1
|
Gallagher DM, O'Harte FPM, Irwin N. An update on galanin and spexin and their potential for the treatment of type 2 diabetes and related metabolic disorders. Peptides 2024; 171:171096. [PMID: 37714335 DOI: 10.1016/j.peptides.2023.171096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Spexin (SPX) and galanin (GAL) are two neuropeptides widely expressed in the central nervous system as well as within peripheral tissues in humans and other species. SPX and GAL mediate their biological actions through binding and activation of galanin receptors (GALR), namely GALR1, GALR2 and GLAR3. GAL appears to trigger all three galanin receptors, whereas SPX interacts more specifically with GALR2 and GLAR3. Whilst the biological effects of GAL have been well-described over the years, in-depth knowledge of physiological action profile of SPX is still in its preliminary stages. However, it is recognised that both peptides play a significant role in modulating overall energy homeostasis, suggesting possible therapeutically exploitable benefits in diseases such as obesity and type 2 diabetes mellitus. Accordingly, although both peptides activate GALR's, it appears GAL may be more useful for the treatment of eating disorders such as anorexia and bulimia, whereas SPX may find therapeutic application for obesity and obesity-driven forms of diabetes. This short narrative review aims to provide an up-to-date account of SPX and GAL biology together with putative approaches on exploiting these peptides for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Daniel M Gallagher
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Finbarr P M O'Harte
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
2
|
Exploring the role of neuropeptides in depression and anxiety. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110478. [PMID: 34801611 DOI: 10.1016/j.pnpbp.2021.110478] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022]
Abstract
Depression is one of the most prevalent forms of mental disorders and is the most common cause of disability in the Western world. Besides, the harmful effects of stress-related mood disorders on the patients themselves, they challenge the health care system with enormous social and economic impacts. Due to the high proportion of patients not responding to existing drugs, finding new treatment strategies has become an important topic in neurobiology, and there is much evidence that neuropeptides are not only involved in the physiology of stress but may also be clinically important. Based on preclinical trial data, new neuropharmaceutical candidates may target neuropeptides and their receptors and are expected to be essential and valuable tools in the treatment of psychiatric disorders. In the current article, we have summarized data obtained from animal models of depressive disorder and transgenic mouse models. We also focus on previously published research data of clinical studies on corticotropin-releasing hormone (CRH), galanin (GAL), neuropeptide Y (NPY), neuropeptide S (NPS), Oxytocin (OXT), vasopressin (VP), cholecystokinin (CCK), and melanin-concentrating hormone (MCH) stress research fields.
Collapse
|
3
|
Wang S, Zhou Q, Zhang X, Wang P. Site‐Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| |
Collapse
|
4
|
Wang S, Zhou Q, Zhang X, Wang P. Site-Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202111388. [PMID: 34845804 DOI: 10.1002/anie.202111388] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Site-selective peptide functionalization provides a straightforward and cost-effective access to diversify peptides for biological studies. Among many existing non-invasive peptide conjugations methodologies, photoredox catalysis has emerged as one of the powerful approaches for site-specific manipulation on native peptides. Herein, we report a highly N-termini-specific method to rapidly access itaconated peptides and their derivatives through a combination of transamination and photoredox conditions. This strategy exploits the facile reactivity of peptidyl-dihydropyridine in the complex peptide settings, complementing existing approaches for bioconjugations with excellent selectivity under mild conditions. Distinct from conventional methods, this method utilizes the highly reactive carbamoyl radical derived from a peptidyl-dihydropyridine. In addition, this itaconated peptide can be further functionalized as a Michael acceptor to access the corresponding peptide-protein conjugate.
Collapse
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| |
Collapse
|
5
|
Abebe EC, Mengstie MA, Seid MA, Dejenie TA. Regulatory effects and potential therapeutic implications of alarin in depression, and arguments on its receptor. Front Psychiatry 2022; 13:1051235. [PMID: 36506414 PMCID: PMC9732279 DOI: 10.3389/fpsyt.2022.1051235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Alarin is a pleiotropic peptide involved in a multitude of putative biological activities, notably, it has a regulatory effect on depression-like behaviors. Although further elucidating research is needed, animal-based cumulative evidence has shown the antidepressant-like effects of alarin. In light of its regulatory role in depression, alarin could be used as a promising antidepressant in future treatment for depression. Nevertheless, the available information is still insufficient and the therapeutic relevance of alarin in depression is still of concern. Moreover, a plethora of studies have reported that the actions of alarin, including antidepressant activities, are mediated by a separate yet unidentified receptor, highlighting the need for more extensive research. This review focuses on the current understanding of the regulatory effects and future therapeutic relevance of alarin on depression, and the arguments on its receptors.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Misganaw Asmamaw Mengstie
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mohammed Abdu Seid
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
Increased Serum Neuropeptide Galanin Level Is a Predictor of Cognitive Dysfunction in Patients with Hip Fracture. DISEASE MARKERS 2021; 2021:9141978. [PMID: 34925648 PMCID: PMC8683191 DOI: 10.1155/2021/9141978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Background Hip fracture is a common occurrence in elderly populations and is frequently followed by various levels of cognitive dysfunction, leading to adverse functional outcomes. Risk stratification of hip fracture patients to identify high-risk subsets can enable improved strategies to mitigate cognitive complications. The neuropeptide galanin has multiple neurological functions, and altered levels are documented in dementia-type and depression disorders. The present study investigated the association of serum neuropeptide galanin levels in hip fracture patients with the occurrence of cognitive dysfunction during the first week of admission. Methods 276 hip fracture patients without preexisting delirium, cognitive impairment, or severe mental disorders were included in a cross-sectional study. Serum galanin levels were assessed by ELISA on the second day of admission. Routine clinical and laboratory variables were documented. MoCA was performed within 1 week, and those with a score < 26 were categorized with “cognitive decline.” Inferential statistics including multiple linear regression analysis were applied to determine the association of serum galanin level and cognitive status. Results 141 patients were categorized with “cognitive decline,” and 135 patients were categorized as “cognitively normal.” Serum galanin was highly significantly increased in the “cognitive decline” group (34.2 ± 4.8, pg/ml) compared to the “cognitively normal” group (28.9 ± 3.7, pg/ml) and showed significant negative correlation with MoCA scores (r = −0.229, p = 0.016). Regression analysis showed serum galanin as the sole significant independent predictor of lower MoCA scores (β = 0.231, p = 0.035) while age, gender, blood pressure, cholesterol, and blood glucose levels had no significant association. Conclusion Higher serum galanin predicted the development of cognitive dysfunction and worse MoCA scores in a cohort of hip fracture patients without preexisting cognitive impairment or delirium at admission, thus warranting large-scale studies investigating galanin as a candidate biomarker to identify hip fracture patients at risk of cognitive decline.
Collapse
|
7
|
Kumar S, Mankowski RT, Anton SD, Babu Balagopal P. Novel insights on the role of spexin as a biomarker of obesity and related cardiometabolic disease. Int J Obes (Lond) 2021; 45:2169-2178. [PMID: 34253845 DOI: 10.1038/s41366-021-00906-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Spexin (SPX) is a 14-amino acid neuropeptide, discovered recently using bioinformatic techniques. It is encoded by the Ch12:orf39 gene that is widely expressed in different body tissues/organs across species, and secreted into systemic circulation. Recent reports have highlighted a potentially important regulatory role of SPX in obesity and related comorbidities. SPX is also ubiquitously expressed in human tissues, including white adipose tissue. The circulating concentration of SPX is significantly lower in individuals with obesity compared to normal weight counterparts. SPX's role in obesity appears to be related to various factors, such as the regulation of energy expenditure, appetite, and eating behaviors, increasing locomotion, and inhibiting long-chain fatty acid uptake into adipocytes. Recent reports have also suggested SPX's relationship with novel biomarkers of cardiovascular disease (CVD) and glucose metabolism and evoked the potential role of SPX as a key biomarker/player in the early loss of cardiometabolic health and development of CVD and diabetes later in life. Data on age-related changes in SPX and SPX's response to various interventions are also emerging. The current review focuses on the role of SPX in obesity and related comorbidities across the life span, and its response to interventions in these conditions. It is expected that this article will provide new ideas for future research on SPX and its metabolic regulation, particularly related to cardiometabolic diseases.
