City College of New York, New York, NY, USA
- * E-mail:
| |
Collapse
|
5
|
Piotrowska E, Jakóbkiewicz-Banecka J, Tylki-Szymanska A, Liberek A, Maryniak A, Malinowska M, Czartoryska B, Puk E, Kloska A, Liberek T, Baranska S, Wegrzyn A, Wegrzyn G. Genistin-rich soy isoflavone extract in substrate reduction therapy for Sanfilippo syndrome: An open-label, pilot study in 10 pediatric patients. Curr Ther Res Clin Exp 2014; 69:166-79. [PMID: 24692796 DOI: 10.1016/j.curtheres.2008.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2008] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Mucopolysaccharidoses (MPSs) are a group of severe metabolic disorders caused by deficiencies in enzymes involved in the degradation of glycosaminoglycans (GAGs)-long chains of sugar carbohydrates in cells that help build bone, cartilage, tendons, corneas, skin, and connective tissue. Although enzyme replacement therapy has become available for the treatment of some types of MPS, effective treatment of neurodegenerative forms of MPS has yet to be determined. Recently, genistein (4',5,7-trihydroxyisoflavone), a specific inhibitor of protein tyrosine kinase, has been found to inhibit GAG synthesis and to reduce GAG concentrations in cultures of fibroblasts of MPS patients. Therefore, a potential substrate reduction therapy has been proposed. OBJECTIVE The aim of this study was to examine urinary GAG concentration, hair morphology, and cognitive function in patients receiving genistin treatment for Sanfilippo syndrome (MPS type III). METHODS Patients aged 3 to 14 years with a biochemically confirmed diagnosis of MPS IIIA or MPS IIIB were eligible to enroll in this open-label, pilot study. Genistin-rich soy isoflavone extract 5 mg/kg/d was administered PO for 12 months. Urinary GAG concentration, hair morphology,and cognitive function (measured using a modified version of the Brief Assessment Examination [BAE] and parent observations)were measured at baseline and after 12 months of treatment. RESULTS Ten patients (6 girls, 4 boys; mean age, 8 years [range,3\2-14 years];mean weight, 28 kg [range, 17\2-43 kg]) were included in the study. All patients had Sanfilippo syndrome; 5 patients had MPS IIIA and 5 had MPS IIIB. After 1 year, statistically significant improvement was found in urinary GAG concentration, hair morphology, and cognitive function. Urinary GAG concentration decreased significantly in all 5 patients with MPS IIIA and in 2 patients with MPS IIIB (P = 0.028). Hair morphology improved significantly in all 5 MPS IIIA patients and in 3 MPS IIIB patients (P = 0.012). A significant increase in the BAE score (by 2-6 points) was noted in 8 patients, while the scores of 2 patients did not change after 12 months of treatment (P = 0.012). No adverse events (AEs) considered related to treatment were reported. Moreover, no AEs not related to the treatment (apart from classical symptoms of MPS III) were noted. CONCLUSIONS This pilot study found some improvements in GAG concentration, hair morphology, and cognitive function in these pediatric patients with Sanfilippo syndrome treated with genistin-rich soy isoflavone extract for 1 year. Clinical trials are needed to evaluate the efficacy and safety of this potential treatment.
Collapse
Affiliation(s)
- Ewa Piotrowska
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland ; Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdansk, Poland
| | | | - Anna Liberek
- Department of Pediatrics, Children's Gastroenterology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Barbara Czartoryska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Anna Kloska
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | - Tomasz Liberek
- Department of Nephrology, Transplantation, and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Baranska
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | - Alicja Wegrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
6
|
Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood-brain barrier. Proc Natl Acad Sci U S A 2013; 110:2999-3004. [PMID: 23382178 DOI: 10.1073/pnas.1222742110] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To realize the potential of large molecular weight substances to treat neurological disorders, novel approaches are required to surmount the blood-brain barrier (BBB). We investigated whether fusion of a receptor-binding peptide from apolipoprotein E (apoE) with a potentially therapeutic protein can bind to LDL receptors on the BBB and be transcytosed into the CNS. A lysosomal enzyme, α-L-iduronidase (IDUA), was used for biological and therapeutic evaluation in a mouse model of mucopolysaccharidosis (MPS) type I, one of the most common lysosomal storage disorders with CNS deficits. We identified two fusion candidates, IDUAe1 and IDUAe2, by in vitro screening, that exhibited desirable receptor-mediated binding, endocytosis, and transendothelial transport as well as appropriate lysosomal enzyme trafficking and biological function. Robust peripheral IDUAe1 or IDUAe2 generated by transient hepatic expression led to elevated enzyme levels in capillary-depleted, enzyme-deficient brain tissues and protein delivery into nonendothelium perivascular cells, neurons, and astrocytes within 2 d of treatment. Moreover, 5 mo after long-term delivery of moderate levels of IDUAe1 derived from maturing red blood cells, 2% to 3% of normal brain IDUA activities were obtained in MPS I mice, and IDUAe1 protein was detected in neurons and astrocytes throughout the brain. The therapeutic potential was demonstrated by normalization of brain glycosaminoglycan and β-hexosaminidase in MPS I mice 5 mo after moderate yet sustained delivery of IDUAe1. These findings provide a noninvasive and BBB-targeted procedure for the delivery of large-molecule therapeutic agents to treat neurological lysosomal storage disorders and potentially other diseases that involve the brain.
Collapse
|
7
|
Enzyme replacement therapy and substrate reduction therapy in lysosomal storage disorders with neurological expression. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1851-7. [PMID: 23622408 DOI: 10.1016/b978-0-444-59565-2.00055-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysosomal storage diseases (LSD) are inborn errors of metabolism secondary to lysosomal enzyme defects and are characterized by a progressive accumulation of nondigested macromolecules provoking cellular dysfunction and clinical manifestations. The diagnosis of these diseases can be confirmed easily in most cases by immuno-enzymatic techniques and molecular biology. Even though these enzymatic deficits result in an accumulation of pathological substrates, the underlying mechanisms responsible for the pathogenesis of the disease are not entirely known. Nevertheless, the distribution of the accumulated material determines the affected organs. More particularly in the central nervous system (CNS), neurons are often involved due to the accumulation of storage material and their incapacity of renewal. LSD can be responsible for mental retardation or for a neurodegenerative course in the central nervous system. The peripheral nervous system and the muscle can also be severely impaired. Hematopoietic stem cell transplantation was the first therapy, demonstrating efficacy especially on the neurological involvement of various LSD. Enzyme replacement therapy is now available for Gaucher disease, Fabry disease, mucopolysaccharidoses type I, type II, and type VI, and Pompe disease. Inhibition of the synthesis of the accumulated substrate by small molecules which also have the capacity to diffuse through the blood-brain barrier is another treatment option. New therapeutic strategies using the properties of molecular chaperones and of read-through molecules for nonsense mutations have been studied in vitro and hopefully will soon find clinical applications while intrathecal enzymes are currently studies in clinical trials for MPSII, MPS IIIA and MLD.
Collapse
|
8
|
Barisoni L, Jennette JC, Colvin R, Sitaraman S, Bragat A, Castelli J, Walker D, Boudes P. Novel quantitative method to evaluate globotriaosylceramide inclusions in renal peritubular capillaries by virtual microscopy in patients with fabry disease. Arch Pathol Lab Med 2012; 136:816-24. [PMID: 22742555 DOI: 10.5858/arpa.2011-0350-oa] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Assessing the amount of globotriaosylceramide inclusions in renal peritubular capillaries by a semiquantitative approach is a standard and useful measure of therapeutic efficacy in Fabry disease, achievable by light microscopy analysis. OBJECTIVE To describe a novel virtual microscopy quantitative method to measure globotriaosylceramide inclusions (Barisoni Lipid Inclusion Scoring System [BLISS]) in renal biopsies from patients with Fabry disease. DESIGN Plastic embedded 1-µm-thick sections from kidney biopsies from 17 patients enrolled in a Fabry disease clinical trial were evaluated using a standard semiquantitative methodology and BLISS to compare sensitivity. We also tested intrareader and interreader variability of BLISS and compared results from conventional light microscopy analysis with a virtual microscopy-based methodology. Peritubular capillaries were first annotated on digital images of whole slides by 1 pathologist and then scored for globotriaosylceramide inclusions by 2 additional pathologists. RESULTS We demonstrated that (1) quantitative analysis by BLISS results in detection of small amount of globotriaosylceramide inclusions even when by semiquantitative analysis the score is 0, (2) application of BLISS combined with conventional light microscopy results in low intrareader and interreader variability, and (3) BLISS combined with virtual microscopy results in significant reduction of intrareader and interreader variability compared with BLISS-light microscopy. CONCLUSIONS BLISS is a simpler and more sensitive scoring system compared to the semiquantitative approach. The virtual microscopy-based methodology increases accuracy and reproducibility; moreover, it provides a permanent record of retrievable data with full transparency in clinical trials.
