1
|
Ferber SG, Weller A, Soreq H. Boltzmann's Theorem Revisited: Inaccurate Time-to-Action Clocks in Affective Disorders. Curr Neuropharmacol 2024; 22:1762-1777. [PMID: 38500272 PMCID: PMC11284727 DOI: 10.2174/1570159x22666240315100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 03/20/2024] Open
Abstract
Timely goal-oriented behavior is essential for survival and is shaped by experience. In this paper, a multileveled approach was employed, ranging from the polymorphic level through thermodynamic molecular, cellular, intracellular, extracellular, non-neuronal organelles and electrophysiological waves, attesting for signal variability. By adopting Boltzmann's theorem as a thermodynamic conceptualization of brain work, we found deviations from excitation-inhibition balance and wave decoupling, leading to wider signal variability in affective disorders compared to healthy individuals. Recent evidence shows that the overriding on-off design of clock genes paces the accuracy of the multilevel parallel sequencing clocks and that the accuracy of the time-to-action is more crucial for healthy behavioral reactions than their rapidity or delays. In affective disorders, the multilevel clocks run free and lack accuracy of responsivity to environmentally triggered time-to-action as the clock genes are not able to rescue mitochondria organelles from oxidative stress to produce environmentally-triggered energy that is required for the accurate time-to-action and maintenance of the thermodynamic equilibrium. This maintenance, in turn, is dependent on clock gene transcription of electron transporters, leading to higher signal variability and less signal accuracy in affective disorders. From a Boltzmannian thermodynamic and energy-production perspective, the option of reversibility to a healthier time-toaction, reducing entropy is implied. We employed logic gates to show deviations from healthy levelwise communication and the reversed conditions through compensations implying the role of nonneural cells and the extracellular matrix in return to excitation-inhibition balance and accuracy in the time-to-action signaling.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and The Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Aron Weller
- Psychology Department and The Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Tasci G, Gun MV, Keles T, Tasci B, Barua PD, Tasci I, Dogan S, Baygin M, Palmer EE, Tuncer T, Ooi CP, Acharya UR. QLBP: Dynamic patterns-based feature extraction functions for automatic detection of mental health and cognitive conditions using EEG signals. CHAOS, SOLITONS & FRACTALS 2023; 172:113472. [DOI: 10.1016/j.chaos.2023.113472] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
3
|
Bales KL, Hang S, Paulus JP, Jahanfard E, Manca C, Jost G, Boyer C, Bern R, Yerumyan D, Rogers S, Mederos SL. Individual differences in social homeostasis. Front Behav Neurosci 2023; 17:1068609. [PMID: 36969803 PMCID: PMC10036751 DOI: 10.3389/fnbeh.2023.1068609] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
The concept of “social homeostasis”, introduced by Matthews and Tye in 2019, has provided a framework with which to consider our changing individual needs for social interaction, and the neurobiology underlying this system. This model was conceived as including detector systems, a control center with a setpoint, and effectors which allow us to seek out or avoid additional social contact. In this article, we review and theorize about the many different factors that might contribute to the setpoint of a person or animal, including individual, social, cultural, and other environmental factors. We conclude with a consideration of the empirical challenges of this exciting new model.
Collapse
Affiliation(s)
- Karen L. Bales
- Department of Psychology, University of California, Davis, >Davis, CA, United States
- *Correspondence: Karen L. Bales
| | - Sally Hang
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - John P. Paulus
- Graduate Group in Neuroscience, University of California, Davis, Davis, CA, United States
| | - Elaina Jahanfard
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Claudia Manca
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Geneva Jost
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Chase Boyer
- Graduate Group in Human Development, University of California, Davis, Davis, CA, United States
| | - Rose Bern
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Daniella Yerumyan
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Sophia Rogers
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Sabrina L. Mederos
- Graduate Group in Animal Behavior, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients. Biomedicines 2021; 9:biomedicines9080879. [PMID: 34440083 PMCID: PMC8389582 DOI: 10.3390/biomedicines9080879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Introduction: Extrapyramidal disorders form the so-called extrapyramidal syndrome (EPS), which is characterized by the occurrence of motor disorders as a result of damage to the basal ganglia and the subcortical-thalamic connections. Often, this syndrome develops while taking medications, in particular antipsychotics (APs). (2) Purpose: To review studies of candidate genes encoding dopamine receptors as genetic predictors of development of AP-induced parkinsonism (AIP) and AP-induced tardive dyskinesia (AITD) in patients with schizophrenia. (3) Materials and Methods: A search was carried out for publications of PubMed, Web of Science, Springer, and e-Library databases by keywords and their combinations over the last 10 years. In addition, the review includes earlier publications of historical interest. Despite extensive searches of these commonly used databases and search terms, it cannot be ruled out that some publications were possibly missed. (4) Results: The review considers candidate genes encoding dopamine receptors involved in pharmacodynamics, including genes DRD1, DRD2, DRD3, and DRD4. We analyzed 18 genome-wide studies examining 37 genetic variations, including single nucleotide variants (SNVs)/polymorphisms of four candidate genes involved in the development of AIP and AITD in patients with schizophrenia. Among such a set of obtained results, only 14 positive associations were revealed: rs1799732 (141CIns/Del), rs1800497 (C/T), rs6275 (C/T), rs6275 (C/T) DRD2; rs167771 (G/A) DRD3 with AIP and rs4532 (A/G) DRD1, rs6277 (C/T), rs6275 (C/T), rs1800497 (C/T), rs1079597 (A/G), rs1799732 (141CIns/Del), rs1045280 (C/G) DRD2, rs6280 (C/T), rs905568 (C/G) DRD3 with AITD. However, at present, it should be recognized that there is no final or unique decision on the leading role of any particular SNVs/polymorphisms in the development of AIP and AITD. (5) Conclusion: Disclosure of genetic predictors of the development of AIP and AITD, as the most common neurological adverse drug reactions (ADRs) in the treatment of patients with psychiatric disorders, may provide a key to the development of a strategy for personalized prevention and treatment of the considered complication of AP therapy for schizophrenia in real clinical practice.
Collapse
|
5
|
Longo P, Marzola E, De Bacco C, Demarchi M, Abbate-Daga G. Young Patients with Anorexia Nervosa: The Contribution of Post-Traumatic Stress Disorder and Traumatic Events. ACTA ACUST UNITED AC 2020; 57:medicina57010002. [PMID: 33375161 PMCID: PMC7822187 DOI: 10.3390/medicina57010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Background and Objectives: Anorexia nervosa (AN) is a complex disorder whose etiopathogenesis involves both biological and environmental factors. The aims of the present study were to retrospectively analyze risk factors in young patients with AN and to assess differences in clinical and eating-related symptoms between patients with and without a diagnosis of post-traumatic stress disorder (PTSD) and with or without a history of acknowledged risk factors. Materials and Methods: Sixty-four patients with AN (<25 years old) were recruited and completed an anamnestic evaluation and the following self-report measures: Eating Disorder Examination Questionnaire (EDE-Q), Childhood Trauma Questionnaire (CTQ), State-Trait Anxiety Inventory (STAI-Y), Beck Depression Inventory (BDI), Life Events Checklist (LEC), and Dissociative Experience Scale (DES). The PTSD diagnosis was assigned according to the Structured Clinical Interview for the DSM-5 (SCID-5). Results: The most frequent risk factors were those associated with relational traumatic events and familiarity for psychiatric disorders. Higher severity of body-related symptoms (i.e., those symptoms impacting on body image and perception and leading to body concerns) emerged in patients with PTSD, versus patients without PTSD diagnosis; however, after controlling for dissociative symptoms, only differences in BMI remained significant. Concerning other risk factors, those with a history of childhood trauma were more depressed than patients without such history and those with familiarity with eating disorders reported more AN-related hospitalizations in the past than those individuals without familiarity. Conclusion: These results suggest the importance of investigating the presence of risk factors and PTSD diagnosis in patients with AN, and to treat post-traumatic symptoms in young patients in order to decrease the risk of developing severe forms of AN. Moreover, a particular focus on those patients with a family member affected by an eating disorder could be of clinical utility.