Collapse
Affiliation(s)
- Seema Kumar
- Division of Pediatric Endocrinology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robert T Mankowski
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Stephen D Anton
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - P Babu Balagopal
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Biomedical Research, Nemours Children's Health System, Jacksonville, FL, USA.
| |
Collapse
|
8
|
Stiedl O, Kuteeva E, Hökfelt T, Ögren SO. Injection of galanin into the dorsal hippocampus impairs emotional memory independent of 5-HT 1A receptor activation. Behav Brain Res 2021; 405:113178. [PMID: 33607166 DOI: 10.1016/j.bbr.2021.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
There is evidence that interaction between the neuropeptide galanin and the 5-HT1A receptor represents an integrative mechanism in the regulation of serotonergic neurotransmission. Thus, in rats intracerebroventricular (i.c.v.) galanin did not impair retention in the passive avoidance (PA) test 24 h after training, but attenuated the retention deficit caused by subcutaneous (s.c.) administration of the 5-HT1A receptor agonist 8-OH-DPAT. This impairment has been linked to postsynaptic 5-HT1A receptor activation. To confirm these results in mice, galanin was infused i.c.v. (1 nmol/mouse) in C57BL/6/Bkl mice 30 min prior to training followed by s.c. injection (0.3 mg/kg) of 8-OH-DPAT or saline 15 min before PA training. In line with previous results, i.c.v. galanin significantly attenuated the PA impairment caused by 5-HT1A receptor activation in mice. To study if the galanin 5-HT1A receptor interaction involved the dorsal hippocampus, galanin (1 nmol/mouse) was directly infused into this brain region alone or in combination with s.c. 8-OH-DPAT. However, unlike i.c.v. galanin, galanin infusion into the dorsal hippocampus alone impaired PA retention and failed to attenuate the 8-OH-DPAT-mediated PA impairment. These results indicate that the ability of i.c.v. galanin to modify 5-HT1A receptor activation is not directly mediated via receptor interactions in the dorsal hippocampus. Instead, the galanin-mediated PA impairment suggests an important inhibitory role of galanin receptors in the dorsal hippocampus for acquisition (encoding) and/or consolidation of emotional memory. In addition, the interaction between galanin and 5-HT1A receptors probably involves a wide serotonergic network that is important for the integration of emotional and cognitive behaviors.
Collapse
Affiliation(s)
- Oliver Stiedl
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands; Health, Safety & Environment, VU University, Amsterdam, the Netherlands.
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Atlas Antibodies, Bromma, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Steinbusch HWM, Dolatkhah MA, Hopkins DA. Anatomical and neurochemical organization of the serotonergic system in the mammalian brain and in particular the involvement of the dorsal raphe nucleus in relation to neurological diseases. PROGRESS IN BRAIN RESEARCH 2021; 261:41-81. [PMID: 33785137 DOI: 10.1016/bs.pbr.2021.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The brainstem is a neglected brain area in neurodegenerative diseases, including Alzheimer's and Parkinson's disease, frontotemporal lobar degeneration and autonomic dysfunction. In Depression, several observations have been made in relation to changes in one particular the Dorsal Raphe Nucleus (DRN) which also points toward as key area in various age-related and neurodevelopmental diseases. The DRN is further thought to be related to stress regulated processes and cognitive events. It is involved in neurodegeneration, e.g., amyloid plaques, neurofibrillary tangles, and impaired synaptic transmission in Alzheimer's disease as shown in our autopsy findings. The DRN is a phylogenetically old brain area, with projections that reach out to a large number of regions and nuclei of the central nervous system, particularly in the forebrain. These ascending projections contain multiple neurotransmitters. One of the main reasons for the past and current interest in the DRN is its involvement in depression, and its main transmitter serotonin. The DRN also points toward the increased importance and focus of the brainstem as key area in various age-related and neurodevelopmental diseases. This review describes the morphology, ascending projections and the complex neurotransmitter nature of the DRN, stressing its role as a key research target into the neural bases of depression.
Collapse
Affiliation(s)
- Harry W M Steinbusch
- Department of Cellular Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology-DGIST, Daegu, South Korea.
| | | | - David A Hopkins
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
10
|
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat Rev Endocrinol 2021; 17:97-113. [PMID: 33273729 DOI: 10.1038/s41574-020-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The bioactive peptides galanin, spexin and kisspeptin have a common ancestral origin and their pathophysiological roles are increasingly the subject of investigation. Evidence suggests that these bioactive peptides play a role in the regulation of metabolism, pancreatic β-cell function, energy homeostasis, mood and behaviour in several species, including zebrafish, rodents and humans. Galanin signalling suppresses insulin secretion in animal models (but not in humans), is potently obesogenic and plays putative roles governing certain evolutionary behaviours and mood modulation. Spexin decreases insulin secretion and has potent anorectic, analgesic, anxiolytic and antidepressive-like effects in animal models. Kisspeptin modulates glucose-stimulated insulin secretion, food intake and/or energy expenditure in animal models and humans. Furthermore, kisspeptin is implicated in the control of reproductive behaviour in animals, modulation of human sexual and emotional brain processing, and has antidepressive and fear-suppressing effects. In addition, galanin-like peptide is a further member of the galaninergic family that plays emerging key roles in metabolism and behaviour. Therapeutic interventions targeting galanin, spexin and/or kisspeptin signalling pathways could therefore contribute to the treatment of conditions ranging from obesity to mood disorders. However, many gaps and controversies exist, which must be addressed before the therapeutic potential of these bioactive peptides can be established.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
11
|
Yu M, Fang P, Wang H, Shen G, Zhang Z, Tang Z. Beneficial effects of galanin system on diabetic peripheral neuropathic pain and its complications. Peptides 2020; 134:170404. [PMID: 32898581 DOI: 10.1016/j.peptides.2020.170404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Diabetic peripheral neuropathic pain (DPNP) is a distal spontaneous pain, caused by lesion of sensory neurons and accompanied by depression and anxiety frequently, which reduce life quality of patients and increase society expenditure. To date, antidepressants, serotonin-noradrenaline reuptake inhibitors and anticonvulsants are addressed as first-line therapy to DPNP, alone or jointly. It is urgently necessary to develop novel agents to treat DPNP and its complications. Evidences indicate that neuropeptide galanin can regulate multiple physiologic and pathophysiological processes. Pain, depression and anxiety may upregulate galanin expression. In return, galanin can modulate depression, anxiety, pain threshold and pain behaviors. This article provides a new insight into regulative effects of galanin and its subtype receptors on antidepressant, antianxiety and against DPNP. Through activating GALR1, galanin reinforces depression-like and anxiogenic-like behaviors, but exerts antinociceptive roles. While via activating GALR2, galanin is referred to as anti-depressive and anti-anxiotropic compounds, and at low and high concentration facilitates and inhibits nociceptor activity, respectively. The mechanism of the galanin roles is relative to increase in K+ currents and decrease in Ca2+ currents, as well as neurotrophic and neuroprotective roles. These data are helpful to develop novel drugs to treat DPNP and its complications.
Collapse
Affiliation(s)
- Mei Yu
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Penghua Fang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hua Wang
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Guiqin Shen
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Zongxiang Tang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
12
|
Genders SG, Scheller KJ, Djouma E. Neuropeptide modulation of addiction: Focus on galanin. Neurosci Biobehav Rev 2020; 110:133-149. [DOI: 10.1016/j.neubiorev.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
|
13
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Khan D, Khan M, Runesson J, Zaben M, Gray WP. GalR3 mediates galanin proliferative effects on postnatal hippocampal precursors. Neuropeptides 2017; 63:14-17. [PMID: 28431685 DOI: 10.1016/j.npep.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 02/23/2017] [Accepted: 04/05/2017] [Indexed: 11/16/2022]
Abstract
Galanin, a neuropeptide co-released from noradrenergic and serotonergic projection neurons to the dentate gyrus, has recently emerged as an important mediator for signaling neuronal activity to the subgranular neurogenic stem cell niche supporting adult hippocampal neurogenesis. Galanin and its receptors appear to play key roles in depression-like behavior, and effects on hippocampal neurogenesis are relevant to pharmacological strategies for treating depression, which in part appear to rely on restoring altered neurogenesis. We previously demonstrated that the GalR2/3 receptor agonist Gal 2-11 is proliferative and proneurogenic for postnatal hippocampal progenitor cells; however, the specific receptor mediation remained to be identified. With the recent availability of M1145 (a specific GalR2 agonist), and SNAP 37889 (GalR3 specific antagonist), we extend our previous studies and show that while M1145 has no proliferative effect, the co-treatment of postnatal rat hippocampal progenitors with Gal 2-11 and SNAP 37889 completely abolished the Gal 2-11 proliferative effects. Taken together, these results clearly demonstrate that GalR3 and not GalR2 is the specific receptor subtype that mediates the proliferative effects of galanin on hippocampal progenitor cells. These results implicate GALR3 in the mediation of galanin neurogenic effects and, potentially, its neurogenic anti-depressant effects.
