1
|
Josephson TO, Morgan EF. Mechanobiological optimization of scaffolds for bone tissue engineering. Biomech Model Mechanobiol 2024; 23:2025-2042. [PMID: 39060881 DOI: 10.1007/s10237-024-01880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Synthetic bone graft scaffolds aim to generate new bone tissue and alleviate the limitations of autografts and allografts. To meet that aim, it is essential to have a design approach able to generate scaffold architectures that will promote bone formation. Here, we present a topology-varying design optimization method, the "mixed-topology" approach, that generates new designs from a set of starting structures. This approach was used with objective functions focusing on improving the scaffold's local mechanical microenvironments to mechanobiologically promote bone formation within the scaffold and constraints to ensure manufacturability and achieve desired macroscale properties. The results demonstrate that this approach can successfully generate scaffold designs with improved microenvironments, taking into account different combinations of relevant stimuli and constraints.
Collapse
Affiliation(s)
- Timothy O Josephson
- Biomedical Engineering, Boston University, Boston, MA, USA.
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, USA.
| | - Elise F Morgan
- Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, USA
- Mechanical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
Ni H, Mao W, Li H, Dong Y. Physiologic Osseous Remodeling of the Anterior Wall of the Spinal Canal after Anterior Cervical Corpectomy and Fusion: A Retrospective Observational Study. J Neurol Surg A Cent Eur Neurosurg 2024; 85:464-471. [PMID: 35354216 DOI: 10.1055/a-1812-9834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Anterior cervical corpectomy and fusion (ACCF) has been widely used in the treatment of cervical spondylotic myelopathy (CSM), ossification of posterior longitudinal ligament (OPLL), cervical trauma, and other cervical diseases, but few studies have reported the osseous and physiologic remodeling of the anterior wall of the spinal canal following ACCF. In this study, we analyze that remodeling process and its influence on titanium mesh cage (TMC) subsidence. METHODS We performed a clinical and radiologic analysis of consecutive patients treated with ACCF. Growth rates (GRs) reflecting the extent of remodeling of the remnants of the resected vertebral bodies were measured. We compared the computed tomography (CT) scans taken immediately and at least 1 year after surgery, and a literature review was conducted. RESULTS In all, 48 patients underwent ACCF at a mean age of 61.5 ± 12.0 years. The median follow-up was 36 months, and 159 CT images were analyzed. The GR values of the remnants of the vertebral bodies on CT images immediately and 1 year after surgery were 0.505 ± 0.077 and 0.650 ± 0.022 (p < 0.001), respectively, and the GR value at ≥4 years was 1. Axial CT scans showed that remodeling starts from the lateral remnants of the resected vertebral bodies, finally reaching the center. When fusion of the vertebral bodies and the titanium cage was complete during the first year after ACCF, osteogenesis and remodeling were initiated in the osseous anterior wall of the spinal canal. The remodeling of the osseous anterior wall of the spinal canal was completed at the fourth year after surgery, without recompressing the spinal cord, as seen on both axial and lateral CT scans. According to the literature review, there was no TMC subsidence at more than 4 years after surgery. CONCLUSION The anterior wall of the spinal canal undergoes osseous remodeling after ACCF. The process is complete in the fourth year after surgery and prevents TMC subsidence.
Collapse
Affiliation(s)
- Haofei Ni
- Department of Orthopaedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Spinal Surgery, Tongji University School of Medicine, Tongji Hospital, Shanghai, China
| | - Wei Mao
- Department of Orthopaedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Orthopaedic Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hailong Li
- Department of Orthopaedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Youhai Dong
- Department of Orthopaedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Yu S, Tang Q, Lu X, Chen G, Xie M, Yang J, Yin Y, Zheng W, Wang J, Han Y, Zhang L, Chen L. Time of exercise differentially impacts bone growth in mice. Nat Metab 2024; 6:1036-1052. [PMID: 38806654 DOI: 10.1038/s42255-024-01057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Although physical training has been shown to improve bone mass, the time of day to exercise for optimal bone growth remains uncertain. Here we show that engaging in physical activity during the early active phase, as opposed to the subsequent active or rest phase, results in a more substantial increase in bone length of male and female mice. Transcriptomic and metabolomic methodologies identify that exercise during the early active phase significantly upregulates genes associated with bone development and metabolism. Notably, oxidative phosphorylation-related genes show a rhythmic expression in the chondrification centre, with a peak at the early active phase, when more rhythmic genes in bone metabolism are expressed and bone growth is synergistically promoted by affecting oxidative phosphorylation, which is confirmed by subsequent pharmacological investigations. Finally, we construct a signalling network to predict the impact of exercise on bone growth. Collectively, our research sheds light on the intricacies of human exercise physiology, offering valuable implications for interventions.
Collapse
Affiliation(s)
- Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jingxi Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wenhao Zheng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinyu Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| |
Collapse
|
4
|
Pang Y, Xu Y, Chen Q, Cheng K, Ling Y, Jang J, Ge J, Zhu W. FLRT3 and TGF-β/SMAD4 signalling: Impacts on apoptosis, autophagy and ion channels in supraventricular tachycardia. J Cell Mol Med 2024; 28:e18237. [PMID: 38509727 PMCID: PMC10955158 DOI: 10.1111/jcmm.18237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/14/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
To explore the underlying molecular mechanisms of supraventricular tachycardia (SVT), this study aimed to analyse the complex relationship between FLRT3 and TGF-β/SMAD4 signalling pathway, which affects Na+ and K+ channels in cardiomyocytes. Bioinformatics analysis was performed on 85 SVT samples and 15 healthy controls to screen overlapping genes from the key module and differentially expressed genes (DEGs). Expression profiling of overlapping genes, coupled with Receiver Operating Characteristic (ROC) curve analyses, identified FLRT3 as a hub gene. In vitro studies utilizing Ang II-stimulated H9C2 cardiomyocytes were undertaken to elucidate the consequences of FLRT3 silencing on cardiomyocyte apoptosis and autophagic processes. Utilizing a combination of techniques such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR), western blotting (WB), flow cytometry, dual-luciferase reporter assays and chromatin immunoprecipitation polymerase chain reaction (ChIP-PCR) assays were conducted to decipher the intricate interactions between FLRT3, the TGF-β/SMAD4 signalling cascade and ion channel gene expression. Six genes (AADAC, DSC3, FLRT3, SYT4, PRR9 and SERTM1) demonstrated reduced expression in SVT samples, each possessing significant clinical diagnostic potential. In H9C2 cardiomyocytes, FLRT3 silencing mitigated Ang II-induced apoptosis and modulated autophagy. With increasing TGF-β concentration, there was a dose-responsive decline in FLRT3 and SCN5A expression, while both KCNIP2 and KCND2 expressions were augmented. Moreover, a direct interaction between FLRT3 and SMAD4 was observed, and inhibition of SMAD4 expression resulted in increased FLRT3 expression. Our results demonstrated that the TGF-β/SMAD4 signalling pathway plays a critical role by regulating FLRT3 expression, with potential implications for ion channel function in SVT.
Collapse
Affiliation(s)
- Yang Pang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Ye Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Qingxing Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Kuan Cheng
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yunlong Ling
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jun Jang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life ScienceFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wenqing Zhu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Chen G, Li Y, Zhang H, Xie H. [Role of Piezo mechanosensitive ion channels in the osteoarticular system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:240-248. [PMID: 38385239 PMCID: PMC10882244 DOI: 10.7507/1002-1892.202310092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Objective To summarize the role of Piezo mechanosensitive ion channels in the osteoarticular system, in order to provide reference for subsequent research. Methods Extensive literature review was conducted to summarize the structural characteristics, gating mechanisms, activators and blockers of Piezo ion channels, as well as their roles in the osteoarticular systems. Results The osteoarticular system is the main load-bearing and motor tissue of the body, and its ability to perceive and respond to mechanical stimuli is one of the guarantees for maintaining normal physiological functions of bones and joints. The occurrence and development of many osteoarticular diseases are closely related to abnormal mechanical loads. At present, research shows that Piezo mechanosensitive ion channels differentiate towards osteogenesis by responding to stretching stimuli and regulating cellular Ca 2+ influx signals; and it affects the proliferation and migration of osteoblasts, maintaining bone homeostasis through cellular communication between osteoblasts-osteoclasts. Meanwhile, Piezo1 protein can indirectly participate in regulating the formation and activity of osteoclasts through its host cells, thereby regulating the process of bone remodeling. During mechanical stimulation, the Piezo1 ion channel maintains bone homeostasis by regulating the expressions of Akt and Wnt1 signaling pathways. The sensitivity of Piezo1/2 ion channels to high strain mechanical signals, as well as the increased sensitivity of Piezo1 ion channels to mechanical transduction mediated by Ca 2+ influx and inflammatory signals in chondrocytes, is expected to become a new entry point for targeted prevention and treatment of osteoarthritis. But the specific way mechanical stimuli regulate the physiological/pathological processes of bones and joints still needs to be clarified. Conclusion Piezo mechanosensitive ion channels give the osteoarticular system with important abilities to perceive and respond to mechanical stress, playing a crucial mechanical sensing role in its cellular fate, bone development, and maintenance of bone and cartilage homeostasis.