Collapse
|
6
|
van der Burg NC, Al Hadithy AFY, van Harten PN, van Os J, Bakker PR. The genetics of drug-related movement disorders, an umbrella review of meta-analyses. Mol Psychiatry 2020; 25:2237-2250. [PMID: 32020047 DOI: 10.1038/s41380-020-0660-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
This umbrella review investigates which genetic factors are associated with drug-related movement disorders (DRMD), in an attempt to provide a synthesis of published evidence of candidate-gene studies. To identify all relevant meta-analyses, a literature search was performed. Titles and abstracts were screened by two authors and the methodological quality of included meta-analyses was assessed using 'the assessment of multiple systematic reviews' (AMSTAR) critical appraisal checklist. The search yielded 15 meta-analytic studies reporting on genetic variations in 10 genes. DRD3, DRD2, CYP2D6, HTR2A, COMT, HSPG2 and SOD2 genes have variants that may increase the odds of TD. However, these findings do not concur with early genome-wide association studies. Low-power samples are susceptible to 'winner's curse', which was supported by diminishing meta-analytic effects of several genetic variants over time. Furthermore, analyses pertaining to the same genetic variant were difficult to compare due to differences in patient populations, methods used and the choice of studies included in meta-analyses. In conclusion, DRMD is a complex phenotype with multiple genes that impact the probability of onset. More studies with larger samples using other methods than by candidate genes, are essential to developing methods that may predict the probability of DRMD. To achieve this, multiple research groups need to collaborate and a DRMD genetic database needs to be established in order to overcome winner's curse and publication bias, and to allow for stratification by patient characteristics. These endeavours may help the development of a test with clinical value in the prevention and treatment of DRMD.
Collapse
Affiliation(s)
- Nadine C van der Burg
- Zon & Schild, GGZ Centraal, Amersfoort, The Netherlands.
- Department of Psychiatry, Amsterdam UMC, Amsterdam, Netherlands.
| | | | - Peter N van Harten
- Zon & Schild, GGZ Centraal, Amersfoort, The Netherlands
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre, Maastricht, The Netherlands
- Department Psychiatry, Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands
- Department of Psychosis Studies, King's College London, King's Health Partners, Institute of Psychiatry, London, UK
| | - P Roberto Bakker
- Zon & Schild, GGZ Centraal, Amersfoort, The Netherlands
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre, Maastricht, The Netherlands
- Department Psychiatry, Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
7
|
Xia YL, Pang HL, Li SY, Liu Y, Wang P, Ge GB. Accurate and sensitive detection of Catechol-O-methyltransferase activity by liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122333. [PMID: 32866920 DOI: 10.1016/j.jchromb.2020.122333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Catechol-O-methyltransferase (COMT) is a major drug metabolizing enzyme in humans. COMT expression is directedly associated with various mental diseases and cancers due to its essential role in catalyzing metabolic inactivation of endogenous catecholamines and catechol estrogens. However, a practical method to precisely measure COMT activities in biological samples is lacking. In the current study, we established a liquid chromatography-fluorescence detection (LC-FD) method based on fluorometric detection of the methylated product of 3-BTD, a fluorescent probe for COMT, to sensitively quantify COMT activities in human erythrocytes and cell homogenates. Assay validation of the established LC-FD based method was conducted for selectivity and sensitivity, range of linearity, precision and accuracy, recovery, biological matrices effect and stability. The limit of quantification for 3-BTMD (the methylated product of 3-BTD by COMT) of this method was 0.0083 nM, which is nearly 10-fold lower than that for previously published methods. The method was precise with intra- and inter-day relative standard deviation (RSD) lower than 5%. In addition, this method showed an excellent anti-interference ability with no effects of the endogenous substances on the fluorometric detection of 3-BTMD. The practical use of this method was established by its successful application for the measurement of COMT activities in individual human erythrocytes (n = 13), and in cell homogenates generated from four different human cell lines. Our results suggest that this method will be of great value in accurately determining the native activity of COMT in biological samples, which is beneficial for a complete understand of the role of COMT both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Yang-Liu Xia
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hui-Lin Pang
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Shi-Yang Li
- Analytical Central Laboratory, Shengyang Harmony Health Medical Laboratory Co Ltd, Shenyang 210112, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Liu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Ping Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
8
|
Thiagalingam S. Epigenetic memory in development and disease: Unraveling the mechanism. Biochim Biophys Acta Rev Cancer 2020; 1873:188349. [PMID: 31982403 DOI: 10.1016/j.bbcan.2020.188349] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 01/14/2023]
Abstract
Epigenetic memory is an essential process of life that governs the inheritance of predestined functional characteristics of normal cells and the newly acquired properties of cells affected by cancer and other diseases from parental to progeny cells. Unraveling the molecular basis of epigenetic memory dictated by protein and RNA factors in conjunction with epigenetic marks that are erased and re-established during embryogenesis/development during the formation of somatic, stem and disease cells will have far reaching implications to our understanding of embryogenesis/development and various diseases including cancer. While there has been enormous progress made, there are still gaps in knowledge which includes, the identity of unique epigenetic memory factors (EMFs) and epigenome coding enzymes/co-factors/scaffolding proteins involved in the assembly of defined "epigenetic memorysomes" and the epigenome marks that constitute collections of gene specific epigenetic memories corresponding to specific cell types and physiological conditions. A better understanding of the molecular basis for epigenetic memory will play a central role in improving diagnostics and prognostics of disease states and aid the development of targeted therapeutics of complex diseases.
Collapse
Affiliation(s)
- Sam Thiagalingam
- Department of Medicine (Biomedical Genetics Section and Cancer Center), Department of Pathology & Laboratory Medicine, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, United States of America.