Collapse
Affiliation(s)
- D Khan
- Institute of Psychological Medicine and Clinical Neurosciences, Neurosciences and Mental Health Research Institute NMHRI, Room 3.33, Hadyn Ellis Building, Cardiff CF24 4HQ, United Kingdom
| | - M Khan
- Institute of Psychological Medicine and Clinical Neurosciences, Neurosciences and Mental Health Research Institute NMHRI, Room 3.33, Hadyn Ellis Building, Cardiff CF24 4HQ, United Kingdom
| | - Johan Runesson
- Institute of Psychological Medicine and Clinical Neurosciences, Neurosciences and Mental Health Research Institute NMHRI, Room 3.33, Hadyn Ellis Building, Cardiff CF24 4HQ, United Kingdom
| | - M Zaben
- Institute of Psychological Medicine and Clinical Neurosciences, Neurosciences and Mental Health Research Institute NMHRI, Room 3.33, Hadyn Ellis Building, Cardiff CF24 4HQ, United Kingdom
| | - W P Gray
- Institute of Psychological Medicine and Clinical Neurosciences, Neurosciences and Mental Health Research Institute NMHRI, Room 3.33, Hadyn Ellis Building, Cardiff CF24 4HQ, United Kingdom.
| |
Collapse
|
15
|
Eshragh J, Dhruva A, Paul SM, Cooper BA, Mastick J, Hamolsky D, Levine JD, Miaskowski C, Kober KM. Associations Between Neurotransmitter Genes and Fatigue and Energy Levels in Women After Breast Cancer Surgery. J Pain Symptom Manage 2017; 53:67-84.e7. [PMID: 27720787 PMCID: PMC5191954 DOI: 10.1016/j.jpainsymman.2016.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/19/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
CONTEXT Fatigue is a common problem in oncology patients. Less is known about decrements in energy levels and the mechanisms that underlie both fatigue and energy. OBJECTIVES In patients with breast cancer, variations in neurotransmitter genes between lower and higher fatigue latent classes and between the higher and lower energy latent classes were evaluated. METHODS Patients completed assessments before and monthly for six months after surgery. Growth mixture modeling was used to identify distinct latent classes for fatigue severity and energy levels. Thirty candidate genes involved in various aspects of neurotransmission were evaluated. RESULTS Eleven single-nucleotide polymorphisms or haplotypes (i.e., ADRB2 rs1042718, BDNF rs6265, COMT rs9332377, CYP3A4 rs4646437, GALR1 rs949060, GCH1 rs3783642, NOS1 rs9658498, NOS1 rs2293052, NPY1R Haplotype A04, SLC6A2 rs17841327, and 5HTTLPR + rs25531 in SLC6A4) were associated with latent class membership for fatigue. Seven single-nucleotide polymorphisms or haplotypes (i.e., NOS1 rs471871, SLC6A1 rs2675163, SLC6A1 Haplotype D01, SLC6A2 rs36027, SLC6A3 rs37022, SLC6A4 rs2020942, and TAC1 rs2072100) were associated with latent class membership for energy. Three of 13 genes (i.e., NOS1, SLC6A2, and SLC6A4) were associated with latent class membership for both fatigue and energy. CONCLUSIONS Molecular findings support the hypothesis that fatigue and energy are distinct, yet related symptoms. Results suggest that a large number of neurotransmitters play a role in the development and maintenance of fatigue and energy levels in breast cancer patients.
Collapse
Affiliation(s)
- Jasmine Eshragh
- School of Nursing, University of California, San Francisco, California, USA
| | - Anand Dhruva
- School of Medicine, University of California, San Francisco, California, USA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, California, USA
| | - Bruce A Cooper
- School of Nursing, University of California, San Francisco, California, USA
| | - Judy Mastick
- School of Nursing, University of California, San Francisco, California, USA
| | - Deborah Hamolsky
- School of Nursing, University of California, San Francisco, California, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, California, USA
| | | | - Kord M Kober
- School of Nursing, University of California, San Francisco, California, USA.
| |
Collapse
|
16
|
Wang P, Li H, Barde S, Zhang MD, Sun J, Wang T, Zhang P, Luo H, Wang Y, Yang Y, Wang C, Svenningsson P, Theodorsson E, Hökfelt TGM, Xu ZQD. Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proc Natl Acad Sci U S A 2016; 113:E4726-35. [PMID: 27457954 PMCID: PMC4987783 DOI: 10.1073/pnas.1609198113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuropeptide galanin coexists in rat brain with serotonin in the dorsal raphe nucleus and with noradrenaline in the locus coeruleus (LC), and it has been suggested to be involved in depression. We studied rats exposed to chronic mild stress (CMS), a rodent model of depression. As expected, these rats showed several endophenotypes relevant to depression-like behavior compared with controls. All these endophenotypes were normalized after administration of a selective serotonin reuptake inhibitor. The transcripts for galanin and two of its receptors, galanin receptor 1 (GALR1) and GALR2, were analyzed with quantitative real-time PCR using laser capture microdissection in the following brain regions: the hippocampal formation, LC, and ventral periaqueductal gray (vPAG). Only Galr1 mRNA levels were significantly increased, and only in the latter region. After knocking down Galr1 in the vPAG with an siRNA technique, all parameters of the depressive behavioral phenotype were similar to controls. Thus, the depression-like behavior in rats exposed to CMS is likely related to an elevated expression of Galr1 in the vPAG, suggesting that a GALR1 antagonist could have antidepressant effects.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hui Li
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Ming-Dong Zhang
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden; Division of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Jing Sun
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tong Wang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Pan Zhang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hanjiang Luo
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yongjun Wang
- Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yutao Yang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Chuanyue Wang
- Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linkoping University, SE-58183 Linkoping, Sweden
| | - Tomas G M Hökfelt
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
17
|
Wang M, Chen Q, Li M, Zhou W, Ma T, Wang Y, Gu S. Alarin-induced antidepressant-like effects and their relationship with hypothalamus-pituitary-adrenal axis activity and brain derived neurotrophic factor levels in mice. Peptides 2014; 56:163-72. [PMID: 24768903 DOI: 10.1016/j.peptides.2014.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 12/22/2022]
Abstract
Alarin is a newly identified member of the galanin family of peptides. Galanin has been shown to exert regulatory effects on depression. Similar to galanin in distribution, alarin is also expressed in the medial amygdala and hypothalamus, i.e., regions interrelated with depression. However, it remains a puzzle whether alarin is involved in depression. Accordingly, we established the depression-like mouse model using behavioral tests to ascertain the possible involvement of alarin, with fluoxetine as a positive control. With the positive antidepressant-like effects of alarin, we further examined its relationship to HPA axis activity and brain-derived neurotrophic factor (BDNF) levels in different brain areas in a chronic unpredictable mild stress (CUMS) paradigm. In the acute studies, alarin produced a dose-related reduction in the immobility duration in tail suspension test (TST) in mice. In the open-field test, intracerebroventricular (i.c.v.) injection of alarin (1.0 nmol) did not impair locomotion or motor coordination in the treated mice. In the CUMS paradigm, alarin administration (1.0 nmol, i.c.v.) significantly improved murine behaviors (FST and locomotor activity), which was associated with a decrease in corticotropin-releasing hormone (CRH) mRNA levels in the hypothalamus, as well as a decline in serum levels of CRH, adrenocorticotropic hormone (ACTH) and corticosterone (CORT), all of which are key hormones of the HPA axis. Furthermore, alarin upregulated BDNF mRNA levels in the prefrontal cortex and hippocampus. These findings suggest that alarin may potentiate the development of new antidepressants, which would be further secured with the identification of its receptor(s).
