1
|
Pharmacokinetics of MHAA4549A, an Anti-Influenza A Monoclonal Antibody, in Healthy Subjects Challenged with Influenza A Virus in a Phase IIa Randomized Trial. Clin Pharmacokinet 2019. [PMID: 28639229 DOI: 10.1007/s40262-017-0564-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVES MHAA4549A, a human anti-influenza immunoglobulin (Ig) G1 monoclonal antibody, is being developed to treat patients hospitalized for influenza A infection. This study examined the pharmacokinetics (PKs) of MHAA4549A in a phase IIa, randomized, double-blind, dose-ranging trial in healthy volunteers challenged with influenza A virus. METHODS Serum PK data were collected from 60 subjects in three single-dose groups (400, 1200, or 3600 mg) who received MHAA4549A intravenously 24-36 h after inoculation with the influenza A virus. Nasopharyngeal swab MHAA4549A concentration data were collected on days 1-8, and all subjects, including the placebo group, received 75 mg oseltamivir twice daily from days 7 to 11. Plasma samples were collected 4 h postdose on day 8 for oseltamivir and its active metabolite oseltamivir carboxylate (OC) (all subjects, n = 100), including subjects treated with oseltamivir alone and placebo. Noncompartmental analysis was performed for both nasal and serum PKs. RESULTS MHAA4549A showed dose-proportional serum PKs with a long terminal half-life (approximately 21.9-24.6 days) and slow clearance (approximately 152-240 mL/day); however, nasopharyngeal swab PKs were not dose proportional. No differences in mean plasma concentrations of oseltamivir and OC at 4 h postdose on day 8 were observed between the MHAA4549A treatment and placebo groups. No subjects who received MHAA4549A developed anti-drug antibodies. CONCLUSION MHAA4549A serum PKs were consistent with that of a human IgG1antibody without known endogenous targets. MHAA4549A showed nonlinear PKs in nasopharyngeal swab samples, which will guide future dose selection to achieve the high drug concentrations needed at the site of action for efficacy. These data demonstrate no PK interactions between MHAA4549A and oseltamivir, and support flat dosing. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT01980966.
Collapse
|
2
|
Pickens JA, Tripp RA. Verdinexor Targeting of CRM1 is a Promising Therapeutic Approach against RSV and Influenza Viruses. Viruses 2018; 10:E48. [PMID: 29361733 PMCID: PMC5795461 DOI: 10.3390/v10010048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Two primary causes of respiratory tract infections are respiratory syncytial virus (RSV) and influenza viruses, both of which remain major public health concerns. There are a limited number of antiviral drugs available for the treatment of RSV and influenza, each having limited effectiveness and each driving selective pressure for the emergence of drug-resistant viruses. Novel broad-spectrum antivirals are needed to circumvent problems with current disease intervention strategies, while improving the cytokine-induced immunopathology associated with RSV and influenza infections. In this review, we examine the use of Verdinexor (KPT-335, a novel orally bioavailable drug that functions as a selective inhibitor of nuclear export, SINE), as an antiviral with multifaceted therapeutic potential. KPT-335 works to (1) block CRM1 (i.e., Chromosome Region Maintenance 1; exportin 1 or XPO1) mediated export of viral proteins critical for RSV and influenza pathogenesis; and (2) repress nuclear factor κB (NF-κB) activation, thus reducing cytokine production and eliminating virus-associated immunopathology. The repurposing of SINE compounds as antivirals shows promise not only against RSV and influenza virus but also against other viruses that exploit the nucleus as part of their viral life cycle.