Collapse
Affiliation(s)
- Laura Barisoni
- Department of Pathology and Medicine, New York University Langone Medical Center, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Characterization of a Thermostable Family 1 Glycosyl Hydrolase Enzyme from Putranjiva roxburghii Seeds. Appl Biochem Biotechnol 2011; 166:523-35. [DOI: 10.1007/s12010-011-9445-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 10/26/2011] [Indexed: 11/26/2022]
|
10
|
Faust PL, Kaye EM, Powers JM. Myelin lesions associated with lysosomal and peroxisomal disorders. Expert Rev Neurother 2010; 10:1449-66. [PMID: 20819015 DOI: 10.1586/ern.10.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abnormalities of myelin are common in lysosomal and peroxisomal disorders. Most display a primary loss of myelin in which the myelin sheath and/or oligodendrocytes are selectively targeted by diverse pathogenetic processes. The most severe and, hence, clinically relevant are heritable diseases predominantly of infants and children, the leukodystrophies: metachromatic, globoid cell (Krabbe disease) and adreno-leukodystrophy. Our still limited understanding of these diseases has derived from multiple sources: originally, neurological-neuropathologic-neurochemical correlative studies of the natural disease in humans or other mammals, which has been enhanced by more sophisticated and contemporary techniques of cell and molecular biology. Transgenic mouse models seem to be the most promising methodology, allowing the examination of the cellular role of lysosomes and peroxisomes for formation and maintenance of both myelin and axons, and providing initial platforms to evaluate therapies. Treatment options are woefully inadequate and in their nascent stages, but still inspire some hope for the future.
Collapse
Affiliation(s)
- Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
11
|
Martins AM, Dualibi AP, Norato D, Takata ET, Santos ES, Valadares ER, Porta G, de Luca G, Moreira G, Pimentel H, Coelho J, Brum JM, Semionato Filho J, Kerstenetzky MS, Guimarães MR, Rojas MVM, Aranda PC, Pires RF, Faria RGC, Mota RMV, Matte U, Guedes ZCF. Guidelines for the management of mucopolysaccharidosis type I. J Pediatr 2009; 155:S32-46. [PMID: 19765409 DOI: 10.1016/j.jpeds.2009.07.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ana Maria Martins
- Centro de Referência em Erros Inatos do Metabolismo, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Clarke JTR, West ML, Bultas J, Schiffmann R. The pharmacology of multiple regimens of agalsidase alfa enzyme replacement therapy for Fabry disease. Genet Med 2009; 9:504-9. [PMID: 17700388 DOI: 10.1097/gim.0b013e318133fb1b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE This 10-week study was conducted to determine the pharmacokinetics of varying doses of agalsidase alfa and evaluate the effect of dose and dosing frequency on plasma Gb3 levels. METHODS Eighteen adult male Fabry patients, naive to enzyme replacement therapy, were randomized to one of five regimens: 0.1, 0.2, or 0.4 mg/kg weekly; 0.2 mg/kg every other week (the approved dose); or 0.4 mg/kg every other week. Intravenous infusion rate was 0.1 mg/kg per 20 minutes. Plasma Gb3 levels were assessed at baseline and periodically during the study. RESULTS The mean half-life was 56-76 minutes, and the mean volume of distribution at steady state was 17%-18% of body weight, with no significant association between dose and half-life, clearance, or volume of distribution at steady state. The area under the curve was linearly proportional to the dose from 0.1 to 0.4 mg/kg. Baseline average plasma Gb3 was 9.12 +/- 2.61 nmol/mL and after 10 weeks of treatment was significantly reduced by about 50% in each group with no statistically significant differences between groups. CONCLUSIONS Reduction of plasma Gb3 levels was independent of dose or dose frequency in the range tested. These observations, coupled with the clinical trial experience of both agalsidase alfa and agalsidase beta, indicate that the standard dose of agalsidase alfa is sufficient to maximally reduce plasma Gb3. However, because plasma Gb3 is not a validated surrogate of disease severity in Fabry disease, further clinical study will be required to determine the optimal dosing regimen for providing maximal clinical benefit.
Collapse
Affiliation(s)
- Joe T R Clarke
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
13
|
Gem-diamine 1-N-iminosugars as versatile glycomimetics: synthesis, biological activity and therapeutic potential. J Antibiot (Tokyo) 2009; 62:407-23. [DOI: 10.1038/ja.2009.53] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Glucocerebroside: an evolutionary advantage for patients with Gaucher disease and a new immunomodulatory agent. Immunol Cell Biol 2009; 87:514-24. [PMID: 19529001 DOI: 10.1038/icb.2009.42] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gaucher disease (GD) is caused by the reduced activity of a lysosomal enzyme, glucocerebrosidase, leading to the accumulation of glucocerebroside (GC). The relatively high prevalence of this disease within an ethnic group is believed to reflect a selective advantage. Treatment with enzyme replacement therapy (ERT) is safe and effective in ameliorating the primary symptoms of the disease, yet there have been reports that some patients on ERT have developed type 2 diabetes or metabolic syndrome, malignancies and central nervous system disorders. A series of animal studies suggest that these complications may be related to the reduction of GC levels by the enzyme administered. GC has been shown to have an immunomodulatory effect through the promotion of dendritic cells, natural killer T cells, and regulatory T cells. The break down of GC to ceramide can underline part of these findings. Clinical trials suggested a beneficial effect of GC in type 2 diabetes or nonalcoholic steatohepatitis. This review of the data from animal models and humans proposes that the increased level of GC may provide an evolutionary advantage for patients with GD. Indirectly, these data support treating symptomatic patients with mild/moderate GD with low-dose ERT and re-evaluating the use of ERT in asymptomatic patients.
Collapse
|
15
|
Suzuki Y, Ogawa S, Sakakibara Y. Chaperone therapy for neuronopathic lysosomal diseases: competitive inhibitors as chemical chaperones for enhancement of mutant enzyme activities. PERSPECTIVES IN MEDICINAL CHEMISTRY 2009; 3:7-19. [PMID: 19812739 PMCID: PMC2754921 DOI: 10.4137/pmc.s2332] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chaperone therapy is a newly developed molecular approach to lysosomal diseases, a group of human genetic diseases causing severe brain damage. We found two valienamine derivatives, N-octyl-4-epi-β-valienamine (NOEV) and N-octyl-β-valienamine (NOV), as promising therapeutic agents for human β-galactosidase deficiency disorders (mainly GM1-gangliosidosis) and β-glucosidase deficiency disorders (Gaucher disease), respectively. We briefly reviewed the historical background of research in carbasugar glycosidase inhibitors. Originally NOEV and NOV had been discovered as competitive inhibitors, and then their paradoxical bioactivities as chaperones were confirmed in cultured fibroblasts from patients with these disorders. Subsequently GM1-gangliosidosis model mice were developed and useful for experimental studies. Orally administered NOEV entered the brain through the blood-brain barrier, enhanced β-galactosidase activity, reduced substrate storage, and improved neurological deterioration clinically. Furthermore, we executed computational analysis for prediction of molecular interactions between β-galactosidase and NOEV. Some preliminary results of computational analysis of molecular interaction mechanism are presented in this article. NOV also showed the chaperone effect toward several β-glucosidase gene mutations in Gaucher disease. We hope chaperone therapy will become available for some patients with GM1-gangliosidosis, Gaucher disease, and potentially other lysosomal storage diseases with central nervous system involvement.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- International University of Health and Welfare Graduate School, Kita Kanemaru, Otawara, 324-8501 Japan
| | | | | |
Collapse
|
16
|
Efficient gene therapy-based method for the delivery of therapeutics to primate cortex. Proc Natl Acad Sci U S A 2009; 106:2407-11. [PMID: 19193857 DOI: 10.1073/pnas.0810682106] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transduction of the primate cortex with adeno-associated virus (AAV)-based gene therapy vectors has been challenging, because of the large size of the cortex. We report that a single infusion of AAV2 vector into thalamus results in widespread expression of transgene in the cortex through transduction of widely dispersed thalamocortical projections. This finding has important implications for the treatment of certain genetic and neurodegenerative diseases.