Collapse
Affiliation(s)
- Guohui Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Yaxing Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Huiqi Xie
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
6
|
Rojas-Rojas L, Tozzi G, Guillén-Girón T. A Comprehensive Mechanical Characterization of Subject-Specific 3D Printed Scaffolds Mimicking Trabecular Bone Architecture Biomechanics. Life (Basel) 2023; 13:2141. [PMID: 38004281 PMCID: PMC10672154 DOI: 10.3390/life13112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
This study presents a polymeric scaffold designed and manufactured to mimic the structure and mechanical compressive characteristics of trabecular bone. The morphological parameters and mechanical behavior of the scaffold were studied and compared with trabecular bone from bovine iliac crest. Its mechanical properties, such as modulus of elasticity and yield strength, were studied under a three-step monotonic compressive test. Results showed that the elastic modulus of the scaffold was 329 MPa, and the one for trabecular bone reached 336 MPa. A stepwise dynamic compressive test was used to assess the behavior of samples under various loading regimes. With microcomputed tomography (µCT), a three-dimensional reconstruction of the samples was obtained, and their porosity was estimated as 80% for the polymeric scaffold and 88% for trabecular bone. The full-field strain distribution of the samples was measured using in situ µCT mechanics and digital volume correlation (DVC). This provided information on the local microdeformation mechanism of the scaffolds when compared to that of the tissue. The comprehensive results illustrate the potential of the fabricated scaffolds as biomechanical templates for in vitro studies. Furthermore, there is potential for extending this structure and fabrication methodology to incorporate suitable biocompatible materials for both in vitro and in vivo clinical applications.
Collapse
Affiliation(s)
- Laura Rojas-Rojas
- Materials Science and Engineering School, Tecnológico de Costa Rica, Cartago 30109, Costa Rica;
| | - Gianluca Tozzi
- School of Engineering, University of Greenwich, Chatham ME4 4TB, UK;
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Teodolito Guillén-Girón
- Materials Science and Engineering School, Tecnológico de Costa Rica, Cartago 30109, Costa Rica;
| |
Collapse
|
7
|
Josephson TO, Morgan EF. Harnessing mechanical cues in the cellular microenvironment for bone regeneration. Front Physiol 2023; 14:1232698. [PMID: 37877097 PMCID: PMC10591087 DOI: 10.3389/fphys.2023.1232698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
At the macroscale, bones experience a variety of compressive and tensile loads, and these loads cause deformations of the cortical and trabecular microstructure. These deformations produce a variety of stimuli in the cellular microenvironment that can influence the differentiation of marrow stromal cells (MSCs) and the activity of cells of the MSC lineage, including osteoblasts, osteocytes, and chondrocytes. Mechanotransduction, or conversion of mechanical stimuli to biochemical and biological signals, is thus part of a multiscale mechanobiological process that drives bone modeling, remodeling, fracture healing, and implant osseointegration. Despite strong evidence of the influence of a variety of mechanical cues, and multiple paradigms proposed to explain the influence of these cues on tissue growth and differentiation, even a working understanding of how skeletal cells respond to the complex combinations of stimuli in their microenvironments remains elusive. This review covers the current understanding of what types of microenvironmental mechanical cues MSCs respond to and what is known about how they respond in the presence of multiple such cues. We argue that in order to realize the vast potential for harnessing the cellular microenvironment for the enhancement of bone regeneration, additional investigations of how combinations of mechanical cues influence bone regeneration are needed.
Collapse
Affiliation(s)
- Timothy O. Josephson
- Biomedical Engineering, Boston University, Boston, MA, United States
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States
| | - Elise F. Morgan
- Biomedical Engineering, Boston University, Boston, MA, United States
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States
- Mechanical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
Deymier AC, Deymier PA, Latypov M, Muralidharan K. Effect of stress on the dissolution/crystallization of apatite in aqueous solution: a thermochemical equilibrium study. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220242. [PMID: 37211040 DOI: 10.1098/rsta.2022.0242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/17/2022] [Indexed: 05/23/2023]
Abstract
Bone mineralization is critical to maintaining tissue mechanical function. The application of mechanical stress via exercise promotes bone mineralization via cellular mechanotransduction and increased fluid transport through the collagen matrix. However, due to its complex composition and ability to exchange ions with the surrounding body fluids, bone mineral composition and crystallization is also expected to respond to stress. Here, a combination of data from materials simulations, namely density functional theory and molecular dynamics, and experimental studies were input into an equilibrium thermodynamic model of bone apatite under stress in an aqueous solution based on the theory of thermochemical equilibrium of stressed solids. The model indicated that increasing uniaxial stress induced mineral crystallization. This was accompanied by a decrease in calcium and carbonate integration into the apatite solid. These results suggest that weight-bearing exercises can increase tissue mineralization via interactions between bone mineral and body fluid independent of cell and matrix behaviours, thus providing another mechanism by which exercise can improve bone health. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Alix C Deymier
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
| | - Pierre A Deymier
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Marat Latypov
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA
- Graduate Interdisciplinary Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | - Krishna Muralidharan
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Alloisio G, Rodriguez DB, Luce M, Ciaccio C, Marini S, Cricenti A, Gioia M. Cyclic Stretch-Induced Mechanical Stress Applied at 1 Hz Frequency Can Alter the Metastatic Potential Properties of SAOS-2 Osteosarcoma Cells. Int J Mol Sci 2023; 24:ijms24097686. [PMID: 37175397 PMCID: PMC10178551 DOI: 10.3390/ijms24097686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Recently, there has been an increasing focus on cellular morphology and mechanical behavior in order to gain a better understanding of the modulation of cell malignancy. This study used uniaxial-stretching technology to select a mechanical regimen able to elevate SAOS-2 cell migration, which is crucial in osteosarcoma cell pathology. Using confocal and atomic force microscopy, we demonstrated that a 24 h 0.5% cyclic elongation applied at 1 Hz induces morphological changes in cells. Following mechanical stimulation, the cell area enlarged, developing a more elongated shape, which disrupted the initial nuclear-to-cytoplasm ratio. The peripheral cell surface also increased its roughness. Cell-based biochemical assays and real-time PCR quantification showed that these morphologically induced changes are unrelated to the osteoblastic differentiative grade. Interestingly, two essential cell-motility properties in the modulation of the metastatic process changed following the 24 h 1 Hz mechanical stimulation. These were cell adhesion and cell migration, which, in fact, were dampened and enhanced, respectively. Notably, our results showed that the stretch-induced up-regulation of cell motility occurs through a mechanism that does not depend on matrix metalloproteinase (MMP) activity, while the inhibition of ion-stretch channels could counteract it. Overall, our results suggest that further research on mechanobiology could represent an alternative approach for the identification of novel molecular targets of osteosarcoma cell malignancy.
Collapse
Affiliation(s)
- Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - David Becerril Rodriguez
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Marco Luce
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - Antonio Cricenti
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| |
Collapse
|
10
|
The Impact of Plasma Membrane Ion Channels on Bone Remodeling in Response to Mechanical Stress, Oxidative Imbalance, and Acidosis. Antioxidants (Basel) 2023; 12:antiox12030689. [PMID: 36978936 PMCID: PMC10045377 DOI: 10.3390/antiox12030689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
The extracellular milieu is a rich source of different stimuli and stressors. Some of them depend on the chemical–physical features of the matrix, while others may come from the ‘outer’ environment, as in the case of mechanical loading applied on the bones. In addition to these forces, a plethora of chemical signals drives cell physiology and fate, possibly leading to dysfunctions when the homeostasis is disrupted. This variety of stimuli triggers different responses among the tissues: bones represent a particular milieu in which a fragile balance between mechanical and metabolic demands should be tuned and maintained by the concerted activity of cell biomolecules located at the interface between external and internal environments. Plasma membrane ion channels can be viewed as multifunctional protein machines that act as rapid and selective dual-nature hubs, sensors, and transducers. Here we focus on some multisensory ion channels (belonging to Piezo, TRP, ASIC/EnaC, P2XR, Connexin, and Pannexin families) actually or potentially playing a significant role in bone adaptation to three main stressors, mechanical forces, oxidative stress, and acidosis, through their effects on bone cells including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. Ion channel-mediated bone remodeling occurs in physiological processes, aging, and human diseases such as osteoporosis, cancer, and traumatic events.
Collapse
|
11
|
Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life (Basel) 2023; 13:life13030757. [PMID: 36983912 PMCID: PMC10051707 DOI: 10.3390/life13030757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Homo sapiens and their predecessors evolved in the context of the boundary conditions of Earth, including a 1 g gravity and a geomagnetic field (GMF). These variables, plus others, led to complex organisms that evolved under a defined set of conditions and define how humans will respond to space flight, a circumstance that could not have been anticipated by evolution. Over the past ~60 years, space flight and living in low Earth orbit (LEO) have revealed that astronauts are impacted to varying degrees by such new environments. In addition, it has been noted that astronauts are quite heterogeneous in their response patterns, indicating that such variation is either silent if one remained on Earth, or the heterogeneity unknowingly contributes to disease development during aging or in response to insults. With the planned mission to deep space, humans will now be exposed to further risks from radiation when traveling beyond the influence of the GMF, as well as other potential risks that are associated with the actual loss of the GMF on the astronauts, their microbiomes, and growing food sources. Experimental studies with model systems have revealed that hypogravity conditions can influence a variety biological and physiological systems, and thus the loss of the GMF may have unanticipated consequences to astronauts’ systems, such as those that are electrical in nature (i.e., the cardiovascular system and central neural systems). As astronauts have been shown to be heterogeneous in their responses to LEO, they may require personalized countermeasures, while others may not be good candidates for deep-space missions if effective countermeasures cannot be developed for long-duration missions. This review will discuss several of the physiological and neural systems that are affected and how the emerging variables may influence astronaut health and functioning.