Collapse
Affiliation(s)
- Jennifer A Pickens
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
3
|
Phase 2 Randomized Trial of the Safety and Efficacy of MHAA4549A, a Broadly Neutralizing Monoclonal Antibody, in a Human Influenza A Virus Challenge Model. Antimicrob Agents Chemother 2017; 61:AAC.01154-17. [PMID: 28807912 DOI: 10.1128/aac.01154-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022] Open
Abstract
MHAA4549A, a human monoclonal antibody targeting the hemagglutinin stalk region of influenza A virus (IAV), is being developed as a therapeutic for patients hospitalized with severe IAV infection. The safety and efficacy of MHAA4549A were assessed in a randomized, double-blind, placebo-controlled, dose-ranging study in a human IAV challenge model. One hundred healthy volunteers were inoculated with A/Wisconsin/67/2005 (H3N2) IAV and, 24 to 36 h later, administered a single intravenous dose of either placebo, MHAA4549A (400, 1,200, or 3,600 mg), or a standard oral dose of oseltamivir. Subjects were assessed for safety, pharmacokinetics (PK), and immunogenicity. The intent-to-treat-infected (ITTI) population was assessed for changes in viral load, influenza symptoms, and inflammatory biomarkers. MHAA4549A was well tolerated in all IAV challenge subjects. The 3,600-mg dose of MHAA4549A significantly reduced the viral burden relative to that of the placebo as determined by the area under the curve (AUC) of nasopharyngeal virus infection, quantified using quantitative PCR (98%) and 50% tissue culture infective dose (TCID50) (100%) assays. Peak viral load, duration of viral shedding, influenza symptom scores, mucus weight, and inflammatory biomarkers were also reduced. Serum PK was linear with a half-life of ∼23 days. No MHAA4549A-treated subjects developed anti-drug antibodies. In conclusion, MHAA4549A was well tolerated and demonstrated statistically significant and substantial antiviral activity in an IAV challenge model. (This study has been registered at ClinicalTrials.gov under identifier NCT01980966.).
Collapse
|
4
|
Lim JJ, Derby MA, Zhang Y, Deng R, Larouche R, Anderson M, Maia M, Carrier S, Pelletier I, Girard J, Kulkarni P, Newton E, Tavel JA. A Phase 1, Randomized, Double-Blind, Placebo-Controlled, Single-Ascending-Dose Study To Investigate the Safety, Tolerability, and Pharmacokinetics of an Anti-Influenza B Virus Monoclonal Antibody, MHAB5553A, in Healthy Volunteers. Antimicrob Agents Chemother 2017; 61:e00279-17. [PMID: 28559255 PMCID: PMC5527589 DOI: 10.1128/aac.00279-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/21/2017] [Indexed: 12/16/2022] Open
Abstract
Influenza B can cause significant morbidity and mortality. MHAB5553A, a human monoclonal immunoglobulin G1 (IgG1) antibody that binds to a highly conserved region of the hemagglutinin protein of influenza B virus, is being examined as a novel therapeutic for the treatment of influenza B patients with severe disease. This phase 1, randomized, double-blind, placebo-controlled, single-ascending-dose study was conducted to assess the safety, tolerability, and pharmacokinetics (PK) of MHAB5553A. Twenty-six healthy male and female volunteers of >18 years of age were randomized into five cohorts receiving a single intravenous (i.v.) dose of 120, 1,200, 3,600, 8,400, or 10,800 mg MHAB5553A or placebo (four active:one placebo, except for the 120-mg cohort [4:2]). Subjects were followed for 120 days after dosing. No subject discontinued the study, no dose-limiting adverse events or serious adverse events were reported, and a maximum tolerated dose (MTD) was not defined. The most commonly reported adverse events were cold symptoms and headache; most were mild and occurred at a similar rate across all cohorts. MHAB5553A showed no relevant time- or dose-related changes in laboratory values or vital signs compared to the placebo. The observed serum PK was linear and generally dose proportional, and the observed nasal PK was nonlinear and generally non-dose proportional. MHAB5553A is generally well tolerated in healthy volunteers up to at least a single i.v. dose of 10,800 mg and demonstrated linear serum PK consistent with those of a human IgG1 antibody lacking known endogenous targets in humans. (This study has been registered at ClinicalTrials.gov under registration no. NCT02528903.).
