1
|
Lefevre CM, Cain JW, Kramer AC, Seo H, Lopez AN, Sah N, Wu G, Bazer FW, Johnson GA. Evidence for metabolism of creatine by the conceptus, placenta, and uterus for production of adenosine triphosphate during conceptus development in pigs†. Biol Reprod 2024; 111:694-707. [PMID: 38836439 DOI: 10.1093/biolre/ioae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
In pigs, the majority of embryonic mortality occurs when free-floating conceptuses (embryos/fetuses and associated placental membranes) elongate, and the uterine-placental interface undergoes folding and develops areolae. Both periods involve proliferation, migration, and changes in morphology of cells that require adenosine triphosphate (ATP). We hypothesize that insufficient ATP in conceptus and uterine tissues contributes to conceptus loss in pigs. Creatine is stored in cells as phosphocreatine for ATP regeneration through the creatine-creatine kinase- phosphocreatine pathway. However, the expression of components of this pathway in pigs has not been examined throughout gestation. Results of qPCR analyses indicated increases in AGAT, GAMT, CKM, CKB, and SLC6A8 mRNAs in elongating porcine conceptuses, and immunofluorescence microscopy localized guanidinoacetate N-methyltransferase, creatine kinase M, and creatine kinase B proteins to the trophectoderm of elongating conceptuses, to the columnar chorionic epithelial cells at the bottom of chorioallantoic troughs, and to endometrial luminal epithelium at the tops of the endometrial ridges of uterine-placental folds on Days 40, 60, and 90 of gestation. Guanidinoacetate N-methyltransferase protein is expressed in endometrial luminal epithelium at the uterine-placental interface, but immunostaining is more intense in luminal epithelium at the bottoms of the endometrial ridges. Results of this study indicate that key elements of the pathway for creatine metabolism are expressed in cells of the conceptus, placenta, and uterus for potential production of ATP during two timepoints in pregnancy with a high demand for energy; elongation of the conceptus for implantation and development of uterine-placental folding during placentation.
Collapse
Affiliation(s)
- Carli M Lefevre
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Joe W Cain
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Arianna N Lopez
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Nirvay Sah
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Varillas-Delgado D. Association of Genetic Profile with Muscle Mass Gain and Muscle Injury Prevention in Professional Football Players after Creatine Supplementation. Nutrients 2024; 16:2511. [PMID: 39125391 PMCID: PMC11313812 DOI: 10.3390/nu16152511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND In recent years, the study of creatine supplementation in professional athletes has been of great interest. However, the genetics involved in response to supplementation is unknown. The aim of this study was to analyse, for the first time, the relationship between muscle performance-related genes and the risk of an increased body mass index (BMI) and muscle mass and a decrease in fat mass in professional football players after creatine supplementation. METHODS For this longitudinal study, one hundred and sixty-one men's professional football players were recruited. The polymorphisms ACE I/D, ACTN3 c.1729C>T, AMPD1 c.34C>T, CKM c.*800A>G, and MLCK (c.49C>T and c.37885C>A) were genotyped using Single-Nucleotide Primer Extension (SNPE). To assess the combined impact of these six polymorphisms, a total genotype score (TGS) was calculated. The creatine supplementation protocol consisted of 20 g/day of creatine monohydrate for 5 days (loading dose) and 3-5 g/day for 7 weeks (maintenance dose). Anthropometric characteristics (body mass index (BMI), fat, and muscle mass) were recorded before and after the creatine supplementation protocol. Characteristics of non-contact muscle injuries during the 2022/2023 season were classified according to a consensus statement for injury recording. The results showed that the allelic frequencies of ACE and AMPD1 differed between responders and non-responders in muscle mass increase (all p < 0.05). Players with a TGS exceeding 54.16 a.u. had an odds ratio (OR) of 2.985 (95%CI: 1.560-5.711; p = 0.001) for muscle mass increase. By contrast, those with a TGS below 54.16 a.u. had an OR of 9.385 (95%CI: 4.535-19.425; p < 0.001) for suffering non-contact muscle injuries during the season. CONCLUSIONS The increase in BMI and muscle mass in response to creatine supplementation in professional football players was influenced by a TGS derived from the combination of favourable genotypes linked to muscle performance. The CC genotype and C allele of AMPD1 were particularly associated with a higher likelihood of muscle mass increase under creatine supplementation in this group of professional football players.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain;
- SPORTNOMICS S.L., 28922 Madrid, Spain
| |
Collapse
|
3
|
Luo J, Luo M, Kaminga AC, Wei J, Dai W, Peng Y, Zhao K, Duan Y, Xiao X, Ouyang S, Yao Z, Liu Y, Pan X. Integrative metabolomics highlights gut microbiota metabolites as novel NAFLD-related candidate biomarkers in children. Microbiol Spectr 2024; 12:e0523022. [PMID: 38445874 PMCID: PMC10986516 DOI: 10.1128/spectrum.05230-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/29/2023] [Indexed: 03/07/2024] Open
Abstract
Altered gut microbiota and metabolites are important for non-alcoholic fatty liver disease (NAFLD) in children. We aimed to comprehensively examine the effects of gut metabolites on NAFLD progression. We performed integrative metabolomics (untargeted discovery and targeted validation) analysis of non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), and obesity in children. Fecal samples were collected from 75 subjects in the discovery cohort (25 NAFL, 25 NASH, and 25 obese control children) and 145 subjects in an independent validation cohort (53 NAFL, 39 NASH, and 53 obese control children). Among 2,491 metabolites, untargeted metabolomics revealed a complete NAFLD metabolic map containing 318 increased and 123 decreased metabolites. Then, machine learning selected 65 important metabolites that can distinguish the severity of the NAFLD. Furthermore, precision-targeted metabolomics selected 5 novel gut metabolites from 20 typical metabolites. The functionality of candidate metabolites was validated in hepatocyte cell lines. In the end, this study annotated two novel elevated pathogenic metabolites (dodecanoic acid and creatinine) and a relationship between depleted protective gut microbiota (Butyricicoccus and Alistipes), increased inflammation (IL-1β), lipid metabolism (TG), and liver function (ALT and AST). This study demonstrates the role of novel gut metabolites (dodecanoic acid and creatinine), as the fatty acid metabolism regulator contributing to NAFLD development through its influence on inflammation and liver function. IMPORTANCE Altered gut microbiota and metabolites are a major cause of non-alcoholic fatty liver disease (NAFLD) in children. This study demonstrated a complete gut metabolic map of children with NAFLD, containing 318 increased and 123 decreased metabolites by untargeted metabolomic. Multiple validation approaches (machine learning and targeted metabolomic) selected five novel gut metabolites for targeted metabolomics, which can distinguish NAFLD status and severity. The gut microbiota (Butyricicoccus and Alistipes) and metabolites (creatinine and dodecanoic acid) were novel biomarkers associated with impaired liver function and inflammation and validated by experiments of hepatocyte cell lines. The data provide a better understanding of the importance of gut microbiota and metabolite alterations in NAFLD, which implies that the altered gut microbiota and metabolites may represent a potential target to prevent NAFLD development.
Collapse
Affiliation(s)
- Jiayou Luo
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Miyang Luo
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Jia Wei
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Wen Dai
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yunlong Peng
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Kunyan Zhao
- School of Public Health, University of South China, Hengyang, China
| | - Yamei Duan
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiang Xiao
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - SiSi Ouyang
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhenzhen Yao
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yixu Liu
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiongfeng Pan
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
4
|
Shi C, Liang Z, Li T, Hao Q, Xiang H, Xie Q. Metabolome and microbiome analyses of the anti-fatigue mechanism of Acanthopanax senticosus leaves. Food Funct 2024; 15:3791-3809. [PMID: 38511300 DOI: 10.1039/d3fo05311c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Acanthopanax senticosus leaves, widely used as a vegetable and tea, are reported to be beneficial in treating neurological disorders. At present, their anti-fatigue effect remains to be established. In this study, we analyzed the composition of the extracts from A. senticosus leaves and confirmed their antioxidant and anti-inflammatory properties at the cellular level. In mice subjected to exhaustive running on a treadmill, supplementation with A. senticosus leaf extracts enhanced exercise performance and alleviated fatigue via the reversal of exercise-induced 5-HT elevation, metabolic waste accumulation, organ damage, and glucose metabolism-related gene expression. The collective findings from microbiome and metabolomic analyses indicate that A. senticosus leaf extracts increase α-diversity, regulate microbial composition, and reverse exercise-mediated disruption of carbohydrate, creatine, amino acid, and trimethylamine metabolism. This study provides preliminary evidence for the utility of A. senticosus leaves as a promising anti-fatigue food and offers insights into the underlying mechanism.
Collapse
Affiliation(s)
- Chao Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Zehua Liang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Ting Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Qi Hao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Hongyu Xiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, P.R. China
| | - Qiuhong Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, P.R. China
| |
Collapse
|
5
|
Forbes SC, Candow DG, Neto JHF, Kennedy MD, Forbes JL, Machado M, Bustillo E, Gomez-Lopez J, Zapata A, Antonio J. Creatine supplementation and endurance performance: surges and sprints to win the race. J Int Soc Sports Nutr 2023; 20:2204071. [PMID: 37096381 PMCID: PMC10132248 DOI: 10.1080/15502783.2023.2204071] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Creatine supplementation is an effective ergogenic aid to augment resistance training and improve intense, short duration, intermittent performance. The effects on endurance performance are less known. The purpose of this brief narrative review is to discuss the potential mechanisms of how creatine can affect endurance performance, defined as large muscle mass activities that are cyclical in nature and are >~3 min in duration, and to highlight specific nuances within the literature. Mechanistically, creatine supplementation elevates skeletal muscle phosphocreatine (PCr) stores facilitating a greater capacity to rapidly resynthesize ATP and buffer hydrogen ion accumulation. When co-ingested with carbohydrates, creatine enhances glycogen resynthesis and content, an important fuel to support high-intensity aerobic exercise. In addition, creatine lowers inflammation and oxidative stress and has the potential to increase mitochondrial biogenesis. In contrast, creatine supplementation increases body mass, which may offset the potential positive effects, particularly in weight-bearing activities. Overall, creatine supplementation increases time to exhaustion during high-intensity endurance activities, likely due to increasing anaerobic work capacity. In terms of time trial performances, results are mixed; however, creatine supplementation appears to be more effective at improving performances that require multiple surges in intensity and/or during end spurts, which are often key race-defining moments. Given creatines ability to enhance anaerobic work capacity and performance through repeated surges in intensity, creatine supplementation may be beneficial for sports, such as cross-country skiing, mountain biking, cycling, triathlon, and for short-duration events where end-spurts are critical for performance, such as rowing, kayaking, and track cycling.