Collapse
|
17
|
Baek RC, Martin DR, Cox NR, Seyfried TN. Comparative analysis of brain lipids in mice, cats, and humans with Sandhoff disease. Lipids 2008; 44:197-205. [PMID: 19034545 DOI: 10.1007/s11745-008-3268-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/29/2008] [Indexed: 11/29/2022]
Abstract
Sandhoff disease (SD) is a glycosphingolipid (GSL) storage disease that arises from an autosomal recessive mutation in the gene for the beta-subunit of beta-Hexosaminidase A (Hexb gene), which catabolizes ganglioside GM2 within lysosomes. Accumulation of GM2 and asialo-GM2 (GA2) occurs primarily in the CNS, leading to neurodegeneration and brain dysfunction. We analyzed the total lipids in the brains of SD mice, cats, and humans. GM2 and GA2 were mostly undetectable in the normal mouse, cat, and human brain. The lipid abnormalities in the SD cat brain were generally intermediate to those observed in the SD mouse and the SD human brains. GM2 comprised 38, 67, and 87% of the total brain ganglioside distribution in the SD mice, cats, and humans, respectively. The ratio of GA2-GM2 was 0.93, 0.13, and 0.27 in the SD mice, cats, and humans, respectively, suggesting that the relative storage of GA2 is greater in the SD mouse than in the SD cat or human. Finally, the myelin-enriched lipids, cerebrosides and sulfatides, were significantly lower in the SD brains than in the control brains. This study is the first comparative analysis of brain lipids in mice, cats, and humans with SD and will be important for designing therapies for Sandhoff disease patients.
Collapse
Affiliation(s)
- Rena C Baek
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
18
|
Refai D, Lev R, Cross DT, Shimony JS, Leonard JR. Thrombotic complications of a basilar artery aneurysm in a young adult with Pompe disease. ACTA ACUST UNITED AC 2008; 70:518-20. [DOI: 10.1016/j.surneu.2007.05.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/15/2007] [Indexed: 11/27/2022]
|
19
|
Goker-Alpan O, Wiggs EA, Eblan MJ, Benko W, Ziegler SG, Sidransky E, Schiffmann R. Cognitive outcome in treated patients with chronic neuronopathic Gaucher disease. J Pediatr 2008; 153:89-94. [PMID: 18571543 DOI: 10.1016/j.jpeds.2007.12.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 10/23/2007] [Accepted: 12/10/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the spectrum and prevalence of cognitive deficits among children with type 3 (chronic neuronopathic) Gaucher disease (GD). STUDY DESIGN A case review study identified 32 children (male/female; 17:15) with type 3 GD who had received enzyme replacement therapy (ERT) or a bone marrow transplant. The diagnosis of GD was established by enzymatic assay and DNA testing. Subjects were assessed with standard neuropsychological testing, and data from the most recent evaluation were included. RESULTS Neuropsychometric assessments demonstrated a wide spectrum of full-scale IQ scores ranging from 39 to 124 (mean 75). About 60% of subjects had intellectual skills below average. There were significant discrepancies between verbal and performance IQ, with a range between -6 and 38 points (P = .02). This gap was more prominent in older subjects, with better performance in the verbal areas. No correlation was observed between intelligence measures and genotype or the extent of systemic involvement. The dosage, age at initiation, and the length of ERT had no significant effect on IQ scores. CONCLUSIONS In type 3 GD, cognitive deficits, characterized by visual-spatial dysfunction, are common but underappreciated and appear resistant to ERT.
Collapse
Affiliation(s)
- Ozlem Goker-Alpan
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
de Voer G, Peters D, Taschner PEM. Caenorhabditis elegans as a model for lysosomal storage disorders. Biochim Biophys Acta Mol Basis Dis 2008; 1782:433-46. [PMID: 18501720 DOI: 10.1016/j.bbadis.2008.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 02/08/2023]
Abstract
The nematode Caenorhabditis elegans is the simplest animal model available to study human disease. In this review, the worm homologues for the 58 human genes involved in lysosomal storage disorders and for 105 human genes associated with lysosomal function have been compiled. Most human genes had at least one worm homologue. In addition, the phenotypes of 147 mutants, in which these genes have been disrupted or knocked down, have been summarized and discussed. The phenotypic spectrum of worm models of lysosomal storage disorders varies from lethality to none obvious, with a large variety of intermediate phenotypes. The genetic power of C. elegans provides a means to identify genes involved in specific processes with relative ease. The overview of potential lysosomal phenotypes presented here might be used as a starting point for the phenotypic characterization of newly developed knock-out models or for the design of genetic screens selecting for loss or gain of suitable knock-out model phenotypes. Screens for genes involved in lysosomal biogenesis and function have been performed successfully resulting in the cup and glo mutants, but screens involving subtle phenotypes are likely to be difficult.
Collapse
Affiliation(s)
- Gert de Voer
- Department of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
21
|
de Grey AD. Alzheimer's, atherosclerosis, and aggregates: a role for bacterial degradation. Nutr Rev 2008; 65:S221-7. [PMID: 18240553 DOI: 10.1111/j.1753-4887.2007.tb00367.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Several of the most prevalent and severe age-related diseases, notably Alzheimer's disease and atherosclerosis, feature the accumulation of non-degradable aggregates within the lysosomes of disease-affected cells. At an early point in disease progression, the breakdown of lysosomal contents by the resident catabolic enzymes stops working properly. A return of lysosomal enzymatic activity to pre-disease levels may restore aggregate elimination. In this review, a method of bioremediation-derived lysosomal enzyme enhancement is proposed, featuring the cellular introduction of microbial-isolated enzymes, or xenoenzymes. The benefits and challenges of using xenoenzymes to break down aggregates are discussed. As the size of our elderly population grows, the incidence of age-related diseases will increase, necessitating the exploration of radical, but potentially powerful, therapeutic strategies.
Collapse
|
22
|
Malinowska M, Jakóbkiewicz-Banecka J, Kloska A, Tylki-Szymańska A, Czartoryska B, Piotrowska E, Wegrzyn A, Wegrzyn G. Abnormalities in the hair morphology of patients with some but not all types of mucopolysaccharidoses. Eur J Pediatr 2008; 167:203-9. [PMID: 17361416 DOI: 10.1007/s00431-007-0462-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/22/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of inherited, progressive, metabolic diseases, caused by the deficiency of one of the enzymes involved in the degradation of glycosaminoglycans (GAGs). The disease is usually fatal, with the life span of most untreated MPS patients being between one and two decades. In this report, on the basis of scanning electron microscopy (SEM) studies, we demonstrate that, besides the many other symptoms of MPS, there are characteristic abnormalities in the hair morphology of patients suffering from some types of this disease (MPS I, MPS II, MPS IIIA, MPS IIIB), but not from other types (MPS IVA, MPS IVB, MPS VI), where the changes are minor, if any. Different GAGs accumulate in the tissues of patients suffering from the various MPS types, and analysis of the disease types in which severe hair abnormalities occur or not could suggest that the accumulation of heparan sulfate, rather than dermatan sulfate or keratan sufate, may be responsible for the major changes in hair morphology. Considerable abnormalities in hair morphology occur in patients suffering from MPS I, MPS II, MPS IIIA, and MPS IIIB, but not in patients suffering from MPS IVA, MPS IVB, and MPS VI; this feature might potentially be used as an additional test for the assessment of the efficacy of treatments for MPS patients (types I, II, IIIA, and IIIB).
Collapse
Affiliation(s)
- Marcelina Malinowska
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822, Gdańsk, Poland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fan JQ. A counterintuitive approach to treat enzyme deficiencies: use of enzyme inhibitors for restoring mutant enzyme activity. Biol Chem 2008; 389:1-11. [DOI: 10.1515/bc.2008.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
Pharmacological chaperone therapy is an emerging counterintuitive approach to treat protein deficiencies resulting from mutations causing misfolded protein conformations. Active-site-specific chaperones (ASSCs) are enzyme active-site directed small molecule pharmacological chaperones that act as a folding template to assist protein folding of mutant proteins in the endoplasmic reticulum (ER). As a result, excessive degradation of mutant proteins in the ER-associated degradation (ERAD) machinery can be prevented, thus restoring enzyme activity. Lysosomal storage disorders (LSDs) are suitable candidates for ASSC treatment, as the levels of enzyme activity needed to prevent substrate storage are relatively low. In addition, ASSCs are orally active small molecules and have potential to gain access to most cell types to treat neuronopathic LSDs. Competitive enzyme inhibitors are effective ASSCs when they are used at sub-inhibitory concentrations. This whole new paradigm provides excellent opportunity for identifying specific drugs to treat a broad range of inherited disorders. This review describes protein misfolding as a pathophysiological cause in LSDs and provides an overview of recent advances in the development of pharmacological chaperone therapy for the diseases. In addition, a generalized guidance for the design and screening of ASSCs is also presented.