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- Antiviral Agents/administration & dosage
- Antiviral Agents/pharmacokinetics
- Antiviral Agents/therapeutic use
- Dose-Response Relationship, Drug
- Double-Blind Method
- Female
- Hemagglutinins, Viral/immunology
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/pharmacology
- Influenza B virus/drug effects
- Influenza B virus/immunology
- Influenza, Human/drug therapy
- Male
- Middle Aged
- Placebos/therapeutic use
Collapse
Affiliation(s)
- Jeremy J Lim
- Genentech, Inc., South San Francisco, California, USA
| | | | - Yaping Zhang
- Genentech, Inc., South San Francisco, California, USA
| | - Rong Deng
- Genentech, Inc., South San Francisco, California, USA
| | | | | | - Mauricio Maia
- Genentech, Inc., South San Francisco, California, USA
| | | | | | | | | | | | - Jorge A Tavel
- Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
5
|
Gupta P, Kamath AV, Park S, Chiu H, Lutman J, Maia M, Tan MW, Xu M, Swem L, Deng R. Preclinical pharmacokinetics of MHAA4549A, a human monoclonal antibody to influenza A virus, and the prediction of its efficacious clinical dose for the treatment of patients hospitalized with influenza A. MAbs 2016; 8:991-7. [PMID: 27031797 DOI: 10.1080/19420862.2016.1167294] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
MHAA4549A is a human immunoglobulin G1 (IgG1) monoclonal antibody that binds to a highly conserved epitope on the stalk of influenza A hemagglutinin and blocks the hemagglutinin-mediated membrane fusion in the endosome, neutralizing all known human influenza A strains. Pharmacokinetics (PK) of MHAA4549A and its related antibodies were determined in DBA/2J and Balb-c mice at 5 mg/kg and in cynomolgus monkeys at 5 and 100 mg/kg as a single intravenous dose. Serum samples were analyzed for antibody concentrations using an ELISA and the PK was evaluated using WinNonlin software. Human PK profiles were projected based on the PK in monkeys using species-invariant time method. The human efficacious dose projection was based on in vivo nonclinical pharmacological active doses, exposure in mouse infection models and expected human PK. The PK profiles of MHAA4549A and its related antibody showed a linear bi-exponential disposition in mice and cynomolgus monkeys. In mice, clearance and half-life ranged from 5.77 to 9.98 mL/day/kg and 10.2 to 5.76 days, respectively. In cynomolgus monkeys, clearance and half-life ranged from 4.33 to 4.34 mL/day/kg and 11.3 to 11.9 days, respectively. The predicted clearance in humans was ∼2.60 mL/day/kg. A single intravenous dose ranging from 15 to 45 mg/kg was predicted to achieve efficacious exposure in humans. In conclusion, the PK of MHAA4549A was as expected for a human IgG1 monoclonal antibody that lacks known endogenous host targets. The predicted clearance and projected efficacious doses in humans for MHAA4549A have been verified in a Phase 1 study and Phase 2a study, respectively.
Collapse
Affiliation(s)
- Priyanka Gupta
- a Preclinical and Translational Pharmacokinetics Department , Genentech Inc. , South San Francisco , CA , USA
| | - Amrita V Kamath
- a Preclinical and Translational Pharmacokinetics Department , Genentech Inc. , South San Francisco , CA , USA
| | - Summer Park
- b Translational Immunology Department , Genentech Inc. , South San Francisco , CA , USA
| | - Henry Chiu
- c Biochemical and Cellular Pharmacology Department , Genentech Inc. , South San Francisco , CA , USA
| | - Jeff Lutman
- a Preclinical and Translational Pharmacokinetics Department , Genentech Inc. , South San Francisco , CA , USA
| | - Mauricio Maia
- d Bioanalytical Sciences Department , Genentech Inc. , South San Francisco , CA , USA
| | - Man-Wah Tan
- e Infectious Diseases Department , Genentech Inc. , South San Francisco , California , USA
| | - Min Xu
- b Translational Immunology Department , Genentech Inc. , South San Francisco , CA , USA
| | - Lee Swem
- f Achaogen , South San Francisco , CA , USA
| | - Rong Deng
- g Clinical Pharmacology Department , Genentech Inc. , South San Francisco , CA , USA
| |
Collapse
|
6
|
Nakamura G, Chai N, Park S, Chiang N, Lin Z, Chiu H, Fong R, Yan D, Kim J, Zhang J, Lee WP, Estevez A, Coons M, Xu M, Lupardus P, Balazs M, Swem LR. An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. Cell Host Microbe 2014; 14:93-103. [PMID: 23870317 DOI: 10.1016/j.chom.2013.06.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/21/2013] [Accepted: 06/03/2013] [Indexed: 12/01/2022]
Abstract
Recent advances enabling the cloning of human immunoglobulin G genes have proven effective for discovering monoclonal antibodies with therapeutic potential. However, these antibody-discovery methods are often arduous and identify only a few candidates from numerous antibody-secreting plasma cells or plasmablasts. We describe an in vivo enrichment technique that identifies broadly neutralizing human antibodies with high frequency. For this technique, human peripheral blood mononuclear cells from vaccinated donors are activated and enriched in an antigen-specific manner for the production of numerous antigen-specific plasmablasts. Using this technology, we identified four broadly neutralizing influenza A antibodies by screening only 840 human antibodies. Two of these antibodies neutralize every influenza A human isolate tested and perform better than the current anti-influenza A therapeutic, oseltamivir, in treating severe influenza infection in mice and ferrets. Furthermore, these antibodies elicit robust in vivo synergism when combined with oseltamivir, thus highlighting treatment strategies that could benefit influenza-infected patients.