Collapse
Affiliation(s)
- Ming Wang
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Qian Chen
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Mei Li
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Wei Zhou
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Tengfei Ma
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Yun Wang
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Shuling Gu
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
18
|
Abstract
The neuropeptide galanin (GAL) is widely distributed in the central and peripheral nervous systems. It is a modulator of various physiological and pathological processes, and it mediates its effects via three G protein-coupled receptors (GAL1-3 receptors). A role for GAL as a modulator of mood and anxiety was suggested, because GAL and its receptors are highly expressed in limbic brain structures of rodents. In recent years, numerous studies of animal models have suggested an involvement of GAL and GAL1 and GAL2 receptors in anxiety- and depression-related behavior. However, to date, there is sparse literature implicating GAL3 receptors in behavioral functions. Therefore, we studied the behavior of GAL3 receptor-deficient (GAL3-KO) mice to elucidate whether GAL3 receptors are involved in mediating behavior-associated actions of GAL. The GAL3-KO mouse line exhibited normal breeding and physical development. In addition to behavioral tests, phenotypic characterization included analysis of hematology, amino acid profiles, metabolism, and sudomotor function. In contrast to WT littermates, male GAL3-KO mice exhibited an anxiety-like phenotype in the elevated plus maze, open field, and light/dark box tests, and they were less socially affiliated than WT animals to a stranger mouse in a social interaction test. In conclusion, our data suggest involvement of GAL3 receptors in GAL-mediated effects on mood, anxiety, and behavior, making it a possible target for alternative treatment strategies for mood disorders.
Collapse
|
19
|
Giordano C, Marchiò M, Timofeeva E, Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 2014; 5:63. [PMID: 24808888 PMCID: PMC4010764 DOI: 10.3389/fneur.2014.00063] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal mechanisms involved in the beneficial effects of KDs. In this review, we summarize the current evidence for altered regulation of the synthesis of neuropeptides and peripheral hormones in response to KDs, and we try to define a possible role for specific neuroactive peptides in mediating the antiepileptic properties of diet-induced ketogenesis.
Collapse
Affiliation(s)
- Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Marchiò
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neuropediatric Unit, Department of Medical and Surgical Sciences for Children and Adults, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| | - Elena Timofeeva
- Département Psychiatrie et Neurosciences, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| |
Collapse
|
20
|
Yoshitake S, Kuteeva E, Hökfelt T, Mennicken F, Theodorsson E, Yamaguchi M, Kehr J, Yoshitake T. Correlation between the effects of local and intracerebroventricular infusions of galanin on 5-HT release studied by microdialysis, and distribution of galanin and galanin receptors in prefrontal cortex, ventral hippocampus, amygdala, hypothalamus, and st. Synapse 2014; 68:179-93. [DOI: 10.1002/syn.21730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/26/2013] [Accepted: 12/20/2013] [Indexed: 01/30/2023]
Affiliation(s)
- Shimako Yoshitake
- Department of Physiology and Pharmacology; Karolinska Institutet; 171 77 Stockholm Sweden
| | - Eugenia Kuteeva
- Department of Neuroscience; Karolinska Institutet; 171 77 Stockholm Sweden
- Atlas Antibodies AB; AlbaNova University Center; SE-106 91 Stockholm Sweden
| | - Tomas Hökfelt
- Department of Neuroscience; Karolinska Institutet; 171 77 Stockholm Sweden
| | - Françoise Mennicken
- AstraZeneca R&D Montréal; 7171 Frederick-Banting-Ville St-Laurent Quebec H4S1Z9 Canada
| | - Elvar Theodorsson
- Divison of Clinical Chemistry; Linköping University, County Council of Östergötland; 581 85 Linköping Sweden
- Department of Clinical and Experimental Medicine; Faculty of Health Sciences, Linköping University, County Council of Östergötland; 581 85 Linköping Sweden
| | - Masatoshi Yamaguchi
- Faculty of Pharmaceutical Sciences; Fukuoka University; 8-19-1 Nanakuma, Johnan-ku Fukuoka 814-0180 Japan
| | - Jan Kehr
- Department of Physiology and Pharmacology; Karolinska Institutet; 171 77 Stockholm Sweden
- Pronexus Analytical AB; Grindstuvägen 44 167 33 Bromma Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology; Karolinska Institutet; 171 77 Stockholm Sweden
- Graduate School of Medical and Dental Sciences; Kagoshima University; 8-35-1 Sakuragaoka Kagoshima 890-8544 Japan
| |
Collapse
|
21
|
Zaben MJ, Gray WP. Neuropeptides and hippocampal neurogenesis. Neuropeptides 2013; 47:431-8. [PMID: 24215800 DOI: 10.1016/j.npep.2013.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022]
Abstract
Hippocampal neurogenesis is important for modulating the behavioural responses to stress and for certain forms of learning and memory. The mechanisms underlying the necessary coupling of neuronal activity to neural stem/progenitor cell (NSPC) function remain poorly understood. Within the dentate subgranular stem cell niche, local interneurons appear to play an important part in this excitation-neurogenesis coupling via GABAergic transmission, which promotes neuronal differentiation and integration. Neuropeptides such as neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and galanin have emerged as important mediators for signalling local and extrinsic interneuronal activity to subgranular zone precursors. Here we review the distribution of these neuropeptides and their receptors in the neurogenic area of the hippocampus and their precise effects on hippocampal neurogenesis. We also discuss neuropeptides' potential involvement in functional aspects of hippocampal neurogenesis particularly their involvement in the modulation of learning and memory and behavior responses.
Collapse
Affiliation(s)
- M J Zaben
- Neuroscience and Mental Health Research Institute, Cardiff University, Institute of Psychological Medicine and Clinical Neurosciences, 3rd Floor, Room 3.33, The Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, United Kingdom.
| | | |
Collapse
|
22
|
Serafini G, Pompili M, Lindqvist D, Dwivedi Y, Girardi P. The role of neuropeptides in suicidal behavior: a systematic review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:687575. [PMID: 23986909 PMCID: PMC3748411 DOI: 10.1155/2013/687575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022]
Abstract
There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF), VGF, cholecystokinin, substance P, and neuropeptide Y (NPY), which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
23
|
Distinct features of neurotransmitter systems in the human brain with focus on the galanin system in locus coeruleus and dorsal raphe. Proc Natl Acad Sci U S A 2013; 110:E536-45. [PMID: 23341594 DOI: 10.1073/pnas.1221378110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Using riboprobe in situ hybridization, we studied the localization of the transcripts for the neuropeptide galanin and its receptors (GalR1-R3), tryptophan hydroxylase 2, tyrosine hydroxylase, and nitric oxide synthase as well as the three vesicular glutamate transporters (VGLUT 1-3) in the locus coeruleus (LC) and the dorsal raphe nucleus (DRN) regions of postmortem human brains. Quantitative real-time PCR (qPCR) was used also. Galanin and GalR3 mRNA were found in many noradrenergic LC neurons, and GalR3 overlapped with serotonin neurons in the DRN. The qPCR analysis at the LC level ranked the transcripts in the following order in the LC: galanin >> GalR3 >> GalR1 > GalR2; in the DRN the ranking was galanin >> GalR3 >> GalR1 = GalR2. In forebrain regions the ranking was GalR1 > galanin > GalR2. VGLUT1 and -2 were strongly expressed in the pontine nuclei but could not be detected in LC or serotonin neurons. VGLUT2 transcripts were found in very small, nonpigmented cells in the LC and in the lateral and dorsal aspects of the periaqueductal central gray. Nitric oxide synthase was not detected in serotonin neurons. These findings show distinct differences between the human brain and rodents, especially rat, in the distribution of the galanin system and some other transmitter systems. For example, GalR3 seems to be the important galanin receptor in both the human LC and DRN versus GalR1 and -2 in the rodent brain. Such knowledge may be important when considering therapeutic principles and drug development.