Collapse
|
24
|
Baek RC, Kasperzyk JL, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice. Neurochem Int 2007; 52:1125-33. [PMID: 18207611 DOI: 10.1016/j.neuint.2007.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/20/2007] [Accepted: 12/03/2007] [Indexed: 11/17/2022]
Abstract
Sandhoff disease involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the beta-subunit gene of beta-hexosaminidase A and B (Hexb gene). Accumulation of these glycosphingolipids (GSLs) produces progressive neurodegeneration, ultimately leading to death. Substrate reduction therapy (SRT) aims to decrease the rate of glycosphingolipid (GSL) biosynthesis to compensate for the impaired rate of catabolism. The imino sugar, N-butyldeoxygalactonojirimycin (NB-DGJ) inhibits the first committed step in GSL biosynthesis. NB-DGJ treatment, administered from postnatal day 2 (p-2) to p-5 (600 mg/kg/day)), significantly reduced total brain ganglioside and GM2 content in the Sandhoff disease (Hexb(-/-)) mice, but did not reduce the content of GA2. We also found that NB-DGJ treatment caused a slight, but significant elevation in brain sialidase activity. The drug had no adverse effects on viability, body weight, brain weight, or brain water content in the mice. No significant alterations in neutral lipids or acidic phospholipids were observed in the NB-DGJ-treated Hexb(-/-) mice. Our results show that NB-DGJ is effective in reducing total brain ganglioside and GM2 content at early neonatal ages.
Collapse
Affiliation(s)
- Rena C Baek
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
25
|
Pan D, Sciascia A, Vorhees CV, Williams MT. Progression of multiple behavioral deficits with various ages of onset in a murine model of Hurler syndrome. Brain Res 2007; 1188:241-53. [PMID: 18022143 DOI: 10.1016/j.brainres.2007.10.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/13/2007] [Accepted: 10/17/2007] [Indexed: 11/30/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is one of the most common lysosomal storage diseases with progressive neurological dysfunction. To characterize the chronological behavioral profiles and identify the onset of functional deficits in a MPS I mouse model (IDUA(-/-)), we evaluated anxiety, locomotor behavior, startle, spatial learning and memory with mice at 2, 4, 6 and 8 months of age. In automated open-field test, IDUA(-/-) mice showed hypoactivity as early as 2 months of age and altered anxiety starting from 6 months of age during the initial exploratory phase, even though normal habituation was observed at all ages. In the marble-burying task, the anxiety-like compulsive behavior was normal in IDUA(-/-) mice at almost all tested ages, but significantly reduced in 8-month old male IDUA(-/-) mice which coincided with the rapid death of IDUA(-/-) males starting from 7 months of age. In the Morris water maze, IDUA(-/-) mice exhibited impaired proficient learning only at 4 months of age during the acquisition phase. Spatial memory deficits were observed in IDUA(-/-) mice during both 1 and 7 days probe trials at 4 and 8 months of age. The IDUA(-/-) mice performed normally in a novel object recognition task at younger ages until 8 months old when reduced visual cognitive memory retention was noted in the IDUA(-/-) mice. In addition, 8-month-old IDUA(-/-) mice failed to habituate to repeated open-field exposure, suggesting deficits in non-aversive and non-associative memory. In acoustic startle assessment, significantly more non-responders were found in IDUA(-/-) mice, but normal performance was seen in those that did show a response. These results presented a temporal evaluation of phenotypic behavioral dysfunctions in IDUA(-/-) mice from adolescence to maturity, indicating the impairments, with different ages of onset, in locomotor and anxiety-like compulsive behaviors, spatial learning and memory, visual recognition and short-term non-associative memory retention. This study would also provide guidelines for the experimental designs of behavioral evaluation on innovative therapies for the treatment of MPS type I.
Collapse
Affiliation(s)
- Dao Pan
- Molecular and Gene Therapy Program, Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati, OH 45249, USA.
| | | | | | | |
Collapse
|
26
|
McEachern KA, Fung J, Komarnitsky S, Siegel CS, Chuang WL, Hutto E, Shayman JA, Grabowski GA, Aerts JMFG, Cheng SH, Copeland DP, Marshall J. A specific and potent inhibitor of glucosylceramide synthase for substrate inhibition therapy of Gaucher disease. Mol Genet Metab 2007; 91:259-67. [PMID: 17509920 DOI: 10.1016/j.ymgme.2007.04.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 01/05/2023]
Abstract
An approach to treating Gaucher disease is substrate inhibition therapy which seeks to abate the aberrant lysosomal accumulation of glucosylceramide. We have identified a novel inhibitor of glucosylceramide synthase (Genz-112638) and assessed its activity in a murine model of Gaucher disease (D409V/null). Biochemical characterization of Genz-112638 showed good potency (IC(50) approximately 24nM) and specificity against the target enzyme. Mice that received drug prior to significant accumulation of substrate (10 weeks of age) showed reduced levels of glucosylceramide and number of Gaucher cells in the spleen, lung and liver when compared to age-matched control animals. Treatment of older mice that already displayed significant amounts of tissue glucosylceramide (7 months old) resulted in arrest of further accumulation of the substrate and appearance of additional Gaucher cells in affected organs. These data indicate that substrate inhibition therapy with Genz-112638 represents a viable alternate approach to enzyme therapy to treat the visceral pathology in Gaucher disease.
Collapse
|
27
|
Tribolo S, Berrin JG, Kroon PA, Czjzek M, Juge N. The Crystal Structure of Human Cytosolic β-Glucosidase Unravels the Substrate Aglycone Specificity of a Family 1 Glycoside Hydrolase. J Mol Biol 2007; 370:964-75. [PMID: 17555766 DOI: 10.1016/j.jmb.2007.05.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/27/2007] [Accepted: 05/12/2007] [Indexed: 11/22/2022]
Abstract
Human cytosolic beta-glucosidase (hCBG) is a xenobiotic-metabolizing enzyme that hydrolyses certain flavonoid glucosides, with specificity depending on the aglycone moiety, the type of sugar and the linkage between them. In this study, the substrate preference of this enzyme was investigated by mutational analysis, X-ray crystallography and homology modelling. The crystal structure of hCBG was solved by the molecular replacement method and refined at 2.7 A resolution. The main-chain fold of the enzyme belongs to the (beta/alpha)(8) barrel structure, which is common to family 1 glycoside hydrolases. The active site is located at the bottom of a pocket (about 16 A deep) formed by large surface loops, surrounding the C termini of the barrel of beta-strands. As for all the clan of GH-A enzymes, the two catalytic glutamate residues are located on strand 4 (the acid/base Glu165) and on strand 7 (the nucleophile Glu373). Although many features of hCBG were shown to be very similar to previously described enzymes from this family, crucial differences were observed in the surface loops surrounding the aglycone binding site, and these are likely to strongly influence the substrate specificity. The positioning of a substrate molecule (quercetin-4'-glucoside) by homology modelling revealed that hydrophobic interactions dominate the binding of the aglycone moiety. In particular, Val168, Trp345, Phe225, Phe179, Phe334 and Phe433 were identified as likely to be important in determining substrate specificity in hCBG, and site-directed mutagenesis supported a key role for some of these residues.
Collapse
Affiliation(s)
- Sandra Tribolo
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | | | | | | | | |
Collapse
|
28
|
Ehlert K, Frosch M, Fehse N, Zander A, Roth J, Vormoor J. Farber disease: clinical presentation, pathogenesis and a new approach to treatment. Pediatr Rheumatol Online J 2007; 5:15. [PMID: 17603888 PMCID: PMC1920510 DOI: 10.1186/1546-0096-5-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 06/29/2007] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Farber Disease is an autosomal-recessively inherited, lysosomal storage disorder caused by acid ceramidase deficiency and associated with distinct clinical phenotypes. Children with significant neurological involvement usually die early in infancy, whereas patients without or only mild neurological findings suffer from progressive joint deformation and contractures, subcutaneous nodules, inflammatory, periarticular granulomas, a hoarse voice and finally respiratory insufficiency caused by granuloma formation in the respiratory tract and interstitial pneumonitis leading to death in the third or fourth decade of live. As the inflammatory component of this disorder is caused by some kind of leukocyte dysregulation, allogeneic hematopoietic stem cell transplantation can restore a healthy immune system and thus may provide a curative option in Farber Disease patients without neurological involvement. Previous stem cell transplantations in two children with severe neurological involvement had resulted in a disappointing outcome, as both patients died of progressive deterioration of their neurological status. As a consequence, stem cell transplantation does not appear to be able to abolish or even reduce the neurotoxic effects of the abundant ceramide storage in the brain. METHODS After myeloablative, busulfan-based preparative regimens, four Farber Disease patients without neurological involvement received an allogeneic hematopoietic stem cell transplantation from related and unrelated donors. Stem cell source was BM in three patients and PBSC in one patient; GvHD-prophylaxis consisted of CsA and short course MTX. RESULTS AND DISCUSSION In all patients, HSCT resulted in almost complete resolution of granulomas and joint contractures, considerable improvement of mobility and joint motility without relevant therapy-related morbidities. All patients are alive and well at this point with stabile donor cell chimerism and without evidence of chronic GvHD or other late sequelae of stem cell transplantation. CONCLUSION Allogeneic hematopoietic stem cell transplantation provides a promising approach for Farber Disease patients without neurological involvement.