Collapse
|
12
|
Matsuno H, Li B, Okawara H, Toyoshima Y, Xie C, Khan M, Murakami N, Aoki K, Wakabayashi N. Effect of tension and compression on dynamic alveolar histomorphometry. J Mech Behav Biomed Mater 2023; 138:105666. [PMID: 36634439 DOI: 10.1016/j.jmbbm.2023.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Here, we tested the hypothesis that tensile and compressive stresses generated in the alveolar bone proper regulate site-specific cellular and functional changes in osteoclasts and osteoblasts. Thirty-two 13-week-old male mice were randomly divided into four groups: two experimental groups with vertical loading obliquely from the palatal side to the buccal side of the maxillary molar (0.9 N) 30 min per day for 8 or 15 days and unloaded controls (n = 8). Calcein and alizarin were administered 8 and 2 days before euthanization, respectively, to detect the time of bone formation. Undecalcified sections parallel to the occlusal plane were prepared on the palatal root and the surrounding alveolar bone in the middle of the root length. The alveolar perimeter was divided into 12 equal regions for site analysis, and the bone histomorphometric parameters were obtained for each region. Data from in vivo microfocus computed tomography were used to construct animal-specific finite element models. 2D stress distribution images were overlain on histology images obtained from the same location. Significant differences in the total perimeter between groups and between loading and unloading in each region were statistically analyzed (α = 0.05). Osteoclast counts and the alizarin label ratio were significantly higher in the loaded group than in the unloaded group in regions where the maximum von Mises and principal tensile stresses were the highest along the perimeter. The label ratio of calcein was significantly lower in the 8-day loaded group than in the unloaded group, indicating that the calcein-labeled surface was resorbed by osteoclasts that appeared during the loading period. The effect of loading was mitigated by an increase in the maximum principal compressive stress. We conclude that bone resorption and bone formation are functions of site-specific tension and compression in the alveolar bone proper, confirming our hypothesis. This finding is critical for the advancement of diagnosis and treatment planning in clinical dentistry.
Collapse
Affiliation(s)
- Hitomi Matsuno
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bin Li
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hisami Okawara
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Toyoshima
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Cangyou Xie
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natsuko Murakami
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriyuki Wakabayashi
- Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
13
|
Salerno E, Orlandi G, Ongaro C, d’Adamo A, Ruffini A, Carnevale G, Zardin B, Bertacchini J, Angeli D. Liquid flow in scaffold derived from natural source: experimental observations and biological outcome. Regen Biomater 2022; 9:rbac034. [PMID: 35747746 PMCID: PMC9211004 DOI: 10.1093/rb/rbac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigates the biological effects on a 3D scaffold based on hydroxyapatite cultured with MC3T3 osteoblasts in response to flow-induced shear stress (FSS). The scaffold adopted here (B-HA) derives from the biomorphic transformation of natural wood and its peculiar channel geometry mimics the porous structure of the bone. From the point of view of fluid dynamics, B-HA can be considered a network of micro-channels, intrinsically offering the advantages of a microfluidic system. This work, for the first time, offers a description of the fluid dynamic properties of the B-HA scaffold, which are strongly connected to its morphology. These features are necessary to determine the FSS ranges to be applied during in vitro studies to get physiologically relevant conditions. The selected ranges of FSS promoted the elongation of the attached cells along the flow direction and early osteogenic cell differentiation. These data confirmed the ability of B-HA to promote the differentiation process along osteogenic lineage. Hence, such a bioactive and naturally derived scaffold can be considered as a promising tool for bone regeneration applications.
Collapse
Affiliation(s)
- Elisabetta Salerno
- CNR-NANO S3 Research Center on nanoStructures and bioSystems at Surfaces , via Campi 213/A, Modena, I-41125, Italy
- University of Modena and Reggio Emilia Department of Sciences and Methods for Engineering, , Via Amendola 2, Reggio Emilia, 42122, Italy
| | - Giulia Orlandi
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Claudio Ongaro
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Alessandro d’Adamo
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Andrea Ruffini
- National Research Council (CNR) Institute of Science and Technology for Ceramics (ISTEC), , Via Granarolo 64, Faenza, 48018, Italy
| | - Gianluca Carnevale
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Barbara Zardin
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Jessika Bertacchini
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Diego Angeli
- University of Modena and Reggio Emilia Department of Sciences and Methods for Engineering, , Via Amendola 2, Reggio Emilia, 42122, Italy
| |
Collapse
|
14
|
Varley I, Ward M, Thorpe C, Beardsley N, Greeves J, Sale C, Saward C. Modelling Changes in Bone and Body Composition Over a Season in Elite Male Footballers. Int J Sports Med 2022; 43:729-739. [PMID: 35523202 DOI: 10.1055/a-1810-6774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study investigated the change in bone and body composition characteristics of elite football players and recreationally active control participants across the course of a season. Fortysix participants (20 footballers and 26 recreationally active controls) were assessed by dual-energy x-ray absorptiometry and peripheral Quantitative Computed Tomography for a range of bone and body composition characteristics at four points over the course of a competitive season. Multilevel modelling was used to examine changes. Footballers had higher characteristics than controls for 24 out of 29 dual-energy x-ray absorptiometry and peripheral Quantitative Computed Tomography variables (all p<0.05). However, there was also significant random inter-individual variation in baseline values for all variables, for both footballers and controls (p < 0.05). Wholebody bone mineral density, leg and whole-body bone mineral content, tibial bone mass and area (38%) increased across the season in footballers (p < 0.05), and there was significant random inter-individual variation in the rate of increase of leg and whole-body bone mineral content (p<0.05). Whole-body bone mineral density, leg and whole-body bone mineral content, tibial bone mass and area (38%) increased over the course of the season in elite football players. The modelling information on expected changes in bone characteristics provides practitioners with a method of identifying those with abnormal bone response to football training and match-play.
Collapse
Affiliation(s)
- Ian Varley
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Marcus Ward
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Chris Thorpe
- Al Duhail Sports Club, Al Duhail Sports Club, Doha, Qatar
| | - Nathan Beardsley
- England Rugby, England Rugby, London, United Kingdom of Great Britain and Northern Ireland
| | - Julie Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom of Great Britain and Northern Ireland
| | - Craig Sale
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Chris Saward
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
15
|
Vermeulen S, Birgani ZT, Habibovic P. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials 2022; 283:121431. [DOI: 10.1016/j.biomaterials.2022.121431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
|
16
|
The mechanosensory and mechanotransductive processes mediated by ion channels and the impact on bone metabolism: A systematic review. Arch Biochem Biophys 2021; 711:109020. [PMID: 34461086 DOI: 10.1016/j.abb.2021.109020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Mechanical environments were associated with alterations in bone metabolism. Ion channels present on bone cells are indispensable for bone metabolism and can be directly or indirectly activated by mechanical stimulation. This review aimed to discuss the literature reporting the mechanical regulatory effects of ion channels on bone cells and bone tissue. An electronic search was conducted in PubMed, Embase and Web of Science. Studies about mechanically induced alteration of bone cells and bone tissue by ion channels were included. Ion channels including TRP family channels, Ca2+ release-activated Ca2+ channels (CRACs), Piezo1/2 channels, purinergic receptors, NMDA receptors, voltage-sensitive calcium channels (VSCCs), TREK2 potassium channels, calcium- and voltage-dependent big conductance potassium (BKCa) channels, small conductance, calcium-activated potassium (SKCa) channels and epithelial sodium channels (ENaCs) present on bone cells and bone tissue participate in the mechanical regulation of bone development in addition to contributing to direct or indirect mechanotransduction such as altered membrane potential and ionic flux. Physiological (beneficial) mechanical stimulation could induce the anabolism of bone cells and bone tissue through ion channels, but abnormal (harmful) mechanical stimulation could also induce the catabolism of bone cells and bone tissue through ion channels. Functional expression of ion channels is vital for the mechanotransduction of bone cells. Mechanical activation (opening) of ion channels triggers ion influx and induces the activation of intracellular modulators that can influence bone metabolism. Therefore, mechanosensitive ion channels provide new insights into therapeutic targets for the treatment of bone-related diseases such as osteopenia and aseptic implant loosening.
Collapse
|
17
|
Birks S, Uzer G. At the nuclear envelope of bone mechanobiology. Bone 2021; 151:116023. [PMID: 34051417 PMCID: PMC8600447 DOI: 10.1016/j.bone.2021.116023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The nuclear envelope and nucleoskeleton are emerging as signaling centers that regulate how physical information from the extracellular matrix is biochemically transduced into the nucleus, affecting chromatin and controlling cell function. Bone is a mechanically driven tissue that relies on physical information to maintain its physiological function and structure. Disorder that present with musculoskeletal and cardiac symptoms, such as Emery-Dreifuss muscular dystrophies and progeria, correlate with mutations in nuclear envelope proteins including Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, Lamin A/C, and emerin. However, the role of nuclear envelope mechanobiology on bone function remains underexplored. The mesenchymal stem cell (MSC) model is perhaps the most studied relationship between bone regulation and nuclear envelope function. MSCs maintain the musculoskeletal system by differentiating into multiple cell types including osteocytes and adipocytes, thus supporting the bone's ability to respond to mechanical challenge. In this review, we will focus on how MSC function is regulated by mechanical challenges both in vitro and in vivo within the context of bone function specifically focusing on integrin, β-catenin and YAP/TAZ signaling. The importance of the nuclear envelope will be explored within the context of musculoskeletal diseases related to nuclear envelope protein mutations and nuclear envelope regulation of signaling pathways relevant to bone mechanobiology in vitro and in vivo.