Collapse
|
24
|
Yoshitake S, Ijiri S, Kehr J, Yoshitake T. Concurrent modulation of extracellular levels of noradrenaline and cAMP during stress and by anxiogenic- or anxiolytic-like neuropeptides in the prefrontal cortex of awake rats. Neurochem Int 2012; 62:314-23. [PMID: 23274451 DOI: 10.1016/j.neuint.2012.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/06/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to examine the effects of stress and the role of locally infused anxiogenic-like neuropeptides galanin, CCK-8, vasopressin, substance P and neurokinin A, and anxiolytic-like peptides NPY, nociceptin/orphanin FQ, somatostatin and neurotensin, on modulation of noradrenaline (NA) and cAMP efflux monitored simultaneously by microdialysis in the medial prefronatal cortex of awake rats. Concentrations of cAMP were determined by a newly developed method based on derivatization of cAMP with 2-chloroacetaldehyde followed by HPLC with fluorescence detection. Local infusion of forskolin (10 and 30 μM) dose-dependently increased the cAMP levels to 417% and 1050% of the control group, respectively. Similarly, local infusion of NA (10 μM) increased the cAMP to the peak level of 168%. A 5-min tail pinch and a 10-min swim stress rapidly increased the NA and cAMP levels to 167% and 203% (NA) and 141% and 161% (cAMP), respectively. Infusion of galanin and CCK-8 (0.5 nmol, and 1.5 nmol/0.5 μl) dose-dependently increased NA to the peak levels of 191% and 179% and cAMP levels to 174% and 166%, respectively. The peak levels following infusions of vasopressin, substance P and neurokinin A were 91%, 135% and 86% for NA and 131%, 83% and 76% for cAMP, respectively. Infusions of anxiolytic-like peptides at highest concentrations significantly increased (NPY, 136%) or decreased (nociceptin, 71%; somatostatin, 86%) the NA levels, whereas neurotensin had no effect. The cAMP levels decreased to 86% (NPY, neurotensin), 78% (nociceptin), somatostatin infusion was without effect. The present findings confirmed a close correlation between the stress-induced increases in prefrontal cortical NA and cAMP levels, as well as, concurrent changes in NA and cAMP levels following infusions of galanin and CCK-8 (increased levels) and nociceptin/orphanin FQ (decreased levels). Infusions of other neuropeptides showed a more complex pattern of NA and cAMP responses.
Collapse
Affiliation(s)
- Shimako Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Bajo M, Madamba SG, Lu X, Sharkey LM, Bartfai T, Siggins GR. Receptor subtype-dependent galanin actions on gamma-aminobutyric acidergic neurotransmission and ethanol responses in the central amygdala. Addict Biol 2012; 17:694-705. [PMID: 21955024 DOI: 10.1111/j.1369-1600.2011.00360.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The neuropeptide galanin and its three receptor subtypes (GalR1-3) are expressed in the central amygdala (CeA), a brain region involved in stress- and anxiety-related behaviors, as well as alcohol dependence. Galanin also has been suggested to play a role in alcohol intake and alcohol dependence. We examined the effects of galanin in CeA slices from wild-type and knockout (KO) mice deficient of GalR2 and both GalR1 and GalR2 receptors. Galanin had dual effects on gamma-aminobutyric acid (GABA)-ergic transmission, decreasing the amplitudes of pharmacologically isolated GABAergic inhibitory postsynaptic potentials (IPSPs) in over half of CeA neurons but augmenting IPSPs in the others. The increase in IPSP size was absent after superfusion of the GalR3 antagonist SNAP 37889, whereas the IPSP depression was absent in CeA neurons of GalR1 × GalR2 double KO and GalR2 KO mice. Paired-pulse facilitation studies showed weak or infrequent effects of galanin on GABA release. Thus, galanin may act postsynaptically through GalR3 to augment GABAergic transmission in some CeA neurons, whereas GalR2 receptors likely are involved in the depression of IPSPs. Co-superfusion of ethanol, which augments IPSPs presynaptically, together with galanin caused summated effects of ethanol and galanin in those CeA neurons showing galanin-augmented IPSPs, suggesting the two agents act via different mechanisms in this population. However, in neurons showing IPSP-diminishing galanin effects, galanin blunted the ethanol effects, suggesting a preemptive effect of galanin. These findings may increase understanding of the complex cellular mechanisms that underlie the anxiety-related behavioral effects of galanin and ethanol in CeA.
Collapse
Affiliation(s)
- Michal Bajo
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wray NR, Pergadia ML, Blackwood DHR, Penninx BWJH, Gordon SD, Nyholt DR, Ripke S, MacIntyre DJ, McGhee KA, Maclean AW, Smit JH, Hottenga JJ, Willemsen G, Middeldorp CM, de Geus EJC, Lewis CM, McGuffin P, Hickie IB, van den Oord EJCG, Liu JZ, Macgregor S, McEvoy BP, Byrne EM, Medland SE, Statham DJ, Henders AK, Heath AC, Montgomery GW, Martin NG, Boomsma DI, Madden PAF, Sullivan PF. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry 2012; 17:36-48. [PMID: 21042317 PMCID: PMC3252611 DOI: 10.1038/mp.2010.109] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 09/12/2010] [Accepted: 09/27/2010] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a common complex disorder with a partly genetic etiology. We conducted a genome-wide association study of the MDD2000+ sample (2431 cases, 3673 screened controls and >1 M imputed single-nucleotide polymorphisms (SNPs)). No SNPs achieved genome-wide significance either in the MDD2000+ study, or in meta-analysis with two other studies totaling 5763 cases and 6901 controls. These results imply that common variants of intermediate or large effect do not have main effects in the genetic architecture of MDD. Suggestive but notable results were (a) gene-based tests suggesting roles for adenylate cyclase 3 (ADCY3, 2p23.3) and galanin (GAL, 11q13.3); published functional evidence relates both of these to MDD and serotonergic signaling; (b) support for the bipolar disorder risk variant SNP rs1006737 in CACNA1C (P=0.020, odds ratio=1.10); and (c) lack of support for rs2251219, a SNP identified in a meta-analysis of affective disorder studies (P=0.51). We estimate that sample sizes 1.8- to 2.4-fold greater are needed for association studies of MDD compared with those for schizophrenia to detect variants that explain the same proportion of total variance in liability. Larger study cohorts characterized for genetic and environmental risk factors accumulated prospectively are likely to be needed to dissect more fully the etiology of MDD.
Collapse
Affiliation(s)
- N R Wray
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - M L Pergadia
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - D H R Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - B W J H Penninx
- Department of Biological Psychology and Medical Center, VU University, Amsterdam, The Netherlands
| | - S D Gordon
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - D R Nyholt
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - S Ripke
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - D J MacIntyre
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - K A McGhee
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - A W Maclean
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J H Smit
- Department of Biological Psychology and Medical Center, VU University, Amsterdam, The Netherlands
| | - J J Hottenga
- Department of Biological Psychology and Medical Center, VU University, Amsterdam, The Netherlands
| | - G Willemsen
- Department of Biological Psychology and Medical Center, VU University, Amsterdam, The Netherlands
| | - C M Middeldorp
- Department of Biological Psychology and Medical Center, VU University, Amsterdam, The Netherlands
| | - E J C de Geus
- Department of Biological Psychology and Medical Center, VU University, Amsterdam, The Netherlands
| | - C M Lewis
- Department of Medical and Molecular Genetics, King's College London, MRC SGDP Centre, Institute of Psychiatry, London, UK
| | - P McGuffin
- Department of Medical and Molecular Genetics, King's College London, MRC SGDP Centre, Institute of Psychiatry, London, UK
| | - I B Hickie
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, NSW, Australia
| | - E J C G van den Oord
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - J Z Liu
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - S Macgregor
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - B P McEvoy
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - E M Byrne
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - S E Medland
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - D J Statham
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - A K Henders
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - A C Heath
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - G W Montgomery
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - N G Martin
- Genetic Epidemiology, Molecular Epidemiology, Psychiatric Genetics and Queensland Statistical Genetics Laboratories, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - D I Boomsma
- Department of Biological Psychology and Medical Center, VU University, Amsterdam, The Netherlands
| | - P A F Madden
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - P F Sullivan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Galanin differentially regulates acetylcholine release in ventral and dorsal hippocampus: a microdialysis study in awake rat. Neuroscience 2011; 197:172-80. [DOI: 10.1016/j.neuroscience.2011.09.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 11/21/2022]
|
28
|
Xing Y, Chen X, Liu Z, Li H, Liu H, Li Z. Effects of Alpha 1- and Alpha 2-Adrenoreceptor Stimulation on Galanin mRNA Expression in Primary Cultured Superior Cervical Ganglion Neurons. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.3.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
29
|
Le Maître TW, Xia S, Le Maitre E, Dun XP, Lu J, Theodorsson E, Ogren SO, Hökfelt T, Xu ZQD. Galanin receptor 2 overexpressing mice display an antidepressive-like phenotype: possible involvement of the subiculum. Neuroscience 2011; 190:270-88. [PMID: 21672612 DOI: 10.1016/j.neuroscience.2011.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 04/21/2011] [Accepted: 05/04/2011] [Indexed: 01/13/2023]
Abstract
The behavioral phenotype of a transgenic mouse overexpressing a galanin receptor 2 (GalR2)-enhanced, green fluorescent protein (EGFP)-construct under the platelet-derived growth factor-B promoter, and of controls, was assessed in various behavioral tests, such as the Porsolt forced swim test, as well as the open field, elevated plus maze and passive avoidance tests. In addition, the distribution of GalR2-EGFP expressing cell bodies and processes was studied in the brain of these mice using histochemical methods. Three age groups of the transgenic mice demonstrated decreased levels of immobility in the forced swim test, indicative of antidepressive-like behavior and/or increased stress resistance. Anxiety-like behaviors, measured in two different tests, did not differ between the GalR2-overexpressing and the wild-type mice, nor did motor activity levels, emotional learning or memory behaviors. High levels of GalR2 mRNA and protein expression were observed in the presubiculum, subiculum, cingulate cortex, retrosplenial granular and agranular cortices, subregions of prefrontal cortex, and the olfactory bulb, regions which are directly or indirectly implicated in depression-like behavior. These results may contribute to the understanding of the pathophysiology of major depressive disorder and the role of GalR2 in the regulation of mood, and suggest a potential therapeutic effect by targeting the GalR2 for treatment of depressive disorders.