Collapse
Affiliation(s)
- Karoline Ehlert
- University Children's Hospital Muenster, Department of Pediatric Hematology and Oncology, Albert-Schweitzer-Strasse 33, D-48149 Muenster, Germany
| | - Michael Frosch
- University Children's Hospital Muenster, Department of General Pediatrics, Albert-Schweitzer-Strasse 33, D-48149 Muenster, Germany
| | - Natalja Fehse
- University Hospital Hamburg-Eppendorf, Interdisciplinary Clinic and Policlinic for Stem Cell Transplantation, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Axel Zander
- University Hospital Hamburg-Eppendorf, Interdisciplinary Clinic and Policlinic for Stem Cell Transplantation, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Johannes Roth
- University Children's Hospital Muenster, Department of General Pediatrics, Albert-Schweitzer-Strasse 33, D-48149 Muenster, Germany
| | - Josef Vormoor
- University Children's Hospital Muenster, Department of Pediatric Hematology and Oncology, Albert-Schweitzer-Strasse 33, D-48149 Muenster, Germany
- Newcastle University, Northern Institute for Cancer Research, Framington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
29
|
Schiffmann R, Askari H, Timmons M, Robinson C, Benko W, Brady RO, Ries M. Weekly enzyme replacement therapy may slow decline of renal function in patients with Fabry disease who are on long-term biweekly dosing. J Am Soc Nephrol 2007; 18:1576-83. [PMID: 17409308 PMCID: PMC1978101 DOI: 10.1681/asn.2006111263] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study was performed to determine whether adult male patients with Fabry disease who demonstrate a continuing decline in renal function despite 2 to 4 yr of conventionally dosed agalsidase alfa therapy (0.2 mg/kg every other week [EOW]) show an improved slope of decline with weekly administration using the same dosage. Eleven (27%) of 41 adult male patients with Fabry disease who participated in long-term agalsidase alfa clinical trials and who had demonstrated a slope of decline in estimated GFR (eGFR) of > or =5 ml/min per 1.73 m(2)/yr while receiving long-term treatment with agalsidase alfa at the currently recommended dosage of 0.2 mg/kg, infused EOW, were enrolled in this open-label, prospective study. Patients were switched from EOW to weekly infusions and followed for an additional 24 mo. Before switching to weekly dosing, eGFR was 53.7 +/- 6.3 ml/min per 1.73 m(2) (mean +/- SEM), and mean rate of change in eGFR was -8.0 +/- 0.8 ml/min per 1.73 m(2)/yr. During the 24-mo follow-up period after switching to weekly dosing, the mean rate of change in eGFR was observed to slow to -3.3 +/- 1.4 ml/min/1.73 m(2)/yr (P = 0.01 versus EOW). After switching to weekly dosing, three patients demonstrated an improvement in eGFR and six patients demonstrated a slowing in the rate of eGFR decline; only two patients failed to improve their eGFR slope. A multiple regression model confirmed that the weekly infusion regimen was the strongest explanatory variable for the change in eGFR (P = 0.0008), with a weaker contribution from the concomitant use of angiotensin converting enzyme inhibitors/angiotensin receptor blockers (P = 0.02). These results suggest that weekly infusions of agalsidase alfa at a dosage of 0.2 mg/kg may be beneficial in the subgroup of patients who have Fabry disease and whose kidney function continues to decline after 2 to 4 yr or more of standard EOW dosing.
Collapse
Affiliation(s)
- Raphael Schiffmann
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 3D03, 9000 Rockville Pike, Bethesda, MD 20892-1260, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Satoh H, Yamato O, Asano T, Yonemura M, Yamauchi T, Hasegawa D, Orima H, Arai T, Yamasaki M, Maede Y. Cerebrospinal fluid biomarkers showing neurodegeneration in dogs with GM1 gangliosidosis: possible use for assessment of a therapeutic regimen. Brain Res 2006; 1133:200-8. [PMID: 17196562 DOI: 10.1016/j.brainres.2006.11.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 11/17/2022]
Abstract
The present study investigated cerebrospinal fluid (CSF) biomarkers for estimating degeneration of the central nervous system (CNS) in experimental dogs with GM1 gangliosidosis and preliminarily evaluated the efficacy of long-term glucocorticoid therapy for GM1 gangliosidosis using the biomarkers identified here. GM1 gangliosidosis, a lysosomal storage disease that affects the brain and multiple systemic organs, is due to an autosomal recessively inherited deficiency of acid beta-galactosidase activity. Pathogenesis of GM1 gangliosidosis may include neuronal apoptosis and abnormal axoplasmic transport and inflammatory response, which are perhaps consequent to massive neuronal storage of GM1 ganglioside. In the present study, we assessed some possible CSF biomarkers, such as GM1 ganglioside, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), neuron-specific enolase (NSE) and myelin basic protein (MBP). Periodic studies demonstrated that GM1 ganglioside concentration, activities of AST and LDH, and concentrations of NSE and MBP in CSF were significantly higher in dogs with GM1 gangliosidosis than those in control dogs, and their changes were well related with the months of age and clinical course. In conclusion, GM1 ganglioside, AST, LDH, NSE and MBP could be utilized as CSF biomarkers showing CNS degeneration in dogs with GM1 gangliosidosis to evaluate the efficacy of novel therapies proposed for this disease. In addition, we preliminarily treated an affected dog with long-term oral administration of prednisolone and evaluated the efficacy of this therapeutic trial using CSF biomarkers determined in the present study. However, this treatment did not change either the clinical course or the CSF biomarkers of the affected dog, suggesting that glucocorticoid therapy would not be effective for treating GM1 gangliosidosis.
Collapse
Affiliation(s)
- Hiroyuki Satoh
- Laboratory of Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Franken S, Wittke D, Mansson JE, D'Hooge R, De Deyn PP, Lüllmann-Rauch R, Matzner U, Gieselmann V. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene. Lipids Health Dis 2006; 5:21. [PMID: 16893448 PMCID: PMC1564137 DOI: 10.1186/1476-511x-5-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 08/07/2006] [Indexed: 11/10/2022] Open
Abstract
Background Arylsulfatase A (ASA)-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT). This deficiency is known to lead to a decreased synthesis of galactosylceramide and sulfatide, which should reduce sulfatide storage and improve pathology in ASA-deficient mice. Results ASA-/- CGT+/- mice, however, showed no detectable decrease in sulfatide storage. Neuronal degeneration of cells in the spiral ganglion of the inner ear, however, was decreased. Behavioural tests showed small but clear improvements of the phenotype in ASA-/- CGT+/- mice. Conclusion Thus the reduction of galactosylceramide and sulfatide biosynthesis by genetic means overall causes modest improvements of pathology.
Collapse
Affiliation(s)
- S Franken
- Department of Physiological Chemistry, University of Bonn, Germany
- Institut für Physiologische Chemie, Rheinische-Friedrich-Wilhelms Universität, Nussallee 11, 53115, Bonn, Germany
| | - D Wittke
- Anatomisches Institut, Universität Kiel, Germany
| | - JE Mansson
- Institute of Clinical Neuroscience, Goteborg University, Sweden
| | - R D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | - PP De Deyn
- Department of Biomedical Sciences and Department of Neurology/Memory Clinic, University of Antwerp, Belgium
| | | | - U Matzner
- Department of Physiological Chemistry, University of Bonn, Germany
| | - V Gieselmann
- Department of Physiological Chemistry, University of Bonn, Germany
| |
Collapse
|
32
|
Jerome WG. Advanced atherosclerotic foam cell formation has features of an acquired lysosomal storage disorder. Rejuvenation Res 2006; 9:245-55. [PMID: 16706652 DOI: 10.1089/rej.2006.9.245] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a disease of large- and medium-sized arteries. Complications from atherosclerosis remain a serious cause of morbidity and mortality in industrialized countries. The disease begins very early in life and effects most people in the West. However, because the progression of the disease is slow, symptoms usually do not occur until after the fifth decade of life. Because atherosclerosis is a ubiquitous occurrence throughout the world, as life expectancy is prolonged most populations will see increasing numbers of deaths from complications of atherosclerosis unless there are dramatic advances in treatment. Because it begins so early in life, current treatment is aimed at slowing or reversing the progression of the disease rather than eliminating the initiating steps. Changes in diet and exercise, cholesterol-lowering drugs, and improvements in surgical treatments have made significant inroads into prolonging life, but much work is still required. To proceed further, a better understanding is needed of the underlying causes of disease progression. In this regard, evidence is mounting that the foam cells of the lesion (a critical cell in atherosclerosis progression) exhibit characteristics of an acquired lysosomal storage disorder. In this review the evidence for this conclusion is reviewed and the ramifications of this conclusion are explored with regard to the understanding of disease progression mechanisms, possible improvements in treatment, and their role in increasing life expectancy.