| |
Collapse
|
9
|
Mitazaki S, Nakagawasai O, Onogi H, Watanabe K, Takahashi K, Tan-No K, Quirion R, Srivastava LK, Tadano T. Role of prefrontal cortical 5-HT2A receptors and serotonin transporter in the behavioral deficits in post-pubertal rats following neonatal lesion of the ventral hippocampus. Behav Brain Res 2020; 377:112226. [DOI: 10.1016/j.bbr.2019.112226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 01/24/2023]
|
10
|
Aghamaleki-Sarvestani Z, Vousooghi N, Tabrizi M, Alipour ME, Alaghband-Rad J, Mostafavi-Abdolmaleky H, Zarindast MR. Catechol-O-methyltransferase gene expression in stress-induced and non-stress induced schizophrenia. Psychiatr Genet 2019; 30:10-18. [PMID: 31568068 DOI: 10.1097/ypg.0000000000000243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION As schizophrenia is a complex mental disorder and the outcome of gene-gene-environmental interactions, there are different possible pathophysiological mechanisms in different schizophrenia subtypes corresponding to various risk factors. This study was aimed at examining the impact of one of the most likely interactions, that is, 'dopamine and stress', in schizophrenia pathogenesis. METHODS Here, we investigated the interaction between 'war-related psychological trauma' without brain trauma and catechol-O-methyltransferase gene. Using real-time PCR analysis we measured catechol-O-methyltransferase gene expression level in the blood cells of 66 male subjects in four groups, namely veteran schizophrenia patients as 'stress-exposed schizophrenia' (S-schizophrenia), their healthy brothers as 'their genetically closest relatives' (S-siblings), schizophrenia patients without any history of significant stress as 'non-stress-exposed schizophrenia' (NoS-schizophrenia), and the control group. The results were analyzed by Relative Expression Software Tool 2009 software. RESULTS The catechol-O-methyltransferase gene expression was not significantly different between the S-schizophrenia and NoS-schizophrenia groups. However, compared to the control group, the catechol-O-methyltransferase expression was significantly decreased in three groups of S-schizophrenia, their healthy siblings, and NoS-schizophrenia patients. CONCLUSION This data supports that reduced blood catechol-O-methyltransferase expression, which may be associated with higher dopamine level, is involved both in stress-induced and non-stress-induced schizophrenia.
Collapse
Affiliation(s)
| | - Nasim Vousooghi
- Department of Neuroscience and addiction studies, School of Advanced Technologies in Medicine.,Research Center for Cognitive and Behavioral Sciences
| | | | - Mohammad Esmaeil Alipour
- Department of Neuroscience and addiction studies, School of Advanced Technologies in Medicine.,Janbazan Medical and Engineering Research Center
| | | | - Hamid Mostafavi-Abdolmaleky
- Department of Psychiatry, Iran University of Medical Center, Tehran, Iran.,Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
| | - Mohammad Reza Zarindast
- Department of Neuroscience and addiction studies, School of Advanced Technologies in Medicine.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences.,Department of Pharmacology, School of Medicine
| |
Collapse
|
11
|
Tan T, Wang W, Williams J, Ma K, Cao Q, Yan Z. Stress Exposure in Dopamine D4 Receptor Knockout Mice Induces Schizophrenia-Like Behaviors via Disruption of GABAergic Transmission. Schizophr Bull 2019; 45:1012-1023. [PMID: 30476265 PMCID: PMC6737476 DOI: 10.1093/schbul/sby163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A combination of genetic and environmental risk factors has been considered as the pathogenic cause for mental disorders including schizophrenia. Here, we sought to find out whether the abnormality of the dopamine system, coupled with the exposure to modest stress, is sufficient to trigger the manifestation of schizophrenia-like behaviors. We found that exposing dopamine D4 receptor knockout (D4KO) mice with 1-week restraint stress (2 h/d) induced significant deficits in sensorimotor gating, cognitive processes, social engagement, as well as the elevated exploratory behaviors, which are reminiscent to schizophrenia phenotypes. Electrophysiological studies found that GABAergic transmission was significantly reduced in prefrontal cortical neurons from stressed D4KO mice. Additionally, administration of diazepam, a GABA enhancer, restored GABAergic synaptic responses and ameliorated some behavioral abnormalities in stressed D4KO mice. These results have revealed that the combination of 2 key genetic and environmental susceptibility factors, dopamine dysfunction and stress, is a crucial trigger for schizophrenia-like phenotypes, and GABA system in the prefrontal cortex is a downstream convergent target that mediates some behavioral outcomes.
Collapse
Affiliation(s)
- Tao Tan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY,Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Wei Wang
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Jamal Williams
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Kaijie Ma
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Qing Cao
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY,To whom correspondence should be addressed; tel: 716-829-3058, fax: 716-829-2344, e-mail:
| |
Collapse
|
12
|
Senkevich KA, Miliukhina IV, Pchelina SN. [The genetic predictors of cognitive impairment in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:109-117. [PMID: 30251988 DOI: 10.17116/jnevro2018118081109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that can be both sporadic and familial. A number of studies are devoted to the study of non-motor symptoms in PD today. Cognitive deficits, and especially dementia, are one of the most severe and disabling non-motor symptoms of PD. More than a quarter of patients in the early stages of PD have a moderate cognitive impairment, more than half of patients with PD develop dementia within 10 years from the date of diagnosis. Using genome-wide association studies (GWAS), a number of genes associated with cognitive impairment have been identified based on a comparison of genetic and clinical phenotypes. These genes can be divided into three groups: genes that lead to the development of PD and are inherited according to the laws of Mendel (SNCA), genes that are risk factors for PD development (GBA, MAPT) and genes associated with the development of cognitive impairment, but not with PD (COMT, APOE, BDNF). This review examines the effect of genetic variants in the above-mentioned genes on cognitive functions in patients with PD. The elucidation of the genetic basis of cognitive deficits in PD could help in choice of treatment tactics and in development of new therapeutic strategies.
Collapse
Affiliation(s)
- K A Senkevich
- Institute of Experimental Medicine, St. Petersburg, Russia; Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; St. Petersburg Nuclear Physics Institute named by Konstantinov of NRC 'Kurchatov Institute', Gatchina, Russia
| | - I V Miliukhina
- Institute of Experimental Medicine, St. Petersburg, Russia; Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - S N Pchelina
- Institute of Experimental Medicine, St. Petersburg, Russia; Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; St. Petersburg Nuclear Physics Institute named by Konstantinov of NRC 'Kurchatov Institute', Gatchina, Russia
| |
Collapse
|
13
|
Johnstone AL, O'Reilly JJ, Patel AJ, Guo Z, Andrade NS, Magistri M, Nathanson L, Esanov R, Miller BH, Turecki G, Brothers SP, Zeier Z, Wahlestedt C. EZH1 is an antipsychotic-sensitive epigenetic modulator of social and motivational behavior that is dysregulated in schizophrenia. Neurobiol Dis 2018; 119:149-158. [PMID: 30099093 DOI: 10.1016/j.nbd.2018.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/07/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND With the capacity to modulate gene networks in an environmentally-sensitive manner, the role of epigenetic systems in mental disorders has come under intense investigation. Dysregulation of epigenetic effectors, including microRNAs and histone-modifying enzymes, may better explain the role of environmental risk factors and the observed heritability rate that cannot be fully attributed to known genetic risk alleles. Here, we aimed to identify novel epigenetic targets of the schizophrenia-associated microRNA 132 (miR-132). METHODS Histone modifications were quantified by immunodetection in response to viral-mediated overexpression of miR-132 while a luminescent reporter system was used to validate targets of miR-132 in vitro. Genome-wide profiling, quantitative PCR and NanoSting were used to quantify gene expression in post-mortem human brains, neuronal cultures and prefrontal cortex (PFC) of mice chronically exposed to antipsychotics. Following viral-mediated depletion of Enhancer of Zeste 1 (EZH1) in the murine PFC, behaviors including sociability and motivation were assessed using a 3-chambered apparatus and forced-swim test, respectively. RESULTS Overexpression of miR-132 decreased global histone 3 lysine 27 tri-methylation (H3K27me3), a repressive epigenetic mark. Moreover, the polycomb-associated H3K27 methyltransferase, EZH1, is regulated by miR-132 and upregulated in the PFC of schizophrenics. Unlike its homolog EZH2, expression of EZH1 in the murine PFC decreased following chronic exposure to antipsychotics. Viral-mediated depletion of EZH1 in the mouse PFC attenuated sociability, enhanced motivational behaviors, and affected gene expression pathways related to neurotransmission and behavioral phenotypes. CONCLUSIONS EZH1 is dysregulated in schizophrenia, sensitive to antipsychotic medications, and a brain-enriched miR-132 target that controls neurobehavioral phenotypes.