Collapse
Affiliation(s)
- Scott Birks
- Boise State University, Micron School of Materials Science and Engineering, United States of America
| | - Gunes Uzer
- Boise State University, Mechanical and Biomedical Engineering, United States of America.
| |
Collapse
|
18
|
Asadipooya K, Abdalbary M, Ahmad Y, Kakani E, Monier-Faugere MC, El-Husseini A. Bone Quality in Chronic Kidney Disease Patients: Current Concepts and Future Directions - Part II. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:359-371. [PMID: 34604343 PMCID: PMC8443940 DOI: 10.1159/000515542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Background Patients with chronic kidney disease (CKD) have an increased risk of osteoporotic fractures, which is due not only to low bone volume and mass but also poor microarchitecture and tissue quality. The pharmacological and nonpharmacological interventions detailed, herein, are potential approaches to improve bone health in CKD patients. Various medications build up bone mass but also affect bone tissue quality. Antiresorptive therapies strikingly reduce bone turnover; however, they can impair bone mineralization and negatively affect the ability to repair bone microdamage and cause an increase in bone brittleness. On the other hand, some osteoporosis therapies may cause a redistribution of bone structure that may improve bone strength without noticeable effect on BMD. This may explain why some drugs can affect fracture risk disproportionately to changes in BMD. Summary An accurate detection of the underlying bone abnormalities in CKD patients, including bone quantity and quality abnormalities, helps in institution of appropriate management strategies. Here in this part II, we are focusing on advancements in bone therapeutics that are anticipated to improve bone health and decrease mortality in CKD patients. Key Messages Therapeutic interventions to improve bone health can potentially advance life span. Emphasis should be given to the impact of various therapeutic interventions on bone quality.
Collapse
Affiliation(s)
- Kamyar Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, Kentucky, USA
| | - Mohamed Abdalbary
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA.,Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Yahya Ahmad
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Elijah Kakani
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | | | - Amr El-Husseini
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
19
|
Xu X, Liu S, Liu H, Ru K, Jia Y, Wu Z, Liang S, Khan Z, Chen Z, Qian A, Hu L. Piezo Channels: Awesome Mechanosensitive Structures in Cellular Mechanotransduction and Their Role in Bone. Int J Mol Sci 2021; 22:ijms22126429. [PMID: 34208464 PMCID: PMC8234635 DOI: 10.3390/ijms22126429] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Piezo channels are mechanosensitive ion channels located in the cell membrane and function as key cellular mechanotransducers for converting mechanical stimuli into electrochemical signals. Emerged as key molecular detectors of mechanical forces, Piezo channels' functions in bone have attracted more and more attention. Here, we summarize the current knowledge of Piezo channels and review the research advances of Piezo channels' function in bone by highlighting Piezo1's role in bone cells, including osteocyte, bone marrow mesenchymal stem cell (BM-MSC), osteoblast, osteoclast, and chondrocyte. Moreover, the role of Piezo channels in bone diseases is summarized.
Collapse
Affiliation(s)
- Xia Xu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shuyu Liu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hua Liu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kang Ru
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yunxian Jia
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zixiang Wu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shujing Liang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zarnaz Khan
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (A.Q.); (L.H.)
| | - Lifang Hu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (A.Q.); (L.H.)
| |
Collapse
|
20
|
Chung CW, Kuo CH, Huang HY, Alkhatib A, Tseng CY, Huang CY, Kuo CH. High-protein supplementation facilitates weight training-induced bone mineralization in baseball players. Nutrition 2020; 75-76:110760. [PMID: 32251930 DOI: 10.1016/j.nut.2020.110760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether weight training combined with high-protein intake enhances total and regional bone mineral density (BMD) in athletes. METHODS BMD of 27 Division 1 collegiate baseball players 18 to 22 y of age (N = 13, 2 dropouts) received either 14% protein or isocaloric 44% protein supplements and were assessed by dual-energy x-ray absorptiometry before and after a 12-wk weight training program (challenging upper and lower body). RESULTS Baseline data showed unequivocally greater humerus BMD in the dominant arm than their contralateral non-dominant arm (∼20 %) among all baseball players. Humerus BMD of the non-dominant arm was enhanced by 2.7% after weight training for both low- and high-protein groups (main effect, P = 0.008), concurrent with an unexpected small decrease in total body BMD (main effect, P = 0.014). Humerus BMD of the dominant arm with greater baseline value than the non-dominant arm was not increased unless high protein was supplemented (+2.7 %; P < 0.05). CONCLUSION Bones with relatively higher BMD show blunt adaptation against training, which can be relieved by high-protein supplementation. Total BMD of athletes cannot be further elevated by weight training.
Collapse
Affiliation(s)
- Chen-Wei Chung
- Center for General Education, Shih-Hsin University, Taipei, Taiwan
| | - Chang-Hung Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan; Center for General Education, Shih-Hsin University, Taipei, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Science, Taipei Medical University, Taipei, Taiwan
| | - Ahmad Alkhatib
- School of Health and Life Sciences, Teesside University, Middlesbrough Tees Valley, UK
| | - Ching-Yu Tseng
- Department of Physical Education, Fu Jen University, New Taipei, Taiwan
| | - Chih-Yang Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan.
| |
Collapse
|
21
|
Hart DA, Zernicke RF. Optimal Human Functioning Requires Exercise Across the Lifespan: Mobility in a 1g Environment Is Intrinsic to the Integrity of Multiple Biological Systems. Front Physiol 2020; 11:156. [PMID: 32174843 PMCID: PMC7056746 DOI: 10.3389/fphys.2020.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
It is widely acknowledged that achieving and maintaining a healthier lifestyle can be enhanced through regular participation in sport and physical activity. Coevally, a growing number of health professionals regard exercise as a legitimate intervention strategy for those who have lost their health. Exercise has been shown to be effective for overweight or obese individuals, who are at risk to lose their health due to development of type II diabetes, cardiovascular disease, as well as, infiltration of muscles, bone and other organs with fat, so it can be considered medicine. However, exercise and associated mobility likely also have a strong prevention component that can effectively contribute to the maintenance of the integrity of multiple biological systems for those who do not have overt risk factors or ongoing disease. While prevention is preferred over intervention in the context of disease, it is clear that exercise and associated mobility, generally, can be an effective influence, although overtraining and excessive loading can be deleterious to health. The basis for the generally positive influence of exercise likely lies in the fact that many of our physiological systems are designed to function in the mechanically dynamic and active 1g environment of Earth (e.g., muscles, cartilage, ligaments, tendons, bones, and cardiovascular system, and neuro-cognitive function), and nearly all these systems subscribe to the "use it or lose it" paradigm. This conclusion is supported by the changes observed over the more than 50 years of space flight and exposure to microgravity conditions. Therefore, the premise advanced is: "exercise is preventative for loss of health due to age-related decline in the integrity of several physiological systems via constant reinforcement of those systems, and thus, optimal levels of exercise and physical activity are endemic to, essential for, and intrinsic to optimal health and wellbeing."
Collapse
Affiliation(s)
- David A. Hart
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Bone and Joint Health Strategic Clinical Network, Edmonton, AB, Canada
| | - Ronald F. Zernicke
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Luiz-de-Marco R, Gobbo LA, Castoldi RC, Maillane-Vanegas S, da Silva Ventura Faustino-da-Silva Y, Exupério IN, Agostinete RR, Fernandes RA. Impact of changes in fat mass and lean soft tissue on bone mineral density accrual in adolescents engaged in different sports: ABCD Growth Study. Arch Osteoporos 2020; 15:22. [PMID: 32090287 DOI: 10.1007/s11657-020-0707-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/27/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED Body composition can have a significant impact on bone mineral density (BMD) in pediatric patients and may cause bone disease. This study demonstrated that lean soft tissue (LST) seems to have a greater impact on BMD gain in the lower limbs of adolescents. PURPOSE To analyze the impact of changes in lean soft tissue (LST) and fat mass on areal bone mineral density (BMD) accrual in the lower limbs among adolescents engaged in sports with different weight-bearing levels. METHODS Longitudinal (12 months: measurements at two time points). Adolescents of both sexes (n = 191; 62 girls [32.5%] and 129 boys [67.5%]) were divided into three groups: control group (n = 65), swimming group (n = 25), and weight-bearing sports group (n = 100). Absolute changes in LST (kg) and fat mass (kg) were the independent variables, while BMD accrual (left and right legs) was the dependent variable. Linear regression was used to assess the relationship between dependent and independent variables in a multivariate model adjusted by sex, body weight, somatic maturation, serum osteocalcin, and baseline values of BMD of the lower limbs. RESULTS For the left leg, LST was positively related to areal BMD accrual in the control (β = 0.021 [95%CI: 0.001 to 0.042]) and weight-bearing sport groups (β = 0.051 [95%CI: 0.037 to 0.065]), but not among swimmers (β = 0.029 [95%CI: - 0.004 to 0.062]). For the right leg, LST was positively related to areal BMD accrual in the swimming group (β = 0.065 [95%CI: 0.031 to 0.100]) and weight-bearing sport groups (β = 0.048 [95%CI: 0.034 to 0.062]), but not in the control group (β = 0.014 [95%CI: - 0.002 to 0.030]). Fat mass was not significantly related to areal BMD in either leg. CONCLUSIONS Changes in LST were the most relevant determinant of BMD accrual in the lower limbs, mainly among adolescents engaged in sports.