Collapse
Affiliation(s)
- Gerald Nakamura
- Antibody Engineering Department, Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
He F, Kumar SR, Syed Khader SM, Tan Y, Prabakaran M, Kwang J. Effective intranasal therapeutics and prophylactics with monoclonal antibody against lethal infection of H7N7 influenza virus. Antiviral Res 2013; 100:207-14. [PMID: 23954322 DOI: 10.1016/j.antiviral.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/29/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
Abstract
Recurrence of highly pathogenic avian influenza (HPAI) virus subtype H7 in humans and poultry continues to be a serious concern to public health. No effective prevention and treatment are currently available against H7 infection. One H7 monoclonal antibody, Mab 62 was selected and characterized. Mab 62 presented efficient neutralization activity against all six representative H7 strains tested, including the H7N9 strain from the recent outbreak in China. The epitope of 62 identified on H7 HA1 exists in all the human H7 strains, including the recent H7N9 strains from China. Mab 62 when administered passively, pre or post challenge with 5 MLD50 (50% mouse lethal dose) HPAI H7N7 influenza viruses could protect 100% of the mice from death. The efficacy of intranasal administration of the Mab was evaluated versus the intraperitoneal route. In the therapeutic study, body weight loss and virus load were reduced in intranasally inoculated mice, as compared to the intraperitoneal group. Intranasal administration results in early clearance of the virus from the lungs and completely prevents lung pathology of H7N7. The study confirmed that intranasal administration of Mab 62 is either an effective prophylactic or therapeutic means against H7 lethal infection. The results of epitope analysis suggest the potential of Mab 62 to be used for the efficacious prevention and treatment against the recent human H7N9 strains.
Collapse
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
8
|
Liao HS, Wu JW, Liu HL, Zhao JH, Tsao CW, Liu KT, Chuang CK, Lin HY, Tsai WB, Ho Y. Pharmacophore Mode lingand Virtual Screening to Design the Potential Influenza Virus Endonuclease Inhibitors. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201100390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
MicroRNA regulation of human protease genes essential for influenza virus replication. PLoS One 2012; 7:e37169. [PMID: 22606348 PMCID: PMC3351457 DOI: 10.1371/journal.pone.0037169] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 04/16/2012] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.
Collapse
|
10
|
Curran MP, Leroux-Roels I. Inactivated split-virion seasonal influenza vaccine (Fluarix): a review of its use in the prevention of seasonal influenza in adults and the elderly. Drugs 2010; 70:1519-43. [PMID: 20687619 DOI: 10.2165/11205020-000000000-00000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Fluarix is a trivalent, inactivated, split-virion influenza vaccine containing 15 microg haemagglutinin from each of the three influenza virus strains (including an H1N1 influenza A virus subtype, an H3N2 influenza A virus subtype and an influenza B virus) that are expected to be circulating in the up-coming influenza season. Fluarix is highly immunogenic in healthy adults and elderly, and exceeds the criteria that make it acceptable for licensure in various regions (including the US and Europe). In a large, phase III, placebo-controlled, double-blind trial conducted in the US (2004/2005) in subjects aged 18-64 years, postvaccination seroconversion rates against the H1N1, H3N2 and B antigens were 60-78% and respective postvaccination seroprotection rates were 97-99% in Fluarix recipients. Another phase III trial conducted in the US (2005/2006) established the noninferiority of Fluarix versus another trivalent inactivated influenza virus vaccine in subjects aged >or=18 years, including a subgroup of elderly subjects. In annual European registration trials, Fluarix has consistently exceeded the immunogenicity criteria set by the EU Committee for Medicinal Products for Human Use for adults and the elderly. Fluarix demonstrated immunogenicity in small, open-label studies in at-risk subjects. During a year when the vaccine was well matched to the circulating strain, Fluarix demonstrated efficacy against culture-confirmed influenza A and/or B in a placebo-controlled trial in adults aged 18-64 years. In addition, Fluarix vaccination of pregnant women demonstrated efficacy in reducing the rate of laboratory-confirmed influenza in the infants and reducing febrile respiratory illnesses in the mothers and their new-born infants in a randomized trial. Fluarix was generally well tolerated in adults and the elderly in well designed clinical trials and in the annual European registration trials, with most local and general adverse events being transient and mild to moderate in intensity. The most common adverse reactions in recipients of Fluarix were pain, redness or swelling at the injection site, muscle aches, fatigue, headache and arthralgia. In conclusion, Fluarix is an important means of decreasing the impact of seasonal influenza viruses on adults and the elderly.