Collapse
Affiliation(s)
- Scott C Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | - Darren G Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | | | - Michael D Kennedy
- University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, AB, Canada
| | - Jennifer L Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | | | - Erik Bustillo
- Train 8Nine/CrossFit Coconut Grove, Erik Bustillo Consulting, Miami, FL, USA
| | - Jose Gomez-Lopez
- Rehab & Nutrition Center, Human Performance Laboratory, Motion Training, Lo Barnechea, Chile
| | | | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| |
Collapse
|
6
|
Yu L, Wang L, Hu G, Ren L, Qiu C, Li S, Zhou X, Chen S, Chen R. Reprogramming alternative macrophage polarization by GATM-mediated endogenous creatine synthesis: A potential target for HDM-induced asthma treatment. Front Immunol 2022; 13:937331. [PMID: 36177049 PMCID: PMC9513582 DOI: 10.3389/fimmu.2022.937331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular energy metabolism plays a crucial role in the regulation of macrophage polarization and in the execution of immune functions. A recent study showed that Slc6a8-mediated creatine uptake from exogenous supplementation modulates macrophage polarization, yet little is known about the role of the de novo creatine de novobiosynthesis pathway in macrophage polarization. Here, we observed that glycine amidinotransferase (GATM), the rate-limiting enzyme for creatine synthesis, was upregulated in alternative (M2) polarized macrophages, and was dependent on the transcriptional factor STAT6, whereas GATM expression was suppressed in the classical polarized (M1) macrophage. Next, we revealed that exogenous creatine supplementation enhanced IL-4-induced M2 polarization, confirming recent work. Furthermore, we revealed that genetic ablation of GATM did not affect expression of M1 marker genes (Nos2, IL1b, IL12b) or the production of nitric oxide in both peritoneal macrophages (PMs) and bone marrow-derived macrophages (BMDMs). By contrast, expression levels of M2 markers (Arg1, Mrc1, Ccl17 and Retnla) were lower following GATM deletion. Moreover, we found that deletion of GATM in resident alveolar macrophages (AMs) significantly blocked M2 polarization but with no obvious effect on the number of cells in knockout mice. Lastly, an upregulation of GATM was found in lung tissue and bronchoalveolar lavage fluid macrophages from HDM-induced asthmatic mice. Our study uncovers a previously uncharacterized role for the de novo creatine biosynthesis enzyme GATM in M2 macrophage polarization, which may be involved in the pathogenesis of related inflammatory diseases such as an T helper 2 (Th2)-associated allergic asthma.
Collapse
Affiliation(s)
- Li Yu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guang Hu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Laibin Ren
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Qiu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shun Li
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- *Correspondence: Rongchang Chen, ; Shanze Chen, ; Xiaohui Zhou, ; Shun Li,
| | - Xiaohui Zhou
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- *Correspondence: Rongchang Chen, ; Shanze Chen, ; Xiaohui Zhou, ; Shun Li,
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Rongchang Chen, ; Shanze Chen, ; Xiaohui Zhou, ; Shun Li,
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Rongchang Chen, ; Shanze Chen, ; Xiaohui Zhou, ; Shun Li,
| |
Collapse
|
7
|
Yu L, Wang L, Hu G, Ren L, Qiu C, Li S, Zhou X, Chen S, Chen R. Reprogramming alternative macrophage polarization by GATM-mediated endogenous creatine synthesis: A potential target for HDM-induced asthma treatment. Front Immunol 2022; 13:937331. [PMID: 36177049 PMCID: PMC9513582 DOI: 10.3389/fimmu.2022.937331 10.3389/fimmu.2022.937331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cellular energy metabolism plays a crucial role in the regulation of macrophage polarization and in the execution of immune functions. A recent study showed that Slc6a8-mediated creatine uptake from exogenous supplementation modulates macrophage polarization, yet little is known about the role of the de novo creatine de novobiosynthesis pathway in macrophage polarization. Here, we observed that glycine amidinotransferase (GATM), the rate-limiting enzyme for creatine synthesis, was upregulated in alternative (M2) polarized macrophages, and was dependent on the transcriptional factor STAT6, whereas GATM expression was suppressed in the classical polarized (M1) macrophage. Next, we revealed that exogenous creatine supplementation enhanced IL-4-induced M2 polarization, confirming recent work. Furthermore, we revealed that genetic ablation of GATM did not affect expression of M1 marker genes (Nos2, IL1b, IL12b) or the production of nitric oxide in both peritoneal macrophages (PMs) and bone marrow-derived macrophages (BMDMs). By contrast, expression levels of M2 markers (Arg1, Mrc1, Ccl17 and Retnla) were lower following GATM deletion. Moreover, we found that deletion of GATM in resident alveolar macrophages (AMs) significantly blocked M2 polarization but with no obvious effect on the number of cells in knockout mice. Lastly, an upregulation of GATM was found in lung tissue and bronchoalveolar lavage fluid macrophages from HDM-induced asthmatic mice. Our study uncovers a previously uncharacterized role for the de novo creatine biosynthesis enzyme GATM in M2 macrophage polarization, which may be involved in the pathogenesis of related inflammatory diseases such as an T helper 2 (Th2)-associated allergic asthma.
Collapse
Affiliation(s)
- Li Yu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guang Hu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Laibin Ren
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Qiu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shun Li
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Rongchang Chen, ; Shanze Chen, ; Xiaohui Zhou, ; Shun Li,
| | - Xiaohui Zhou
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Rongchang Chen, ; Shanze Chen, ; Xiaohui Zhou, ; Shun Li,
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China,*Correspondence: Rongchang Chen, ; Shanze Chen, ; Xiaohui Zhou, ; Shun Li,
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, China,*Correspondence: Rongchang Chen, ; Shanze Chen, ; Xiaohui Zhou, ; Shun Li,
| |
Collapse
|
8
|
Gras D, Lanhers C, Bagheri R, Ugbolue UC, Coudeyre E, Pereira B, Zak M, Bouillon-Minois JB, Dutheil F. Creatine supplementation and VO 2max: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2021:1-12. [PMID: 34859731 DOI: 10.1080/10408398.2021.2008864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Although creatine supplementation is well-known to increase exercise performance in acute high-intensity exercises, its role in aerobic performance based on VO2max is more controversial. Thus, we performed a systematic review and meta-analysis on the effects of creatine supplementation on VO2max. PubMed, Cochrane, Embase, and ScienceDirect were searched for randomized controlled trials (RCTs) reporting VO2max in creatine supplementation and placebo groups before and after supplementation. We computed a random-effects meta-analysis on VO2max at baseline, within groups following supplementation, on changes on VO2max between groups, and after supplementation between groups. Sensitivity analyses and meta-regression were conducted. We included 19 RCTs for a total of 424 individuals (mean age 30 years old, 82% men). VO2max did not differ at baseline between groups (creatine and placebo). Participants in both groups were engaged in exercise interventions in most studies (80%). Using changes in VO2max, VO2max increased in both groups but increased less after creatine supplementation than placebo (effect size [ES] = -0.32, 95%CI = -0.51 to -0.12, p = 0.002). Comparisons after creatine supplementation confirmed a lower VO2max in the creatine group compared to the placebo group (ES= -0.20, 95%CI = -0.39 to -0.001, p = 0.049). Meta-analysis after exclusion from meta-funnel resulted in similar outcomes in a subgroup of young and healthy participants. Meta-regressions on characteristics of supplementation, physical training, or sociodemographic were not statistically significant. Creatine supplementation has a negative effect on VO2max, regardless of the characteristics of training, supplementation, or population characteristics.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.2008864 .
Collapse
Affiliation(s)
- Damien Gras
- CHU Clermont-Ferrand, Physical and Rehabilitation Medicine, Université Clermont Auvergne, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Charlotte Lanhers
- CHU Clermont-Ferrand, Physical and Rehabilitation Medicine, Université Clermont Auvergne, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Ukadike Chris Ugbolue
- University of the West of Scotland, School of Health and Life Sciences, Institute for Clinical Exercise & Health Science, South Lanarkshire, Scotland, UK
| | - Emmanuel Coudeyre
- INRAE, Human Nutrition Unit (UNH), Université Clermont Auvergne, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Physical and Rehabilitation Medicine, Clermont-Ferrand, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Biostatistics, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Marek Zak
- Faculty of Medicine and Health Sciences, Institute of Physiotherapy, The Jan Kochanowski University, Kielce, Poland
| | - Jean-Baptiste Bouillon-Minois
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Emergency Medicine, Clermont-Ferrand, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, Clermont-Ferrand, France
| |
Collapse
|
9
|
Anders JPV, Neltner TJ, Smith RW, Keller JL, Housh TJ, Daugherty FJ, Tempesta MS, Dash AK, Munt DJ, Schmidt RJ, Johnson GO. The effects of phosphocreatine disodium salts plus blueberry extract supplementation on muscular strength, power, and endurance. J Int Soc Sports Nutr 2021; 18:60. [PMID: 34503541 PMCID: PMC8427883 DOI: 10.1186/s12970-021-00456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous studies have demonstrated the efficacy of creatine supplementation for improvements in exercise performance. Few studies, however, have examined the effects of phosphocreatine supplementation on exercise performance. Furthermore, while polyphenols have antioxidant and anti-inflammatory properties, little is known regarding the influence of polyphenol supplementation on muscular strength, power, and endurance. Thus, the purpose of the present study was to compare the effects of 28 days of supplementation with phosphocreatine disodium salts plus blueberry extract (PCDSB), creatine monohydrate (CM), and placebo on measures of muscular strength, power, and endurance. METHODS Thirty-three men were randomly assigned to consume either PCDSB, CM, or placebo for 28 days. Peak torque (PT), average power (AP), and percent decline for peak torque (PT%) and average power (AP%) were assessed from a fatigue test consisting of 50 maximal, unilateral, isokinetic leg extensions at 180°·s- 1 before and after the 28 days of supplementation. Individual responses were assessed to examine the proportion of subjects that exceeded a minimal important difference (MID). RESULTS The results demonstrated significant (p < 0.05) improvements in PT for the PCDSB and CM groups from pre- (99.90 ± 22.47 N·m and 99.95 ± 22.50 N·m, respectively) to post-supplementation (119.22 ± 29.87 N·m and 111.97 ± 24.50 N·m, respectively), but no significant (p = 0.112) change for the placebo group. The PCDSB and CM groups also exhibited significant improvements in AP from pre- (140.18 ± 32.08 W and 143.42 ± 33.84 W, respectively) to post-supplementation (170.12 ± 42.68 W and 159.78 ± 31.20 W, respectively), but no significant (p = 0.279) change for the placebo group. A significantly (p < 0.05) greater proportion of subjects in the PCDSB group exceeded the MID for PT compared to the placebo group, but there were no significant (p > 0.05) differences in the proportion of subjects exceeding the MID between the CM and placebo groups or between the CM and PCDSB groups. CONCLUSIONS These findings indicated that for the group mean responses, 28 days of supplementation with both PCDSB and CM resulted in increases in PT and AP. The PCDSB, however, may have an advantage over CM when compared to the placebo group for the proportion of individuals that respond favorably to supplementation with meaningful increases in muscular strength.