Collapse
Affiliation(s)
- Rafael Luiz-de-Marco
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil.
| | - Luis Alberto Gobbo
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Robson Chacon Castoldi
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Santiago Maillane-Vanegas
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Yuri da Silva Ventura Faustino-da-Silva
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Isabela Neto Exupério
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Ricardo Ribeiro Agostinete
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Romulo A Fernandes
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| |
Collapse
|
23
|
Li L, He Y, Chen X, Dong Y. The Role of Continuous Cerebrospinal Fluid Pulsation Stress in the Remodeling of Artificial Vertebral Laminae: A Comparison Experiment. Tissue Eng Part A 2019; 25:203-213. [DOI: 10.1089/ten.tea.2018.0100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Linli Li
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Yiqun He
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Xujun Chen
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Youhai Dong
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Nygård M, Mosti MP, Brose L, Flemmen G, Stunes AK, Sørskår-Venæs A, Heggelund J, Wang E. Maximal strength training improves musculoskeletal health in amphetamine users in clinical treatment. Osteoporos Int 2018; 29:2289-2298. [PMID: 29978257 DOI: 10.1007/s00198-018-4623-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/26/2018] [Indexed: 12/01/2022]
Abstract
UNLABELLED Amphetamine use leads to impaired skeletal health and elevated risk of osteoporosis. In the current study, we document that maximal strength training (MST), as a part of clinical treatment, works as a countermeasure, improving muscle force generating capacity, body composition, and skeletal health at sites particularly prone to osteoporotic fractures. INTRODUCTION Amphetamine users have attenuated musculoskeletal health. MST with heavy loads, few repetitions, and emphasis on maximal mobilization in the concentric phase may increase muscle force generating capacity and skeletal health. This study investigated if MST-induced improvements in force generating capacity improved bone mineral density (BMD), trabecular bone score, and body composition in amphetamine users participating in 3-months clinical treatment. METHODS Of 40 randomized patients, 23 completed the study: 11 in the supervised training group (TG; 8 men, 3 women, 34 ± 10 years) and 12 in the control group (CG; 9 men, 3 women, 32 ± 8 years). The TG performed hack-squat MST three times a week for 12 weeks with an intensity of ~90% of one repetition maximum (1RM). Both groups attended conventional clinical treatment. Pre-training and post-training, we assessed hack-squat 1RM and rate of force development (RFD), BMD, body composition and trabecular bone score by dual X-ray absorptiometry, and serum bone metabolism markers. RESULTS MST induced increases in 1RM (70%) and RFD (86%), and resulted in BMD improvements at lumbar spine (3.6%) and total hip (2.4%); all improvements were different from CG (p < 0.05). Both the 1RM and RFD increases were associated with BMD improvements (lumbar spine: r = 0.73 (1RM), r = 0.60 (RFD); total hip: r = 0.61 (1RM); all p < 0.05). No differences were observed in trabecular bone score or bone metabolism markers. CONCLUSIONS MST improved force generating capacity and skeletal health at sites prone to bone loss in amphetamine users, and advocate that MST should be implemented as a clinical strategy to restore the patients' musculoskeletal health.
Collapse
Affiliation(s)
- M Nygård
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Mental Health, St. Olav's University Hospital, Trondheim, Norway.
| | - M P Mosti
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- St. Olav's University Hospital, Trondheim, Norway
| | - L Brose
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - G Flemmen
- Department of Research and Development, Clinic of Substance Use and Addiction Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - A K Stunes
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- St. Olav's University Hospital, Trondheim, Norway
| | - A Sørskår-Venæs
- Clinic of Substance Use and Addiction Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - J Heggelund
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Mental Health, St. Olav's University Hospital, Trondheim, Norway
| | - E Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Li L, Chen X, He Y, Dong Y. Biological and Mechanical Factors Promote the Osteogenesis of Rabbit Artificial Vertebral Laminae: A Comparison Study. Tissue Eng Part A 2018; 24:1082-1090. [DOI: 10.1089/ten.tea.2017.0426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Linli Li
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Minhang, China
| | - Xujun Chen
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Minhang, China
| | - Yiqun He
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Minhang, China
| | - Youhai Dong
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Minhang, China
| |
Collapse
|
26
|
Liu SY, Li Z, Xu SY, Xu L, Yang M, Ni GX. Intensity‑dependent effect of treadmill running on differentiation of rat bone marrow stromal cells. Mol Med Rep 2018; 17:7746-7756. [PMID: 29620179 PMCID: PMC5983966 DOI: 10.3892/mmr.2018.8797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/23/2017] [Indexed: 02/05/2023] Open
Abstract
The effect of running on bone mass depends on its intensity. However, the underlying molecular mechanism that associates running intensity with bone mass is unclear. The current study examined the effects of treadmill running at different intensities on bone mass and osteogenic differentiation of bone marrow stromal cells (BMSCs) in a rat model. A total of 24 male Wistar rats were randomly divided into groups and subjected to no running (Con group), low‑intensity running (LIR group), moderate‑intensity running (MIR group), and high‑intensity running (HIR group). Histological, immunohistochemistry and micro‑CT examinations were performed on the femora harvested after 8 weeks of treadmill running. The study demonstrated that treadmill running affected trabecular bone mass in an intensity‑dependent manner. In addition, such an intensity‑dependent effect was also demonstrated on the osteogenic and adipogenic differentiation and proliferation of BMSCs. Furthermore, the Wnt/β‑catenin signaling pathway may be involved in the running‑induced increase in bone mass in rats in the MIR group. There appears to be a biomechanical 'window', in which running‑induced strain signals can increase the number of BMSCs and progenitor cells (specific to the osteoblast lineage) causing upregulation of osteogenesis and downregulation of adipogenesis of BMSCs. This finding may provide insight into the molecular and cellular mechanisms responsible for bone homeostasis.
Collapse
Affiliation(s)
- Sheng-Yao Liu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhe Li
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shao-Yong Xu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lei Xu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Mo Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Professor Mo Yang, Department of Hematology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, Guangdong 510515, P.R. China, E-mail:
| | - Guo-Xin Ni
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Correspondence to: Professor Guo-Xin Ni, Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, Guangdong 510515, P.R. China, E-mail:
| |
Collapse
|
27
|
Markides H, McLaren JS, Telling ND, Alom N, Al-Mutheffer EA, Oreffo ROC, Zannettino A, Scammell BE, White LJ, El Haj AJ. Translation of remote control regenerative technologies for bone repair. NPJ Regen Med 2018; 3:9. [PMID: 29675269 PMCID: PMC5904134 DOI: 10.1038/s41536-018-0048-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/22/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023] Open
Abstract
The role of biomechanical stimuli, or mechanotransduction, in normal bone homeostasis and repair is understood to facilitate effective osteogenesis of mesenchymal stem cells (MSCs) in vitro. Mechanotransduction has been integrated into a multitude of in vitro bone tissue engineering strategies and provides an effective means of controlling cell behaviour towards therapeutic outcomes. However, the delivery of mechanical stimuli to exogenous MSC populations, post implantation, poses a significant translational hurdle. Here, we describe an innovative bio-magnetic strategy, MICA, where magnetic nanoparticles (MNPs) are used to remotely deliver mechanical stimuli to the mechano-receptor, TREK-1, resulting in activation and downstream signalling via an external magnetic array. In these studies, we have translated MICA to a pre-clinical ovine model of bone injury to evaluate functional bone repair. We describe the development of a magnetic array capable of in vivo MNP manipulation and subsequent osteogenesis at equivalent field strengths in vitro. We further demonstrate that the viability of MICA-activated MSCs in vivo is unaffected 48 h post implantation. We present evidence to support early accelerated repair and preliminary enhanced bone growth in MICA-activated defects within individuals compared to internal controls. The variability in donor responses to MICA-activation was evaluated in vitro revealing that donors with poor osteogenic potential were most improved by MICA-activation. Our results demonstrate a clear relationship between responders to MICA in vitro and in vivo. These unique experiments offer exciting clinical applications for cell-based therapies as a practical in vivo source of dynamic loading, in real-time, in the absence of pharmacological agents.
Collapse
Affiliation(s)
- Hareklea Markides
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, ST4 7QB UK
| | - Jane S. McLaren
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Neil D. Telling
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, ST4 7QB UK
| | - Noura Alom
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | | | - Richard O. C. Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
| | - Andrew Zannettino
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, SA 5000 Australia
| | - Brigitte E. Scammell
- Academic Orthopaedics, Trauma and Sports Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH UK
| | - Lisa J. White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Alicia J. El Haj
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, ST4 7QB UK
| |
Collapse
|
28
|
Lab-on-a-chip platforms for quantification of multicellular interactions in bone remodeling. Exp Cell Res 2018; 365:106-118. [PMID: 29499205 DOI: 10.1016/j.yexcr.2018.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 01/09/2023]
Abstract
Researchers have been using lab-on-a-chip systems to isolate factors for study, simulate laboratory analysis and model cellular, tissue and organ level processes. The technology is increasing rapidly, but the bone field has been slow to keep pace. Novel models are needed that have the power and flexibility to investigate the elegant and synchronous multicellular interactions that occur in normal bone turnover and in disease states in which remodeling is implicated. By removing temporal and spatial limitations and enabling quantification of functional outcomes, the platforms should provide unique environments that are more biomimetic than single cell type systems while minimizing complex systemic effects of in vivo models. This manuscript details the development and characterization of lab-on-a-chip platforms for stimulating osteocytes and quantifying bone remodeling. Our platforms provide the foundation for a model that can be used to investigate remodeling interactions as a whole or as a standard mechanotransduction tool by which isolated activity can be quantified as a function of load.