Collapse
Affiliation(s)
- Monique P Curran
- Adis, a Wolters Kluwer Business, Mairangi Bay, North Shore, Auckland, New Zealand.
| | | |
Collapse
|
11
|
Hartshorn KL, Webby R, White MR, Tecle T, Pan C, Boucher S, Moreland RJ, Crouch EC, Scheule RK. Role of viral hemagglutinin glycosylation in anti-influenza activities of recombinant surfactant protein D. Respir Res 2008; 9:65. [PMID: 18811961 PMCID: PMC2564921 DOI: 10.1186/1465-9921-9-65] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 09/23/2008] [Indexed: 11/11/2022] Open
Abstract
Background Surfactant protein D (SP-D) plays an important role in innate defense against influenza A viruses (IAVs) and other pathogens. Methods We tested antiviral activities of recombinant human SP-D against a panel of IAV strains that vary in glycosylation sites on their hemagglutinin (HA). For these experiments a recombinant version of human SP-D of the Met11, Ala160 genotype was used after it was characterized biochemically and structurally. Results Oligosaccharides at amino acid 165 on the HA in the H3N2 subtype and 104 in the H1N1 subtype are absent in collectin-resistant strains developed in vitro and are important for mediating antiviral activity of SP-D; however, other glycans on the HA of these viral subtypes also are involved in inhibition by SP-D. H3N2 strains obtained shortly after introduction into the human population were largely resistant to SP-D, despite having the glycan at 165. H3N2 strains have become steadily more sensitive to SP-D over time in the human population, in association with addition of other glycans to the head region of the HA. In contrast, H1N1 strains were most sensitive in the 1970s–1980s and more recent strains have become less sensitive, despite retaining the glycan at 104. Two H5N1 strains were also resistant to inhibition by SP-D. By comparing sites of glycan attachment on sensitive vs. resistant strains, specific glycan sites on the head domain of the HA are implicated as important for inhibition by SP-D. Molecular modeling of the glycan attachment sites on HA and the carbohydrate recognition domain of SPD are consistent with these observations. Conclusion Inhibition by SP-D correlates with presence of several glycan attachment sites on the HA. Pandemic and avian strains appear to lack susceptibility to SP-D and this could be a contributory factor to their virulence.
Collapse
Affiliation(s)
- Kevan L Hartshorn
- Department of Medicine, Boston University School of Medicine, Boston MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Annual epidemics of influenza virus infection are responsible for considerable morbidity and mortality, and pandemics are much more devastating. Considerable knowledge of viral infectivity and replication has been acquired, but many details still have to be elucidated and the virus remains a challenging target for drug design and development. This review provides an overview of the antiviral drugs targeting the influenza viral replicative cycle. Included are a brief description of their chemical syntheses and biological activities. For other reviews, see References1-9.
Collapse
Affiliation(s)
- Irene M. Lagoja
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| |
Collapse
|
13
|
Livingston BD, Higgins D, Van Nest G. Evolving strategies for the prevention of influenza infection: potential for multistrain targeting. BioDrugs 2007; 20:335-40. [PMID: 17176120 DOI: 10.2165/00063030-200620060-00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Approved influenza vaccines based on the induction of antibodies to hemagglutinin are strain specific and cumbersome to manufacture. Several alternative vaccine strategies based on the induction of humoral responses against the external domain of the M2 protein, as well as cellular responses against nucleoprotein, have the potential to target multiple strains of influenza. A universal vaccine would be a major advancement in the prevention of influenza infection as it would alleviate the need for tailored vaccines to control seasonal influenza epidemics while simultaneously providing a level of protection against potential pandemic strains.
