1
|
Verma V, Samanthapudi K, Raviprakash R. Classic Studies on the Potential of Stem Cell Neuroregeneration. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2015; 25:123-141. [PMID: 26308908 DOI: 10.1080/0964704x.2015.1039904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The 1990s and 2000s were the beginning of an exciting time period for developmental neuroscience and neural stem cell research. By better understanding brain plasticity and the birth of new neurons in the adult brain, contrary to established dogma, hope for therapy from devastating neurological diseases was generated. The potential for stem cells to provide functional recovery in humans remains to be further tested and to further move into the clinical trial realm. The future certainly has great promise on stem cells to assist in alleviation of difficult-to-treat neurologic disorders. This article reviews classic studies of the 1990s and 2000s that paved the way for the advances of today, which can in turn lead to tomorrow's therapies.
Collapse
Affiliation(s)
- Vivek Verma
- a Department of Neuroscience , University of Pittsburgh , Pittsburgh , PA , USA
| | | | - Ratujit Raviprakash
- a Department of Neuroscience , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
2
|
Fan Y, Marcy G, Lee ESM, Rozen S, Mattar CNZ, Waddington SN, Goh ELK, Choolani M, Chan JKY. Regionally-specified second trimester fetal neural stem cells reveals differential neurogenic programming. PLoS One 2014; 9:e105985. [PMID: 25181041 PMCID: PMC4152177 DOI: 10.1371/journal.pone.0105985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/30/2014] [Indexed: 01/30/2023] Open
Abstract
Neural stem/progenitor cells (NSC) have the potential for treatment of a wide range of neurological diseases such as Parkinson Disease and multiple sclerosis. Currently, NSC have been isolated only from hippocampus and subventricular zone (SVZ) of the adult brain. It is not known whether NSC can be found in all parts of the developing mid-trimester central nervous system (CNS) when the brain undergoes massive transformation and growth. Multipotent NSC from the mid-trimester cerebra, thalamus, SVZ, hippocampus, thalamus, cerebellum, brain stem and spinal cord can be derived and propagated as clonal neurospheres with increasing frequencies with increasing gestations. These NSC can undergo multi-lineage differentiation both in vitro and in vivo, and engraft in a developmental murine model. Regionally-derived NSC are phenotypically distinct, with hippocampal NSC having a significantly higher neurogenic potential (53.6%) over other sources (range of 0%–27.5%, p<0.004). Whole genome expression analysis showed differential gene expression between these regionally-derived NSC, which involved the Notch, epidermal growth factor as well as interleukin pathways. We have shown the presence of phenotypically-distinct regionally-derived NSC from the mid-trimester CNS, which may reflect the ontological differences occurring within the CNS. Aside from informing on the role of such cells during fetal growth, they may be useful for different cellular therapy applications.
Collapse
Affiliation(s)
- Yiping Fan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Guillaume Marcy
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eddy S. M. Lee
- Richard M. Lucas Center for Imaging, Radiology Department, Stanford University, Stanford, California, United States of America
| | - Steve Rozen
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Citra N. Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
- Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Eyleen L. K. Goh
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- * E-mail: (JKYC); (MC)
| | - Jerry K. Y. Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail: (JKYC); (MC)
| |
Collapse
|
3
|
Selden NR, Al-Uzri A, Huhn SL, Koch TK, Sikora DM, Nguyen-Driver MD, Guillaume DJ, Koh JL, Gultekin SH, Anderson JC, Vogel H, Sutcliffe TL, Jacobs Y, Steiner RD. Central nervous system stem cell transplantation for children with neuronal ceroid lipofuscinosis. J Neurosurg Pediatr 2013; 11:643-52. [PMID: 23581634 DOI: 10.3171/2013.3.peds12397] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECT Infantile and late-infantile neuronal ceroid lipofuscinoses (NCLs) are invariably fatal lysosomal storage diseases associated with defects in lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT-1) or tripeptidyl peptidase 1 (TPP1) activity. Previous preclinical studies have demonstrated that human CNS stem cells (HuCNS-SCs) produce both PPT-1 and TPP1 and result in donor cell engraftment and reduced accumulation of storage material in the brain when tested in an NCL mouse model. METHODS HuCNS-SC transplantation was tested in an open-label dose-escalation Phase I clinical trial as a potential treatment for infantile and late-infantile NCL. Study design included direct neurosurgical transplantation of allogeneic HuCNS-SCs into the cerebral hemispheres and lateral ventricles accompanied by 12 months of immunosuppression. RESULTS Six children with either the infantile or late-infantile forms of NCL underwent low- (3 patients) and high- (3 patients) dose transplantation of HuCNS-SCs followed by immunosuppression. The surgery, immunosuppression, and cell transplantation were well tolerated. Adverse events following transplantation were consistent with the underlying disease, and none were directly attributed to the donor cells. Observations regarding efficacy of the intervention were limited by the enrollment criteria requiring that patients be in advanced stages of disease. CONCLUSIONS This study represents the first-in-human clinical trial involving transplantation of a purified population of human neural stem cells for a neurodegenerative disorder. The feasibility of this approach and absence of transplantation-related serious adverse events support further exploration of HuCNS-SC transplantation as a potential treatment for select subtypes of NCL, and possibly for other neurodegenerative disorders.
Collapse
Affiliation(s)
- Nathan R Selden
- Department of Neurological Surgery, Oregon Health & Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang Y, Yang J, Li H, Wang X, Zhu L, Fan M, Wang X. Hypoxia promotes dopaminergic differentiation of mesenchymal stem cells and shows benefits for transplantation in a rat model of Parkinson's disease. PLoS One 2013; 8:e54296. [PMID: 23342124 PMCID: PMC3546985 DOI: 10.1371/journal.pone.0054296] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/10/2012] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into dopaminergic (DAergic) neurons, which is one of the major cell types damaged in Parkinson’s disease (PD). For this reason, MSCs are considered a potential cell source for PD therapy. It has been proved that hypoxia is involved in the proliferation and differentiation of stem cells. In this study, we investigated the effect of hypoxia on MSC proliferation and DAergic neuronal differentiation. Our results demonstrate that 3% O2 treatment can enhance rat MSC proliferation by upregulation of phosphorylated p38 MAPK and subsequent nuclear translocation of hypoxia inducible factor (HIF)-1α. During neural differentiation, 3% O2 treatment increases the expression of HIF-1α, phosphorylated ERK and p38 MAPK. These changes are followed by promotion of neurosphere formation and further DAergic neuronal differentiation. Furthermore, we explored the physiological function of hypoxia-induced DAergic neurons from human fetal MSCs by transplanting them into parkinsonian rats. Grafts induced with hypoxia display more survival of DAergic neurons and greater amelioration of behavioral impairments. Altogether, these results suggest that hypoxia can promote MSC proliferation and DAergic neuronal differentiation, and benefit for intrastriatal transplantation. Therefore, this study may provide new perspectives in application of MSCs to clinical PD therapy.