Collapse
|
29
|
Collins KH, Herzog W, MacDonald GZ, Reimer RA, Rios JL, Smith IC, Zernicke RF, Hart DA. Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity. Front Physiol 2018; 9:112. [PMID: 29527173 PMCID: PMC5829464 DOI: 10.3389/fphys.2018.00112] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/05/2018] [Indexed: 01/14/2023] Open
Abstract
Inflammation can arise in response to a variety of stimuli, including infectious agents, tissue injury, autoimmune diseases, and obesity. Some of these responses are acute and resolve, while others become chronic and exert a sustained impact on the host, systemically, or locally. Obesity is now recognized as a chronic low-grade, systemic inflammatory state that predisposes to other chronic conditions including metabolic syndrome (MetS). Although obesity has received considerable attention regarding its pathophysiological link to chronic cardiovascular conditions and type 2 diabetes, the musculoskeletal (MSK) complications (i.e., muscle, bone, tendon, and joints) that result from obesity-associated metabolic disturbances are less frequently interrogated. As musculoskeletal diseases can lead to the worsening of MetS, this underscores the imminent need to understand the cause and effect relations between the two, and the convergence between inflammatory pathways that contribute to MSK damage. Muscle mass is a key predictor of longevity in older adults, and obesity-induced sarcopenia is a significant risk factor for adverse health outcomes. Muscle is highly plastic, undergoes regular remodeling, and is responsible for the majority of total body glucose utilization, which when impaired leads to insulin resistance. Furthermore, impaired muscle integrity, defined as persistent muscle loss, intramuscular lipid accumulation, or connective tissue deposition, is a hallmark of metabolic dysfunction. In fact, many common inflammatory pathways have been implicated in the pathogenesis of the interrelated tissues of the musculoskeletal system (e.g., tendinopathy, osteoporosis, and osteoarthritis). Despite these similarities, these diseases are rarely evaluated in a comprehensive manner. The aim of this review is to summarize the common pathways that lead to musculoskeletal damage and disease that result from and contribute to MetS. We propose the overarching hypothesis that there is a central role for muscle damage with chronic exposure to an obesity-inducing diet. The inflammatory consequence of diet and muscle dysregulation can result in dysregulated tissue repair and an imbalance toward negative adaptation, resulting in regulatory failure and other musculoskeletal tissue damage. The commonalities support the conclusion that musculoskeletal pathology with MetS should be evaluated in a comprehensive and integrated manner to understand risk for other MSK-related conditions. Implications for conservative management strategies to regulate MetS are discussed, as are future research opportunities.
Collapse
Affiliation(s)
- Kelsey H. Collins
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Graham Z. MacDonald
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Raylene A. Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Jaqueline L. Rios
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- CAPES Foundation, Brasilia, Brazil
| | - Ian C. Smith
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Ronald F. Zernicke
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Departments of Orthopaedic Surgery and Biomedical Engineering, School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - David A. Hart
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Family Practice, The Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
- Alberta Health Services Bone and Joint Health Strategic Clinical Network, Calgary, AB, Canada
| |
Collapse
|
30
|
Soft tissues, areal bone mineral density and hip geometry estimates in active young boys: the PRO-BONE study. Eur J Appl Physiol 2017; 117:833-842. [DOI: 10.1007/s00421-017-3568-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/10/2017] [Indexed: 01/20/2023]
|
31
|
Abstract
Influenced by gravidity, bone tissue experiences stronger or lighter deformation according to the strength of the activities of daily life. Activities resulting in impact are particularly known to stimulate osteogenesis, thus reducing bone mass loss. Knowing how bone cells recognize the mechanical deformation imposed to the bone and trigger a series of biochemical chain reactions is of crucial importance for the development of therapeutic and preventive practices in orthopaedic activity. There is still a long way to run until we can understand the whole process, but current knowledge has shown a strong progression, with researches being conducted focused on therapies. For a mechanical sign to be transformed into a biological one (mechanotransduction), it must be amplified at cell level by the histological structure of bone tissue, producing tensions in cell membrane proteins (integrins) and changing their spatial structure. Such change activates bindings between these and the cytoskeleton, producing focal adhesions, where cytoplasmatic proteins are recruited to enable easier biochemical reactions. Focal adhesion kinase (FAK) is the most important one being self-activated when its structure is changed by integrins. Activated FAK triggers a cascade of reactions, resulting in the activation of ERK-1/2 and Akt, which are proteins that, together with FAK, regulate the production of bone mass. Osteocytes are believed to be the mechanosensor cells of the bone and to transmit the mechanical deformation to osteoblasts and osteoclasts. Ionic channels and gap junctions are considered as intercellular communication means for biochemical transmission of a mechanical stimulus. These events occur continuously on bone tissue and regulate bone remodeling.
Collapse
|
32
|
Overcoming translational challenges - The delivery of mechanical stimuli in vivo. Int J Biochem Cell Biol 2015; 69:162-72. [PMID: 26482595 DOI: 10.1016/j.biocel.2015.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Despite major medical advances, non-union bone fractures and skeletal defects continue to place significant burden on the patient, the clinicians and the healthcare system as a whole. Current bone substitute approaches are still limited in effectiveness and to date no adequate bone substitute material has been developed for routine clinical application. Tissue engineering presents a novel approach to tackling this clinical burden and developing an acceptable solution for the treatment of skeletal defects. Over the past three decades the field has evolved to appreciate the key biological, material and physical parameters influencing the development of a cell-based tissue engineered therapy and to create associated technologies to exploit such parameters. In recent years a number of therapies have started progressing along the pre-clinical pipeline to build a case for regulatory approval and ultimately clinical adoption. However, little emphasis has been given to the translational challenges faced when moving from "bench-to-bedside". One particular challenge lies in the delivery of functional mechanical stimuli to implanted cell populations to activate and promote osteogenic activities. This review introduces novel bio-magnetic approaches to overcoming this challenge.
Collapse
|
33
|
Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G, Li Z, Peng J, Wang P, Shen C, Huang Y, Xu J, Zhang X, Chen X. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. J Bone Miner Res 2015; 30:330-45. [PMID: 25195535 DOI: 10.1002/jbmr.2352] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/04/2014] [Accepted: 08/20/2014] [Indexed: 01/20/2023]
Abstract
Emerging evidence indicates that microRNAs (miRNAs) play essential roles in regulating osteoblastogenesis and bone formation. However, the role of miRNA in osteoblast mechanotransduction remains to be defined. In this study, we aimed to investigate whether miRNAs regulate mechanical stimulation-triggered osteoblast differentiation and bone formation through modulation of Runx2, the master transcription factor for osteogenesis. We first investigated the role of mechanical loading both in a mouse model and in an osteoblast culture system and the outcomes clearly demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. Using bioinformatic analyses and subsequent confirmation by quantitative real-time PCR (qRT-PCR), we found that multiple miRNAs that potentially target Runx2 were responding to in vitro mechanical stimulation, among which miR-103a was fully characterized. miR-103a and its host gene PANK3 were both downregulated during cyclic mechanical stretch (CMS)-induced osteoblast differentiation, whereas Runx2 protein expression was upregulated. Overexpression of miR-103a significantly decreased and inhibition of miR-103a increased Runx2 protein level, suggesting that miR-103a acts as an endogenous attenuator of Runx2 in osteoblasts. Mutation of putative miR-103a binding sites in Runx2 mRNA abolishes miR-103a-mediated repression of the Runx2 3'-untranslated region (3'UTR) luciferase reporter activity, suggesting that miR-103a binds to Runx2 3'UTR. Osteoblast marker gene profiling and osteogenic phenotype assays demonstrated that miR-103a negatively correlates with CMS-induced osteogenesis. Further, the perturbation of miR-103a also has a significant effect on osteoblast activity and matrix mineralization. More importantly, we found an inhibitory role of miR-103a in regulating bone formation in hindlimb unloading mice, and pretreatment with antagomir-103a partly rescued the osteoporosis caused by mechanical unloading. Taken together, our data suggest that miR-103a is the first identified mechanosensitive miRNA that regulates osteoblast differentiation by directly targeting Runx2, and therapeutic inhibition of miR-103a may be an efficient anabolic strategy for skeletal disorders caused by pathological mechanical loading.
Collapse
Affiliation(s)
- Bin Zuo
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sun Z, Cao X, Zhang Z, Hu Z, Zhang L, Wang H, Zhou H, Li D, Zhang S, Xie M. Simulated microgravity inhibits L-type calcium channel currents partially by the up-regulation of miR-103 in MC3T3-E1 osteoblasts. Sci Rep 2015; 5:8077. [PMID: 25627864 PMCID: PMC4308706 DOI: 10.1038/srep08077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022] Open
Abstract
L-type voltage-sensitive calcium channels (LTCCs), particularly Cav1.2 LTCCs, play fundamental roles in cellular responses to mechanical stimuli in osteoblasts. Numerous studies have shown that mechanical loading promotes bone formation, whereas the removal of this stimulus under microgravity conditions results in a reduction in bone mass. However, whether microgravity exerts an influence on LTCCs in osteoblasts and whether this influence is a possible mechanism underlying the observed bone loss remain unclear. In the present study, we demonstrated that simulated microgravity substantially inhibited LTCC currents and suppressed Cav1.2 at the protein level in MC3T3-E1 osteoblast-like cells. In addition, reduced Cav1.2 protein levels decreased LTCC currents in MC3T3-E1 cells. Moreover, simulated microgravity increased miR-103 expression. Cav1.2 expression and LTCC current densities both significantly increased in cells that were transfected with a miR-103 inhibitor under mechanical unloading conditions. These results suggest that simulated microgravity substantially inhibits LTCC currents in osteoblasts by suppressing Cav1.2 expression. Furthermore, the down-regulation of Cav1.2 expression and the inhibition of LTCCs caused by mechanical unloading in osteoblasts are partially due to miR-103 up-regulation. Our study provides a novel mechanism for microgravity-induced detrimental effects on osteoblasts, offering a new avenue to further investigate the bone loss induced by microgravity.