Collapse
Affiliation(s)
- Andrea L Johnstone
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; EpiCypher, Durham, NC, USA
| | - Jiaqi J O'Reilly
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Institute for Biomedical Sciences, George Washington University, Washington, DC, USA
| | - Annika J Patel
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhihong Guo
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nadja S Andrade
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marco Magistri
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Rustam Esanov
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Brooke H Miller
- McKnight Brain Institute and Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Shaun P Brothers
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zane Zeier
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
14
|
Chelini G, Pantazopoulos H, Durning P, Berretta S. The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia. Eur Psychiatry 2018; 50:60-69. [PMID: 29503098 PMCID: PMC5963512 DOI: 10.1016/j.eurpsy.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Growing evidence points to synaptic pathology as a core component of the pathophysiology of schizophrenia (SZ). Significant reductions of dendritic spine density and altered expression of their structural and molecular components have been reported in several brain regions, suggesting a deficit of synaptic plasticity. Regulation of synaptic plasticity is a complex process, one that requires not only interactions between pre- and post-synaptic terminals, but also glial cells and the extracellular matrix (ECM). Together, these elements are referred to as the ‘tetrapartite synapse’, an emerging concept supported by accumulating evidence for a role of glial cells and the extracellular matrix in regulating structural and functional aspects of synaptic plasticity. In particular, chondroitin sulfate proteoglycans (CSPGs), one of the main components of the ECM, have been shown to be synthesized predominantly by glial cells, to form organized perisynaptic aggregates known as perineuronal nets (PNNs), and to modulate synaptic signaling and plasticity during postnatal development and adulthood. Notably, recent findings from our group and others have shown marked CSPG abnormalities in several brain regions of people with SZ. These abnormalities were found to affect specialized ECM structures, including PNNs, as well as glial cells expressing the corresponding CSPGs. The purpose of this review is to bring forth the hypothesis that synaptic pathology in SZ arises from a disruption of the interactions between elements of the tetrapartite synapse.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA.
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Ave., Boston, MA, 02115 USA.
| |
Collapse
|
15
|
Adriani W, Romano E, Pucci M, Pascale E, Cerniglia L, Cimino S, Tambelli R, Curatolo P, Granstrem O, Maccarrone M, Laviola G, D'Addario C. Potential for diagnosis versus therapy monitoring of attention deficit hyperactivity disorder: a new epigenetic biomarker interacting with both genotype and auto-immunity. Eur Child Adolesc Psychiatry 2018; 27:241-252. [PMID: 28822049 DOI: 10.1007/s00787-017-1040-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
In view of the need for easily accessible biomarkers, we evaluated in ADHD children the epigenetic status of the 5'-untranslated region (UTR) in the SLC6A3 gene, coding for human dopamine transporter (DAT). We analysed buccal swabs and sera from 30 children who met DSM-IV-TR criteria for ADHD, assigned to treatment according to severity. Methylation levels at six-selected CpG sites (among which, a CGGCGGCGG and a CGCG motif), alone or in combination with serum titers in auto-antibodies against dopamine transporter (DAT aAbs), were analysed for correlation with CGAS scores (by clinicians) and Conners' scales (by parents), collected at recruitment and after 6 weeks. In addition, we characterized the DAT genotype, i.e., the variable number tandem repeat (VNTR) polymorphisms at the 3'-UTR of the gene. DAT methylation levels were greatly reduced in ADHD patients compared to control, healthy children. Within patients carrying at least one DAT 9 allele (DAT 9/x), methylation at positions CpG2 and/or CpG6 correlated with recovery, as evident from delta-CGAS scores as well as delta Conners' scales ('inattentive' and 'hyperactive' subscales). Moreover, hypermethylation at CpG1 position denoted severity, specifically for those patients carrying a DAT 10/10 genotype. Intriguingly, high serum DAT-aAbs titers appeared to corroborate indications from high CpG1 versus high CpG2/CpG6 levels, likewise denoting severity versus recovery in DAT 10/10 versus 9/x patients, respectively. These profiles suggest that DAT 5'UTR epigenetics plus serum aAbs can serve as suitable biomarkers, to confirm ADHD diagnosis and/or to predict the efficacy of treatment.
Collapse
Affiliation(s)
- Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Building 19 Floor D Room 5, viale Regina Elena 299, 00161, Rome, Italy. .,Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy.
| | - Emilia Romano
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Building 19 Floor D Room 5, viale Regina Elena 299, 00161, Rome, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Esterina Pascale
- Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Rome, Italy
| | - Luca Cerniglia
- Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy
| | - Silvia Cimino
- Dynamic and Clinical Psychology Department, "Sapienza" University of Rome, Rome, Italy
| | - Renata Tambelli
- Dynamic and Clinical Psychology Department, "Sapienza" University of Rome, Rome, Italy
| | - Paolo Curatolo
- Pediatric Neurology Unit, Department of System Medicine, "Tor Vergata" University of Rome, Rome, Italy
| | | | - Mauro Maccarrone
- Department of Medicine, "Campus Bio-Medico" University of Rome, Rome, Italy.,European Center for Brain Research, IRCCS "Santa Lucia", Rome, Italy
| | - Giovanni Laviola
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Building 19 Floor D Room 5, viale Regina Elena 299, 00161, Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,European Center for Brain Research, IRCCS "Santa Lucia", Rome, Italy
| |
Collapse
|
16
|
The recent progress in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:99-109. [PMID: 28396255 PMCID: PMC5605906 DOI: 10.1016/j.pnpbp.2017.04.008] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/28/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
Major depression disorder (MDD) is a debilitating mental illness with significant morbidity and mortality. Despite the growing number of studies that have emerged, the precise underlying mechanisms of MDD remain unknown. When studying MDD, tissue samples like peripheral blood or post-mortem brain samples are used to elucidate underlying mechanisms. Unfortunately, there are many uncontrollable factors with such samples such as medication history, age, time after death before post-mortem tissue was collected, age, sex, race, and living conditions. Although these factors are critical, they introduce confounding variables that can influence the outcome profoundly. In this regard, animal models provide a crucial approach to examine neural circuitry and molecular and cellular pathways in a controlled environment. Further, manipulations with pharmacological agents and gene editing are accepted methods of studying depression in animal models, which is impossible to employ in human patient studies. Here, we have reviewed the most widely used animal models of depression and delineated the salient features of each model in terms of behavioral and neurobiological outcomes. We have also illustrated the current challenges in using these models and have suggested strategies to delineate the underlying mechanism associated with vulnerability or resilience to developing depression.