Collapse
Affiliation(s)
- Yue Wang
- Neuroscience Research Institute, Peking University, Key Laboratory of Neuroscience (PKU), Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Jian Yang
- Department of Physiology and Neurobiology, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Education Ministry, Youanmen, Beijing, China
- Beijing An Ding Hospital, Beijing, China
| | - Haisheng Li
- Department of Brain Protection, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xuan Wang
- Department of Physiology and Neurobiology, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Education Ministry, Youanmen, Beijing, China
| | - Lingling Zhu
- Department of Brain Protection, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Fan
- Department of Brain Protection, Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (XMW); (MF)
| | - Xiaomin Wang
- Department of Physiology and Neurobiology, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Education Ministry, Youanmen, Beijing, China
- * E-mail: (XMW); (MF)
| |
Collapse
|
5
|
Xue S, Chen C, Dong W, Hui G, Liu T, Guo L. Therapeutic effects of human amniotic epithelial cell transplantation on double-transgenic mice co-expressing APPswe and PS1ΔE9-deleted genes. SCIENCE CHINA-LIFE SCIENCES 2012; 55:132-40. [PMID: 22415684 DOI: 10.1007/s11427-012-4283-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 11/27/2011] [Indexed: 10/28/2022]
Abstract
Human amniotic epithelial cells (HAECs), which exhibit characteristics of embryonic and pluripotent stem cells, could be utilized for cell therapy without legal or ethical problems. Double-transgenic (TG) mice (n=20) and wild-type (WT) mice (n=20) were randomly assigned to two groups, respectively. The transplantation group was treated with HAECs and the control group with PBS. A six-radial arm water maze was used to assess spatial memory. Immunofluorescence was utilized to track HAEC survival. Immunohistochemistry was used to determine octamer-binding protein 4 (oct-4) and nanog expression in the HAECs. High-performance liquid chromatography (HPLC) was used to measure acetylcholine levels in the hippocampus. The density of cholinergic neurons in the basal forebrain and nerve fibers in the hippocampus was measured following acetylcholinesterase staining. Results showed that transplanted HAECs survived for at least eight weeks and migrated to the third ventricle without immune rejection. Graft HAECs also expressed the specific stem cell markers oct-4 and nanog. Compared with the control group, HAEC transplantation significantly ameliorated spatial memory deficits in TG mice, as well as increased acetylcholine levels and the number of hippocampal cholinergic neurites. Intracerebroventricular HAEC transplantation improved spatial memory in double-TG mice, and results suggested that increased acetylcholine levels in the hippocampus, released by surviving cholinergic neurites, were responsible for this improvement.
Collapse
Affiliation(s)
- Shouru Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | | | | | | | | | | |
Collapse
|
6
|
Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proc Natl Acad Sci U S A 2009; 106:19150-5. [PMID: 19901336 DOI: 10.1073/pnas.0909293106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cranial irradiation remains a frontline treatment for the control of tumor growth, and individuals surviving such treatments often manifest various degrees of cognitive dysfunction. Radiation-induced depletion of stem/precursor cell pools in the brain, particularly those residing in the neurogenic region of the hippocampus, is believed, in part, to be responsible for these often-unavoidable cognitive deficits. To explore the possibility of ameliorating radiation-induced cognitive impairment, athymic nude rats subjected to head only irradiation (10 Gy) were transplanted 2 days afterward with human embryonic stem cells (hESC) into the hippocampal formation and analyzed for stem cell survival, differentiation, and cognitive function. Animals receiving hESC transplantation exhibited superior performance on a hippocampal-dependent cognitive task 4 months postirradiation, compared to their irradiated surgical counterparts that did not receive hESCs. Significant stem cell survival was found at 1 and 4 months postirradiation, and transplanted cells showed robust migration to the subgranular zone throughout the dentate gyrus, exhibiting signs of neuron morphology within this neurogenic niche. These results demonstrate the capability to ameliorate radiation-induced normal tissue injury using hESCs, and suggest that such strategies may provide useful interventions for reducing the adverse effects of irradiation on cognition.
Collapse
|
7
|
Doncel-Pérez E, Caballero-Chacón S, Nieto-Sampedro M. Neurosphere cell differentiation to aldynoglia promoted by olfactory ensheathing cell conditioned medium. Glia 2009; 57:1393-409. [DOI: 10.1002/glia.20858] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Maegele M, Schaefer U. Stem cell‐based cellular replacement strategies following traumatic brain injury (TBI). MINIM INVASIV THER 2009; 17:119-31. [DOI: 10.1080/13645700801970087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Dong Y, Liu W, Gao Y, Wu R, Zhang Y, Wang H, Wei B. Neural Stem Cell Transplantation Rescues Rectum Function in the Aganglionic Rat. Transplant Proc 2008; 40:3646-52. [DOI: 10.1016/j.transproceed.2008.06.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/08/2008] [Accepted: 06/18/2008] [Indexed: 11/30/2022]
|
10
|
Kimura A, Ohmori T, Kashiwakura Y, Ohkawa R, Madoiwa S, Mimuro J, Shimazaki K, Hoshino Y, Yatomi Y, Sakata Y. Antagonism of sphingosine 1-phosphate receptor-2 enhances migration of neural progenitor cells toward an area of brain. Stroke 2008; 39:3411-7. [PMID: 18757288 DOI: 10.1161/strokeaha.108.514612] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE We have previously shown that the sphingosine 1-phosphate (S1P)/S1P receptor-1 (S1P(1)R) axis contributes to the migration of transplanted neural progenitor cells (NPCs) toward areas of spinal cord injury. In the current study, we examined a strategy to increase endogenous NPC migration toward the injured central nervous system to modify S1PR. METHODS S1P concentration in the ischemic brain was measured in a mouse thrombosis model of the middle cerebral artery. NPC migration in vitro was assessed by a Boyden chamber assay. Endogenous NPC migration toward the insult was evaluated after ventricular administration of the S1P(2)R antagonist JTE-013. RESULTS The concentration of S1P in the brain was increased after ischemia and was maximal 14 days after the insult. The increase in S1P in the infarcted brain was primarily caused by accumulation of microglia at the insult. Mouse NPCs mainly expressed S1P(1)R and S1P(2)R as S1PRs, and S1P significantly induced the migration of NPCs in vitro through activation of S1P(1)R. However, an S1P(1)R agonist failed to have any synergistic effect on S1P-mediated NPC migration, whereas pharmacologic or genetic inhibition of S1P(2)R by JTE-013 or short hairpin RNA expression enhanced S1P-mediated NPC migration but did not affect proliferation and differentiation. Interestingly, administration of JTE-013 into a brain ventricle significantly enhanced endogenous NPC migration toward the area of ischemia. CONCLUSIONS Our findings suggest that S1P is a chemoattractant for NPCs released from an infarcted area and regulation of S1P(2)R function further enhances the migration of NPCs toward a brain infarction.