Collapse
Affiliation(s)
- W Gray Jerome
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561, USA.
| |
Collapse
|
33
|
Lange MC, Teive HAG, Troiano AR, Bitencourt M, Funke VAM, Setúbal DC, Zanis Neto J, Medeiros CR, Werneck LC, Pasquini R, Bonfim CMS. Bone marrow transplantation in patients with storage diseases: a developing country experience. ARQUIVOS DE NEURO-PSIQUIATRIA 2006; 64:1-4. [PMID: 16622543 DOI: 10.1590/s0004-282x2006000100001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone marrow transplantation (BMT) is a therapeutic option for patients with genetic storage diseases. Between 1979 and 2002, eight patients, four females and four males (1 to 13 years old) were submitted to this procedure in our center. Six patients had mucopolysaccharidosis (MPS I in 3; MPS III in one and MPS VI in 2), one had adrenoleukodystrophy (ALD) and one had Gaucher disease. Five patients had related and three unrelated BMT donor. Three patients developed graft versus host disease (two MPS I and one MPS VI) and died between 37 and 151 days after transplantation. Five patients survived 4 to 16 years after transplantation. Three patients improved (one MPS I; one MPS VI and the Gaucher disease patient), one patient had no disease progression (ALD) and in one patient this procedure did not change the natural course of the disease (MPS III).
Collapse
Affiliation(s)
- Marcos C Lange
- Neurology Division, Internal Medicine Department, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 2005; 310:490-3. [PMID: 16239475 DOI: 10.1126/science.1114245] [Citation(s) in RCA: 477] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood calcium concentration is maintained within a narrow range despite large variations in dietary input and body demand. The Transient Receptor Potential ion channel TRPV5 has been implicated in this process. We report here that TRPV5 is stimulated by the mammalian hormone klotho. Klotho, a beta-glucuronidase, hydrolyzes extracellular sugar residues on TRPV5, entrapping the channel in the plasma membrane. This maintains durable calcium channel activity and membrane calcium permeability in kidney. Thus, klotho activates a cell surface channel by hydrolysis of its extracellular N-linked oligosaccharides.
Collapse
Affiliation(s)
- Q Chang
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Lee KO, Luu N, Kaneski CR, Schiffmann R, Brady RO, Murray GJ. Improved intracellular delivery of glucocerebrosidase mediated by the HIV-1 TAT protein transduction domain. Biochem Biophys Res Commun 2005; 337:701-7. [PMID: 16223608 DOI: 10.1016/j.bbrc.2005.05.207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 05/07/2005] [Indexed: 11/23/2022]
Abstract
Enzyme replacement therapy (ERT) for Gaucher disease designed to target glucocerebrosidase (GC) to macrophages via mannose-specific endocytosis is very effective in reversing hepatosplenomegaly, and normalizing hematologic parameters but is less effective in improving bone and lung involvement and ineffective in brain. Recombinant GCs containing an in-frame fusion to the HIV-1 trans-activator protein transduction domain (TAT) were expressed in eukaryotic cells in order to obtain active, normally glycosylated GC fusion proteins for enzyme uptake studies. Despite the absence of mannose-specific endocytic receptors on the plasma membranes of various fibroblasts, the recombinant GCs with C-terminal TAT fusions were readily internalized by these cells. Immunofluorescent confocal microscopy demonstrated the recombinant TAT-fusion proteins with a mixed endosomal and lysosomal localization. Thus, TAT-modified GCs represent a novel strategy for a new generation of therapeutic enzymes for ERT for Gaucher disease.
Collapse
Affiliation(s)
- Kyun Oh Lee
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 3D04, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
36
|
de Grey ADNJ, Alvarez PJJ, Brady RO, Cuervo AM, Jerome WG, McCarty PL, Nixon RA, Rittmann BE, Sparrow JR. Medical bioremediation: prospects for the application of microbial catabolic diversity to aging and several major age-related diseases. Ageing Res Rev 2005; 4:315-38. [PMID: 16040282 DOI: 10.1016/j.arr.2005.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Accepted: 03/09/2005] [Indexed: 11/30/2022]
Abstract
Several major diseases of old age, including atherosclerosis, macular degeneration and neurodegenerative diseases are associated with the intracellular accumulation of substances that impair cellular function and viability. Moreover, the accumulation of lipofuscin, a substance that may have similarly deleterious effects, is one of the most universal markers of aging in postmitotic cells. Reversing this accumulation may thus be valuable, but has proven challenging, doubtless because substances resistant to cellular catabolism are inherently hard to degrade. We suggest a radically new approach: augmenting humans' natural catabolic machinery with microbial enzymes. Many recalcitrant organic molecules are naturally degraded in the soil. Since the soil in certain environments - graveyards, for example - is enriched in human remains but does not accumulate these substances, it presumably harbours microbes that degrade them. The enzymes responsible could be identified and engineered to metabolise these substances in vivo. Here, we survey a range of such substances, their putative roles in age-related diseases and the possible benefits of their removal. We discuss how microbes capable of degrading them can be isolated, characterised and their relevant enzymes engineered for this purpose and ways to avoid potential side-effects.
Collapse
Affiliation(s)
- Aubrey D N J de Grey
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pastores GM. Enzyme therapy for the lysosomal storage disorders: principles, patents, practice and prospects. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.8.1157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Kasperzyk JL, d'Azzo A, Platt FM, Alroy J, Seyfried TN. Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J Lipid Res 2005; 46:744-51. [PMID: 15687347 DOI: 10.1194/jlr.m400411-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
II3NeuAc-GgOse4Cer (GM1) gangliosidosis is an incurable lysosomal storage disease caused by a deficiency in acid beta-galactosidase (beta-gal), resulting in the accumulation of ganglioside GM1 and its asialo derivative GgOse4Cer (GA1) in the central nervous system, primarily in the brain. In this study, we investigated the effects of N-butyldeoxygalacto-nojirimycin (N B-DGJ), an imino sugar that inhibits ganglioside biosynthesis, in normal C57BL/6J mice and in beta-gal knockout (beta-gal-/-) mice from postnatal day 9 (p-9) to p-15. This is a period of active cerebellar development and central nervous system (CNS) myelinogenesis in the mouse and would be comparable to late-stage embryonic and early neonatal development in humans. N B-DGJ significantly reduced total ganglioside and GM1 content in cerebrum-brainstem (C-BS) and in cerebellum of normal and beta-gal-/- mice. N B-DGJ had no adverse effects on body weight or C-BS/cerebellar weight, water content, or thickness of the external cerebellar granule cell layer. Sphingomyelin was increased in C-BS and cerebellum, but no changes were found for cerebroside (a myelin-enriched glycosphingolipid), neutral phospholipids, or GA1 in the treated mice. Our findings indicate that the effects of N B-DGJ in the postnatal CNS are largely specific to gangliosides and suggest that N B-DGJ may be an effective early intervention therapy for GM1 gangliosidosis and other ganglioside storage disorders.
Collapse
Affiliation(s)
- J L Kasperzyk
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | |
Collapse
|
39
|
Mabe P, Valiente A, Soto V, Cornejo V, Raimann E. Evaluation of reliability for urine mucopolysaccharidosis screening by dimethylmethylene blue and Berry spot tests. Clin Chim Acta 2005; 345:135-40. [PMID: 15193988 DOI: 10.1016/j.cccn.2004.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 03/17/2004] [Accepted: 03/17/2004] [Indexed: 11/27/2022]
Abstract
BACKGROUND The mucopolysaccharidosis (MPS) are a group of inherited metabolic disorders resulting from the deficiency of the enzyme responsible for intralysosomal catabolism of glycosaminoglycans (GAGs). GAGs are progressively accumulated in multiple tissues and released into the corporal fluids. The first laboratory approximation to MPS diagnosis is the identification of an increased urinary GAG excretion. For this, several semiquantitative and quantitative methods have been developed. The aim of this retrospective statistical study was to evaluate the reliability of MPS urine screening for the semiquantitative Berry spot test (BST) and the quantitative dimethylmethylene blue test (DMB). METHODS The 24-h-urine samples (n = 246) were tested through BST, DMB, and for GAG excretion pattern by one-dimensional electrophoresis or thin layer chromatography. RESULTS the 204 samples that demonstrated a normal GAG excretion pattern were considered as non-MPS samples. Forty-two samples presented an abnormal GAG excretion pattern. Enzyme analysis was available for 31 out of 42 patients (31/42), confirming that all were affected by MPS. Urinary GAG concentrations of MPS patients by DMB were increased 1.04- to 7.1-folds, compared to age-related normal levels. The sensitivity was 100% for DMB and 93.6% for BST. DMB demonstrated a specificity of 74.5%, while BST a specificity of 53.9%. The specificity of MPS screening increased to 84.3%, considering conjunctly DMB and BST. CONCLUSION The DMB is a sensitive method, however, inclusion of BST could increase the specificity of MPS urine screening.