Collapse
Affiliation(s)
- John Paul V Anders
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA.
| | - Tyler J Neltner
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Robert W Smith
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Joshua L Keller
- Department of Health, Kinesiology and Sport, University of South Alabama, Mobile, AL, 36688, USA
| | - Terry J Housh
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | | | | | - Alekha K Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Omaha, NE, 68178, USA
| | - Daniel J Munt
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Omaha, NE, 68178, USA
| | - Richard J Schmidt
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Glen O Johnson
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| |
Collapse
|
10
|
Bonilla DA, Moreno Y, Rawson ES, Forero DA, Stout JR, Kerksick CM, Roberts MD, Kreider RB. A Convergent Functional Genomics Analysis to Identify Biological Regulators Mediating Effects of Creatine Supplementation. Nutrients 2021; 13:2521. [PMID: 34444681 PMCID: PMC8397972 DOI: 10.3390/nu13082521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine (Cr) and phosphocreatine (PCr) are physiologically essential molecules for life, given they serve as rapid and localized support of energy- and mechanical-dependent processes. This evolutionary advantage is based on the action of creatine kinase (CK) isozymes that connect places of ATP synthesis with sites of ATP consumption (the CK/PCr system). Supplementation with creatine monohydrate (CrM) can enhance this system, resulting in well-known ergogenic effects and potential health or therapeutic benefits. In spite of our vast knowledge about these molecules, no integrative analysis of molecular mechanisms under a systems biology approach has been performed to date; thus, we aimed to perform for the first time a convergent functional genomics analysis to identify biological regulators mediating the effects of Cr supplementation in health and disease. A total of 35 differentially expressed genes were analyzed. We identified top-ranked pathways and biological processes mediating the effects of Cr supplementation. The impact of CrM on miRNAs merits more research. We also cautiously suggest two dose-response functional pathways (kinase- and ubiquitin-driven) for the regulation of the Cr uptake. Our functional enrichment analysis, the knowledge-based pathway reconstruction, and the identification of hub nodes provide meaningful information for future studies. This work contributes to a better understanding of the well-reported benefits of Cr in sports and its potential in health and disease conditions, although further clinical research is needed to validate the proposed mechanisms.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
11
|
Bonilla DA, Kreider RB, Stout JR, Forero DA, Kerksick CM, Roberts MD, Rawson ES. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021; 13:nu13041238. [PMID: 33918657 PMCID: PMC8070484 DOI: 10.3390/nu13041238] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells through a specific symporter called Na+/Cl−-dependent Cr transporter (CRT). Once within cells, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4−]2− and Cr to produce phosphocreatine (PCr) and [Mg2+:ADP3−]−. We aimed to perform a comprehensive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Correspondence: ; Tel.: +57-320-335-2050
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| |
Collapse
|
12
|
Stares A, Bains M. The Additive Effects of Creatine Supplementation and Exercise Training in an Aging Population: A Systematic Review of Randomized Controlled Trials. J Geriatr Phys Ther 2021; 43:99-112. [PMID: 30762623 DOI: 10.1519/jpt.0000000000000222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND PURPOSE The role of creatine supplementation in young athletes and bodybuilders is well established including ergogenic properties of muscular hypertrophy, strength, power, and endurance. Whether the benefits of creatine supplementation translate to an aging population with moderate training stimulus remains unclear especially in regard to gender, creatine dose, and duration. This systematic review assessed whether creatine supplementation combined with exercise results in additive improvements in indices of skeletal muscle, bone, and mental health over exercise alone in healthy older adults. METHODS PubMed, CINAHL, and Web of Science databases were utilized to identify randomized controlled trials of creatine supplementation combined with exercise in an aging population with additional predetermined inclusion and exclusion criteria. Two reviewers independently screened the titles and abstracts, reviewed full-text articles, and performed quality assessments using the Physiotherapy Evidence Database scale. RESULTS AND DISCUSSION Seventeen studies were comprehensively reviewed according to categories of strength, endurance, functional capacity, body composition, cognition, and safety. These studies suggest that any additive ergogenic creatine effects on upper and/or lower body strength, functional capacity, and lean mass in an older population would require a continuous and daily low-dose creatine supplementation combined with at least 12 weeks of resistance training. Potential creatine specific increases in regional bone mineral density of the femur are possible but may require at least 1 year of creatine supplementation combined with moderate resistance training, and additional long-term clinical trials are warranted. The limited data suggested no additive effects of creatine over exercise alone on indices of mental health. The beneficial effects of creatine supplementation are more consistent in older women than in men. CONCLUSIONS Creatine monohydrate is safe to use in older adults. While creatine in conjunction with moderate- to high-intensity exercise in an aging population may improve skeletal muscle health, additional studies are needed to determine the effective dosing and duration paradigm for potential combined creatine and exercise effects on bone and cognition in older adults.
Collapse
Affiliation(s)
- Aaron Stares
- School of Physical Therapy, University of the Incarnate Word, San Antonio, Texas
| | | |
Collapse
|
13
|
Dietary Supplement and Food Contaminations and Their Implications for Doping Controls. Foods 2020; 9:foods9081012. [PMID: 32727139 PMCID: PMC7466328 DOI: 10.3390/foods9081012] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
A narrative review with an overall aim of indicating the current state of knowledge and the relevance concerning food and supplement contamination and/or adulteration with doping agents and the respective implications for sports drug testing is presented. The identification of a doping agent (or its metabolite) in sports drug testing samples constitutes a violation of the anti-doping rules defined by the World Anti-Doping Agency. Reasons for such Adverse Analytical Findings (AAFs) include the intentional misuse of performance-enhancing/banned drugs; however, also the scenario of inadvertent administrations of doping agents was proven in the past, caused by, amongst others, the ingestion of contaminated dietary supplements, drugs, or food. Even though controversial positions concerning the effectiveness of dietary supplements in healthy subjects exist, they are frequently used by athletes, anticipating positive effects on health, recovery, and performance. However, most supplement users are unaware of the fact that the administration of such products can be associated with unforeseeable health risks and AAFs in sports. In particular anabolic androgenic steroids (AAS) and stimulants have been frequently found as undeclared ingredients of dietary supplements, either as a result of cross-contaminations due to substandard manufacturing practices and missing quality controls or an intentional admixture to increase the effectiveness of the preparations. Cross-contaminations were also found to affect therapeutic drug preparations. While the sensitivity of assays employed to test pharmaceuticals for impurities is in accordance with good manufacturing practice guidelines allowing to exclude any physiological effects, minute trace amounts of contaminating compounds can still result in positive doping tests. In addition, food was found to be a potential source of unintentional doping, the most prominent example being meat tainted with the anabolic agent clenbuterol. The athletes’ compliance with anti-doping rules is frequently tested by routine doping controls. Different measures including offers of topical information and education of the athletes as well as the maintenance of databases summarizing low- or high-risk supplements are important cornerstones in preventing unintentional anti-doping rule violations. Further, the collection of additional analytical data has been shown to allow for supporting result management processes.
Collapse
|
14
|
Torok ZA, Busekrus RB, Hydock DS. Effects of Creatine Supplementation on Muscle Fatigue in Rats Receiving Doxorubicin Treatment. Nutr Cancer 2019; 72:252-259. [PMID: 31184509 DOI: 10.1080/01635581.2019.1623900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to investigate the effects of in vivo creatine monohydrate (Cr) supplementation on doxorubicin (Dox)-induced muscle dysfunction. Male rats were fed a diet supplemented with 3% Cr or a standard chow for 2 wk. After 2 wk of feeding, animals received Dox or saline as a placebo. Five days post-injection, grip strength was measured, and muscle fatigue was analyzed ex vivo. When compared with controls, a significantly lower grip strength was observed with Dox treatment, but no significant handgrip difference was observed with Cr feeding prior to Dox treatment when compared to controls. In the isolated muscle fatigue experiments, solei (primarily type I muscle) from controls produced significantly less force than baseline at 60 s and solei from Dox treated rats produced significantly less force than baseline at 30 s; however, Cr feeding prior to Dox produced significantly less force than baseline at 60 s. In the primarily type II EDL, a decline in force production from baseline was observed at 50 s in controls and Cr + Dox and at 20 s in standard chow + Dox. Cr attenuated the increase in fatigue that accompanies Dox treatment suggesting that Cr supplementation may have use in managing Dox myotoxicity.
Collapse
Affiliation(s)
- Zoltan A Torok
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado, USA
| | - Raquel B Busekrus
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado, USA
| | - David S Hydock
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado, USA.,The University of Northern Colorado Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, Colorado, USA
| |
Collapse
|
15
|
Abstract
With an ever aging population, identifying interventions that can alleviate age-related functional declines has become increasingly important. Dietary supplements have taken center stage based on various health claims and have become a multi-million dollar business. One such supplement is creatine, a major contributor to normal cellular physiology. Creatine, an energy source that can be endogenously synthesized or obtained through diet and supplement, is involved primarily in cellular metabolism via ATP replenishment. The goal of this chapter is to summarize how creatine and its associated enzyme, creatine kinase, act under normal physiological conditions, and how altered levels of either may lead to detrimental functional outcomes. Furthermore, we will focus on the effect of aging on the creatine system and how supplementation may affect the aging process and perhaps reverse it.