Collapse
|
17
|
Zoratto F, Romano E, Pascale E, Pucci M, Falconi A, Dell'Osso B, Maccarrone M, Laviola G, D'Addario C, Adriani W. Down-regulation of serotonin and dopamine transporter genes in individual rats expressing a gambling-prone profile: A possible role for epigenetic mechanisms. Neuroscience 2016; 340:101-116. [PMID: 27789384 DOI: 10.1016/j.neuroscience.2016.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 11/26/2022]
Abstract
Gambling Disorder (GD) is characterized by excessive gambling despite adverse consequences on individual functioning. In spite of some positive findings, it is difficult to draw any conclusion on the genetics of GD. Indeed, beyond DNA sequence variation, other regulatory mechanisms (like those that engage epigenetics) may explain gene alterations in this addictive disease. Wistar male rats underwent an operant task for the evaluation of individual propensity to gamble. Few rats, after having learnt to prefer nose-poking for a large over a small food reward, were sacrificed to obtain a baseline profile of gene expression at both central and peripheral levels. In the remaining rats, probability of occurrence of large-reward delivery decreased progressively to very low levels. Thus, rats were faced with temptation to "gamble", i.e. to nose-poke for a binge reward, whose delivery was omitted the majority of times. After 3weeks of testing, rats showing a clear-cut profile of either gambling proneness or aversion were selected and sacrificed after the last session. A selective down-regulation of i) serotonin transporter in prefrontal cortex, ii) tyrosine hydroxylase in ventral striatum, iii) dopamine transporter in lymphocytes was evidenced in "gambler" vs "non-gambler" rats. The exposure to such operant task (compared to home-cage alone) modulated ventrostriatal but not prefrontal genes. A consistent increase of DNA methylation, in one specific CpG site at serotonin transporter gene, was evident in prefrontal cortex of "gambler" rats. Elucidation of epigenetic changes occurring during GD progression may pave the way to the development of new therapeutic strategies through specific modulation of epigenetic factors.
Collapse
Affiliation(s)
- Francesca Zoratto
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Romano
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Esterina Pascale
- Department of Medical Surgical Sciences & Biotechnology, "Sapienza" University of Rome, Rome, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Anastasia Falconi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Bernardo Dell'Osso
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Policlinico, Milan, Italy; Bipolar Disorders Clinic, Stanford University, Stanford, CA, USA
| | - Mauro Maccarrone
- School of Medicine and Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy; European Center for Brain Research, Santa Lucia Foundation, Rome, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - Walter Adriani
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
18
|
Kang E, Wen Z, Song H, Christian KM, Ming GL. Adult Neurogenesis and Psychiatric Disorders. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a019026. [PMID: 26801682 DOI: 10.1101/cshperspect.a019026] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychiatric disorders continue to be among the most challenging disorders to diagnose and treat because there is no single genetic or anatomical locus that is causative for the disease. Current treatments are often blunt tools used to ameliorate the most severe symptoms, at the risk of disrupting functional neural systems. There is a critical need to develop new therapeutic strategies that can target circumscribed functional or anatomical domains of pathology. Adult hippocampal neurogenesis may be one such domain. Here, we review the evidence suggesting that adult hippocampal neurogenesis plays a role in emotional regulation and forms of learning and memory that include temporal and spatial memory encoding and context discrimination, and that its dysregulation is associated with psychiatric disorders, such as affective disorders, schizophrenia, and drug addiction. Further, adult neurogenesis has proven to be an effective model to investigate basic processes of neuronal development and converging evidence suggests that aberrant neural development may be an etiological factor, even in late-onset diseases. Constitutive neurogenesis in the hippocampus of the mature brain reflects large-scale plasticity unique to this region and could be a potential hub for modulation of a subset of cognitive and affective behaviors that are affected by multiple psychiatric disorders.
Collapse
Affiliation(s)
- Eunchai Kang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
19
|
Fisher PA, Beauchamp KG, Roos LE, Noll LK, Flannery J, Delker BC. The Neurobiology of Intervention and Prevention in Early Adversity. Annu Rev Clin Psychol 2016; 12:331-57. [DOI: 10.1146/annurev-clinpsy-032814-112855] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Philip A. Fisher
- Department of Psychology, University of Oregon, Eugene, Oregon 97403;
| | - Kate G. Beauchamp
- Department of Psychology, University of Oregon, Eugene, Oregon 97403;
| | - Leslie E. Roos
- Department of Psychology, University of Oregon, Eugene, Oregon 97403;
| | - Laura K. Noll
- Department of Psychology, University of Oregon, Eugene, Oregon 97403;
| | - Jessica Flannery
- Department of Psychology, University of Oregon, Eugene, Oregon 97403;
| | - Brianna C. Delker
- Department of Psychology, University of Oregon, Eugene, Oregon 97403;
| |
Collapse
|
20
|
Dysregulation of the NF-κB pathway as a potential inducer of bipolar disorder. J Psychiatr Res 2015; 70:18-27. [PMID: 26424419 DOI: 10.1016/j.jpsychires.2015.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022]
Abstract
A century of investigations enhanced our understanding of bipolar disorder although it remains a complex multifactorial disorder with a mostly unknown pathophysiology and etiology. The role of the immune system in this disorder is one of the most controversial topics in genetic psychiatry. Though inflammation has been consistently reported in bipolar patients, it remains unclear how the immunologic process influences the disorder. One of the core components of the immune system is the NF-κB pathway, which plays an essential role in the development of innate and adaptive immunity. Remarkably, the NF-κB pathway received only little attention in bipolar studies, as opposed to studies of related psychiatric disorders where immune dysregulation has been proposed to explain the neurodegeneration in patient conditions. If immune dysregulation can also explains the neurodegeneration in bipolar disorder, it will underscore the role of the immune system in the chronicity and pathophysiology of the disorder and may promote personalized therapeutic strategies. This is the first review to summarize the current knowledge of the pathophysiological functions of NF-κB in bipolar disorder.
Collapse
|
21
|
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol 2015; 136:1-27. [PMID: 26510407 DOI: 10.1016/j.pneurobio.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (G × E) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of G × E relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Hacettepe University Faculty of Medicine, Department of Psychiatry, Turkey
| | - Ross McFarland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA.
| |
Collapse
|
22
|
Zhao H, Xu J, Pang L, Zhang Y, Fan H, Liu L, Liu T, Yu F, Zhang G, Lan Y, Bai J, Li X, Xiao Y. Genome-wide DNA methylome reveals the dysfunction of intronic microRNAs in major psychosis. BMC Med Genomics 2015; 8:62. [PMID: 26462620 PMCID: PMC4604612 DOI: 10.1186/s12920-015-0139-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND DNA methylation is thought to be extensively involved in the pathogenesis of many diseases, including major psychosis. However, most studies focus on DNA methylation alteration at promoters of protein-coding genes, despite the poor correlation between DNA methylation and gene expression. METHODS We analyzed differentially methylated regions and differentially expressed genes in patients with schizophrenia and bipolar disorder and normal subjects. Gene expression and DNA methylation were analyzed with RNA-seq and MeDIP-seq of post-mortem brain tissue (brain region BA9) cohort in five schizophrenia, seven bipolar disorder cases and six controls, respectively. RESULTS Here, we performed a large-scale integrative analysis using MeDIP-seq, coupled with RNA-seq, on brain samples from major psychotic and normal subjects and observed obvious discrepancy between DNA methylation and gene expression. We found that differentially methylated regions (DMRs) were distributed across different types of genomic elements, especially introns. These intronic DMRs were significantly enriched for diverse regulatory elements, such as enhancers and binding sites of certain transcriptional factors (e.g., Pol3). Notably, we found that parts of intronic DMRs overlapped with some intragenic miRNAs, such as hsa-mir-7-3. These intronic DMR-related miRNAs were found to target many differentially expressed genes. Moreover, functional analysis demonstrated that differential target genes of intronic DMR-related miRNAs were sufficient to capture many important biological processes in major psychosis, such as neurogenesis, suggesting that miRNAs may function as important linkers mediating the relationships between DNA methylation alteration and gene expression changes. CONCLUSIONS Collectively, our study indicated that DNA methylation alteration could induce expression changes indirectly by affecting miRNAs and the exploration of DMR-related miRNAs and their targets enhanced understanding of the molecular mechanisms underlying major psychosis.