Collapse
Affiliation(s)
- Zhongyang Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Zhuo Zhang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Lianchang Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Hua Zhou
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Dongtao Li
- Center of Cardiology, Navy General Hospital, 100048, Beijing, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Manjiang Xie
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| |
Collapse
|
35
|
Liu D, Huang Y, Li B, Jia C, Liang F, Fu Q. Carvedilol promotes neurological function, reduces bone loss and attenuates cell damage after acute spinal cord injury in rats. Clin Exp Pharmacol Physiol 2015; 42:202-12. [PMID: 25424914 DOI: 10.1111/1440-1681.12345] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/04/2014] [Accepted: 11/11/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Da Liu
- Department of Orthopaedic Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Ying Huang
- Department of Ultrasound; Shengjing Hospital of China Medical University; Shenyang China
| | - Bin Li
- Department of Orthopaedic Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Changqing Jia
- Department of Orthopaedic Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Feng Liang
- Department of Orthopaedic Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Qin Fu
- Department of Orthopaedic Surgery; Shengjing Hospital of China Medical University; Shenyang China
| |
Collapse
|
36
|
Yuan X, Serra RA, Yang S. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Ann N Y Acad Sci 2015; 1335:78-99. [PMID: 24961486 PMCID: PMC4334369 DOI: 10.1111/nyas.12463] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary cilia are microtubule-based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
| | - Rosa A. Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
37
|
The roles of P2Y2 purinergic receptors in osteoblasts and mechanotransduction. PLoS One 2014; 9:e108417. [PMID: 25268784 PMCID: PMC4182465 DOI: 10.1371/journal.pone.0108417] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/29/2014] [Indexed: 01/22/2023] Open
Abstract
We previously demonstrated, using osteoblastic MC3T3-E1 cells, that P2Y2 purinergic receptors are involved in osteoblast mechanotransduction. In this study, our objective was to further investigate, using a knockout mouse model, the roles of P2Y2 receptors in bone mechanobiology. We first examined bone structure with micro-CT and measured bone mechanical properties with three point bending experiments in both wild type mice and P2Y2 knockout mice. We found that bones from P2Y2 knockout mice have significantly decreased bone volume, bone thickness, bone stiffness and bone ultimate breaking force at 17 week old age. In order to elucidate the mechanisms by which P2Y2 receptors contribute to bone biology, we examined differentiation and mineralization of bone marrow cells from wild type and P2Y2 knockout mice. We found that P2Y2 receptor deficiency reduces the differentiation and mineralization of bone marrow cells. Next, we compared the response of primary osteoblasts, from both wild type and P2Y2 knockout mice, to ATP and mechanical stimulation (oscillatory fluid flow), and found that osteoblasts from wild type mice have a stronger response, in terms of ERK1/2 phosphorylation, to both ATP and fluid flow, relative to P2Y2 knockout mice. However, we did not detect any difference in ATP release in response to fluid flow between wild type and P2Y2 knock out osteoblasts. Our findings suggest that P2Y2 receptors play important roles in bone marrow cell differentiation and mineralization as well as in bone cell mechanotransduction, leading to an osteopenic phenotype in P2Y2 knockout mice.
Collapse
|
38
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases in mechano-transduction: mechanisms and consequences. Antioxid Redox Signal 2014; 20:887-98. [PMID: 23682993 PMCID: PMC3924808 DOI: 10.1089/ars.2013.5414] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The majority of cells in a multi-cellular organism are continuously exposed to ever-changing physical forces. Mechano-transduction links these events to appropriate reactions of the cells involving stimulation of signaling cascades, reorganization of the cytoskeleton and alteration of gene expression. RECENT ADVANCES Mechano-transduction alters the cellular redox balance and the formation of reactive oxygen species (ROS). Nicotine amide adenine dinucleotide reduced form (NADPH) oxidases of the Nox family are prominent ROS generators and thus, contribute to this stress-induced ROS formation. CRITICAL ISSUES Different types and patterns of mechano-stress lead to Nox-dependent ROS formation and Nox-mediated ROS formation contributes to cellular responses and adaptation to physical forces. Thereby, Nox enzymes can mediate vascular protection during physiological mechano-stress. Despite this, over-activation and induction of Nox enzymes and a subsequent substantial increase in ROS formation also promotes oxidative stress in pathological situations like disturbed blood flow or extensive stretch. FUTURE DIRECTIONS Individual protein targets of Nox-mediated redox-signaling will be identified to better understand the specificity of Nox-dependent ROS signaling in mechano-transduction. Nox-inhibitors will be tested to reduce cellular activation in response to mechano-stimuli.
Collapse
Affiliation(s)
- Ralf P Brandes
- 1 Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt , Frankfurt am Main, Germany
| | | | | |
Collapse
|
39
|
Chang RPY, Briffa KN, Edmondston SJ. Bone mineral density and body composition in elite female golf and netball players. Eur J Sport Sci 2013. [DOI: 10.1080/17461391.2011.606840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
40
|
Lim KT, Kim J, Seonwoo H, Chang JU, Choi H, Hexiu J, Cho WJ, Choung PH, Chung JH. Enhanced Osteogenesis of Human Alveolar Bone-Derived Mesenchymal Stem Cells for Tooth Tissue Engineering Using Fluid Shear Stress in a Rocking Culture Method. Tissue Eng Part C Methods 2013; 19:128-45. [DOI: 10.1089/ten.tec.2012.0017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
| | - Jangho Kim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
| | - Hoon Seonwoo
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
| | - Jung Uk Chang
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
| | - Hwajung Choi
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jin Hexiu
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Woo Jae Cho
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
- Tooth Bioengineering National Research Laboratory of Post BK21, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
41
|
Lim KT, Kim J, Seonwoo H, Chang JU, Choi H, Hexiu J, Cho WJ, Choung PH, Chung JH. Enhanced Osteogenesis of Human Alveolar Bone-Derived Mesenchymal Stem Cells for Tooth Tissue Engineering Using Fluid Shear Stress in a Rocking Culture Method. Tissue Eng Part C Methods 2013. [DOI: 10.1089/ten.tec.2012.0017 pm id,23088630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
| | - Jangho Kim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
| | - Hoon Seonwoo
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
| | - Jung Uk Chang
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
| | - Hwajung Choi
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jin Hexiu
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Woo Jae Cho
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
- Tooth Bioengineering National Research Laboratory of Post BK21, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
42
|
Zhang S, Cheng J, Qin YX. Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force. PLoS One 2012; 7:e38343. [PMID: 22701628 PMCID: PMC3368843 DOI: 10.1371/journal.pone.0038343] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/03/2012] [Indexed: 01/27/2023] Open
Abstract
Mechanotransduction has demonstrated potential for regulating tissue adaptation in vivo and cellular activities in vitro. It is well documented that ultrasound can produce a wide variety of biological effects in biological systems. For example, pulsed ultrasound can be used to noninvasively accelerate the rate of bone fracture healing. Although a wide range of studies has been performed, mechanism for this therapeutic effect on bone healing is currently unknown. To elucidate the mechanism of cellular response to mechanical stimuli induced by pulsed ultrasound radiation, we developed a method to apply focused acoustic radiation force (ARF) (duration, one minute) on osteoblastic MC3T3-E1 cells and observed cellular responses to ARF using a spinning disk confocal microscope. This study demonstrates that the focused ARF induced F-actin cytoskeletal rearrangement in MC3T3-E1 cells. In addition, these cells showed an increase in intracellular calcium concentration following the application of focused ARF. Furthermore, passive bending movement was noted in primary cilium that were treated with focused ARF. Cell viability was not affected. Application of pulsed ultrasound radiation generated only a minimal temperature rise of 0.1°C, and induced a streaming resulting fluid shear stress of 0.186 dyne/cm(2), suggesting that hyperthermia and acoustic streaming might not be the main causes of the observed cell responses. In conclusion, these data provide more insight in the interactions between acoustic mechanical stress and osteoblastic cells. This experimental system could serve as basis for further exploration of the mechanosensing mechanism of osteoblasts triggered by ultrasound.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | | | | |
Collapse
|
43
|
Silva CC, Goldberg TBL, Teixeira AS, Dalmas JC. The impact of different types of physical activity on total and regional bone mineral density in young Brazilian athletes. J Sports Sci 2011; 29:227-34. [PMID: 21170799 DOI: 10.1080/02640414.2010.529456] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bone turnover is affected by exercise throughout the lifespan, especially during childhood and adolescence. The objective of this study was to investigate the impact of different sports on total and regional bone mineral density in male Brazilian adolescent athletes. Forty-six adolescents aged 10-18 years participated in the study: 12 swimmers, 10 tennis players, 10 soccer players, and 14 sedentary individuals. The athletes had engaged in physical activities for more than 10 h per week in the previous 6 months. Bone mineral density of the lumbar spine (L1-L4), left proximal femur region, and whole body was evaluated by dual-energy X-ray absorptiometry. Results showed higher mean values in the proximal femur region of tennis and soccer players (1.02 ± 0.18; 0.96 ± 0.16, respectively) than swimmers and controls (0.91 ± 0.14 and 0.87 ± 0.06, respectively) (P < 0.05). In relation to the impact of sporting activities based on bone age determination, we observed significant differences in bone mineral density at all evaluated sites at the end of puberty (16-18 years) compared with 10-12 years, with increases of 78% in the lumbar spine, 47% in the proximal femur, and 38% in the whole body.
Collapse
Affiliation(s)
- Carla C Silva
- Physical Education, University of North Parana (UENP), Jacarezinho, Brazil
| | | | | | | |
Collapse
|
44
|
Tirkkonen L, Halonen H, Hyttinen J, Kuokkanen H, Sievänen H, Koivisto AM, Mannerström B, Sándor GKB, Suuronen R, Miettinen S, Haimi S. The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells. J R Soc Interface 2011; 8:1736-47. [PMID: 21613288 DOI: 10.1098/rsif.2011.0211] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mechanical stimulation is an essential factor affecting the metabolism of bone cells and their precursors. We hypothesized that vibration loading would stimulate differentiation of human adipose stem cells (hASCs) towards bone-forming cells and simultaneously inhibit differentiation towards fat tissue. We developed a vibration-loading device that produces 3g peak acceleration at frequencies of 50 and 100 Hz to cells cultured on well plates. hASCs were cultured using either basal medium (BM), osteogenic medium (OM) or adipogenic medium (AM), and subjected to vibration loading for 3 h d(-1) for 1, 7 and 14 day. Osteogenesis, i.e. differentiation of hASCs towards bone-forming cells, was analysed using markers such as alkaline phosphatase (ALP) activity, collagen production and mineralization. Both 50 and 100 Hz vibration frequencies induced significantly increased ALP activity and collagen production of hASCs compared with the static control at 14 day in OM. A similar trend was detected for mineralization, but the increase was not statistically significant. Furthermore, vibration loading inhibited adipocyte differentiation of hASCs. Vibration did not affect cell number or viability. These findings suggest that osteogenic culture conditions amplify the stimulatory effect of vibration loading on differentiation of hASCs towards bone-forming cells.