Collapse
Affiliation(s)
- Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ritu A Shetty
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Eric B Gonzales
- Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, TX, USA.
| |
Collapse
|
16
|
de Poli RDAB, Roncada LH, Malta EDS, Artioli GG, Bertuzzi R, Zagatto AM. Creatine Supplementation Improves Phosphagen Energy Pathway During Supramaximal Effort, but Does Not Improve Anaerobic Capacity or Performance. Front Physiol 2019; 10:352. [PMID: 31024332 PMCID: PMC6468287 DOI: 10.3389/fphys.2019.00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the effects of short-duration creatine monohydrate supplementation on anaerobic capacity (AC), anaerobic energy pathways, and time-to-exhaustion during high-intensity running. Fourteen healthy men underwent a graded exercise test (GXT) followed by a O2max confirmation test, 5 submaximal efforts, and 4 supramaximal running bouts at 115% of V˙O2max intensity (the first two supramaximal sessions were applied as familiarization trials) to measure the AC using two procedures; the maximum accumulated oxygen deficit (MAOD) and non-oxidative pathways energetics sum (AC[La-]+EPOCfast). The investigation was conducted in a single-blind and placebo-controlled manner, with participants performing the efforts first after being supplemented with a placebo (dextrose 20 g⋅day-1 for 5 days), and then, after a 7 day “placebo” washout period, they started the same procedure under creatine supplementation (20 g⋅day-1 for 5 days. This order was chosen due to the prolonged washout of creatine. MAOD was not different between placebo (3.35 ± 0.65 L) and creatine conditions (3.39 ± 0.79 L; P = 0.58) and presented a negligible effect [effect size (ES) = 0.08], similar to, AC[La-]+EPOCfast (placebo condition (3.66 ± 0.79 Land under creatine ingestion 3.82 ± 0.85 L; P = 0.07) presenting a small effect (ES = 0.20). The energetics from the phosphagen pathway increased significantly after creatine supplementation (1.66 ± 0.40 L) compared to the placebo condition (1.55 ± 0.42 L; P = 0.03). However, the glycolytic and oxidative pathways were not different between conditions. Furthermore, time to exhaustion did not differ between placebo (160.79 ± 37.76 s) and creatine conditions (163.64 ± 38.72; P = 0.49). Therefore, we can conclude that creatine supplementation improves the phosphagen energy contribution, but with no statistical effect on AC or time to exhaustion in supramaximal running.
Collapse
Affiliation(s)
- Rodrigo de Araujo Bonetti de Poli
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Luan Henrique Roncada
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, Brazil.,Department of Physical Education, School of Science, São Paulo State University (UNESP), Bauru, Brazil
| | - Elvis de Souza Malta
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Guilherme Giannini Artioli
- Applied Physiology and Nutrition Research Group, University of São Paulo (USP), São Paulo, Brazil.,School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Rômulo Bertuzzi
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Alessandro Moura Zagatto
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), Bauru, Brazil.,Department of Physical Education, School of Science, São Paulo State University (UNESP), Bauru, Brazil
| |
Collapse
|
17
|
Jagim AR, Stecker RA, Harty PS, Erickson JL, Kerksick CM. Safety of Creatine Supplementation in Active Adolescents and Youth: A Brief Review. Front Nutr 2018; 5:115. [PMID: 30547033 PMCID: PMC6279854 DOI: 10.3389/fnut.2018.00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022] Open
Abstract
Creatine has been extensively researched and is well-supported as one of the most effective dietary supplements available. There is overwhelming support within the literature regarding the ability of creatine to augment performance following short term (5–7 days) and long-duration supplementation periods. There is also strong support for creatine regarding its safety profile and minimal risk for adverse events or any negative influence on markers of clinical health and safety. Recent research has also highlighted the ability of creatine to confer several health-related benefits in select clinical populations in addition to offering cognitive benefits. Creatine is also a popular supplement of choice for adolescent athletes; however, research in this area is extremely limited, particularly when examining the safety and efficacy of creatine supplementation in this population. Therefore, the purpose of this review was to highlight the limited number of studies available in adolescent populations and systematically discuss the topic of safety of creatine supplementation in a younger population.
Collapse
Affiliation(s)
- Andrew R Jagim
- Exercise and Performance Nutrition Laboratory, Department of Exercise Science, Lindenwood University, St. Charles, MO, United States.,Mayo Clinic Health Systems, Onalaska, WI, United States
| | - Richard A Stecker
- Exercise and Performance Nutrition Laboratory, Department of Exercise Science, Lindenwood University, St. Charles, MO, United States
| | - Patrick S Harty
- Exercise and Performance Nutrition Laboratory, Department of Exercise Science, Lindenwood University, St. Charles, MO, United States
| | | | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, Department of Exercise Science, Lindenwood University, St. Charles, MO, United States
| |
Collapse
|
18
|
Crisafulli DL, Buddhadev HH, Brilla LR, Chalmers GR, Suprak DN, San Juan JG. Creatine-electrolyte supplementation improves repeated sprint cycling performance: A double blind randomized control study. J Int Soc Sports Nutr 2018; 15:21. [PMID: 29743825 PMCID: PMC5930494 DOI: 10.1186/s12970-018-0226-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background Creatine supplementation is recommended as an ergogenic aid to improve repeated sprint cycling performance. Furthermore, creatine uptake is increased in the presence of electrolytes. Prior research examining the effect of a creatine-electrolyte (CE) supplement on repeated sprint cycling performance, however, did not show post-supplementation improvement. The purpose of this double blind randomized control study was to investigate the effect of a six-week CE supplementation intervention on overall and repeated peak and mean power output during repeated cycling sprints with recovery periods of 2 min between sprints. Methods Peak and mean power generated by 23 male recreational cyclists (CE group: n = 12; 24.0 ± 4.2 years; placebo (P) group: n = 11; 23.3 ± 3.1 years) were measured on a Velotron ergometer as they completed five 15-s cycling sprints, with 2 min of recovery between sprints, pre- and post-supplementation. Mixed-model ANOVAs were used for statistical analyses. Results A supplement-time interaction showed a 4% increase in overall peak power (pre: 734 ± 75 W; post: 765 ± 71 W; p = 0.040; ηp2 = 0.187) and a 5% increase in overall mean power (pre: 586 ± 72 W; post: 615 ± 74 W; p = 0.019; ηp2 = 0.234) from pre- to post-supplementation for the CE group. For the P group, no differences were observed in overall peak (pre: 768 ± 95 W; post: 772 ± 108 W; p = 0.735) and overall mean power (pre: 638 ± 77 W; post: 643 ± 92 W; p = 0.435) from pre- to post-testing. For repeated sprint analysis, peak (pre: 737 ± 88 W; post: 767 ± 92 W; p = 0.002; ηp2 = 0.380) and mean (pre: 650 ± 92 W; post: 694 ± 87 W; p < 0.001; ηp2 = 0.578) power output were significantly increased only in the first sprint effort in CE group from pre- to post-supplementation testing. For the P group, no differences were observed for repeated sprint performance. Conclusion A CE supplement improves overall and repeated short duration sprint cycling performance when sprints are interspersed with adequate recovery periods.
Collapse
Affiliation(s)
- Daniel L Crisafulli
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Harsh H Buddhadev
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Lorrie R Brilla
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Gordon R Chalmers
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - David N Suprak
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Jun G San Juan
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| |
Collapse
|
19
|
Aubry RL, Whinton AK, Burr JF. The effect of creatine supplementation on the response of central and peripheral pulse wave velocity to high-intensity resistance exercise. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1512352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Rachel L. Aubry
- Human Performance and Health Research Laboratory, Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alanna K. Whinton
- Human Performance and Health Research Laboratory, Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jamie F. Burr
- Human Performance and Health Research Laboratory, Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
20
|
Andres S, Ziegenhagen R, Trefflich I, Pevny S, Schultrich K, Braun H, Schänzer W, Hirsch-Ernst KI, Schäfer B, Lampen A. Creatine and creatine forms intended for sports nutrition. Mol Nutr Food Res 2017; 61. [PMID: 28019093 DOI: 10.1002/mnfr.201600772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
Creatine is a popular ergogenic supplement in sports nutrition. Yet, supplementation of creatine occasionally caused adverse effects such as gastrointestinal complaints, muscle cramps and an increase in body weight. Creatine monohydrate has already been evaluated by different competent authorities and several have come to the conclusion that a daily intake of 3 g creatine per person is unlikely to pose safety concerns, focusing on healthy adults with exclusion of pregnant and breastfeeding women. Possible vulnerable subgroups were also discussed in relation to the safety of creatine. The present review provides an up-to-date overview of the relevant information with special focus on human studies regarding the safety of creatine monohydrate and other marketed creatine forms, in particular creatine pyruvate, creatine citrate, creatine malate, creatine taurinate, creatine phosphate, creatine orotate, creatine ethyl ester, creatine pyroglutamate, creatine gluconate, and magnesium creatine chelate. Limited data are available with regard to the safety of the latter creatine forms. Considering an acceptable creatine intake of 3 g per day, most of the evaluated creatine forms are unlikely to pose safety concerns, however some safety concerns regarding a supplementary intake of creatine orotate, creatine phosphate, and magnesium creatine chelate are discussed here.