Collapse
Affiliation(s)
- Atsushi Kimura
- Department of Orthopedic Surgery, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock 2008; 29:603-11. [PMID: 18414234 DOI: 10.1097/shk.0b013e318157e845] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human amniotic epithelial cells (hAECs), having the characteristics of both embryonic and pluripotent stem cells, have the potential to differentiate into various cells. A good deal of research has explored the clinical therapeutic potential of hAECs; rat amniotic epithelial cells have been reported to ameliorate functional deficits after stroke in rats, likely due to neuronal differentiation and cytokine secretion by these cells. We isolated hAECs and transfected them with glial cell line-derived neurotrophic factor (GDNF) or enhanced green fluorescent protein (EGFP) gene using lentiviral vectors. These cells were then transplanted into the brains of rats subjected to a transient middle cerebral artery occlusion. The hAECs survived and migrated to the ischemic area of rats, and some of the transplanted hAECs expressed the neuronal marker MAP2 and the neuronal progenitor marker Nestin, together with the astrocyte marker glial fibrillary acidic protein, and hAEC-EGFP can significantly ameliorate behavioral dysfunction and reduce infarct volume of ischemic rats. By transfecting the cells with lentiviral vectors, GDNF can be stably overexpressed in hAECs, and hAEC-GDNF can more rapidly rescue the deficits of rats after middle cerebral artery occlusion compared with hAEC-EGFP-treated rats. Moreover, the nontransduced cells also had effects comparable to the GDNF-transduced cells on caspase-3 and lesion volume. Because hAECs are in unlimited supply, and their use is not encumbered by ethical arguments, hAECs have a great advantage for stem cell therapy. This model holds tremendous potential for development into wide use in cell-mediated gene therapy in the future.
Collapse
|
12
|
Ormerod BK, Palmer TD, Caldwell MA. Neurodegeneration and cell replacement. Philos Trans R Soc Lond B Biol Sci 2008; 363:153-70. [PMID: 17331894 PMCID: PMC2605492 DOI: 10.1098/rstb.2006.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The past decade has witnessed ground-breaking advances in human stem cell biology with scientists validating adult neurogenesis and establishing methods to isolate and propagate stem cell populations suitable for transplantation. These advances have forged promising strategies against human neurodegenerative diseases. For example, growth factor administration could stimulate intrinsic repair from endogenous neural stem cells, and cultured stem cells engineered into biopumps could be transplanted to deliver neuroprotective or restorative agents. Stem cells could also be transplanted to generate new neural elements that augment and potentially replace degenerating central nervous system (CNS) circuitry. Early efforts in neural tissue transplantation have shown that these strategies can improve functional outcome, but the ultimate success of clinical stem cell-based strategies will depend on detailed understanding of stem cell biology in the degenerating brain and detailed evaluation of their functional efficacy and safety in preclinical animal models.
Collapse
Affiliation(s)
- Brandi K Ormerod
- Department of Neurosurgery, Stanford University300 Pasteur Drive, Boswell Building, A301, Stanford, CA 94305-5327, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University300 Pasteur Drive, Boswell Building, A301, Stanford, CA 94305-5327, USA
| | - Maeve A Caldwell
- Centre for Brain Repair, University of Cambridge School of Clinical MedicineAddenbrooke's Hospital, Box 111, Hills Road, Cambridge CB2 2SP, UK
- Author and address for correspondence: Laboratory for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol BS1 3NY, UK ()
| |
Collapse
|
13
|
McAdoo DJ, Wu P. Microdialysis in central nervous system disorders and their treatment. Pharmacol Biochem Behav 2008; 90:282-96. [PMID: 18436292 DOI: 10.1016/j.pbb.2008.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 02/27/2008] [Accepted: 03/05/2008] [Indexed: 01/17/2023]
Abstract
Central nervous system (CNS) insults elevate endogenous toxins and alter levels of indicators of metabolic disorder. These contribute to neurotrauma, neurodegenerative diseases and chronic pain and are possible targets for pharmaceutical treatment. Microdialysis samples substances in the extracellular space for chemical analysis. It has demonstrated that toxic levels of glutamate are released and that toxic levels of the reactive species O(2)(-), H(2)O(2), HO. NO and HOONO are generated upon CNS injury. Agent administration by microdialysis can also help elucidate mechanisms of damage and protection, and to identify targets for clinical application. Microdialysis sampling indicates that circuits descending from the brain to the spinal cord transmit and modulate pain signals by releasing neurotransmitter amines and amino acids. Efforts are under way to develop microdialysis into a technique for intensive care monitoring and predicting outcomes of brain insults. Finally, microdialysis sampling has demonstrated in vivo elevation of glial cell line-derived neurotrophic factor following grafting of primed fetal human neural stem cells into brain-injured rats, the first in vivo demonstration of the release of a neurotrophic factor by grafted stem cells. This increased release correlated with significantly improved spatial learning and memory.
Collapse
Affiliation(s)
- David J McAdoo
- Department of Neurosciences and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, United States.
| | | |
Collapse
|
14
|
Yeo JE, Kim JH, Kang SK. Selenium attenuates ROS-mediated apoptotic cell death of injured spinal cord through prevention of mitochondria dysfunction; in vitro and in vivo study. Cell Physiol Biochem 2008; 21:225-38. [PMID: 18209489 DOI: 10.1159/000113764] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2007] [Indexed: 11/19/2022] Open
Abstract
The primary objective of this study was to determine the possible apoptotic cell death preventive effects of the antioxidant selenium using an experimental rat spinal cord injury (SCI) model and cultured spinal cord-derived neural progenitor cells (NPCs). Sodium selenite treatment exerted a profound preventive effect on apoptotic cell death, including p-P38, p-SAPK/JNK, caspases, and PARP activity, and ameliorated astrogliosis and hypomyelination, which occurs in regions of active cell death in the spinal cords of SCI rats. The foremost protective effect of selenite in SCI would therefore be manifested in the suppression of acute secondary apoptotic cell death. However, selenite does not appear to exert an anti-inflammatory function associated with active microglia and macrophage propagation or infiltration into the lesion site. Selenite-mediated neuroprotection has been linked to selenite's attenuation or inhibition of p38 mitogen-activated protein kinase, pSAPK/JNK, and Bax activation in in vitro and in vivo SCI lesion sites. Selenite also attenuated cell death via the prevention of cytochrome c release, caspase activation, and ROS accumulation in the cytosol. Also, our study showed that selenite administered immediately after SCI significantly diminishes functional deficits. The selenite-treated group recovered hind limb reflexes more rapidly, and a higher percentage of these rats regained responses to a greater degree than was seen in the untreated injured rats. Our data indicate that the therapeutic outcome of selenite is most likely the consequence of its comprehensive apoptotic cell death blocking effects, resulting in the protection of white matter, oligodendrocytes, and neurons, and the inhibition of astrogliosis. The finding that the administration of selenite prevents secondary pathological events in traumatic spinal cord injuries, and promotes the recovery of motor function in an animal model. Its efficacy may facilitate the development of novel drug targets for the treatment of SCI.