Collapse
|
14
|
Lee RM, White MR, Hartshorn KL. Influenza A Viruses Upregulate Neutrophil Toll-Like Receptor 2 Expression and Function. Scand J Immunol 2006; 63:81-9. [PMID: 16476006 DOI: 10.1111/j.1365-3083.2005.01714.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neutrophils are involved in the initial host response to influenza A virus (IAV) infection and exhibit both activation and depressed function after exposure to the virus. We demonstrate that IAV causes rapid upregulation of Toll-like receptor 2 (TLR2) expression on neutrophils. The neutrophil agonists, formyl-methylpleucyl-alanine (fMLP), C5a and lipopolysaccharide did not alter neutrophil TLR2 expression, whereas PMA and the microbial TLR2 ligands, peptidoglycan (PGN) and zymosan, reduced it. To determine the functional significance of IAV-induced increase in TLR2 expression, IAV-treated neutrophils were exposed to PGN, Staphylococcus aureus (S. aureus) and zymosan. Pretreatment with IAV resulted in significantly increased uptake of S. aureus and zymosan and accelerated neutrophil apoptosis when combined with S. aureus. IAV-treated cells generated significantly more H(2)O(2) in response to PGN. These results indicate that IAV increases neutrophil surface expression of TLR2 and modulates functional responses to ligands that bind TLR2. These findings may clarify IAV-induced perturbation of neutrophil functions in vivo.
Collapse
Affiliation(s)
- R M Lee
- Department of Medicine, Section of Hematology/Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
15
|
White MR, Crouch E, Vesona J, Tacken PJ, Batenburg JJ, Leth-Larsen R, Holmskov U, Hartshorn KL. Respiratory innate immune proteins differentially modulate the neutrophil respiratory burst response to influenza A virus. Am J Physiol Lung Cell Mol Physiol 2005; 289:L606-16. [PMID: 15951332 DOI: 10.1152/ajplung.00130.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidants and neutrophils contribute to lung injury during influenza A virus (IAV) infection. Surfactant protein (SP)-D plays a pivotal role in restricting IAV replication and inflammation in the first several days after infection. Despite its potent anti-inflammatory effects in vivo, preincubation of IAV with SP-D in vitro strongly increases neutrophil respiratory burst responses to the virus. Several factors are shown to modify this apparent proinflammatory effect of SP-D. Although multimeric forms of SP-D show dose-dependent augmentation of respiratory burst responses, trimeric, single-arm forms either show no effect or inhibit these responses. Furthermore, if neutrophils are preincubated with multimeric SP-D before IAV is added, oxidant responses to the virus are significantly reduced. The ability of SP-D to increase neutrophil uptake of IAV can be dissociated from enhancement of oxidant responses. Finally, several other innate immune proteins that bind to SP-D and/or IAV (i.e., SP-A, lung glycoprotein-340 or mucin) significantly reduce the ability of SP-D to promote neutrophil oxidant response. As a result, the net effect of bronchoalveolar lavage fluids is to increase neutrophil uptake of IAV while reducing the respiratory burst response to virus.