Collapse
Affiliation(s)
- Susanne Andres
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Rainer Ziegenhagen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Iris Trefflich
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sophie Pevny
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Schultrich
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Hans Braun
- Institute of Biochemistry, German Sport University Cologne, Germany.,German Research Center of Elite Sport - Momentum, German Sport University Cologne, Germany
| | - Wilhelm Schänzer
- Institute of Biochemistry, German Sport University Cologne, Germany
| | | | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
21
|
Janssen BH, Lassche S, Hopman MT, Wevers RA, van Engelen BGM, Heerschap A. Monitoring creatine and phosphocreatine by (13)C MR spectroscopic imaging during and after (13)C4 creatine loading: a feasibility study. Amino Acids 2016; 48:1857-66. [PMID: 27401085 PMCID: PMC4974291 DOI: 10.1007/s00726-016-2294-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/01/2016] [Indexed: 12/28/2022]
Abstract
Creatine (Cr) supplementation to enhance muscle performance shows variable responses among individuals and different muscles. Direct monitoring of the supplied Cr in muscles would address these differences. In this feasibility study, we introduce in vivo 3D 13C MR spectroscopic imaging (MRSI) of the leg with oral ingestion of 13C4–creatine to observe simultaneously Cr and phosphocreatine (PCr) for assessing Cr uptake, turnover, and the ratio PCr over total Cr (TCr) in individual muscles. 13C MRSI was performed of five muscles in the posterior thigh in seven subjects (two males and two females of ~20 years, one 82-year-old male, and two neuromuscular patients) with a 1H/13C coil in a 3T MR system before, during and after intake of 15 % 13C4-enriched Cr. Subjects ingested 20 g Cr/day for 4 days in four 5 g doses at equal time intervals. The PCr/TCr did not vary significantly during supplementation and was similar for all subjects and investigated muscles (average 0.71 ± 0.07), except for the adductor magnus (0.64 ± 0.03). The average Cr turnover rate, assessed in male muscles, was 2.1 ± 0.7 %/day. The linear uptake rates of Cr were variable between muscles, although not significantly different. This assessment was possible in all investigated muscles of young male volunteers, but less so in muscles of the other subjects due to lower signal-to-noise ratio. Improvements for future studies are discussed. In vivo 13C MRSI after 13C–Cr ingestion is demonstrated for longitudinal studies of Cr uptake, turnover, and PCr/TCr ratios of individual muscles in one exam.
Collapse
Affiliation(s)
- Barbara H Janssen
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Saskia Lassche
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria T Hopman
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Arend Heerschap
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
22
|
|
23
|
Short-term creatine supplementation has no impact on upper-body anaerobic power in trained wrestlers. J Int Soc Sports Nutr 2015; 12:45. [PMID: 26664350 PMCID: PMC4673838 DOI: 10.1186/s12970-015-0107-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/04/2015] [Indexed: 11/25/2022] Open
Abstract
Background Creatine (CR) is considered an effective nutritional supplement having ergogenic effects, which appears more pronounced in upper-body compared to lower-body exercise. Nevertheless, results regarding the impact of CR loading on repeated high-intensity arm-cranking exercise are scarce and in some cases conflicting. Interestingly, few of the conducted studies have structured their research designs to mimic real world sporting events. Therefore, our purpose was to address the hypothesis that CR ingestion would increase anaerobic power output in consecutive upper-body intermittent sprint performance (UBISP) tests designed to simulate wrestling matches on a competition-day. Methods In a double-blind, placebo-controlled, parallel-group study, 20 trained wrestlers were assigned to either placebo or CR supplemented group (0.3 g ∙ kg−1 of body mass per day). Four 6-min UBISP tests interspersed with 30-min recovery periods were performed before (trial 1) and after 5 days (trial 2) of supplementation. Each test consisted of six 15-s periods of arm-cranking at maximal executable cadence against resistance of 0.04 kg ∙ kg−1 body mass interspersed with 40-s unloaded easy cranking periods and 5-s acceleration intervals (T1–T4). Mean power (MP), peak power (PP), fatigue index and heart rate parameters were measured during UBISP tests. Also, body weight and hydration status were assessed. Principle measures were statistical analysed with mixed-model ANOVAs. Results Mean individual CR consumption in the CR group was 24.8 ± 2.5 g ∙ d−1. No significant (P > 0.05) differences occurred in body mass or hydration status indices between the groups or across trials. MP, PP and fatigue index responses were unaffected by supplementation; although, a significant reduction in MP and PP did occurred from T1 to T4 in both trial 1 and 2 (P < 0.001). Overall heart rate responses in the tests tended to be higher in the CR than PLC group (P < 0.05); but, trends in responses in trials and tests were comparable (P > 0.05). Conclusion These results suggest that 5-day CR supplementation has no impact on upper-body muscle anaerobic power output in consecutive UBISP anaerobic tests mimicking wrestling matches on a competition day.
Collapse
|
24
|
Tyka AK, Chwastowski M, Cison T, Palka T, Tyka A, Szygula Z, Pilch W, Strzala M, Cepero M. Effect of creatine malate supplementation on physical performance, body composition and selected hormone levels in spinters and long-distance runners. ACTA ACUST UNITED AC 2015; 102:114-22. [PMID: 25804393 DOI: 10.1556/aphysiol.102.2015.1.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE The aim of the study was to determine whether creatine malate (CML) supplementation results in similar ergogenic effect in sprinters and long-distance runners. The other goal was to compare changes in body composition, physical performance and hormone levels after six-week training in athletes, divided into subgroups supplemented with creatine malate or taking placebo. RESULTS Six-week supplementation combined with physical training induced different effects in athletes. Significantly higher increases in relative and absolute peak power and total work (p < 0.05) were found in sprinters compared to other groups. Except for growth hormone, post-exercise venous blood serum hormone levels exhibited no statistically significant differences in athletes. After CML loading period, a significant increase in growth hormone was found in the group of sprinters. CONCLUSIONS A significant ergogenic effect was found in sprinters, which was reflected by the increase in anaerobic exercise indices and morphological indices and elevated growth hormone level, after graded exercise testing. The significant increase in the distance covered during graded test was only observed in supplemented long-distance runners, whereas no significant changes in maximal oxygen uptake, relative peak power and relative total work were noticed. This could be caused by later anaerobic threshold appearance in exercise test to exhaustion.
Collapse
Affiliation(s)
- A K Tyka
- University of Physical Education Department of Recreation and Biological Regeneration, Faculty of Tourism and Leisure Cracow Poland
| | - M Chwastowski
- University of Physical Education Doctoral Studies, Faculty of Physical Education and Sports Cracow Poland
| | - T Cison
- University of Physical Education Department of Physiology and Biochemistry, Faculty of Physical Education and Sports Al. Jana Pawla II 78 31-571 Cracow Poland
| | - T Palka
- University of Physical Education Department of Physiology and Biochemistry, Faculty of Physical Education and Sports Al. Jana Pawla II 78 31-571 Cracow Poland
| | - Anna Tyka
- University of Physical Education Department of Physiology and Biochemistry, Faculty of Physical Education and Sports Al. Jana Pawla II 78 31-571 Cracow Poland
| | - Z Szygula
- University of Physical Education Department of Physiology and Biochemistry, Faculty of Physical Education and Sports Al. Jana Pawla II 78 31-571 Cracow Poland
| | - W Pilch
- University of Physical Education Department of Physiology and Biochemistry, Faculty of Physical Education and Sports Al. Jana Pawla II 78 31-571 Cracow Poland
| | - M Strzala
- University of Physical Education Department of the Theory and Methodology of Water Sports, Faculty of Physical Education and Sports Cracow Poland
| | - M Cepero
- University of Granada Faculty of Education Granada Spain
| |
Collapse
|
25
|
López-Samanes A, Ortega Fonseca JF, Fernández Elías VE, Borreani S, Maté-Muñoz JL, Kovacs MS. Nutritional Ergogenic Aids in Tennis. Strength Cond J 2015. [DOI: 10.1519/ssc.0000000000000141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Performance Enhancing Diets and the PRISE Protocol to Optimize Athletic Performance. J Nutr Metab 2015; 2015:715859. [PMID: 25949823 PMCID: PMC4408745 DOI: 10.1155/2015/715859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
The training regimens of modern-day athletes have evolved from the sole emphasis on a single fitness component (e.g., endurance athlete or resistance/strength athlete) to an integrative, multimode approach encompassing all four of the major fitness components: resistance (R), interval sprints (I), stretching (S), and endurance (E) training. Athletes rarely, if ever, focus their training on only one mode of exercise but instead routinely engage in a multimode training program. In addition, timed-daily protein (P) intake has become a hallmark for all athletes. Recent studies, including from our laboratory, have validated the effectiveness of this multimode paradigm (RISE) and protein-feeding regimen, which we have collectively termed PRISE. Unfortunately, sports nutrition recommendations and guidelines have lagged behind the PRISE integrative nutrition and training model and therefore limit an athletes' ability to succeed. Thus, it is the purpose of this review to provide a clearly defined roadmap linking specific performance enhancing diets (PEDs) with each PRISE component to facilitate optimal nourishment and ultimately optimal athletic performance.
Collapse
|
27
|
Smith RN, Agharkar AS, Gonzales EB. A review of creatine supplementation in age-related diseases: more than a supplement for athletes. F1000Res 2014; 3:222. [PMID: 25664170 PMCID: PMC4304302 DOI: 10.12688/f1000research.5218.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/12/2022] Open
Abstract
Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases.
Collapse
Affiliation(s)
- Rachel N. Smith
- Department of Pharmacology & Neuroscience, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
| | - Amruta S. Agharkar
- Department of Pharmacology & Neuroscience, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
| | - Eric B. Gonzales
- Department of Pharmacology & Neuroscience, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
- Institute for Aging and Alzheimer’s Disease Research, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
- Cardiovascular Research Institute, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
| |
Collapse
|
28
|
Eudy AE, Gordon LL, Hockaday BC, Lee DA, Lee V, Luu D, Martinez CA, Ambrose PJ. Efficacy and safety of ingredients found in preworkout supplements. Am J Health Syst Pharm 2013; 70:577-88. [DOI: 10.2146/ajhp120118] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Anne E. Eudy
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| | | | | | | | | | | | - Carlos A. Martinez
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA
| | | |
Collapse
|
29
|
Tang FC, Chan CC, Kuo PL. Contribution of creatine to protein homeostasis in athletes after endurance and sprint running. Eur J Nutr 2013; 53:61-71. [PMID: 23392621 DOI: 10.1007/s00394-013-0498-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 01/17/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE Few studies have focused on the metabolic changes induced by creatine supplementation. This study investigated the effects of creatine supplementation on plasma and urinary metabolite changes of athletes after endurance and sprint running. METHODS Twelve male athletes (20.3 ± 1.4 y) performed two identical (65-70 % maximum heart rate reserved) 60 min running exercises (endurance trial) before and after creatine supplementation (12 g creatine monohydrate/day for 15 days), followed by a 5-day washout period. Subsequently, they performed two identical 100 m sprint running exercises (power trial) before and after 15 days of creatine supplementation in accordance with the supplementary protocol of the endurance trial. Body composition measurements were performed during the entire study. Plasma samples were examined for the concentrations of glucose, lactate, branched-chain amino acids (BCAAs), free-tryptophan (f-TRP), glutamine, alanine, hypoxanthine, and uric acid. Urinary samples were examined for the concentrations of hydroxyproline, 3-methylhistidine, urea nitrogen, and creatinine. RESULTS Creatine supplementation significantly increased body weights of the athletes of endurance trial. Plasma lactate concentration and ratio of f-TRP/BCAAs after recovery from endurance running were significantly decreased with creatine supplementation. Plasma purine metabolites (the sum of hypoxanthine and uric acid), glutamine, urinary 3-methylhistidine, and urea nitrogen concentrations tended to decrease before running in trials with creatine supplements. After running, urinary hydroxyproline concentration significantly increased in the power trial with creatine supplements. CONCLUSIONS The findings suggest that creatine supplementation tended to decrease muscle glycogen and protein degradation, especially after endurance exercise. However, creatine supplementation might induce collagen proteolysis in athletes after sprint running.