Collapse
Affiliation(s)
- T Wardi Le Maître
- Department of Neuroscience, Karolinska Institutet, Retzius Väg 8, S-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abbosh C, Lawkowski A, Zaben M, Gray W. GalR2/3 mediates proliferative and trophic effects of galanin on postnatal hippocampal precursors. J Neurochem 2011; 117:425-36. [PMID: 21281311 DOI: 10.1111/j.1471-4159.2011.07204.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding how neural activity is functionally linked to the stem cell niche, is assuming ever increasing importance as hippocampal neurogenesis is shown to be important for modulating the behavioural responses to stress and for certain forms of learning and memory. Neuropeptides such as neuropeptide Y and vasoactive intestinal peptide have emerged as important mediators for signalling local interneuron activity to subgranular zone precursors, however, little is known regarding the effects of neuropeptides that are extrinsic modulators of hippocampal information processing. Here, we show that the galanin GalR2/3 agonist Gal2-11 is both trophic and proliferative for postnatal subgranular precursors and proliferating neuroblasts at 10 nM and is purely trophic at doses as low as 100 pM. We found no effect mediated via GalR1. As galanin is co-released from noradrenergic and serotonergic projection neurons to the dentate gyrus, these findings support a direct effect of galanin on hippocampal neurogenesis, which may partly mediate its antidepressant effect via GalR2/3 receptors.
Collapse
Affiliation(s)
- Christopher Abbosh
- Division of Clinical Neurosciences, University of Southampton, Southampton, UK
| | | | | | | |
Collapse
|
31
|
The role of the central noradrenergic system in behavioral inhibition. ACTA ACUST UNITED AC 2011; 67:193-208. [PMID: 21315760 DOI: 10.1016/j.brainresrev.2011.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/30/2011] [Accepted: 02/03/2011] [Indexed: 02/06/2023]
Abstract
Although the central noradrenergic system has been shown to be involved in a number of behavioral and neurophysiological processes, the relation of these to its role in depressive illness has been difficult to define. The present review discusses the hypothesis that one of its chief functions that may be related to affective illness is the inhibition of behavioral activation, a prominent symptom of the disorder. This hypothesis is found to be consistent with most previous neuropsychopharmacological and immunohistochemical experiments on active behavior in rodents in a variety of experimental conditions using manipulation of neurotransmission at both locus coeruleus and forebrain adrenergic receptors. The findings support a mechanism in which high rates of noradrenergic neural activity suppress the neural activity of principal neurons in forebrain regions mediating active behavior. The suppression may be mediated through postsynaptic galaninergic and adrenergic receptors, and via the release of corticotrophin-releasing hormone. The hypothesis is consistent with clinical evidence for central noradrenergic system hyperactivity in depressives and with the view that this hyperactivity is a contributing etiological factor in the disorder. A similar mechanism may underlie the ability of the noradrenergic system to suppress seizure activity suggesting that inhibition of the spread of neural activation may be a unifying function.
Collapse
|
32
|
Schauwecker PE. Galanin receptor 1 deletion exacerbates hippocampal neuronal loss after systemic kainate administration in mice. PLoS One 2010; 5:e15657. [PMID: 21179451 PMCID: PMC3001489 DOI: 10.1371/journal.pone.0015657] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/19/2010] [Indexed: 11/30/2022] Open
Abstract
Background Galanin is a neuropeptide with a wide distribution in the central and peripheral nervous systems and whose physiological effects are mediated through three G protein-coupled receptor subtypes, GalR1, GalR2, and GalR3. Several lines of evidence indicate that galanin, as well as activation of the GalR1 receptor, is a potent and effective modulator of neuronal excitability in the hippocampus. Methodology/Principal Findings In order to test more formally the potential influence of GalR1 on seizure-induced excitotoxic cell death, we conducted functional complementation tests in which transgenic mice that exhibit decreased expression of the GalR1 candidate mRNA underwent kainate-induced status epilepticus to determine if the quantitative trait of susceptibility to seizure-induced cell death is determined by the activity of GalR1. In the present study, we report that reduction of GalR1 mRNA via null mutation or injection of the GalR1 antagonist, galantide, prior to kainate-induced status epilepticus induces hippocampal damage in a mouse strain known to be highly resistant to kainate-induced neuronal injury. Wild-type and GalR1 knockout mice were subjected to systemic kainate administration. Seven days later, Nissl and NeuN immune- staining demonstrated that hippocampal cell death was significantly increased in GalR1 knockout strains and in animals injected with the GalR1 antagonist. Compared to GalR1-expressing mice, GalR1-deficient mice had significantly larger hippocampal lesions after status epilepticus. Conclusions/Significance Our results suggest that a reduction of GalR1 expression in the C57BL/6J mouse strain renders them susceptible to excitotoxic injury following systemic kainate administration. From these results, GalR1 protein emerges as a new molecular target that may have a potential therapeutic value in modulating seizure-induced cell death.
Collapse
Affiliation(s)
- P Elyse Schauwecker
- Department of Cell and Neurobiology, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America.
| |
Collapse
|
33
|
Fu W, Le Maître E, Fabre V, Bernard JF, David Xu ZQ, Hökfelt T. Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain. J Comp Neurol 2010; 518:3464-94. [PMID: 20589909 DOI: 10.1002/cne.22407] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin neurons play a major role in many normal and pathological brain functions. In the rat these neurons have a varying number of cotransmitters, including neuropeptides. Here we studied, with histochemical techniques, the relation between serotonin, some other small-molecule transmitters, and a number of neuropeptides in the dorsal raphe nucleus (DRN) and the adjacent ventral periaqueductal gray (vPAG) of mouse, an important question being to establish possible differences from rat. Even if similarly distributed, the serotonin neurons in mouse lacked the extensive coexpression of nitric oxide synthase and galanin seen in rat. Although partly overlapping in the vPAG, no evidence was obtained for the coexistence of serotonin with dopamine, substance P, cholecystokinin, enkephalin, somatostatin, neurotensin, dynorphin, thyrotropin-releasing hormone, or corticotropin-releasing hormone. However, some serotonin neurons expressed the gamma-aminobutyric acid (GABA)-synthesizing enzyme glutamic acid decarboxylase (GAD). Work in other laboratories suggests that, as in rat, serotonin neurons in the mouse midline DRN express the vesicular glutamate transporter 3, presumably releasing glutamate. Our study also shows that many of the neuropeptides studied (substance P, galanin, neurotensin, dynorphin, and corticotropin-releasing factor) are present in nerve terminal networks of varying densities close to the serotonin neurons, and therefore may directly or indirectly influence these cells. The apparently low numbers of coexisting messengers in mouse serotonin neurons, compared to rat, indicate considerable species differences with regard to the chemical neuronatomy of the DRN. Thus, extrapolation of DRN physiology, and possibly pathology, from rat to mouse, and even human, should be made with caution.