Collapse
Affiliation(s)
- Paulina Mabe
- Unidad de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Casilla 138-11, Santiago, Chile.
| | | | | | | | | |
Collapse
|
40
|
Platt FM, Jeyakumar M, Andersson U, Dwek RA, Butters TD. New Developments in Treating Glycosphingolipid Storage Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 564:117-26. [PMID: 16400817 DOI: 10.1007/0-387-25515-x_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Frances M Platt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
41
|
Lonser RR, Walbridge S, Murray GJ, Aizenberg MR, Vortmeyer AO, Aerts JMFG, Brady RO, Oldfield EH. Convection perfusion of glucocerebrosidase for neuronopathic Gaucher's disease. Ann Neurol 2005; 57:542-8. [PMID: 15786474 DOI: 10.1002/ana.20444] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Systemic enzyme replacement for Gaucher's disease has not prevented premature death or severe morbidity in patients with a neuronopathic phenotype, because the enzyme does not cross the blood-brain barrier. We used convection-enhanced delivery for regional distribution of glucocerebrosidase in rat and primate brains and examined its safety and feasibility for neuronopathic Gaucher's disease. Rats underwent intrastriatal infusion and were observed and then sacrificed at 14 hours, 4 days, or 6 weeks. Primates underwent serial magnetic resonance imaging during enzyme perfusion of the right frontal lobe or brainstem, were observed and then sacrificed after infusion completion. Animals underwent histologic and enzymatic tissue analyses. Magnetic resonance imaging revealed perfusion of the primate right frontal lobe or pons with infusate. Enzyme activity was substantially and significantly (p < 0.05) increased in cortex and white matter of the infused frontal lobe and pons compared to control. Immunohistochemistry demonstrated intraneuronal glucocerebrosidase. There was no toxicity. Convection-enhanced delivery can be used to safely perfuse large regions of the brain and brainstem with therapeutic levels of glucocerebrosidase. Patients with neuronopathic Gaucher's disease and similar central nervous system disorders may benefit from this treatment.
Collapse
Affiliation(s)
- Russell R Lonser
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ozkara HA. Recent advances in the biochemistry and genetics of sphingolipidoses. Brain Dev 2004; 26:497-505. [PMID: 15533650 DOI: 10.1016/j.braindev.2004.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 01/08/2004] [Accepted: 01/24/2004] [Indexed: 11/26/2022]
Abstract
Sphingolipidoses are a subgroup of lysosomal storage diseases. They are defined as disorders caused by a genetic defect in catabolism of sphingosine-containing lipids. Catabolism of these lipids involves enzymes and activator proteins. After the discovery of lysosomes by de Duve and the demonstration of the first defective lysosomal enzyme by Hers in 1963, the first enzyme deficiency for sphingolipidoses was characterized in 1965 and all the defective enzymes were demonstrated in the last three decades. In 1984, the first activator protein was found and it expanded the concept of sphingolipidoses. In the following years, many researches have been undertaken to understand the molecular basis of these diseases, the mechanism of pathogenesis, the mechanism of lysosomal digestion of glycosphingolipids (GSLs) and the functional domains of lysosomal enzymes. New hypotheses and theories have been put forward for the mechanism of lysosomal digestion and pathogenesis. However, although much has been done, the pathogenesis of sphingolipidoses has not been fully elucidated. Mouse models of these diseases have facilitated the elucidation of pathogenesis and the development of therapeutic strategies for these diseases, which are not treatable at present except for Fabry and type 1 Gaucher disease. The purpose of this review is to collect information on the recent researches related to sphingolipidoses. The review includes the hydrolysis of GSLs in lysosome, mechanism of hydrolysis, pathogenesis and genetics of sphingolipidoses, a brief mouse model and therapeutic strategies of these diseases.
Collapse
Affiliation(s)
- Hatice Asuman Ozkara
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey.
| |
Collapse
|
43
|
Wreden CC, Wlizla M, Reimer RJ. Varied mechanisms underlie the free sialic acid storage disorders. J Biol Chem 2004; 280:1408-16. [PMID: 15516337 DOI: 10.1074/jbc.m411295200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Salla disease and infantile sialic acid storage disorder are autosomal recessive neurodegenerative diseases characterized by loss of a lysosomal sialic acid transport activity and the resultant accumulation of free sialic acid in lysosomes. Genetic analysis of these diseases has identified several unique mutations in a single gene encoding a protein designated sialin (Verheijen, F. W., Verbeek, E., Aula, N., Beerens, C. E., Havelaar, A. C., Joosse, M., Peltonen, L., Aula, P., Galjaard, H., van der Spek, P. J., and Mancini, G. M. (1999) Nat. Genet. 23, 462-465; Aula, N., Salomaki, P., Timonen, R., Verheijen, F., Mancini, G., Mansson, J. E., Aula, P., and Peltonen, L. (2000) Am. J. Hum. Genet. 67, 832-840). From the biochemical phenotype of the diseases and the predicted polytopic structure of the protein, it has been suggested that sialin functions as a lysosomal sialic acid transporter. Here we directly demonstrate that this activity is mediated by sialin and that the recombinant protein has functional characteristics similar to the native lysosomal sialic acid transport system. Furthermore, we describe the effect of disease-causing mutations on the protein. We find that the majority of the mutations are associated with a complete loss of activity, while the mutations associated with the milder forms of the disease lead to reduced, but residual, function. Thus, there is a direct correlation between sialin function and the disease state. In addition, we find with one mutation that the protein is retained in the endoplasmic reticulum, indicating that altered trafficking of sialin is also associated with disease. This analysis of the molecular mechanism of sialic acid storage disorders is a further step in identifying therapeutic approaches to these diseases.
Collapse
Affiliation(s)
- Christopher C Wreden
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
44
|
Abstract
Niemann-Pick type C, or NPC for short, is an early childhood disease exhibiting progressive neurological degeneration, associated with hepatosplenomegaly in some cases. The disease, at the cellular level, is a result of improper trafficking of lipids such as cholesterol and glycosphingolipids (GSLs) to lysosome-like storage organelles (LSOs), which become engorged with these lipids. It is believed that the initial defect in trafficking, whether of cholesterol or a GSL, results in an eventual traffic jam in these LSOs. This leads to the retention of not only other lipids, but also of transmembrane proteins that transiently associate with the late endosomes (LE) in normal cells, on their way to other cellular destinations such as the trans-Golgi network (TGN). In this review, we discuss the biophysical properties of lipids and cholesterol that might determine their intracellular itineraries, and how these itineraries are altered in NPC cells, which have defects in the proteins NPC1 or NPC2. We also discuss some potential therapeutic directions being suggested by recent research.
Collapse
Affiliation(s)
- Sushmita Mukherjee
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
45
|
Li Y, Scott CR, Chamoles NA, Ghavami A, Pinto BM, Turecek F, Gelb MH. Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem 2004; 50:1785-96. [PMID: 15292070 PMCID: PMC3428798 DOI: 10.1373/clinchem.2004.035907] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Newborn screening for deficiency in the lysosomal enzymes that cause Fabry, Gaucher, Krabbe, Niemann-Pick A/B, and Pompe diseases is warranted because treatment for these syndromes is now available or anticipated in the near feature. We describe a multiplex screening method for all five lysosomal enzymes that uses newborn-screening cards containing dried blood spots as the enzyme source. METHODS We used a cassette of substrates and internal standards to directly quantify the enzymatic activities, and tandem mass spectrometry for enzymatic product detection. Rehydrated dried blood spots were incubated with the enzyme substrates. We used liquid-liquid extraction followed by solid-phase extraction with silica gel to remove buffer components. Acarbose served as inhibitor of an interfering acid alpha-glucosidase present in neutrophils, which allowed the lysosomal enzyme implicated in Pompe disease to be selectively analyzed. RESULTS We analyzed dried blood spots from 5 patients with Gaucher, 5 with Niemann-Pick A/B, 11 with Pompe, 5 with Fabry, and 12 with Krabbe disease, and in all cases the enzyme activities were below the minimum activities measured in a collection of heterozygous carriers and healthy noncarrier individuals. The enzyme activities measured in 5-9 heterozygous carriers were approximately one-half those measured with 15-32 healthy individuals, but there was partial overlap of each condition between the data sets for carriers and healthy individuals. CONCLUSION For all five diseases, the affected individuals were detected. The assay can be readily automated, and the anticipated reagent and supply costs are well within the budget limits of newborn-screening centers.