Collapse
Affiliation(s)
- Fu-Chun Tang
- Graduate Institute of Nutritional Sciences and Education, #162, Hoping E. Rd. 1st Sec, Taipei, 10600, Taiwan, ROC,
| | | | | |
Collapse
|
30
|
Long-term creatine supplementation improves muscular performance during resistance training in older women. Eur J Appl Physiol 2012. [PMID: 23053133 DOI: 10.1007/s00421-012-2514-623053133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
This study examined the effects of long-term creatine supplementation combined with resistance training (RT) on the one-repetition maximum (1RM) strength, motor functional performance (e.g., 30-s chair stand, arm curl, and getting up from lying on the floor tests) and body composition (e.g., fat-free mass, muscle mass, and % body fat using DEXA scans) in older women. Eighteen healthy women (64.9 ± 5.0 years) were randomly assigned in a double-blind fashion to either a creatine (CR, N = 9) or placebo (PL, N = 9) group. Both groups underwent a 12-week RT program (3 days week(-1)), consuming an equivalent amount of either creatine (5.0 g day(-1)) or placebo (maltodextrin). After 12 week, the CR group experienced a greater (P < 0.05) increase (Δ%) in training volume (+164.2), and 1RM bench press (+5.1), knee extension (+3.9) and biceps curl (+8.8) performance than the PL group. Furthermore, CR group gained significantly more fat-free mass (+3.2) and muscle mass (+2.8) and were more efficient in performing submaximal-strength functional tests than the PL group. No changes (P > 0.05) in body mass or % body fat were observed from pre- to post-test in either group. These results indicate that long-term creatine supplementation combined with RT improves the ability to perform submaximal-strength functional tasks and promotes a greater increase in maximal strength, fat-free mass and muscle mass in older women.
Collapse
|
31
|
Aguiar AF, Januário RSB, Junior RP, Gerage AM, Pina FLC, do Nascimento MA, Padovani CR, Cyrino ES. Long-term creatine supplementation improves muscular performance during resistance training in older women. Eur J Appl Physiol 2012; 113:987-96. [DOI: 10.1007/s00421-012-2514-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/25/2012] [Indexed: 12/16/2022]
|
32
|
Sterkowicz S, Tyka AK, Chwastowski M, Sterkowicz-Przybycień K, Tyka A, Klys A. The effects of training and creatine malate supplementation during preparation period on physical capacity and special fitness in judo contestants. J Int Soc Sports Nutr 2012; 9:41. [PMID: 22943072 PMCID: PMC3447702 DOI: 10.1186/1550-2783-9-41] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/29/2012] [Indexed: 11/10/2022] Open
Affiliation(s)
- Stanislaw Sterkowicz
- Department of Recreation and Biological Regeneration, University School of Physical Education, Al, Jana Pawla II 78, 31-571, Cracow, Poland.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
A well designed diet is the foundation upon which optimal training and performance can be developed. However, as long as competitive sports have existed, athletes have attempted to improve their performance by ingesting a variety of substances. This practice has given rise to a multi-billion-dollar industry that aggressively markets its products as performance enhancing, often without objective, scientific evidence to support such claims. While a number of excellent reviews have evaluated the performance-enhancing effects of most dietary supplements, less attention has been paid to the performance-enhancing claims of dietary supplements in the context of team-sport performance. Dietary supplements that enhance some types of athletic performance may not necessarily enhance team-sport performance (and vice versa). Thus, the first aim of this review is to critically evaluate the ergogenic value of the most common dietary supplements used by team-sport athletes. The term dietary supplements will be used in this review and is defined as any product taken by the mouth, in addition to common foods, that has been proposed to have a performance-enhancing effect; this review will only discuss substances that are not currently banned by the World Anti-Doping Agency. Evidence is emerging to support the performance-enhancing claims of some, but not all, dietary supplements that have been proposed to improve team-sport-related performance. For example, there is good evidence that caffeine can improve single-sprint performance, while caffeine, creatine and sodium bicarbonate ingestion have all been demonstrated to improve multiple-sprint performance. The evidence is not so strong for the performance-enhancing benefits of β-alanine or colostrum. Current evidence does not support the ingestion of ribose, branched-chain amino acids or β-hydroxy-β-methylbutyrate, especially in well trained athletes. More research on the performance-enhancing effects of the dietary supplements highlighted in this review needs to be conducted using team-sport athletes and using team-sport-relevant testing (e.g. single- and multiple-sprint performance). It should also be considered that there is no guarantee that dietary supplements that improve isolated performance (i.e. single-sprint or jump performance) will remain effective in the context of a team-sport match. Thus, more research is also required to investigate the effects of dietary supplements on simulated or actual team-sport performance. A second aim of this review was to investigate any health issues associated with the ingestion of the more commonly promoted dietary supplements. While most of the supplements described in the review appear safe when using the recommended dose, the effects of higher doses (as often taken by athletes) on indices of health remain unknown, and further research is warranted. Finally, anecdotal reports suggest that team-sport athletes often ingest more than one dietary supplement and very little is known about the potential adverse effects of ingesting multiple supplements. Supplements that have been demonstrated to be safe and efficacious when ingested on their own may have adverse effects when combined with other supplements. More research is required to investigate the effects of ingesting multiple supplements (both on performance and health).
Collapse
Affiliation(s)
- David Bishop
- Institute of Sport, Exercise and Active Living (ISEAL) and School of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Sculthorpe N, Grace F, Jones P, Fletcher I. The effect of short-term creatine loading on active range of movement. Appl Physiol Nutr Metab 2010; 35:507-11. [PMID: 20725117 DOI: 10.1139/h10-036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During high-intensity exercise, intracellular creatine phosphate (PCr) is rapidly broken down to maintain adenosine triphosphate turnover. This has lead to the widespread use of creatine monohydrate as a nutritional ergogenic aid. However, the increase in intracellular PCr and the concomitant increase in intracellular water have not been investigated with regard to their effect on active range of movement (ROM). Forty male subjects (age, 24+/-3.2 years) underwent restricted randomization into 2 equal groups, either an intervention group (CS) or a control group (C). The CS group ingested 25 g.day(-1) of creatine monohydrate for 5 days, followed by 5 g.day(-1) for a further 3 days. Before (24 h before starting supplementation (PRE) and after (on the 8th day of supplementation (POST)) this loading phase, both groups underwent goniometry measurement of the shoulder, elbow, hip, and ankle. Data indicated significant reductions in active ROM in 3 movements: shoulder extension (57+/-11.3 degrees PRE vs. 48+/-11.2 degrees POST, p<0.01), shoulder abduction (183.4+/-6.8 degrees PRE vs. 180.3+/-5.1 degrees POST, p<0.05), and ankle dorsiflexion (14.2+/-4.7 degrees PRE vs. 12.1+/-6.4 degrees POST, p<0.01). There was also a significant increase in body mass for the CS group (83.6+/-6.2 kg vs. 85.2+/-6.3 kg, p<0.05). The results suggest that short-term supplementation with creatine monohydrate reduces the active ROM of shoulder extension and abduction and of ankle dorsiflexion. Although the mechanism for this is not fully understood, it may be related to the asymmetrical distribution of muscle mass around those joints.
Collapse
Affiliation(s)
- Nicholas Sculthorpe
- School of Sports Sciences, University of Bedfordshire, Polhill Avenue, Bedford, MK41 9EA, UK.
| | | | | | | |
Collapse
|
35
|
Altimari LR, Tirapegui J, Okano AH, Franchini E, Takito MY, Avelar A, Altimari JM, Cyrino ES. Efeitos da suplementação prolongada de creatina mono-hidratada sobre o desempenho anaeróbio de adultos jovens treinados. REV BRAS MED ESPORTE 2010. [DOI: 10.1590/s1517-86922010000300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O objetivo do presente estudo foi investigar o impacto de oito semanas de suplementação de creatina mono-hidratada (Crm) sobre o desempenho anaeróbio de adultos jovens treinados. Vinte e seis estudantes de educação física, do sexo masculino, saudáveis, foram divididos aleatoriamente em grupo creatina (GCr, n = 13; 22,5 ± 2,7 anos; 74,9 ± 6,8kg, 178,5 ± 4,8cm) e grupo placebo (GPl, n = 13; 22,9 ± 3,2 anos, 71,9 ± 11,3kg, 178,6 ± 4,0cm). Os indivíduos ingeriram em sistema duplo-cego doses de Crm ou placebo-maltodextrina (20 g.d-1 por 5 dias e 3 g.d-1 por 51 dias subsequentes). Ambos os grupos tiveram seus hábitos alimentares e os níveis de aptidão física controlados anteriormente. O teste anaeróbio de Wingate (TW) foi usado para avaliar o desempenho anaeróbio antes e após o período de ingestão de Crm ou placebo. Os índices de desempenho analisados foram: potência pico relativa (PPR), potência média relativa (PMR), trabalho total relativo (TTR) e índice de fadiga (IF). Para tratamento estatístico foi utilizado ANOVA, seguido pelo teste de post hoc Tukey, quando P<0,05. Não foram observadas diferenças significantes nos índices PPR, PMR, TTR e IF após o período de suplementação de Crm (P<0,05). Os resultados do presente estudo sugerem que a suplementação de Crm não parece ser um recurso ergogênico eficiente em esforços físicos de alta intensidade e curta duração que envolve uma única série.