Collapse
Affiliation(s)
- Mitchell R White
- Dept. of Medicine, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Brooks MJ, Sasadeusz JJ, Tannock GA. Antiviral chemotherapeutic agents against respiratory viruses: where are we now and what's in the pipeline? Curr Opin Pulm Med 2004; 10:197-203. [PMID: 15071371 DOI: 10.1097/00063198-200405000-00009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The emergence of severe acute respiratory syndrome in late 2002 and the recent outbreaks of avian influenza in Asia are timely reminders of the ever present risks from respiratory viral diseases. Apart from influenza, there are no vaccines and very few antiviral chemotherapeutic agents available for the prevention and treatment of respiratory viral infections-the most common cause of human illness. If the current H5N1 avian influenza outbreak ever assumes the role of a pandemic, formidable technical difficulties relating to the properties of the agent, itself, will ensure that vaccines will only become available after a significant lead time and then only to a relatively small percentage of the population. The use of existing antivirals could be critical in limiting the initial spread of a pandemic, although their use in the control of epidemics caused by nonpandemic viruses has not been evaluated. It is against this background that a review of recent developments in respiratory antivirals has been undertaken. RECENT FINDINGS The late 1990s were a period of unprecedented activity in the development of new and much superior antivirals for the treatment of influenza infections. However, during the past 2 to 3 years and largely for commercial reasons, there has been a decline in interest in their further development by major drug companies. This situation may soon change with the possible advent of new pandemic viruses, and moves are afoot in several countries to consider the stockpiling of antivirals. The neuraminidase inhibitors zanamivir and oseltamivir, and the M2 inhibitors amantadine and rimantadine, remain the only options for controlling respiratory disease caused by influenza viruses, although the latter two could not be used against very recent H5N1 strains. There are several other neuraminidase inhibitors in development. Compounds with activity against other respiratory viruses, notably rhinoviruses, are also in development, many based on a newer knowledge of viral protein structure and function (rational drug design). SUMMARY The following is an overview of recent papers on the further development of neuraminidase inhibitors against influenza viruses and on recent development of newer antivirals against RSV and rhinoviruses. Where possible, comparisons are made with existing antivirals. For considerations of space, this review has been structured around stages in the replication cycle of significant respiratory viruses that have been traditionally used as targets for inhibition.
Collapse
Affiliation(s)
- Megan J Brooks
- Department of Biotechnology and Environmental Biology, RMIT University, Bundoora, Victoria, Australia
| | | | | |
Collapse
|
17
|
Drinka PJ. Influenza vaccination and antiviral therapy: is there a role for concurrent administration in the institutionalised elderly? Drugs Aging 2003; 20:165-74. [PMID: 12578397 DOI: 10.2165/00002512-200320030-00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Influenza vaccination is estimated to be 50-68% efficacious in preventing pneumonia, hospitalisation or death in nursing home residents. Large culture-proven outbreaks may occur despite high resident vaccination rates. There is, therefore, a significant role for concurrent administration of influenza vaccination and antiviral therapy. The use of antiviral treatment and chemoprophylaxis requires community reporting of viral isolates, and contingency plans for rapid case identification and application of antiviral therapy. Clinicians must react quickly to control a highly infectious seasonal pathogen that may strike as an explosive outbreak. This situation is unique in geriatric practice. Current antiviral treatment should be administered within 48 hours of symptom onset, and is more efficacious if administered within 12 hours. In the case of an explosive institutional outbreak, a 1-day delay in prophylaxis may allow infection of many residents with a potentially fatal illness. Influenza must be differentiated from other respiratory viruses or syndromes. Grouped rapid diagnostic tests can aid laboratory confirmation. Antiviral agents include the M(2) inhibitors, amantadine and rimantadine, active against influenza A, and the neuraminidase inhibitors, zanamivir and oseltamivir, active against influenza A and B. In our experience, influenza B illness is as severe as influenza A. All agents have similar efficacy as treatment and prophylaxis against sensitive strains. When M(2) inhibitors are used simultaneously within an enclosed space (i.e. household or nursing home) as both treatment and prophylaxis, resistant strains may emerge that limit prophylactic efficacy. When M(2) inhibitors are administered to suspected cases (residents or staff) in institutions, precautions against secretion are especially important to diminish the risk of transmission of resistant virus. Rimantadine has been shown to have significantly fewer CNS adverse events compared with amantadine. Amantadine and oseltamivir require dosage adjustment in those with renal impairment. Oseltamivir, rimantadine and amantadine are administered by mouth, while zanamivir is administered by oral inhalation in a lactose powder. The labelling advises caution in the use of zanamivir in those with underlying airway disease. Pooled analysis of studies in patients given zanamivir indicate that individuals over the age of 50 years (at high risk for complications) and those severely symptomatic at presentation, tend to benefit most from early treatment. Neuraminidase inhibitors also diminish the need for antibacterials to treat secondary complications. An institutional programme to control influenza should include vaccination, and contingency plans for clinical surveillance, specimen processing and the rapid application of antiviral treatment and prophylaxis.