Collapse
Affiliation(s)
- Jee Eun Yeo
- Department of Physiology, College of Medicine, Pusan National University, Busan, South Korea
| | | | | |
Collapse
|
15
|
Michell AW, Tofaris GK, Gossage H, Tyers P, Spillantini MG, Barker RA. The effect of truncated human alpha-synuclein (1-120) on dopaminergic cells in a transgenic mouse model of Parkinson's disease. Cell Transplant 2007; 16:461-74. [PMID: 17708336 DOI: 10.3727/000000007783464911] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alpha-Synuclein is thought to play an important role in the pathology of Parkinson's disease (PD). Truncated forms of this protein can be found in PD brain extracts, and these species aggregate faster and are more susceptible to oxidative stress than the full-length protein. We investigated the effect of truncated alpha-synuclein on dopaminergic cells using a transgenic mouse expressing alpha-synuclein (1-120) driven by the rat tyrosine hydroxylase promoter on a mouse alpha-synuclein null background. We found a selective reduction in the yield of dopaminergic cells from transgenic embryonic ventral mesencephalic cell cultures. However, in vivo the substantia nigra/ventral tegmentum dopaminergic cell counts were not reduced in transgenics, although these mice are known to have reduced striatal dopamine. When transplanted to the striatum in the unilateral 6-hydroxydopamine-lesioned mouse model of PD, dopaminergic cells derived from transgenic embryonic ventral mesencephala were significantly smaller at 6 weeks, and showed a trend towards being less effective at ameliorating rotational asymmetry than those from control alpha-synuclein null mice. These results suggest that alpha-synuclein (1-120) renders dopaminergic cells more susceptible to stress, which may have important implications as to how this truncated protein might contribute to dopaminergic cell death in sporadic PD.
Collapse
Affiliation(s)
- A W Michell
- Department of Clinical Neuroscience, University of Cambridge and Cambridge Centre for Brain Repair, Cambridge, CB2 2PY, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Flexman JA, Minoshima S, Kim Y, Miyoshi S, Cross DJ, Maravilla K, Anzai Y. Efficiency of transfection and localization of superparamagnetic iron oxide particles in neural progenitor cells using two methods. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:5246-9. [PMID: 17271523 DOI: 10.1109/iembs.2004.1404466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stem cells represent a potentially revolutionary therapy for neurological pathologies but for which a thorough investigation of cell behavior in the living nervous system has yet to be performed. Contrast-enhanced cell tracking with magnetic resonance imaging can enable this investigation by introducing superparagmagnetic iron oxide (SPIO) particles within the cell membrane. Before magnetically labeled cells can be observed in vivo, it is essential to maximize SPIO transfer into the cell and to fully understand the localization of the contrast agent in mature neural cells. For practical applications, a quantitative evaluation of labeled cells before implantation will allow in vivo assertions. In this study, we present a comparison between two methods for magnetic transfection of neural progenitor cells: the hemmaglutinating virus of Japan envelope (HVJ-E) as a viral vector and a liposomal reagent. We show that HVJ-E is a more efficient vehicle of cell transfection using quantitative evaluation and that the iron content per cell can be predicted using a simple, automated image analysis of stained, labeled cells. Image analysis is also used in this study to show that the contrast agent is distributed in the axon after differentiation, an important aspect of understanding cell tracking in vivo.
Collapse
Affiliation(s)
- J A Flexman
- Department of Bioengineering, Washington University, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Bentz K, Molcanyi M, Riess P, Elbers A, Pohl E, Sachinidis A, Hescheler J, Neugebauer E, Schäfer U. Embryonic stem cells produce neurotrophins in response to cerebral tissue extract: Cell line-dependent differences. J Neurosci Res 2007; 85:1057-64. [PMID: 17335079 DOI: 10.1002/jnr.21219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we compare the capacity of two different embryonic stem (ES) cell lines to secrete neurotrophins in response to cerebral tissue extract derived from healthy or injured rat brains. The intrinsic capacity of the embryonic cell lines BAC7 (feeder cell-dependent cultivation) to release brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) exceeded the release of these factors by CGR8 cells (feeder cell-free growth) by factors of 10 and 4, respectively. Nerve growth factor (NGF) was secreted only by BAC7 cells. Conditioning of cell lines with cerebral tissue extract derived from healthy or fluid percussion-injured rat brains resulted in a significant time-dependent increase in BDNF release in both cell lines. The increase in BDNF release by BAC7 cells was more pronounced when cells were incubated with brain extract derived from injured brain. However, differences in neurotrophin release associated with the origin of brain extract were at no time statistically significant. Neutrophin-3 and NGF release was inhibited when cell lines were exposed to cerebral tissue extract. The magnitude of the response to cerebral tissue extract was dependent on the intrinsic capacity of the cell lines to release neurotrophins. Our results clearly demonstrate significant variations in the intrinsic capability of different stem cell lines to produce neurotrophic factors. Furthermore, a significant modulation of neurotrophic factor release was observed following conditioning of cell lines with tissue extract derived from rat brains. A significant modulation of neurotrophin release dependent on the source of cerebral tissue extract used was not observed.
Collapse
Affiliation(s)
- Kristine Bentz
- Institute of Developmental Genetics, GSF-National Research Centre for Environment and Health, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kimura A, Ohmori T, Ohkawa R, Madoiwa S, Mimuro J, Murakami T, Kobayashi E, Hoshino Y, Yatomi Y, Sakata Y. Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells 2006; 25:115-24. [PMID: 16990586 DOI: 10.1634/stemcells.2006-0223] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neural stem/progenitor cells (NSPCs) migrate toward a damaged area of the central nervous system (CNS) for the purpose of limiting and/or repairing the damage. Although this migratory property of NSPCs could theoretically be exploited for cell-based therapeutics of CNS diseases, little is known of the mechanisms responsible for migratory responses of NSPCs. Here, we found that sphingosine 1-phosphate (Sph-1-P), a physiological lysophospholipid mediator, had a potent chemoattractant activity for NSPCs, in which, of Sph-1-P receptors, S1P(1) was abundantly expressed. Sph-1-P-induced NSPC migration was inhibited by the pretreatment with pertussis toxin, Y-27632 (a Rho kinase inhibitor), and VPC23019 (a competitive inhibitor of S1P(1) and S1P(3)). Sph-1-P does not act as intracellular mediator or in an autocrine manner, because [(3)H]sphingosine, incorporated into NSPCs, was mainly converted to ceramide and sphingomyeline intracellularly, and the stimulation-dependent formation and extracellular release of Sph-1-P were not observed. Further, Sph-1-P concentration in the spinal cord was significantly increased at 7 days after a contusion injury, due to accumulation of microglia and reactive astrocytes in the injured area. This locally increased Sph-1-P concentration contributed to the migration of in vivo transplanted NSPCs through its receptor S1P(1), given that lentiviral transduction of NSPCs with a short hairpin RNA interference for S1P(1) abolished in vivo NSPC migration toward the injured area. This is the first report to identify a physiological role for a lipid mediator in NSPC migration toward a pathological area of the CNS and further indicates that the Sph-1-P/S1P(1) pathway may have therapeutic potential for CNS injuries.