Collapse
Affiliation(s)
- Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jinyuan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Huihui Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Ling Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Tingting Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Fulong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Guanxiong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China. .,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
| |
Collapse
|
23
|
Berretta S, Pantazopoulos H, Markota M, Brown C, Batzianouli ET. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr Res 2015; 167:18-27. [PMID: 25601362 PMCID: PMC4504843 DOI: 10.1016/j.schres.2014.12.040] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023]
Abstract
Perineuronal nets (PNNs) were shown to be markedly altered in subjects with schizophrenia. In particular, decreases of PNNs have been detected in the amygdala, entorhinal cortex and prefrontal cortex. The formation of these specialized extracellular matrix (ECM) aggregates during postnatal development, their functions, and association with distinct populations of GABAergic interneurons, bear great relevance to the pathophysiology of schizophrenia. PNNs gradually mature in an experience-dependent manner during late stages of postnatal development, overlapping with the prodromal period/age of onset of schizophrenia. Throughout adulthood, PNNs regulate neuronal properties, including synaptic remodeling, cell membrane compartmentalization and subsequent regulation of glutamate receptors and calcium channels, and susceptibility to oxidative stress. With the present paper, we discuss evidence for PNN abnormalities in schizophrenia, the potential functional impact of such abnormalities on inhibitory circuits and, in turn, cognitive and emotion processing. We integrate these considerations with results from recent genetic studies showing genetic susceptibility for schizophrenia associated with genes encoding for PNN components, matrix-regulating molecules and immune system factors. Notably, the composition of PNNs is regulated dynamically in response to factors such as fear, reward, stress, and immune response. This regulation occurs through families of matrix metalloproteinases that cleave ECM components, altering their functions and affecting plasticity. Several metalloproteinases have been proposed as vulnerability factors for schizophrenia. We speculate that the physiological process of PNN remodeling may be disrupted in schizophrenia as a result of interactions between matrix remodeling processes and immune system dysregulation. In turn, these mechanisms may contribute to the dysfunction of GABAergic neurons.
Collapse
Affiliation(s)
- Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Matej Markota
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Christopher Brown
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA
| | - Eleni T Batzianouli
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
24
|
Abstract
This essay assesses the two most significant changes in psychology over the past century: the attempt to localize psychological phenomena in restricted brain sites and the search for genetic contributions to behavior and psychopathology. Although there are advantages to these new developments, they are accompanied by some questionable assumptions. Because the investigators in these domains often relate variation in their biological measures to variation in personality traits evaluated with questionnaires, an analysis of the unique properties of the verbalreport questionnaires is presented. It is suggested that future research on human personality should try to combine semantic reports with behaviors and biological data in order to arrive at more fruitful constructs.
Collapse
|
25
|
Genome-wide methylome analyses reveal novel epigenetic regulation patterns in schizophrenia and bipolar disorder. BIOMED RESEARCH INTERNATIONAL 2015; 2015:201587. [PMID: 25734057 PMCID: PMC4334857 DOI: 10.1155/2015/201587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 12/26/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BP) are complex genetic disorders. Their appearance is also likely informed by as yet only partially described epigenetic contributions. Using a sequencing-based method for genome-wide analysis, we quantitatively compared the blood DNA methylation landscapes in SZ and BP subjects to control, both in an understudied population, Hispanics along the US-Mexico border. Remarkably, we identified thousands of differentially methylated regions for SZ and BP preferentially located in promoters 3′-UTRs and 5′-UTRs of genes. Distinct patterns of aberrant methylation of promoter sequences were located surrounding transcription start sites. In these instances, aberrant methylation occurred in CpG islands (CGIs) as well as in flanking regions as well as in CGI sparse promoters. Pathway analysis of genes displaying these distinct aberrant promoter methylation patterns showed enhancement of epigenetic changes in numerous genes previously related to psychiatric disorders and neurodevelopment. Integration of gene expression data further suggests that in SZ aberrant promoter methylation is significantly associated with altered gene transcription. In particular, we found significant associations between (1) promoter CGIs hypermethylation with gene repression and (2) CGI 3′-shore hypomethylation with increased gene expression. Finally, we constructed a specific methylation analysis platform that facilitates viewing and comparing aberrant genome methylation in human neuropsychiatric disorders.
Collapse
|
26
|
Blaze J, Asok A, Roth TL. Long-term effects of early-life caregiving experiences on brain-derived neurotrophic factor histone acetylation in the adult rat mPFC. Stress 2015; 18:607-15. [PMID: 26305287 PMCID: PMC4879775 DOI: 10.3109/10253890.2015.1071790] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Infant-caregiver experiences are major contributing factors to neural and behavioral development. Research indicates that epigenetic mechanisms provide a way in which infant-caregiver experiences affect gene activity and other downstream processes in the brain that influence behavioral development. Our laboratory previously demonstrated in a rodent model that exposure to maltreatment alters methylation of DNA associated with the brain-derived neurotrophic factor (bdnf) and reelin genes as well as mRNA of key epigenetic regulatory genes in the medial prefrontal cortex (mPFC). In the current study, we characterized patterns of histone acetylation at bdnf and reelin gene loci after our caregiver manipulations. Using a within-litter design (n = 8-10/group from eight litters), pups were exposed to adverse (maltreatment condition: exposure to a stressed caregiver) or nurturing (cross-foster condition: exposure to a nurturing caregiver) caregiving environments outside the home cage for 30 min daily during the first postnatal week. Remaining pups in a litter were left with the biological mother during each session (providing normal care controls). We then used chromatin immunoprecipitation (ChIP) and quantitative RT-PCR to measure histone 3 lysine 9/14 acetylation associated with bdnf promoters I and IV and the reelin promoter in the adult mPFC. Maltreated females had decreased acetylation at bdnf IV, while neither males nor females exhibited histone acetylation alterations at bdnf I or reelin. These data demonstrate the ability of maltreatment to have long-term consequences on histone acetylation in the mPFC, and provide further evidence of the epigenetic susceptibility of bdnf IV to the quality of infant-caregiver experiences.