Collapse
Affiliation(s)
| | | | - Alexandre Hideki Okano
- Universidade Estadual de Londrina, Brasil; Universidade Federal do Rio Grande do Norte, Brasil; Universidade Estadual de Londrina, Brasil
| | | | | | | | | | | |
Collapse
|
36
|
Zesiewicz TA, Evatt ML. Potential influences of complementary therapy on motor and non-motor complications in Parkinson's disease. CNS Drugs 2009; 23:817-35. [PMID: 19739693 DOI: 10.2165/11310860-000000000-00000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nearly two-thirds of patients with Parkinson's disease (PD) use vitamins or nutritional supplements, and many more may use other complementary therapies, yet <50% of patients have discussed the use of these complementary therapies with a healthcare professional. Physicians should be aware of the complementary therapies their patients with PD are using, and the possible effects of these therapies on motor and non-motor symptoms. Complementary therapies, such as altered diet, dietary supplements, vitamin therapy, herbal supplements, caffeine, nicotine, exercise, physical therapy, massage therapy, melatonin, bright-light therapy and acupuncture, may all influence the symptoms of PD and/or the effectiveness of dopaminergic therapy. Preliminary evidence suggests complementary therapy also may influence non-motor symptoms of PD, such as respiratory disorders, gastrointestinal disorders, mood disorders, sleep and orthostatic hypotension. Whenever possible, clinicians should ensure that complementary therapy is used appropriately in PD patients without reducing the benefits of dopaminergic therapy.
Collapse
|
37
|
BAZZUCCHI ILENIA, FELICI FRANCESCO, SACCHETTI MASSIMO. Effect of Short-Term Creatine Supplementation on Neuromuscular Function. Med Sci Sports Exerc 2009; 41:1934-41. [DOI: 10.1249/mss.0b013e3181a2c05c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Law YLL, Ong WS, GillianYap TL, Lim SCJ, Von Chia E. Effects of two and five days of creatine loading on muscular strength and anaerobic power in trained athletes. J Strength Cond Res 2009; 23:906-14. [PMID: 19387386 DOI: 10.1519/jsc.0b013e3181a06c59] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to establish the effects of 2 and 5 days of creatine loading, coupled with resistance training, on muscular strength and anaerobic performance in trained athletes. Seventeen trained men were randomly assigned to a creatine or a placebo group. The creatine supplementation group consumed 20 g of creatine per day (4 doses of 5 g per day), whereas the placebo group was given a placebo similar in appearance and taste over the 5-day supplementation duration. Anaerobic power and strength performance measures, in addition to blood and urine analysis, were conducted in the morning before the supplementation began and on the third and sixth day to establish the effect of 2 and 5 days of creatine loading, respectively. The study found that a 5-day creatine loading regime coupled with resistance training resulted in significant improvements in both average anaerobic power, as measured by the 30-second Wingate test and back squat strength compared with just training alone. However, 2 days of supplementation was not sufficient to produce similar performance gains as that observed at the end of 5 days of loading in trained men, despite increases in creatine uptake in the body. The standard 5-day loading regime should hence be prescribed to individuals supplementing with creatine for enhanced strength and power.
Collapse
Affiliation(s)
- Yu Li Lydia Law
- Military Physiology Lab, Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore.
| | | | | | | | | |
Collapse
|
39
|
Spillane M, Schoch R, Cooke M, Harvey T, Greenwood M, Kreider R, Willoughby DS. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J Int Soc Sports Nutr 2009; 6:6. [PMID: 19228401 PMCID: PMC2649889 DOI: 10.1186/1550-2783-6-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 02/19/2009] [Indexed: 12/11/2022] Open
Abstract
Numerous creatine formulations have been developed primarily to maximize creatine absorption. Creatine ethyl ester is alleged to increase creatine bio-availability. This study examined how a seven-week supplementation regimen combined with resistance training affected body composition, muscle mass, muscle strength and power, serum and muscle creatine levels, and serum creatinine levels in 30 non-resistance-trained males. In a double-blind manner, participants were randomly assigned to a maltodextrose placebo (PLA), creatine monohydrate (CRT), or creatine ethyl ester (CEE) group. The supplements were orally ingested at a dose of 0.30 g/kg fat-free body mass (approximately 20 g/day) for five days followed by ingestion at 0.075 g/kg fat free mass (approximately 5 g/day) for 42 days. Results showed significantly higher serum creatine concentrations in PLA (p = 0.007) and CRT (p = 0.005) compared to CEE. Serum creatinine was greater in CEE compared to the PLA (p = 0.001) and CRT (p = 0.001) and increased at days 6, 27, and 48. Total muscle creatine content was significantly higher in CRT (p = 0.026) and CEE (p = 0.041) compared to PLA, with no differences between CRT and CEE. Significant changes over time were observed for body composition, body water, muscle strength and power variables, but no significant differences were observed between groups. In conclusion, when compared to creatine monohydrate, creatine ethyl ester was not as effective at increasing serum and muscle creatine levels or in improving body composition, muscle mass, strength, and power. Therefore, the improvements in these variables can most likely be attributed to the training protocol itself, rather than the supplementation regimen.
Collapse
Affiliation(s)
- Mike Spillane
- Department of Health, Human Performance and Recreation, Baylor University, Box 97313, Waco, TX 76798, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
OBJECTIVE To gather data and examine the use by elite Olympic athletes of food supplements and pharmaceutical preparations in total and per sport, country, and gender. DESIGN Survey study. SETTING Athens 2004 Olympic Games (OG). PARTICIPANTS Data from 2 sources were collected: athletes' declaration of medications/supplements intake recorded on the Doping Control Official Record during sample collection for doping control, and athletes' application forms for granting of a therapeutic use exemption (TUE) and through the abbreviated TUE process (aTUE). MAIN OUTCOME MEASURES Classification of declared food supplements according to the active ingredient and medications according to therapeutic actions and active compounds. RESULTS 24.3% of the athletes tested for doping control declared no use of medications or food supplements. Food supplements (45.3%) continue to be popular, with vitamins (43.2%) and proteins/aminoacids (13.9%) in power sports being most widely used. Nonsteroidal antiinflammatory agents and analgesics were also commonly used by athletes (11.1% and 3.7%, respectively). The use of the hemoderivative actovegin and several nonprohibited anabolic preparations are discussed. The prevalence of medication use for asthma and the dangers of drug interactions are also presented.Laboratory analysis data reveal that of the aTUEs received for inhaled glucocorticosteroids, only budesonide was detectable in significant percentage (10.0%). Only 6.5% of the 445 athletes approved to inhale beta2-agonists led to an adverse analytical finding. CONCLUSIONS This review demonstrates that overuse of food supplements was slightly reduced compared to previous OGs and a more rational approach to the use of medication is being adopted.
Collapse
|
41
|
Eckerson JM, Bull AA, Moore GA. Effect of Thirty Days of Creatine Supplementation with Phosphate Salts on Anaerobic Working Capacity and Body Weight in Men. J Strength Cond Res 2008; 22:826-32. [DOI: 10.1519/jsc.0b013e31816a40ad] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Nutrition and Polymyositis and Dermatomyositis. NUTRITION AND RHEUMATIC DISEASE 2008. [PMCID: PMC7120298 DOI: 10.1007/978-1-59745-403-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
• Chronic muscle inflammation in polymyositis or dermatomyositis causes muscle weakness and fatigue. • The chronic inflammation could lead to a catabolic state and additional loss of muscle mass. • The chronic muscle inflammation could induce a metabolic myopathy. • Body weight may not be reliable to measure muscle loss, rather measurement of body composition is recommended. •For patients with polymyositis or dermatomyositis it is important to provide the body with the right amount of macronutrients and trace elements for maintenance and improvement of body functions. • One recommendation is supplementation with calcium and vitamin D. • Another recommendation is regular physical exercise that during limited periods can be combined with supplements such as creatine, if done under the care of a physician.
Collapse
|
43
|
Souza Júnior TPD, Dubas JP, Pereira B, Oliveira PRD. Suplementação de creatina e treinamento de força: alterações na resultante de força máxima dinâmica e variáveis antropométricas em universitários submetidos a oito semanas de treinamento de força (hipertrofia). REV BRAS MED ESPORTE 2007. [DOI: 10.1590/s1517-86922007000500005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJETIVO: Verificar as alterações promovidas pela suplementação de creatina nas variáveis antropométricas e da resultante de força máxima dinâmica (RFMD) em universitários submetidos a oito semanas de treinamento de força. METODOLOGIA: Participaram deste estudo, 18 universitários do sexo masculino, com idade entre 19 e 25 anos. Antes do treinamento foram determinadas a estatura (cm), a massa corporal (kg) e testes de ação muscular voluntária máxima dinâmica (1AMVMD), os sujeitos foram assinalados a um dos dois grupos, A (creatina) e B (placebo), foi adotado o protocolo duplo-cego. Após oito semanas de treinamento de força, repetiu-se a bateria de testes do pré-treinamento. RESULTADOS: Após oito semanas, verificou-se que tanto no grupo A como no B houve alterações estatisticamente significantes (ES) na RFMD em todos os exercícios (p = 0,007 a 0,008). A análise da melhora percentual e do delta da RFMD, nos exercícios de agachamento, desenvolvimento e supino fechado, mostrou que o grupo A teve alterações positivas ES superiores ao grupo B (p = 0,008 a 0,038). A massa magra aumentou ES somente no grupo A (p = 0,038). Contudo, o percentual de gordura corporal não mostrou alterações em nenhum dos grupos. A relação entre a melhora percentual (MP) das circunferências (C) do braço e antebraço e a MP na RFMD do exercício de desenvolvimento foi ES (r = 0,481 e 0,546, respectivamente), bem como entre a MP na C da coxa e na MP da RFMD do exercício de agachamento (r = 0,619). CONCLUSÃO: Independente do suplemento ingerido o treinamento de força foi capaz de induzir ajustes positivos na RFMD; contudo, a suplementação de creatina mostrou-se mais eficiente que o placebo, induzindo a maior aumento percentual e de delta na força.