Collapse
Affiliation(s)
- Atsushi Kimura
- Department of Orthopedic Surgery, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 2006; 494:415-34. [PMID: 16320258 DOI: 10.1002/cne.20798] [Citation(s) in RCA: 401] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The lateral wall of the lateral ventricle in the human brain contains neural stem cells throughout adult life. We conducted a cytoarchitectural and ultrastructural study in complete postmortem brains (n = 7) and in postmortem (n = 42) and intraoperative tissue (n = 43) samples of the lateral walls of the human lateral ventricles. With varying thickness and cell densities, four layers were observed throughout the lateral ventricular wall: a monolayer of ependymal cells (Layer I), a hypocellular gap (Layer II), a ribbon of cells (Layer III) composed of astrocytes, and a transitional zone (Layer IV) into the brain parenchyma. Unlike rodents and nonhuman primates, adult human glial fibrillary acidic protein (GFAP)+ subventricular zone (SVZ) astrocytes are separated from the ependyma by the hypocellular gap. Some astrocytes as well as a few GFAP-cells in Layer II in the SVZ of the anterior horn and the body of the lateral ventricle appear to proliferate based on proliferating cell nuclear antigen (PCNA) and Ki67 staining. However, compared to rodents, the adult human SVZ appears to be devoid of chain migration or large numbers of newly formed young neurons. It was only in the anterior SVZ that we found examples of elongated Tuj1+ cells with migratory morphology. We provide ultrastructural criteria to identify the different cells types in the human SVZ including three distinct types of astrocytes and a group of displaced ependymal cells between Layers II and III. Ultrastructural analysis of this layer revealed a remarkable network of astrocytic and ependymal processes. This work provides a basic description of the organization of the adult human SVZ.
Collapse
Affiliation(s)
- Alfredo Quiñones-Hinojosa
- Department of Neurological Surgery, Brain Tumor Research Center, Developmental Stem Cell Biology Program, University of California, San Francisco, San Francisco, California 94143-0112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Longhi L, Zanier ER, Royo N, Stocchetti N, McIntosh TK. Stem cell transplantation as a therapeutic strategy for traumatic brain injury. Transpl Immunol 2005; 15:143-8. [PMID: 16412958 DOI: 10.1016/j.trim.2005.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
Stem cell transplantation has enormous potential to be a viable therapeutic approach to replace the lost tissue/cells following traumatic brain injury (TBI). Several types of cell lines such as immortalized progenitors cells, embryonic rodent and human stem cells and bone marrow-derived cells have been successfully transplanted in experimental models of TBI, resulting in reduced neurobehavioral deficits and attenuation of histological damage. To date, it remains unclear whether stem cell are effective following transplantation into the injured brain via either cell replacement, trophic support, or manipulation of the local environment to stimulate endogenous neuroprotection/regeneration. This paper will review the most current and exciting pre-clinical data regarding the utility of cellular transplantation in experimental models of TBI. We believe that further work must continue to better understand the interaction between the host and the transplanted cells as well as the mechanisms regulating their differentiation into mature and functionally active neurons/glia.
Collapse
Affiliation(s)
- Luca Longhi
- Milan University, Neurosurgical Intensive Care Unit, Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy.
| | | | | | | | | |
Collapse
|
21
|
Sonntag KC, Simantov R, Björklund L, Cooper O, Pruszak J, Kowalke F, Gilmartin J, Ding J, Hu YP, Shen MM, Isacson O. Context-dependent neuronal differentiation and germ layer induction of Smad4-/- and Cripto-/- embryonic stem cells. Mol Cell Neurosci 2005; 28:417-29. [PMID: 15737733 DOI: 10.1016/j.mcn.2004.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Revised: 03/10/2004] [Accepted: 06/02/2004] [Indexed: 01/29/2023] Open
Abstract
Activation of transforming growth factor-beta (TGF-beta) receptors typically elicits mesodermal development, whereas inhibition of this pathway induces neural fates. In vitro differentiated mouse embryonic stem (ES) cells with deletion of the TGF-beta pathway-related factors Smad4 or Cripto exhibited increased numbers of neurons. Cripto-/- ES cells developed into neuroecto-/epidermal cell types, while Smad4-/- cells also displayed mesodermal differentiation. ES cell differentiation into catecholaminergic neurons showed that these ES cells retained their ability to develop into dopaminergic and serotonergic neurons with typical expression patterns of midbrain and hindbrain genes. In vivo, transplanted ES cells to the mouse striatum became small neuronal grafts, or large grafts with cell types from all germ layers independent of their ES cell genotype. This demonstrates that Smad4-/- and Cripto-/- ES cells favor a neural fate in vitro, but also express the mesodermal phenotype, implying that deletion of either Smad4 or Cripto is not sufficient to block nonneuronal tissue formation.
Collapse
Affiliation(s)
- Kai-Christian Sonntag
- Udall Parkinson's Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Miyoshi S, Flexman JA, Cross DJ, Maravilla KR, Kim Y, Anzai Y, Oshima J, Minoshima S. Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking: cell viability, differentiation, and intracellular localization. Mol Imaging Biol 2005; 7:286-95. [PMID: 16080022 DOI: 10.1007/s11307-005-0008-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Magnetic resonance imaging (MRI) can track labeled cells in the brain. The use of hemagglutinating virus of Japan envelopes (HVJ-Es) to effectively introduce the contrast agent to neural progenitor cells (NPCs) is limited to date despite their high NPC affinity. PROCEDURES HVJ-Es and Lipofectamine 2000 were compared as transfection vehicles of superparamagnetic iron oxide (SPIO). Labeled NPCs were examined for iron content, MRI signal change, and fundamental cell characteristics. Prussian Blue staining was used after differentiation to determine SPIO localization. RESULTS HVJ-Es transfected up to 12.5 +/- 8.8 times more SPIO into NPCs. HVJ-Es do not affect cell viability or differentiation capability. Superparamagnetic iron oxide was disseminated in both the soma and neurites. CONCLUSIONS These findings indicate that HVJ-Es are an effective vehicle for SPIO transfection of NPCs. The intracellular localization after differentiation raises the question as to the capability of MRI to distinguish cell migration from axonal or dendritic growth in vivo.