Collapse
Affiliation(s)
- Laura Tirkkonen
- Institute of Biomedical Technology, University of Tampere, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Geris L, Vandamme K, Naert I, Sloten JV, Van Oosterwyck H, Duyck J. Mechanical Loading Affects Angiogenesis and Osteogenesis in an In Vivo Bone Chamber: A Modeling Study. Tissue Eng Part A 2010; 16:3353-61. [DOI: 10.1089/ten.tea.2010.0130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Liesbet Geris
- Division of Biomechanics and Engineering Design, Department of Mechanical Engineering, K.U.Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, K.U.Leuven, Leuven, Belgium
- Biomechanics Research Unit, Aerospace and Mechanical Engineering Department U.Liège, Liège, Belgium
| | - Katleen Vandamme
- Department of Prosthetic Dentistry/BIOMAT Research Cluster, Faculty of Medicine, School of Dentistry, Oral Pathology, and Maxillofacial Surgery, K.U.Leuven, Leuven, Belgium
| | - Ignace Naert
- Department of Prosthetic Dentistry/BIOMAT Research Cluster, Faculty of Medicine, School of Dentistry, Oral Pathology, and Maxillofacial Surgery, K.U.Leuven, Leuven, Belgium
| | - Jos Vander Sloten
- Division of Biomechanics and Engineering Design, Department of Mechanical Engineering, K.U.Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Division of Biomechanics and Engineering Design, Department of Mechanical Engineering, K.U.Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, K.U.Leuven, Leuven, Belgium
| | - Joke Duyck
- Department of Prosthetic Dentistry/BIOMAT Research Cluster, Faculty of Medicine, School of Dentistry, Oral Pathology, and Maxillofacial Surgery, K.U.Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Lloyd R, Hind K, Micklesfield LK, Carroll S, Truscott JG, Parr B, Davies S, Cooke C. A pilot investigation of load-carrying on the head and bone mineral density in premenopausal, black African women. J Bone Miner Metab 2010; 28:185-90. [PMID: 19629620 DOI: 10.1007/s00774-009-0113-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 06/22/2009] [Indexed: 11/29/2022]
Abstract
Although the influence of weight-bearing activity on bone mass has been widely investigated in white women, few studies have been conducted in black, African populations. We investigated bone mineral density (BMD) in black South African women, with and without a history of load-carrying on the head. We also investigated whether load carrying may offer protection against low BMD in users of injectable progestin contraception (IPC). Participants were 32 black, South African women (22.4 +/- 3.2 years). Load carrying history was determined by questionnaire and interview; participants were grouped as load carriers (LC; n = 18) or non-load carriers (NLC; n = 14). Ten women were using IPC and 6 were load-carriers. Total body (TB), lumbar spine (LS) and total hip (H) BMD were measured by dual energy X-ray absorptiometry. There were no differences in BMD between LC and NLC, and after controlling for age and BMI using two-tailed partial correlations. IPC users had lower BMD at all sites compared to non-IPC users (p < 0.05) and there were no associations between load carrying and BMD in this group. When IPC users were excluded from analysis, LC had higher LS BMD than NLC (p < 0.005). Correlations were found between the weight of load carried and LS BMD (r = 0.743, p < 0.005), and between years of load carrying and LS and TB BMD (r = 0.563, r = 0.538, respectively; both p < 0.05). Load carrying on the head may offer osteogenic benefits to the spine but these benefits did not appear in women using IPC.
Collapse
Affiliation(s)
- Ray Lloyd
- University of Abertay, Dundee, DD1 1HG, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang X, Nyman J, Dong X, Leng H, Reyes M. Fundamental Biomechanics in Bone Tissue Engineering. ACTA ACUST UNITED AC 2010. [DOI: 10.2200/s00246ed1v01y200912tis004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Rantalainen T, Sievänen H, Linnamo V, Hoffrén M, Ishikawa M, Kyröläinen H, Avela J, Selänne H, Komi PV, Heinonen A. Bone rigidity to neuromuscular performance ratio in young and elderly men. Bone 2009; 45:956-63. [PMID: 19631780 DOI: 10.1016/j.bone.2009.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/23/2009] [Accepted: 07/15/2009] [Indexed: 11/15/2022]
Abstract
Given the adaptation of bone to prevalent loading, bone loss should follow, but lag behind, the decline in physical performance during aging. Furthermore, bone responsiveness to load-induced strains is believed to decrease with aging. However, the relationship between bone and lean body ( approximately muscle) mass appears to remain rather constant throughout adulthood. The purpose of this study was to examine the association between age and bone to neuromuscular performance ratio. Young (N=20, age 24 SD+/-2 years, body mass 77+/-11 kg, height 178+/-6 cm) and elderly (N=25, 72+/-4 years, 75+/-9 kg, 172+/-5 cm) men served as subjects. Bone structural traits were measured at the right distal tibia and tibial mid-shaft with peripheral quantitative computed tomography (pQCT). Maximal section modulus (Z(max50)), total area (ToA(d)), cortical area (CoA(50)), total density (ToD(d)) and cortical density (CoD(50)) were determined from the pQCT images. Neuromuscular performance was measured by recording vertical ground reaction force (GRF) in maximal bilateral hopping. Load-induced strains were estimated by calculating appropriate indices for compressive and tensile loading that took into account both the bone structure and apparent biomechanics of the given bone site. Young subjects had significantly higher maximal GRF compared to older men (4260+/-800 N vs. 3080+/-600 N, P<0.001). They also had smaller ToA(d) (1100+/-170 mm(2) vs. 1200+/-100 mm(2), P=0.028) while their ToD(d) was higher (370+/-46 g/cm(3) vs. 330+/-22 g/cm(3), P=0.002). The Z(max50) did not differ significantly between young (1660+/-320 mm(3)) and elderly men (1750+/-320 mm(3)) (P=0.224). Compressive (0.484+/-0.102 vs. 0.399+/-0.078, P=0.016) and tensile (0.107+/-0.016 vs. 0.071+/-0.018, P<0.001) strain indices were significantly higher in the younger group. In conclusion, the difference in bone to loading ratio at the tibial mid-shaft is bigger than expected from the delay in bone adaptation alone. Potential candidates to explain this phenomenon include a decrease in mechanosensitivity with aging, inability of maximal physical performance to adequately represent the bone loading environment, or the need to maintain constant safety factors to functional strains.
Collapse
Affiliation(s)
- T Rantalainen
- Neuromuscular Research Centre, Department of Biology of Physical Activity, University of Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Papachristou DJ, Papachroni KK, Papavassiliou GA, Pirttiniemi P, Gorgoulis VG, Piperi C, Basdra EK. Functional alterations in mechanical loading of condylar cartilage induces changes in the bony subcondylar region. Arch Oral Biol 2009; 54:1035-45. [PMID: 19775676 DOI: 10.1016/j.archoralbio.2009.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 12/28/2022]
Abstract
Bone remodeling is orchestrated by cells of the osteoblast lineage and involves an intricate network of cell-cell and cell-matrix interactions. This dynamic process engages systemic hormones, locally produced cytokines and growth factors, as well as the mechanical environment of the cells. In growing subjects, the mandibular condyle consists of both articular and growth components and the presence of progenitor cells is verified by their anabolic responses to growth hormones. The pathways of chondrocyte and osteoblast differentiation during endochondral bone formation are interconnected and controlled by key transcription factors. The present study was undertaken to explore the possibility and the extent by which the mechano-transduction events in chondrocytes are 'sensed' in the subchondral bony area under altered functional loading. To this end, the involvement of the JNK/ERK-AP-1/Runx2 signaling axe was investigated by immunohistochemistry in temporomandibular joints of young rats subjected to different functional mastication loads. Our results showed that mechanical load triggers differentiation phenomena through the induction of master tissue regulators, namely the expression and/or activation of the JNK-c-Jun signaling pathway components and c-Fos in subchondral osteoblasts, as well as the activation of ERK/MAPK and the cellular expression of the transcription factor Runx2 in subchondral osteoblasts.
Collapse
|
50
|
Abstract
Dynamic interactions between cellular membranes and the cytoskeleton are known to play major roles in many cellular responses to environmental cues. External signals resulting in proliferation, differentiation, polarization, and motility must be translated from chemical signals into changes of state, often involving the cytoskeleton-dependent altering of cell shape and redistribution of molecules. Cholesterol, a critical component of eukaryotic cell membranes, performs vital roles in regulating membrane dynamics and function. Here we demonstrate, using mesenchymal and epithelial cell lines, that depletion of membrane cholesterol results in Src kinase-mediated Rho activation and caveolin phosphorylation, which together collaborate to form stress fibers. These results demonstrate that cholesterol is a critical regulator of membrane-cytoskeletal dynamics and suggest that altered cholesterol concentrations may result in dramatic changes in cellular responses mediated by the cytoskeleton.
Collapse
Affiliation(s)
- Maosong Qi
- Department of Orthopaedic Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|