Collapse
|
44
|
Various instrumental and biochemical parameters as ageing indicators of beef Longissimus dorsi muscle and their relation to creatine and creatinine content. Eur Food Res Technol 2006. [DOI: 10.1007/s00217-006-0491-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Baker-Fulco CJ, Fulco CS, Kellogg MD, Glickman E, Young AJ. Voluntary Muscle Function after Creatine Supplementation in Acute Hypobaric Hypoxia. Med Sci Sports Exerc 2006; 38:1418-24. [PMID: 16888454 DOI: 10.1249/01.mss.0000228948.70399.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To determine whether creatine (Cr) supplementation improves muscle performance during exposure to acute hypobaric hypoxia. METHODS Seven healthy men (28 +/- 6 yr, mean +/- SD) performed submaximal intermittent static knee contractions interspersed with maximal voluntary contractions (MVCs) every minute to exhaustion (approximately 50% of rested MVC force) in normoxia and hypobaric hypoxia (separated by 3 d) after supplementation with Cr (20 g.d(-1) for 7 d then 5 g.d(-1) for 4-7 d) or placebo (Pla) in a double-blind, randomized crossover study. A 5-wk period without supplementation separated treatments. Each test day, subjects performed two bouts (separated by 2 min) at their preset submaximal force, 32 +/- 4% rested MVC). RESULTS Rested MVC force (860 +/- 66 N) and MVC force at exhaustion (396 +/- 27 N; 47 +/- 3% rested MVC) did not differ among treatments or environments (P > 0.05). For bout 1, endurance time was shorter in hypobaria (26 +/- 3 min) than normoxia (34 +/- 2 min) (P < 0.01), but did not differ between Cr (27 +/- 3 min) and Pla (33 +/- 3 min) (P > 0.05). MVC force returned to similar levels (P >0.05) in bout 2 after recovery in all four sessions (to approximately 615 N). For bout 2, endurance time also was shorter in hypobaria (7 +/- 1 min) than normoxia (9 +/- 1 min) (P < 0.03) but did not differ between Cr and Pla (P > 0.05). CONCLUSION This study, which used an exercise model designed to impose the same target contraction force under all experimental conditions, found no effect of Cr on maximal force, muscle endurance, or recovery in normoxia or hypobaric hypoxia.
Collapse
Affiliation(s)
- Carol J Baker-Fulco
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760-5007, USA.
| | | | | | | | | |
Collapse
|
46
|
Schoch RD, Willoughby D, Greenwood M. The regulation and expression of the creatine transporter: a brief review of creatine supplementation in humans and animals. J Int Soc Sports Nutr 2006; 3:60-6. [PMID: 18500965 PMCID: PMC2129152 DOI: 10.1186/1550-2783-3-1-60] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 06/21/2006] [Indexed: 11/15/2022] Open
Abstract
Creatine monohydrate has become one of the most popular ergogenic sport supplements used today. It is a nonessential dietary compound that is both endogenously synthesized and naturally ingested through diet. Creatine ingested through supplementation has been observed to be absorbed into the muscle exclusively by means of a creatine transporter, CreaT1. The major rationale of creatine supplementation is to maximize the increase within the intracellular pool of total creatine (creatine + phosphocreatine). There is much evidence indicating that creatine supplementation can improve athletic performance and cellular bioenergetics, although variability does exist. It is hypothesized that this variability is due to the process that controls both the influx and efflux of creatine across the cell membrane, and is likely due to a decrease in activity of the creatine transporter from various compounding factors. Furthermore, additional data suggests that an individual's initial biological profile may partially determine the efficacy of a creatine supplementation protocol. This brief review will examine both animal and human research in relation to the regulation and expression of the creatine transporter (CreaT). The current literature is very preliminary in regards to examining how creatine supplementation affects CreaT expression while concomitantly following a resistance training regimen. In conclusion, it is prudent that future research begin to examine CreaT expression due to creatine supplementation in humans in much the same way as in animal models.
Collapse
Affiliation(s)
- Ryan D Schoch
- Exercise and Biochemical Nutrition Laboratory, Baylor University, Waco, TX.
| | | | | |
Collapse
|
47
|
Abstract
Athletes are affected in various ways by medications and supplements. Physicians caring for athletes need to be aware of medicines that athletes are taking and how they may interact with performance, exercise, environment, and other medicines. Athletes may attempt to gain a performance advantage with the use of a variety of dietary supplements and performance enhancers. Physicians must be knowledgeable of these so that athletes are properly educated about potential benefits and risks and physical effects. This article first reviews common medicines that athletes use and their potential efficacy and interactions with exercise and environment, then reviews dietary supplements and the data on their efficacy for performance enhancement. Finally, current and future doping issues are discussed.
Collapse
Affiliation(s)
- Mario Ciocca
- Department of Sports Medicine, University of North Carolina at Chapel Hill, James A. Taylor Student Health Services Building, CB #7470, Chapel Hill, NC 27599-7470, USA.
| |
Collapse
|
48
|
Murphy AJ, Watsford ML, Coutts AJ, Richards DAB. Effects of creatine supplementation on aerobic power and cardiovascular structure and function. J Sci Med Sport 2006; 8:305-13. [PMID: 16248471 DOI: 10.1016/s1440-2440(05)80041-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This project aimed to determine 1) whether creatine (Cr) supplementation affects cardiovascular structure and function and 2) to examine its effect on aerobic power. Eighteen males undertook aerobic testing on a cycle ergometer and echocardiographic assessment of the heart. The experimental group (N = 9) ingested 20g x day(-1) of Cr for seven days followed by l0g x day(-1) for a further 21 days. The control group (N = 9) followed an identical protocol ingesting a placebo for the same period. Assessment was performed pre-, mid- (seven days) and post-testing (28 days). A MANOVA with repeated measures was used to test for group differences before and after supplementation. The Cr group demonstrated a significant increase in body mass for the pre-mid (1.0 +/- 0.6 kg) and the pre-post (1.5 +/- 0.7 kg) testing occasions. Submaximal VO2 decreased significantly from the pre-mid and pre-post testing occasions by between 4.8% to 11.4% with Cr supplementation at workloads of 75 W and 150 W. Other oxygen consumption measures and exercise time to exhaustion, for the Cr group, showed decreasing trends that approached significance. Additionally, there was a significant pre-post decrease in maximum heart rate of 3.7%. There were no changes in any of the echocardiographic or blood pressure measures for either group. The present results suggest short term Cr supplementation has no detectable negative effect on cardiac structure or function. Additionally, Cr ingestion improves submaximal cycling efficiency. These results suggest that the increase in efficiency may be related to peripheral factors such an increase in muscle phosphocreatine, rather than central changes.
Collapse
Affiliation(s)
- A J Murphy
- Human Performance Laboratory, University of Technology, Sydney, New South Wales.
| | | | | | | |
Collapse
|
49
|
Abstract
Creatine monohydrate (Cr) is perhaps one of the most widely used supplements taken in an attempt to improve athletic performance. The aim of this review is to update, summarise and evaluate the findings associated with Cr ingestion and sport and exercise performance with the most recent research available. Because of the large volume of scientific literature dealing with Cr supplementation and the recent efforts to delineate sport-specific effects, this paper focuses on research articles that have been published since 1999.Cr is produced endogenously by the liver or ingested from exogenous sources such as meat and fish. Almost all the Cr in the body is located in skeletal muscle in either the free (Cr: approximately 40%) or phosphorylated (PCr: approximately 60%) form and represents an average Cr pool of about 120-140 g for an average 70 kg person. It is hypothesised that Cr can act though a number of possible mechanisms as a potential ergogenic aid but it appears to be most effective for activities that involve repeated short bouts of high-intensity physical activity. Additionally, investigators have studied a number of different Cr loading programmes; the most common programme involves an initial loading phase of 20 g/day for 5-7 days, followed by a maintenance phase of 3-5 g/day for differing periods of time (1 week to 6 months). When maximal force or strength (dynamic or isotonic contractions) is the outcome measure following Cr ingestion, it generally appears that Cr does significantly impact force production regardless of sport, sex or age. The evidence is much more equivocal when investigating isokinetic force production and little evidence exists to support the use of Cr for isometric muscular performance. There is little benefit from Cr ingestion for the prevention or suppression of muscle damage or soreness following muscular activity. When performance is assessed based on intensity and duration of the exercises, there is contradictory evidence relative to both continuous and intermittent endurance activities. However, activities that involve jumping, sprinting or cycling generally show improved sport performance following Cr ingestion. With these concepts in mind, the focus of this paper is to summarise the effectiveness of Cr on specific performance outcomes rather than on proposed mechanisms of action. The last brief section of this review deals with the potential adverse effects of Cr supplementation. There appears to be no strong scientific evidence to support any adverse effects but it should be noted that there have been no studies to date that address the issue of long-term Cr usage.
Collapse
Affiliation(s)
- Michael G Bemben
- Neuromuscular Research Laboratory, Department of Health and Sport Sciences, University of Oklahoma, Norman, OK 73019, USA.
| | | |
Collapse
|
50
|
Javierre C, Barbany JR, Bonjorn VM, Lizárraga MA, Ventura JL, Segura R. Creatine supplementation and performance in 6 consecutive 60 meter sprints. J Physiol Biochem 2005; 60:265-71. [PMID: 15957245 DOI: 10.1007/bf03167072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Creatine is an ergogenic aid used in individual and team sports. The aim of this study is to analyze the effect of monohydrate creatine supplementation on physical performance during 6 consecutive maximal speed 60 meter races, and the changes induced in some characteristic biochemical and ventilatory parameters. The study was carried out on nineteen healthy and physically active male volunteers, and randomly distributed into two groups: Group C received a supplement of creatine monohydrate (20 g/day for 5 days) and group P received placebo. Tests were performed before and after supplementation. No significant changes were observed in weight or body water measured by bioimpedance or the sum of 7 skinfold or performance during the 60 meter races. Group C showed a statistically significant increase in plasma creatinine from 69.8 +/- 12.4 to 89.3 +/- 12.4 micromol x L(-1) (p<0.05). In group C in the second control day (after creatine supplementation), expiratory volume V(E), O2 uptake and CO2 production were lower after 2 minutes of active recovery period. These results indicate that creatine monohydrate supplementation does not appear to improve the performance in 6 consecutive 60 meter repeated races but may modify ventilatory dynamics during the recovery after maximal effort.
Collapse
Affiliation(s)
- C Javierre
- Depto. de Ciencias Fisiológicas II, Facultad de Medicina (Campus de Bellvitge), (IDIBELL), Universidad de Barcelona, Ctra. Feixa Llarga s./n., 08907 L'Hospitalet de Llobregat, Spain.
| | | | | | | | | | | |
Collapse
|