Collapse
Affiliation(s)
- Sosuke Miyoshi
- Department of Bioengineering, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lorico A, Bratbak D, Meyer J, Kunke D, Krauss S, Plott WE, Solodushko V, Baum C, Fodstad O, Rappa G. γ-Glutamylcysteine Synthetase and L-Buthionine-(S,R)-Sulfoximine: A New Selection Strategy for Gene-Transduced Neural and Hematopoietic Stem/Progenitor Cells. Hum Gene Ther 2005; 16:711-24. [PMID: 15960602 DOI: 10.1089/hum.2005.16.711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In most experimental gene therapy protocols involving stem/progenitor cells, only a small fraction of cells, often therapeutically inadequate, can be transduced and made to express the therapeutic gene. A promising strategy for overcoming this problem is the use of a dominant selection marker, such as a drug resistance gene. In this paper, we explore the potential of the heavy subunit of gamma-glutamylcysteine synthetase (gamma-GCSh) to act as a selection marker. We found that 3T3 fibroblasts transduced with the bicistronic retroviral vector SF91/GCSh-eGFP, encoding gamma-GCSh and the enhanced green fluorescent protein (eGFP), were highly resistant to L-buthionine-(S,R)-sulfoximine (BSO), a gamma-GCS inhibitor with a low clinical toxicity profile. The level of resistance was not proportional to the increase in intracellular glutathione. In fact, cells overexpressing both heavy and light gamma-GCS subunits had higher intracellular GSH levels, and a lower level of resistance to the cytotoxic activity of BSO, compared with cells overexpressing gamma-GCSh alone. 3T3 fibroblasts overexpressing gamma-GCSh could be selected from cultures containing both naive and gene-modified cells by application of exogenous BSO selection pressure for 4 days. Also, primary neural stem/progenitor cells derived from the lateral ventricles of mouse neonatal brains and primary hematopoietic stem/progenitor cells (HSCs/HPCs) from mouse bone marrow, transduced with the gamma-GCSh-eGFP vector, could be selected by BSO treatment in vitro. On ex vivo BSO selection and reimplantation into a syngeneic myeloablated host, donor HSCs/HPCs repopulated the marrow and continued to express the transgene(s). These results provide proof of principle that somatic stem/progenitor cells, transduced simultaneously with a potentially curative gene and gamma-GCSh, can be selected by treatment with BSO before in vivo transplantation.
Collapse
Affiliation(s)
- Aurelio Lorico
- Department of Tumor Biology, Norwegian Radium Hospital, Montebello, Oslo 0310, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Navarro-Galve B, Villa A, Bueno C, Thompson L, Johansen J, Martínez-Serrano A. Gene marking of human neural stem/precursor cells using green fluorescent proteins. J Gene Med 2005; 7:18-29. [PMID: 15508144 DOI: 10.1002/jgm.639] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ex vivo gene therapy and cell replacement in the nervous system may provide therapeutic opportunities for neurodegenerative disorders. The development of optimal gene marking procedures for human neural stem cells (hNSCs) is crucial for the success of these strategies, in order to provide a correct understanding of the biology of transplanted cells. METHODS hNSCs were modified to express various members of the green fluorescent protein family of proteins. Both DNA and retroviral expression vectors were used. Cells were analyzed for transgene expression under transient and stable expression schemes, and in the presence or absence of drug selection, by fluorescence microscopy, histochemistry, immunocytochemistry, immunoblotting, RT-PCR and flow cytometry. Genetically marked cells were analyzed in vivo after intrastriatal transplantation in neonatal rats. RESULTS Using the same experimental procedures, we have compared Aequorea victoria enhanced green fluorescent protein (Av-eGFP) and Renilla raniformis GFP (Rh-GFP, h- from humanized) for the purpose of gene marking of hNSCs. Our findings revealed practical problems for the derivation of stable Av-eGFP-expressing hNSCs, whereas Rh-GFP could be well expressed. In a second phase of the study, stable Rh-GFP-expressing clonal hNSCs were derived. Rh-GFP did not interfere with the differentiation potential of the cells, and expression levels were identical between division and differentiation conditions. Thirdly, in vivo, we have confirmed the usefulness of Rh-GFP for the study of the transplant performance of hNSCs, and demonstrated that Rh-GFP does not interfere with multipotency and differentiation. CONCLUSIONS Searching for suitable and useful reporter genes, we have found that Rh-GFP works efficiently for the purpose of stable gene marking of hNSCs, and is highly useful in vivo. The nature, properties, and possible side effects of marker genes are discussed, since these are important parameters to consider in gene marking studies involving hNSCs.
Collapse
Affiliation(s)
- Beatriz Navarro-Galve
- Center of Molecular Biology Severo Ochoa, Autonomous University of Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Dietz GPH, Bähr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 2005; 27:85-131. [PMID: 15485768 DOI: 10.1016/j.mcn.2004.03.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/17/2004] [Accepted: 03/16/2004] [Indexed: 01/12/2023] Open
Abstract
In recent years, vast amounts of data on the mechanisms of neural de- and regeneration have accumulated. However, only in disproportionally few cases has this led to efficient therapies for human patients. Part of the problem is to deliver cell death-averting genes or gene products across the blood-brain barrier (BBB) and cellular membranes. The discovery of Antennapedia (Antp)-mediated transduction of heterologous proteins into cells in 1992 and other "Trojan horse peptides" raised hopes that often-frustrating attempts to deliver proteins would now be history. The demonstration that proteins fused to the Tat protein transduction domain (PTD) are capable of crossing the BBB may revolutionize molecular research and neurobiological therapy. However, it was only recently that PTD-mediated delivery of proteins with therapeutic potential has been achieved in models of neural degeneration in nerve trauma and ischemia. Several groups have published the first positive results using protein transduction domains for the delivery of therapeutic proteins in relevant animal models of human neurological disorders. Here, we give an extensive review of peptide-mediated protein transduction from its early beginnings to new advances, discuss their application, with particular focus on a critical evaluation of the limitations of the method, as well as alternative approaches. Besides applications in neurobiology, a large number of reports using PTD in other systems are included as well. Because each protein requires an individual purification scheme that yields sufficient quantities of soluble, transducible material, the neurobiologist will benefit from the experiences of other researchers in the growing field of protein transduction.
Collapse
|
26
|
Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 2004; 9:189-97. [PMID: 14759803 DOI: 10.1016/j.ymthe.2003.10.012] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 10/29/2003] [Indexed: 10/26/2022] Open
Abstract
Examination of the clinical therapeutic efficacy of using bone marrow stromal cells, including mesenchymal stem cells (MSC), has recently been the focus of much investigation. MSC were reported to ameliorate functional deficits after stroke in rats, with some of this improvement possibly resulting from the action of cytokines secreted by these cells. To enhance such cytokine effects, we transfected telomerized human MSC with the BDNF gene using a fiber-mutant F/RGD adenovirus vector and investigated whether these cells contributed to improved functional recovery in a rat transient middle cerebral artery occlusion (MCAO) model. BDNF production by MSC-BDNF cells was 23-fold greater than that seen in uninfected MSC. Rats that received MSC-BDNF showed significantly more functional recovery than did control rats following MCAO. Specifically, MRI analysis revealed that the rats in the MSC-BDNF group exhibited more significant recovery from ischemia after 7 and 14 days. The number of TUNEL-positive cells in the ischemic boundary zone was significantly smaller in animals treated with MSC-BDNF compared to animals in the control group. These data suggest that MSC transfected with the BDNF gene may be useful in the treatment of cerebral ischemia and may represent a new strategy for the treatment of stroke.