Collapse
Affiliation(s)
- Jennifer Blaze
- a Department of Psychological and Brain Sciences , University of Delaware , Newark , DE , USA
| | - Arun Asok
- a Department of Psychological and Brain Sciences , University of Delaware , Newark , DE , USA
| | - Tania L Roth
- a Department of Psychological and Brain Sciences , University of Delaware , Newark , DE , USA
| |
Collapse
|
27
|
Corrales J, Fang X, Thornton C, Mei W, Barbazuk WB, Duke M, Scheffler BE, Willett KL. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure. Comp Biochem Physiol C Toxicol Pharmacol 2014; 163:37-46. [PMID: 24576477 PMCID: PMC4032594 DOI: 10.1016/j.cbpc.2014.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 12/16/2022]
Abstract
Benzo[a]pyrene (BaP) is an established carcinogen and reproductive and developmental toxicant. BaP exposure in humans and animals has been linked to infertility and multigenerational health consequences. DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and mapping of methylation patterns has become an important tool for understanding pathologic gene expression events. The goal of this study was to investigate aberrant changes in promoter DNA methylation in zebrafish embryos and larvae following a parental and continued embryonic waterborne BaP exposure. A total of 21 genes known for their role in human diseases were selected to measure percent methylation by multiplex deep sequencing. At 96hpf (hours post fertilization) compared to 3.3hpf, dazl, nqo1, sox3, cyp1b1, and gstp1 had higher methylation percentages while c-fos and cdkn1a had decreased CG methylation. BaP exposure significantly reduced egg production and offspring survival. Moreover, BaP decreased global methylation and altered CG, CHH, and CHG methylation both at 3.3 and 96hpf. CG methylation changed by 10% or more due to BaP in six genes (c-fos, cdkn1a, dazl, nqo1, nrf2, and sox3) at 3.3hpf and in ten genes (c-fos, cyp1b1, dazl, gstp1, mlh1, nqo1, pten, p53, sox2, and sox3) at 96hpf. BaP also induced gene expression of cyp1b1 and gstp1 at 96hpf which were found to be hypermethylated. Further studies are needed to link aberrant CG, CHH, and CHG methylation to heritable epigenetic consequences associated with disease in later life.
Collapse
Affiliation(s)
- J Corrales
- Department of Pharmacology, University of Mississippi, University, MS 38677, USA
| | - X Fang
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - C Thornton
- Department of Pharmacology, University of Mississippi, University, MS 38677, USA
| | - W Mei
- Department of Biology, University of Florida, Gainesville, FL 32669, USA
| | - W B Barbazuk
- Department of Biology, University of Florida, Gainesville, FL 32669, USA; University of Florida Genetics Institute, Gainesville, FL 32669, USA
| | - M Duke
- Genomics Bioinformatics, USDA ARS, Stoneville, MS 38776, USA
| | - B E Scheffler
- Genomics Bioinformatics, USDA ARS, Stoneville, MS 38776, USA
| | - K L Willett
- Department of Pharmacology, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
28
|
Kohlrausch FB. Pharmacogenetics in schizophrenia: a review of clozapine studies. BRAZILIAN JOURNAL OF PSYCHIATRY 2014; 35:305-17. [PMID: 24142094 DOI: 10.1590/1516-4446-2012-0970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/19/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Clozapine is quite effective to treat schizophrenia, but its use is complicated by several factors. Although many patients respond to antipsychotic therapy, about 50% of them exhibit inadequate response, and ineffective medication trials may entail weeks of unremitted illness, potential adverse drug reactions, and treatment nonadherence. This review of the literature sought to describe the main pharmacogenetic studies of clozapine and the genes that potentially influence response to treatment with this medication in schizophrenics. METHODS We searched the PubMed database for studies published in English in the last 20 years using keywords related to the topic. RESULTS AND CONCLUSIONS Our search yielded 145 studies that met the search and selection criteria. Of these, 21 review articles were excluded. The 124 studies included for analysis showed controversial results. Therefore, efforts to identify key gene mechanisms that will be useful in predicting clozapine response and side effects have not been fully successful. Further studies with new analysis approaches and larger sample sizes are still required.
Collapse
|
29
|
Nguyen M, Roth A, Kyzar EJ, Poudel MK, Wong K, Stewart AM, Kalueff AV. Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD). Neurochem Int 2014; 66:15-26. [PMID: 24412511 DOI: 10.1016/j.neuint.2014.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/24/2013] [Accepted: 01/06/2014] [Indexed: 01/21/2023]
Abstract
Autism spectrum disorder (ASD) is a debilitating brain illness causing social deficits, delayed development and repetitive behaviors. ASD is a heritable neurodevelopmental disorder with poorly understood and complex etiology. The central dopaminergic system is strongly implicated in ASD pathogenesis. Genes encoding various elements of this system (including dopamine receptors, the dopamine transporter or enzymes of synthesis and catabolism) have been linked to ASD. Here, we comprehensively evaluate known molecular interactors of dopaminergic genes, and identify their potential molecular partners within up/down-steam signaling pathways associated with dopamine. These in silico analyses allowed us to construct a map of molecular pathways, regulated by dopamine and involved in ASD. Clustering these pathways reveals groups of genes associated with dopamine metabolism, encoding proteins that control dopamine neurotransmission, cytoskeletal processes, synaptic release, Ca(2+) signaling, as well as the adenosine, glutamatergic and gamma-aminobutyric systems. Overall, our analyses emphasize the important role of the dopaminergic system in ASD, and implicate several cellular signaling processes in its pathogenesis.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Andrew Roth
- School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Evan J Kyzar
- College of Medicine, University of Illinois at Chicago, 808 S. Wood Street, Room 165 CME, M/C 783, Chicago, IL 60612, USA
| | - Manoj K Poudel
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Keith Wong
- University of California San Diego (UCSD) School of Medicine, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Allan V Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
30
|
Cho CH, Lee HJ. Oxidative stress and tardive dyskinesia: pharmacogenetic evidence. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:207-13. [PMID: 23123399 DOI: 10.1016/j.pnpbp.2012.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 09/17/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022]
Abstract
Tardive dyskinesia (TD) is a serious adverse effect of long-term antipsychotic use. Because of genetic susceptibility for developing TD and because it is difficult to predict and prevent its development prior to or during the early stages of medication, pharmacogenetic research of TD is important. Additionally, these studies enhance our knowledge of the genetic mechanisms underlying abnormal dyskinetic movements, such as Parkinson's disease. However, the pathophysiology of TD remains unclear. The oxidative stress hypothesis of TD is one of the possible pathophysiologic models for TD. Preclinical and clinical studies of the oxidative stress hypothesis of TD indicate that neurotoxic free radical production is likely a consequence of antipsychotic medication and is related to the occurrence of TD. Several studies on TD have focused on examining the genes involved in oxidative stress. Among them, manganese superoxide dismutase gene Ala-9Val polymorphisms show a relatively consistent association with TD susceptibility, although not all studies support this. Numerous pharmacogenetic studies have found a positive relationship between TD and oxidative stress based on genes involved in the antioxidant defense mechanism, dopamine turnover and metabolism, and other antioxidants such as estrogen and melatonin. However, many of the positive findings have not been replicated. We expect that more research will be needed to address these issues.