Collapse
Affiliation(s)
- Yijun Li
- Department of Chemistry, University of Washington, Seattle, WA
| | - C. Ronald Scott
- Department of Pediatrics, University of Washington, Seattle, WA
| | | | - Ahmad Ghavami
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - B. Mario Pinto
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, WA
- Department of Biochemistry, University of Washington, Seattle, WA
- Address correspondence to this author at: Department of Chemistry, Campus Box 351700, University of Washington, Seattle, WA 98195. Fax 206-685-8665;
| |
Collapse
|
46
|
Savas PS, Hemsley KM, Hopwood JJ. Intracerebral injection of sulfamidase delays neuropathology in murine MPS-IIIA. Mol Genet Metab 2004; 82:273-85. [PMID: 15308125 DOI: 10.1016/j.ymgme.2004.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/07/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Lysosomal storage disorders (LSD) are rare inherited metabolic diseases in which genetic alterations affect lysosomal proteins. Mucopolysaccharidosis type IIIA (MPS-IIIA) is an LSD characterized by reduced activity of sulfamidase (heparan-N-sulfatase, EC3.10.1.1), which degrades the sulfated glycosoaminoglycan heparan sulfate. The central nervous system (CNS) is the main site of pathology in MPS-IIIA, resulting in reduced neurological function and neurocognitive decline. Neuropathological changes include lysosomal vacuolation of heparan sulfate and lipids in neurons, glia, and perivascular cells and the formation of axonal spheroids and ectopic dendrites. At present there is no effective treatment for the CNS effects of LSD as enzyme administered intravenously cannot cross the blood-brain barrier. We have previously established and characterized a mouse model of MPS-IIIA, and in the present study, we injected recombinant human sulfamidase directly into the brain at 6, 12 or 18 weeks of age. Treatment reduced vacuolation and gliosis and delayed the onset of ubiquitin-positive neurodegenerative changes in widespread areas of MPS-IIIA brain, assessed at 24 weeks of age. However, ubiquitin-positive axonal spheroids already detectable by 6 weeks of age were unaffected by treatment at any age, suggesting their irreversibility and thus indicating the importance of early detection of MPS-IIIA and instigation of therapy.
Collapse
Affiliation(s)
- Peter S Savas
- Department of Chemical Pathology, Women's and Children's Hospital and University of Melbourne, Medical School, 72 King William Road, North Adelaide, SA 5006, Australia.
| | | | | |
Collapse
|
47
|
Wegrzyn G, Wegrzyn A, Tylki-Szymańska A. A general model for genetic regulation of turnover of glycosaminoglycans suggests a possible procedure for prediction of severity and clinical progress of mucopolysaccharidoses. Med Hypotheses 2004; 62:986-92. [PMID: 15142662 DOI: 10.1016/j.mehy.2003.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 12/10/2003] [Indexed: 11/16/2022]
Abstract
Mucopolysaccharidoses are rare genetic diseases from the group of lysosomal storage disorders caused by deficiency of enzymes involved in degradation of mucopolysaccharides (glycosaminoglycans, GAGs). Within each mucopolysaccharidosis, there is a continuous spectrum of clinical features from the very severe to the more mildly affected individuals. Surprisingly, in most cases, it is not possible to predict severity and clinical progress (i.e., the natural history) of the disease on the basis of detection of particular mutations or residual activity of the deficient enzyme. In this article, the reasons for such an unexpected difficulty are discussed. A model for the correlation between residual activity of a lysosomal enzyme and the turnover rate of its substrate(s) has been proposed previously by others, however, in that model it was assumed that substrate concentration in the lysosome is not regulated, thus the residual activity of a hydrolase would be the only determinant of the rate of substrate accumulation. On the other hand, both a general model for genetic regulation of turnover of GAGs and results of very recent studies strongly suggest that expression of genes coding for enzymes involved in GAG synthesis is precisely regulated and may vary between individuals. Therefore, we propose that apart from measurement of residual activity of the enzyme involved in degradation of GAGs, the efficiency of synthesis of these compounds should also be estimated. If the hypothesis presented in this article is true, the ratio of the synthesis of glycosaminoglycans to the residual activity of the deficient enzyme should be of considerable prognostic value.
Collapse
Affiliation(s)
- G Wegrzyn
- Department of Molecular Biology, Laboratory of Molecular Genetics, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland.
| | | | | |
Collapse
|
48
|
Kasperzyk JL, El-Abbadi MM, Hauser EC, D'Azzo A, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J Neurochem 2004; 89:645-53. [PMID: 15086521 DOI: 10.1046/j.1471-4159.2004.02381.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GM1 gangliosidosis is a glycosphingolipid (GSL) lysosomal storage disease caused by a genetic deficiency of acid beta-galactosidase (beta-gal), the enzyme that catabolyzes GM1 within lysosomes. Accumulation of GM1 and its asialo form (GA1) occurs primarily in the brain, leading to progressive neurodegeneration and brain dysfunction. Substrate reduction therapy aims to decrease the rate of GSL biosynthesis to counterbalance the impaired rate of catabolism. The imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ) is a competitive inhibitor of the ceramide-specific glucosyltransferase that catalyzes the first step in GSL biosynthesis. Neonatal C57BL/6J (B6) and beta-gal knockout (-/-) mice were injected daily from post-natal day 2 (p-2) to p-5 with either vehicle or NB-DGJ at 600 mg or 1200 mg/kg body weight. These drug concentrations significantly reduced total brain ganglioside and GM1 content in the B6 and the beta-gal (-/-) mice. Drug treatment had no significant effect on viability, body weight, brain weight, or brain water content in the B6 and beta-gal (-/-) mice. Significant elevations in neutral lipids (GA1, ceramide, and sphingomyelin) were observed in the NB-DGJ-treated beta-gal (-/-) mice, but were not associated with adverse effects. Also, NB-DGJ treatment of B6 and beta-gal (-/-) mice from p-2 to p-5 had no subsequent effect on brain ganglioside content at p-21. Our results show that NB-DGJ is effective in reducing total brain ganglioside and GM1 content at early neonatal ages. These findings suggest that substrate reduction therapy using NB-DGJ may be an effective early intervention for GM1 gangliosidosis and possibly other GSL lysosomal storage diseases.
Collapse
Affiliation(s)
- Julie L Kasperzyk
- Department of Biology, Boston College, Chestnut Hill, Massachussetts, USA
| | | | | | | | | | | |
Collapse
|
49
|
Schuldt AJT, Hampton TJ, Chu V, Vogler CA, Galvin N, Lessard MD, Barker JE. Electrocardiographic and other cardiac anomalies in beta-glucuronidase-null mice corrected by nonablative neonatal marrow transplantation. Proc Natl Acad Sci U S A 2004; 101:603-8. [PMID: 14704281 PMCID: PMC327194 DOI: 10.1073/pnas.0305284101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular manifestations of lysosomal storage disease (LSD) are a significant health problem for affected patients. Infantile-onset cardiac disease, because of its rapid progression, is usually treated symptomatically. Therapy in older patients includes valve replacement and bone marrow (BM) transplantation, both of which are life threatening in the already debilitated patients. Enzyme replacement therapy has potential benefit but has not yet been demonstrated to provide long-term relief for cardiac disease. Here, we demonstrate prevention of severe cardiac manifestations in beta-glucuronidase (GUSB) null mice BM-transplanted i.v. as neonates without myeloablative pretreatment. The mice, a model of mucopolysaccharidosis type VII (MPSVII, Sly syndrome), develop progressive LSD unless provided with GUSB early in life. The BM recipients retained GUSB+ donor cells in the peripheral blood and heart until necropsy at > or = 11 months of age. The enzyme beta-hexosamindase increased in tissues of GUSB null MPSVII mice was reduced significantly (P = 0.001) in treated MPSVII hearts. Electrocardiography demonstrated normalization of heart rate, PR, PQ, and QRS intervals in BM recipients. Storage was markedly reduced in the stroma of heart valves, adventitial cells of the aortic root, perivascular and interstitial cells of the myocardium, and interstitial cells of the conduction tissue. Heart/body weight ratio normalized. The aortic root was still grossly distended, and the conductive myocytes retained storage, suggesting neither plays a major role in ECG normalization. We conclude that transplantation of MPSVII neonates without toxic intervention can prevent many of the cardiovascular manifestations of LSD.
Collapse
|
50
|
STOJILJKOVIC L, ALEXANDER B, STOISAVLJEVIC-ŠATARA S, ŠKRBIC R, IGIC R. Glycosidase activities in hog serum, optic nerve, and ocular tissues. Biomed Res 2004. [DOI: 10.2220/biomedres.25.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|