Collapse
Affiliation(s)
- Kazuhiko Kurozumi
- Department of Molecular Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang X, Lu Y, Zhang H, Wang K, He Q, Wang Y, Liu X, Li L, Wang X. Distinct efficacy of pre-differentiated versus intact fetal mesencephalon-derived human neural progenitor cells in alleviating rat model of Parkinson's disease. Int J Dev Neurosci 2004; 22:175-83. [PMID: 15245752 DOI: 10.1016/j.ijdevneu.2004.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 05/17/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022] Open
Abstract
Neural progenitor cells have shown the effectiveness in the treatment of Parkinson's disease, but the therapeutic efficacy remains variable. One of important factors that determine the efficacy is the necessity of pre-differentiation of progenitor cells into dopaminergic neurons before transplantation. This study therefore investigated the therapeutic efficacy of mesencephalon-derived human neural progenitor cells with or without the pre-differentiation in alleviating a rat model of Parkinson's disease. We found that a combination of 50 ng/ml fibroblast growth factor 8, 10 ng/ml glial cell line-derived neurotrophic factor and 10 microM forskolin facilitated the differentiation of human fetal mesencephalic progenitor cells into dopaminergic neurons in vitro. More importantly, after transplanted into the striatum of parkinsonian rats, only pre-differentiated grafts resulted in an elevated production of dopamine in the transplanted site and the amelioration of behavioral impairments of the parkinsonian rats. Unlike pre-differentiated progenitors, grafted intact progenitors rarely differentiated into dopaminergic neurons in vivo and emigrated actively away from the transplanted site. These data demonstrates the importance of pre-differentiation of human progenitor cells before transplantation in enhancing therapeutic potency for Parkinson's disease.
Collapse
Affiliation(s)
- Xuan Wang
- Neuroscience Research Institute, Peking University, 38# Xueyuan Road, Beijing 100083, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lin HJ, Wang X, Shaffer KM, Sasaki CY, Ma W. Characterization of H2O2-induced acute apoptosis in cultured neural stem/progenitor cells. FEBS Lett 2004; 570:102-6. [PMID: 15251448 DOI: 10.1016/j.febslet.2004.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
In the present study, we characterized hydrogen peroxide (H2O2)-induced cell apoptosis and related cell signaling pathways in cultured embryonic neural stem/progenitor cells (NS/PCs). Our data indicated that H2O2 induced acute cell apoptosis in NS/PC in concentration- and time-dependent manners and selectively, it transiently increased PI3K-Akt and Mek-Erk1/2 in a dose-dependent manner. Inhibition of PI3K-Akt with wortmannin, a PI3-K inhibitor, was found to significantly increase H2O2-induced acute apoptosis and dramatically decrease basal pGSK3beta levels. The level of pGSK3beta remained unchanged with H2O2 exposure. We conclude that the transient activation of PI3K-Akt signaling delays the H2O2-induced acute apoptosis in cultured NS/PCs in part through maintaining the basal pGSK3beta level and activating other downstream effectors.
Collapse
Affiliation(s)
- Hsingchi J Lin
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA.
| | | | | | | | | |
Collapse
|
29
|
Torregrossa P, Buhl L, Bancila M, Durbec P, Schafer C, Schachner M, Rougon G. Selection of Poly-α 2,8-Sialic Acid Mimotopes from a Random Phage Peptide Library and Analysis of Their Bioactivity. J Biol Chem 2004; 279:30707-14. [PMID: 15131117 DOI: 10.1074/jbc.m403935200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly-alpha 2-8 sialic acid (PSA), attached to the neural cell adhesion molecule, is a permissive determinant for numerous morphogenetic and neural plasticity processes, making it a potential therapeutic target. Here, using a monoclonal antibody specific for PSA, we screened a phage-display library and identified two cyclic nine-amino acid peptides (p1, p2) that are PSA epitope analogues. We evaluated their bioactivity in vitro and in vivo. In culture, micromolar concentrations of the peptides promoted axon growth, defasciculation, and migration of neural progenitors. When injected into developing chicken retina, the peptides modified the trajectory of retinal ganglion cell axons. Moreover, they enhanced migration of grafted neuroblasts in mouse brain. These effects were selective and dependent upon the presence of PSA on transplanted cells. Our results demonstrate the feasibility and therapeutic potential of enhancing PSA biological activity.
Collapse
Affiliation(s)
- Pascal Torregrossa
- Laboratoire de Neurogenèse et Morphogenèse dans le Développement et chez l'Adulte, Unité Mixte de Recherche CNRS 6156, Université de la Méditerranée, Institut de Biologie du Développement, Parc Scientifique de Luminy, 13288 Marseille 9, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Rappa G, Kunke D, Holter J, Diep DB, Meyer J, Baum C, Fodstad O, Krauss S, Lorico A. Efficient expansion and gene transduction of mouse neural stem/progenitor cells on recombinant fibronectin. Neuroscience 2004; 124:823-30. [PMID: 15026123 DOI: 10.1016/j.neuroscience.2003.11.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2003] [Indexed: 10/26/2022]
Abstract
Neural stem/progenitor cells (NSCs) are commonly grown as floating neurospheres in medium containing basic fibroblast growth factor and epidermal growth factor. Under these conditions, about 1% of the cells retain multipotentiality. We developed a protocol based on culture of NSCs in adherence on recombinant fibronectin (rFN) to transduce up to 90% NSCs at a multiplicity of infection of 2 with no need for viral concentration or production of serum-free retroviral supernatants. NSCs grew faster on rFN than as neurospheres on tissue culture plastic and did not lose their stem cell nature or multipotentiality. Furthermore, retroviral-mediated transgene expression was sustained with time in culture and upon differentiation into neurons and astrocytes. These experimental conditions may be utilized to study the function of various genes in NSCs, and to manipulate NSCs for gene and cell therapy of several neurological diseases.
Collapse
Affiliation(s)
- G Rappa
- Department of Tumor Biology, Norwegian Radium Hospital, Montebello, Oslo 0310, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sonntag KC, Simantov R, Kim KS, Isacson O. Temporally induced Nurr1 can induce a non-neuronal dopaminergic cell type in embryonic stem cell differentiation. Eur J Neurosci 2004; 19:1141-52. [PMID: 15016073 PMCID: PMC2614072 DOI: 10.1111/j.1460-9568.2004.03204.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear transcription factor Nurr1 is involved in the development and maintenance of the midbrain dopaminergic (DA) neuronal phenotype. We analysed the cellular and biological effects of Nurr1 during embryonic stem (ES) cell differentiation using the ROSA26-engineered Tet-inducible ES cell line J1-rtTA that does not express transgenes in mature neurons. Induction of Nurr1 at nestin-positive precursor and later stages of ES cell differentiation produced a non-neuronal DA cell type including functional DA transporters. In these cells, we found a clear correlation between Nurr1 and TH gene expression and specific midbrain DA cellular markers such as AADC, AHD2 and calbindin. Nurr1 did not alter gene expression of non-DA neuronal phenotypes and did not influence other midbrain developmental transcription factors, such as Otx1, Otx2, En-1, GBX2, Pitx3 and lmx1b. In addition, Nurr1 expression was required for maintenance of the DA phenotype and mediated up-regulation of the tyrosine kinase Ret and associated trophic factor GDNF-family receptors alpha 1, 2, and 4. This demonstrates that Nurr1 is sufficient to induce and maintain a midbrain-like DA biochemical and functional cellular phenotype independent of neurogenesis.