Collapse
Affiliation(s)
- Wenyu Fu
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Christiansen SH, Woldbye DPD. Regulation of the galanin system by repeated electroconvulsive seizures in mice. J Neurosci Res 2010; 88:3635-43. [PMID: 20936701 DOI: 10.1002/jnr.22517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/30/2010] [Accepted: 08/26/2010] [Indexed: 11/07/2022]
Abstract
Even though induction of seizures by electroconvulsive stimulation (ECS) is a treatment widely used for major depression in humans, the working mechanism of ECS remains uncertain. The antiepileptic effect of ECS has been suggested to be involved in mediating the therapeutic effect of ECS. The neuropeptide galanin exerts antiepileptic and antidepressant-like effects and has also been implicated in the pathophysiology of depression. To explore a potential role of galanin in working mechanisms of ECS, the present study examined effects of repeated ECS on the galanin system using QRT-PCR, in situ hybridization, and [(125) I]galanin receptor binding. ECS was administered to adult mice daily for 14 days, and this paradigm was confirmed to exert antidepressant-like effect in the tail suspension test. Prominent increases in galanin gene expression were found in several brain regions involved in regulation of epileptic activity and depression, including the piriform cortex, hippocampal dentate gyrus, and amygdala. Likewise, GalR2 gene expression was up-regulated in both the central and the medial amygdala, whereas GalR1 gene expression showed a modest down-regulation in the medial amygdala. [(125) I]galanin receptor binding in the piriform cortex, hippocampus, and amygdala was found to be significantly down-regulated. These data show that the galanin system is regulated by repeated ECS in a number of brain regions implicated in seizure regulation and depression. These changes may play a role in the therapeutic effect of ECS.
Collapse
Affiliation(s)
- S H Christiansen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, and Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
35
|
Rotzinger S, Lovejoy DA, Tan LA. Behavioral effects of neuropeptides in rodent models of depression and anxiety. Peptides 2010; 31:736-56. [PMID: 20026211 DOI: 10.1016/j.peptides.2009.12.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
In recent years, studies have advocated neuropeptide systems as modulators for the behavioral states found in mood disorders such as depression and anxiety disorders. Neuropeptides have been tested in traditional animal models and screening procedures that have been validated by known antidepressants and anxiolytics. However, it has become clear that although these tests are very useful, neuropeptides have distinct behavioral effects and dose-dependent characteristics, and therefore, use of these tests with neuropeptides must be done with an understanding of their unique characteristics. This review will focus on the behavioral actions of neuropeptides and their synthetic analogs, particularly in studies utilizing various preclinical tests of depression and anxiety. Specifically, the following neuropeptide systems will be reviewed: corticotropin-releasing factor (CRF), urocortin (Ucn), teneurin C-terminal associated peptide (TCAP), neuropeptide Y (NPY), arginine vasopressin (AVP), oxytocin, the Tyr-MIF-1 family, cholecystokinin (CCK), galanin, and substance P. These neuropeptide systems each have a unique role in the regulation of stress-like behavior, and therefore provide intriguing therapeutic targets for mood disorder treatment.
Collapse
Affiliation(s)
- Susan Rotzinger
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
36
|
Galanin, galanin receptor subtypes and depression-like behaviour. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:163-81. [PMID: 21299068 DOI: 10.1007/978-3-0346-0228-0_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathophysiology of depression remains unclear, but involves disturbances in brain monoaminergic transmission. Current antidepressant drugs, which act by enhancing this type of neurotransmission, have limited therapeutic efficacy in a number of patients, and also cause serious side-effects, which limits their compliance. Increasing evidence suggests that neuropeptides, including galanin, can be of relevance in mood disorders. Galanin is co-expressed with and modulates noradrenaline and serotonin transmission, both implicated in depression. Pharmacological and genetic studies suggest a role for galanin in depression-like behaviour in rodents, involving specific receptor subtypes. Thus, stimulation of GalR1 and/or GalR3 receptors results in depression-like phenotype, while activation of the GalR2 receptor reduces depression-like behaviour in the rat. These findings suggest that galanin receptor subtypes may represent novel targets for the development of antidepressant drugs.
Collapse
|
37
|
Ogren SO, Kuteeva E, Elvander-Tottie E, Hökfelt T. Neuropeptides in learning and memory processes with focus on galanin. Eur J Pharmacol 2009; 626:9-17. [PMID: 19837050 DOI: 10.1016/j.ejphar.2009.09.070] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 08/27/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Neuropeptides represent by far the most common signalling molecules in the central nervous system. They are involved in a wide range of physiological functions and can act as neurotransmitters, neuromodulators or hormones in the central nervous system and in the periphery. Accumulating evidence during the past 40 years has implicated a number of neuropeptides in various cognitive functions including learning and memory. A major focus has been on the possibility that neuropeptides, by coexisting with classical neurotransmitters, can modulate classical transmitter function of importance for cognition. It has become increasingly clear that most transmitter systems in the brain can release a cocktail of signalling molecules including classical transmitters and several neuropeptides. However, the neuropeptides seem to come into action mainly under conditions of severe stress or aversive events, which have linked their action also to regulation of affective components of behaviour. This paper summarises some of the results of three neuropeptides, which can impact on hippocampal cognition by intrinsic (dynorphins, nociceptin) or extrinsic (galanin) modulation. The results obtained with these neuropeptides in rodent studies indicate that they are important for various aspects of hippocampal learning and memory as well as hippocampal plasticity. Recent studies in humans have also shown that dysregulation of these neuropeptides may be of importance for both neurodegenerative and neuropsychiatric disorders associated with cognitive impairments. It is concluded that compounds acting on neuropeptide receptor subtypes will represent novel targets for a number of disorders, which involve cognitive deficiencies.
Collapse
Affiliation(s)
- Sven Ove Ogren
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
38
|
Lanni C, Govoni S, Lucchelli A, Boselli C. Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 2009; 66:2985-3008. [PMID: 19521663 PMCID: PMC11115917 DOI: 10.1007/s00018-009-0055-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/28/2009] [Accepted: 05/20/2009] [Indexed: 01/05/2023]
Abstract
Clinical depression is viewed as a physical and psychic disease process having a neuropathological basis, although a clear understanding of its ethiopathology is still missing. The observation that depressive symptoms are influenced by pharmacological manipulation of monoamines led to the hypothesis that depression results from reduced availability or functional deficiency of monoaminergic transmitters in some cerebral regions. However, there are limitations to current monoamine theories related to mood disorders. Recently, a growing body of experimental data has showed that other classes of endogenous compounds, such as neuropeptides and amino acids, may play a significant role in the pathophysiology of affective disorders. With the development of neuroscience, neuronal networks and intracellular pathways have been identified and characterized, describing the existence of the interaction between monoamines and receptors in turn able to modulate the expression of intracellular proteins and neurotrophic factors, suggesting that depression/antidepressants may be intermingled with neurogenesis/neurodegenerative processes.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Adele Lucchelli
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Cinzia Boselli
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| |
Collapse
|
39
|
Millan MJ. Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics 2009; 6:53-77. [PMID: 19110199 PMCID: PMC5084256 DOI: 10.1016/j.nurt.2008.10.039] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The past decade of efforts to find improved treatment for major depression has been dominated by genome-driven programs of rational drug discovery directed toward highly selective ligands for nonmonoaminergic agents. Selective drugs may prove beneficial for specific symptoms, for certain patient subpopulations, or both. However, network analyses of the brain and its dysfunction suggest that agents with multiple and complementary modes of action are more likely to show broad-based efficacy against core and comorbid symptoms of depression. Strategies for improved multitarget exploitation of monoaminergic mechanisms include triple inhibitors of dopamine, serotonin (5-HT) and noradrenaline reuptake, and drugs interfering with feedback actions of monoamines at inhibitory 5-HT(1A), 5-HT(1B) and possibly 5-HT(5A) and 5-HT(7) receptors. Specific subsets of postsynaptic 5-HT receptors mediating antidepressant actions are under study (e.g., 5-HT(4) and 5-HT(6)). Association of a clinically characterized antidepressant mechanism with a nonmonoaminergic component of activity is an attractive strategy. For example, agomelatine (a melatonin agonist/5-HT(2C) antagonist) has clinically proven activity in major depression. Dual neurokinin(1) antagonists/5-HT reuptake inhibitors (SRIs) and melanocortin(4) antagonists/SRIs should display advantages over their selective counterparts, and histamine H(3) antagonists/SRIs, GABA(B) antagonists/SRIs, glutamatergic/SRIs, and cholinergic agents/SRIs may counter the compromised cognitive function of depression. Finally, drugs that suppress 5-HT reuptake and blunt hypothalamo-pituitary-adrenocorticotrophic axis overdrive, or that act at intracellular proteins such as GSK-3beta, may abrogate the negative effects of chronic stress on mood and neuronal integrity. This review discusses the discovery and development of dual- and triple-acting antidepressants, focusing on novel concepts and new drugs disclosed over the last 2 to 3 years.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut du Recherches Servier, Centre de Recherches de Croissy, Paris, France.