Collapse
Affiliation(s)
- Paul J Drinka
- Internal Medicine, Geriatrics, University of Wisconsin, Madison, Wisconsin 54946, USA.
| |
Collapse
|
18
|
Leggate DR, Bryant JM, Redpath MB, Head D, Taylor PW, Luzio JP. Expression, mutagenesis and kinetic analysis of recombinant K1E endosialidase to define the site of proteolytic processing and requirements for catalysis. Mol Microbiol 2002; 44:749-60. [PMID: 11994155 PMCID: PMC2034677 DOI: 10.1046/j.1365-2958.2002.02908.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Catalytically active, recombinant fusion proteins of bacteriophage E endosialidase were expressed and purified from Escherichia coli. Constructs with different fusion partners added to the amino terminus of the endosialidase were enzymatically active. A post-translational proteolytic cleavage was shown to occur between serine 706 and aspartate 707 to generate the 76 kDa mature enzyme from the 90 kDa translation product. Endosialidase truncated at the C-terminus from aspartate 707 was observed to have the same 76 kDa molecular weight as wild-type enzyme using denaturing SDS-PAGE but, under native PAGE conditions, was not observed to form the approximately 250 kDa trimeric wild-type enzyme, implying that the C-terminus of the enzyme may be required for correct assembly of active trimer, rather than as part of the active site as has been previously suggested. Mutagenesis of aspartate 138 to alanine greatly reduced enzyme activity whereas conversion of other selected aspartate residues to alanine had less effect, consistent with similarities between the structure and cata-lytic mechanism of bacteriophage E endosialidase and those of exosialidases.
Collapse
Affiliation(s)
- Daniel R. Leggate
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Department of Pharmaceutics, The School of Pharmacy, University of London, London, UK
| | - J. Mark Bryant
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Maria B. Redpath
- Department of Pharmaceutics, The School of Pharmacy, University of London, London, UK
| | - Denise Head
- Research Centre, Novartis Pharmaceuticals, Horsham, West Sussex, UK
| | - Peter W. Taylor
- Department of Pharmaceutics, The School of Pharmacy, University of London, London, UK
| | - J. Paul Luzio
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- For correspondence. E-mail ; Tel. (+44) 1223 336780; Fax (+44) 1223 762630
| |
Collapse
|
19
|
Abstract
UNLABELLED Zanamivir is a potent competitive inhibitor of the neuraminidase glycoprotein, which is essential in the infective cycle of influenza A and B viruses. Zanamivir (10mg by inhalation via the Diskhaler twice daily, or 10mg inhaled plus 6.4mg intranasally two or four times daily, for 5 days) reduced the median time to alleviation of major influenza symptoms by up to 2.5 days compared with placebo. Significant reductions of 1 to 2.5 days versus placebo were observed with inhaled zanamivir in phase III trials involving otherwise healthy adults, high-risk patients or children aged 5 to 12 years. Accelerated return to normal activities, and reduced interference with sleep, consumption of relief medication and incidence of complications leading to antibacterial use were also observed with zanamivir. When used for prophylaxis, inhaled zanamivir 10 to 20 mg/day for 10 days to 4 weeks (plus 6.4 mg/day intranasally in one trial) prevented influenza A in 67% of recipients in a university community, significantly reduced the number of families with new cases of influenza compared with placebo or prevented new cases of influenza in long-term care facilities. The tolerability of inhaled or intranasal zanamivir was similar to that of placebo in otherwise healthy adults, high-risk and elderly patients, and children. Recommended dosages of zanamivir did not adversely affect pulmonary function in patients with respiratory disorders in a well-controlled trial, although there have been rare reports of bronchospasm and/or a decline in respiratory function. CONCLUSION Zanamivir (used within 48 hours of symptom development) reduces the duration of symptomatic illness, causes accelerated return to normal activities or reduces complications requiring antibacterial use in adults, high-risk individuals and children with influenza. Vaccination remains the intervention of choice for prophylaxis in selected populations. However, the efficacy, good tolerability profile and lack of resistance with zanamivir make it a useful option, particularly in those not covered or inadequately protected by vaccination, who are able to use the inhalation device. The use of zanamivir in patients with respiratory disorders remains unclear because of concerns regarding its potential for bronchospasm. Prospective cost-effectiveness analyses and investigations of efficacy in preventing serious complications of influenza, particularly in high-risk patients, are required. Zanamivir shows potential for prophylaxis in persons for whom vaccination is contraindicated or ineffective, in elderly or high-risk patients in long-term care facilities and in households.
Collapse
|