Collapse
Affiliation(s)
- Kai-Christian Sonntag
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
- Neuroregeneration Laboratories, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Rabi Simantov
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
- Neuroregeneration Laboratories, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Kwang-Soo Kim
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Ole Isacson
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
- Neuroregeneration Laboratories, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
32
|
Liste I, Navarro B, Johansen J, Bueno C, Villa A, Johansen TE, Martínez-Serrano A. Low-level tyrosine hydroxylase (TH) expression allows for the generation of stable TH+ cell lines of human neural stem cells. Hum Gene Ther 2004; 15:13-20. [PMID: 14965374 DOI: 10.1089/10430340460732427] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic engineering of neurotransmitter metabolic routes is important for the development of neurotransmitter-producing cells for the ex vivo gene therapy of many CNS diseases. Human neural stem cells (hNSCs) are excellent candidates to serve this role, but, for the case of Parkinson's disease, the cells do not normally express the rate-limiting dopamine (DA) synthesis enzyme tyrosine hydroxylase (TH), and are not equipped with the detoxifying mechanisms needed to prevent the neurotoxicity associated with the DA phenotype. In this study we have examined the capacity of hNSCs for ectopic expression of human TH. High-level TH expression (from viral promoters) leads to growth arrest and hNSC death (associated with an increase in p53 expression and nuclear fragmentation), which can be counteracted by treatment with a pan-caspase inhibitor. As a consequence, stable TH-expressing hNSC sublines could not be derived using viral promoters. In contrast, moderate TH expression (from a human housekeeping promoter, polyubiquitin gene), allows for stable TH+ subclone derivation, seemingly originating from low-expressing cells. Our results are thus compatible with the view that stable TH-expressing hNSC lines can be generated if TH expression levels are kept at a moderate level, and that the goal normally set of aiming at high-level TH expression may need to be reconsidered. These results may be relevant for the generation of TH/DA-producing human neural cells for in vitro and neurotransplantation research in Parkinson's disease.
Collapse
Affiliation(s)
- Isabel Liste
- Center of Molecular Biology Severo Ochoa, Department of Molecular Biology, Autonomous University of Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Yang M, Donaldson AE, Marshall CE, Shen J, Iacovitti L. Studies on the differentiation of dopaminergic traits in human neural progenitor cells in vitro and in vivo. Cell Transplant 2004; 13:535-47. [PMID: 15565866 PMCID: PMC1949040 DOI: 10.3727/000000004783983729] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The development of cell replacement therapies for the treatment of neurodegenerative disorders such as Parkinson's disease (PD) may depend upon the successful differentiation of human neural stem/progenitor cells into dopamine (DA) neurons. We show here that primary human neural progenitors (HNPs) can be expanded and maintained in culture both as neurospheres (NSPs) and attached monolayers where they develop into neurons and glia. When transplanted into the 6-hydroxydopamine-lesioned rat striatum, undifferentiated NSPs survive longer (60% graft survival at 8-16 weeks vs. 30% graft survival at 8-13 weeks) and migrate farther than their attached counterparts. While both NSP and attached cells continue to express neuronal traits after transplantation, the spontaneous expression of differentiated transmitter-related traits is not observed in either cell type. However, following predifferentiation in culture using a previously described cocktail of reagents, approximately 25% of HNPs can permanently express the DA enzyme tyrosine hydroxylase (TH), even following replating and removal of the DA differentiation cocktail. When these predifferentiated HNPs are transplanted into the brain, however, TH staining is not observed, either because expression is lost or TH-expressing cells preferentially die. Consistent with the latter view is a decrease in total cell survival and migration, and an enhanced glial response in these grafts. In contrast, we found that the overall survival of HNPs is improved when cells engraft near blood vessels or CSF compartments or when they are placed into an intact unlesioned brain, suggesting that there are factors, as yet unidentified, that can better support the development of engrafted HNPs.
Collapse
Affiliation(s)
- Ming Yang
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, 900 Walnut Street, Philadelphia, PA 19107
| | - Angela E. Donaldson
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, 900 Walnut Street, Philadelphia, PA 19107
| | - Cheryl E. Marshall
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, 900 Walnut Street, Philadelphia, PA 19107
| | - James Shen
- ScienCell Research Laboratories, 4050 Sorrento Valley Boulevard, San Diego, CA 92121
| | - Lorraine Iacovitti
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, 900 Walnut Street, Philadelphia, PA 19107
| |
Collapse
|
34
|
Eriksson C, Björklund A, Wictorin K. Neuronal differentiation following transplantation of expanded mouse neurosphere cultures derived from different embryonic forebrain regions. Exp Neurol 2003; 184:615-35. [PMID: 14769354 DOI: 10.1016/s0014-4886(03)00271-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Revised: 05/01/2003] [Accepted: 05/13/2003] [Indexed: 11/25/2022]
Abstract
In vitro, expanded neurospheres exhibit multipotent properties and can differentiate into neurons, astrocytes and oligodendrocytes. In vivo, cells from neurospheres derived from mouse fetal forebrain have previously been reported to predominantly differentiate into glial cells, and not into neurons. Here we isolated stem/progenitor cells from E13.5 lateral ganglionic eminence (LGE), medial ganglionic eminence (MGE) and cortical primordium, of a green fluorescent protein (GFP)-actin transgenic mouse. Free-floating neurospheres were expanded in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) and implanted after five to six passages into the striatum, hippocampus and cortex of neonatal rats. Cell suspensions of primary LGE tissue were prepared and grafted in parallel. Grafted cells derived from the primary tissue displayed widespread incorporation into all regions, as visualized with the mouse-specific antibody M2, or mouse satellite DNA in situ hybridization, and differentiated into both neurons, astrocytes and oligodendrocytes. Grafts of neurosphere cells derived from the LGE, MGE and cortical primordium differentiated primarily into astrocytes, but contained low but significant numbers of GFP-immunoreactive neurons. Neurons derived from LGE neurospheres were of three types: cells with the morphology of medium-sized densely spiny projection neurons in the striatum; cells with interneuron-like morphologies in striatum, cortex and hippocampus; and cells integrating into SVZ and migrating along the RMS to the olfactory bulb. MGE- or cortical primordium-derived neurospheres differentiated into interneuron-like cells in both striatum and hippocampus. The results demonstrate the ability of in vitro expanded neural stem/progenitor cells to generate both neurons and glia after transplantation into neonatal recipients, and differentiate in a region-specific manner into mature neurons with morphological features characteristic for each target site.
Collapse
Affiliation(s)
- Cecilia Eriksson
- Wallenberg Neuroscience Center, Division of Neurobiology, Lund University, Lund, Sweden.
| | | | | |
Collapse
|