| |
Collapse
|
40
|
Kuteeva E, Wardi T, Lundström L, Sollenberg U, Langel U, Hökfelt T, Ogren SO. Differential role of galanin receptors in the regulation of depression-like behavior and monoamine/stress-related genes at the cell body level. Neuropsychopharmacology 2008; 33:2573-85. [PMID: 18172432 DOI: 10.1038/sj.npp.1301660] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study on rat examined the role of galanin receptor subtypes in regulation of depression-like behavior as well as potential molecular mechanisms involved in the locus coeruleus (LC) and dorsal raphe (DR). The effect of intracerebroventricular (i.c.v.) infusion of galanin or galanin receptor GalR1- and GalR2-selective ligands was studied in the forced swim test, followed by quantitative in situ hybridization studies. Naive control, non-treated (swim control), saline- and fluoxetine-treated rats were used as controls in the behavioral and in situ hybridization studies. Subchronic treatment with fluoxetine reduced immobility and climbing time. Intracerebroventricular infusion of galanin, the GalR1 agonist M617 or the GalR2 antagonist M871 increased, while the GalR2(R3) agonist AR-M1896 decreased, immobility time compared to the aCSF-treated animals. Galanin also decreased the time of climbing. Galanin mRNA levels were upregulated by the combination of injection+swim stress in the saline- and the fluoxetine-treated groups in the LC, but not in the DR. Also tyrosine hydroxylase levels in the LC were increased following injection+swim stress in the saline- and fluoxetine-treated rats. Tryptophan hydroxylase 2 and serotonin transporter mRNAs were not significantly affected by any treatment. 5-HT(1A) mRNA levels were downregulated following i.c.v. galanin, M617 or AR-M1896 infusion. These results indicate a differential role of galanin receptor subtypes in depression-like behavior in rodents: GalR1 subtype may mediate 'prodepressive' and GalR2 'antidepressant' effects of galanin. Galanin has a role in behavioral adaptation to stressful events involving changes of molecules important for noradrenaline and/or serotonin transmission.
Collapse
Affiliation(s)
- Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Retzius vag 8, Stockholm S-171 77 [corrected] Sweden.
| | | | | | | | | | | | | |
Collapse
|
41
|
Postendocytotic traffic of the galanin R1 receptor: a lysosomal signal motif on the cytoplasmic terminus. Proc Natl Acad Sci U S A 2008; 105:5609-13. [PMID: 18385373 DOI: 10.1073/pnas.0801456105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The neuropeptide galanin R1 receptor (GalR1) was tagged at its C terminus with EGFP (GalR1-EGFP) to study receptor localization and trafficking. In PC12 and HEK293 cells, functional GalR1-EGFP was expressed on the plasma membrane and internalized into cytoplasmic vesicles after galanin stimulation. The internalization was blocked by 0.4 M sucrose and by silencing of clathrin with siRNA methodology. Internalized GalR1-EGFP and LysoTracker, a lysosomal marker, overlapped in intracellular vesicles after prolonged galanin stimulation. This colocalization was strongly reduced after site-directed mutagenesis of the motif YXXØ on the C terminus of GalR1 (where Ø is a bulky hydrophobic residue and X any amino acid). Taken together, these data suggest that GalR1 is internalized via the clathrin-dependent, endocytic pathway and then, to a large extent, delivered to lysosomes for degradation through the lysosome-targeting signal YXXØ.
Collapse
|
42
|
Michelsen KA, Schmitz C, Steinbusch HWM. The dorsal raphe nucleus—From silver stainings to a role in depression. ACTA ACUST UNITED AC 2007; 55:329-42. [PMID: 17316819 DOI: 10.1016/j.brainresrev.2007.01.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/09/2007] [Accepted: 01/10/2007] [Indexed: 11/29/2022]
Abstract
Over a hundred years ago, Santiago Ramón y Cajal used a new staining method developed by Camillo Golgi to visualize, among many other structures, what we today call the dorsal raphe nucleus (DRN) of the midbrain. Over the years, the DRN has emerged as a multifunctional and multitransmitter nucleus, which modulates or influences many CNS processes. It is a phylogenetically old brain area, whose projections reach out to a large number of regions and nuclei of the CNS, particularly in the forebrain. Several DRN-related discoveries are tightly connected with important events in the history of neuroscience, for example the invention of new histological methods, the discovery of new neurotransmitter systems and the link between neurotransmitter function and mood disorders. One of the main reasons for the wide current interest in the DRN is the nucleus' involvement in depression. This involvement is particularly attributable to the main transmitter of the DRN, serotonin. Starting with a historical perspective, this essay describes the morphology, ascending projections and multitransmitter nature of the DRN, and stresses its role as a key target for depression research.
Collapse
Affiliation(s)
- Kimmo A Michelsen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
43
|
Ogren SO, Razani H, Elvander-Tottie E, Kehr J. The neuropeptide galanin as an in vivo modulator of brain 5-HT1A receptors: Possible relevance for affective disorders. Physiol Behav 2007; 92:172-9. [PMID: 17585970 DOI: 10.1016/j.physbeh.2007.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neuropeptide galanin is widely distributed throughout the central nervous system with multiple and diverse biological functions mediated by different receptor subtypes. In the rat, galanin-like immunoreactivity is expressed in a population of 5-hydroxytryptamine (5-HT, serotonin) neurons in the dorsal raphe with extensive projections to the forebrain areas, e.g., hippocampus. This review summarizes results from experimental studies in rodents showing that in vivo galanin is a potent modulator of brain 5-HT transmission, and in particular 5-HT1A receptor-mediated functions. Galanin, given intracerebroventricular (i.c.v.), was demonstrated to have strong inhibitory interactions with 5-HT1A receptor functions, particularly in the dorsal raphe but also in the hippocampus. Since pre- and postsynaptic 5-HT1A receptors in the dorsal raphe and hippocampus are implicated in the action of antidepressant drugs and in depressive disorders, it is suggested that galanin receptors may be an important target for development of novel antidepressant drugs. This view is supported by a recent study in the rat showing that the galanin antagonist M35, given i.c.v., could block the depression-like behavior in the forced swim test induced by galanin, while M35 produced an antidepressant-like effect on its own.
Collapse
Affiliation(s)
- Sven Ove Ogren
- Karolinska Institutet, Department of Neuroscience, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
44
|
Machado-Vieira R, Soares JC. Transtornos de humor refratários a tratamento. REVISTA BRASILEIRA DE PSIQUIATRIA 2007; 29 Suppl 2:S48-54. [PMID: 17713691 DOI: 10.1590/s1516-44462006005000058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVOS E MÉTODO: Os transtornos de humor estão entre os transtornos psiquiátricos mais prevalentes. Apesar de novas descobertas e avanços no estudo das bases neurobiológicas e abordagens terapêuticas no transtorno bipolar e depressão recorrente, elevadas taxas de recorrência, sintomas subsindrômicos persistentes e refratariedade terapêutica são aspectos clínicos desafiadores e precisam ser abordados. O objetivo desta revisão da literatura é o de avaliar os conceitos e critérios de resistência e refratariedade ao tratamento, e evidenciar as principais alternativas terapêuticas para transtornos do humor resistentes aos tratamentos disponíveis. RESULTADOS: Fatores genéticos, erro diagnóstico e de tratamento, não-aderência, e estressores biológicos e psicossociais podem levar à perda de mecanismos regulatórios e ao aumento na prevalência de casos de refratariedade nos transtornos de humor. Com relação aos tratamentos disponíveis, o uso de doses apropriadas, seguido por associação com um segundo ou terceiro fármaco, e após, se indicado, a troca de medicação, são etapas necessárias na busca de melhor eficácia. Entretanto, no paradigma de refratariedade terapêutica, tratamentos atuando em sistemas já conhecidos, especialmente monoaminas, freqüentemente apresentam limitada eficácia. Assim, a busca por tratamentos mais eficazes para os transtornos de humor torna-se um aspecto chave para diminuir sua morbidade. CONCLUSÃO: Estratégias focadas na regulação de vias ativadoras de neuroplasticidade, incluindo agentes antiglutamatérgicos, antagonistas de receptor glucocorticóide e neuropeptídeos, podem representar opções terapêuticas promissoras.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Programa de Transtornos do Humor e Ansiedade, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-3711, USA.
| | | |
Collapse
|