Collapse
Affiliation(s)
- Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
31
|
Analysis of association between dopamine receptor genes’ methylation and their expression profile with the risk of schizophrenia. Psychiatr Genet 2013; 23:183-7. [DOI: 10.1097/ypg.0b013e328363d6e1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Ngounou Wetie AG, Sokolowska I, Wormwood K, Beglinger K, Michel TM, Thome J, Darie CC, Woods AG. Mass spectrometry for the detection of potential psychiatric biomarkers. J Mol Psychiatry 2013; 1:8. [PMID: 25408901 PMCID: PMC4223884 DOI: 10.1186/2049-9256-1-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022] Open
Abstract
The search for molecules that can act as potential biomarkers is increasing in the scientific community, including in the field of psychiatry. The field of proteomics is evolving and its indispensability for identifying biomarkers is clear. Among proteomic tools, mass spectrometry is the core technique for qualitative and quantitative identification of protein markers. While significant progress has been made in the understanding of biomarkers for neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis and Parkinson's disease, psychiatric disorders have not been as extensively investigated. Recent and successful applications of mass spectrometry-based proteomics in fields such as cardiovascular disease, cancer, infectious diseases and neurodegenerative disorders suggest a similar path for psychiatric disorders. In this brief review, we describe mass spectrometry and its use in psychiatric biomarker research and highlight some of the possible challenges of undertaking this type of work. Further, specific examples of candidate biomarkers are highlighted. A short comparison of proteomic with genomic methods for biomarker discovery research is presented. In summary, mass spectrometry-based techniques may greatly facilitate ongoing efforts to understand molecular mechanisms of psychiatric disorders.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Izabela Sokolowska
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Kelly Wormwood
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Katherine Beglinger
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Tanja Maria Michel
- Department of Psychiatry, University of Rostock, Rostock, Gehlsheimer Straße 20, D-18147 Germany
| | - Johannes Thome
- Department of Psychiatry, University of Rostock, Rostock, Gehlsheimer Straße 20, D-18147 Germany ; College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - Costel C Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Alisa G Woods
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA ; Neuropsychology Clinic and Psychoeducation Services, SUNY Plattsburgh, 101 Broad St, Plattsburgh, 12901 NY USA
| |
Collapse
|
33
|
Han H, Yu Y, Shi J, Yao Y, Li W, Kong N, Wu Y, Wang C, Wang S, Meng X, Kou C. Associations of histone deacetylase-2 and histone deacetylase-3 genes with schizophrenia in a Chinese population. Asia Pac Psychiatry 2013; 5:11-6. [PMID: 23857786 DOI: 10.1111/j.1758-5872.2012.00205.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/03/2012] [Indexed: 12/14/2022]
Abstract
INTRODUCTION To explore the association between histone deacetylase-2 (HDAC2) and histone deacetylase-3 (HDAC3) gene polymorphisms and schizophrenia. METHODS A total of 208 family trios consisting of fathers, mothers and affected offspring with schizophrenia were recruited as our subjects. Four tag SNPs on HDAC2 (rs10499080, rs6568819, rs2499618 and rs13204445) and two tag SNPs on HDAC3 (rs11741808, rs2530223) genes were selected. The Mass ARRAY Assay Design software (Sequenom) was used to design amplification and allele specific extension primers. The Hardy-Weinberg equilibrium (HWE) for genotypic distributions was tested using the chi-square goodness-of-fit test. Allelic association for a single tag SNP was analyzed by using family-based association tests including the haplotype-based haplotype relative risk (HHRR) test and the transmission disequilibrium test (TDT). RESULTS The genotypic distributions of HDAC2 SNPs rs6568819, rs2499618 and rs13204445 and HDAC3 SNPs rs11741808 and rs2530223 were all in Hardy-Weinberg equilibrium (P > 0.05). HHRR analysis revealed no associations between the SNPs and schizophrenia (P > 0.05). In addition, the TDT did not show any significant associations between HDAC2 and HDAC3 SNPs and schizophrenia (P > 0.05). DISCUSSION HDAC2 and HDAC3 might not be associated with schizophrenia in the Chinese population.
Collapse
Affiliation(s)
- Hongzhi Han
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
van Eekelen JAM, Ellis JA, Pennell CE, Craig J, Saffery R, Mattes E, Olsson CA. Stress-sensitive neurosignalling in depression: an integrated network biology approach to candidate gene selection for genetic association analysis. Ment Illn 2012; 4:e21. [PMID: 25478122 PMCID: PMC4253374 DOI: 10.4081/mi.2012.e21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 07/06/2012] [Accepted: 08/01/2012] [Indexed: 01/18/2023] Open
Abstract
Genetic risk for depressive disorders is poorly understood despite consistent suggestions of a high heritable component. Most genetic studies have focused on risk associated with single variants, a strategy which has so far only yielded small (often non-replicable) risks for depressive disorders. In this paper we argue that more substantial risks are likely to emerge from genetic variants acting in synergy within and across larger neurobiological systems (polygenic risk factors). We show how knowledge of major integrated neurobiological systems provides a robust basis for defining and testing theoretically defensible polygenic risk factors. We do this by describing the architecture of the overall stress response. Maladaptation via impaired stress responsiveness is central to the aetiology of depression and anxiety and provides a framework for a systems biology approach to candidate gene selection. We propose principles for identifying genes and gene networks within the neurosystems involved in the stress response and for defining polygenic risk factors based on the neurobiology of stress-related behaviour. We conclude that knowledge of the neurobiology of the stress response system is likely to play a central role in future efforts to improve genetic prediction of depression and related disorders.
Collapse
Affiliation(s)
- J. Anke M. van Eekelen
- Developmental Neuroscience, Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth
| | - Justine A. Ellis
- Environmental and Genetic Epidemiology, Murdoch Childrens Research Institute, The Royal Children's Hospital and Department of Physiology, University of Melbourne
| | - Craig E. Pennell
- The School of Women's and Infants' Health, University of Western Australia at King Edward Memorial Hospital
| | - Jeff Craig
- Developmental Epigenetics, Early Development and Disease, Department of Paediatrics, Murdoch Childrens Research Institute, Royal Children's Hospital
| | - Richard Saffery
- Developmental Epigenetics, Early Development and Disease, Department of Paediatrics, Murdoch Childrens Research Institute, Royal Children's Hospital
| | - Eugen Mattes
- Developmental Neuroscience, Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth
| | - Craig A. Olsson
- School of Psychology, Deakin University Australia; Murdoch Childrens Research Institute; University of Melbourne, Australia
| |
Collapse
|
35
|
Abstract
Alzheimer's disease (AD) and bipolar disorder (BD) are progressive brain disorders. Upregulated mRNA and protein levels of neuroinflammatory and arachidonic acid (AA) markers with loss of synaptic markers (synaptophysin and drebrin) have been reported in brain tissue from AD and BD patients. We hypothesized that some of these changes are associated with epigenetic modifications of relevant genes. To test this, we measured gene-specific CpG methylation, global DNA methylation and histone modifications in postmortem frontal cortex from BD (n=10) and AD (n=10) patients and respective age-matched controls (10 per group). AD and BD brains showed several epigenetic similarities, including global DNA hypermethylation, and histone H3 phosphorylation. These changes were associated with hypo- and hypermethylation of CpG islands in cyclooxygenase-2 and brain-derived neurotrophic factor promoter regions, respectively. Only the AD brain showed hyper- and hypomethylated CpG islands in promoter regions for cAMP response element-binding protein and nuclear transcription factor kappa B genes, respectively. Only the BD brain demonstrated increased global histone H3 acetylation and hypermethylation of the promotor region for the drebrin-like protein gene. There was no significant epigenetic modification for 12-lipooxygenase or p450 epoxygenase in either illness. Many observed epigenetic changes were inversely related to respective changes in mRNA and protein levels. These epigenetic modifications involving neuroinflammatory, AA cascade and synaptic markers may contribute to progression in AD and BD and identify new targets for drug development.
Collapse
|
36
|
D'Addario C, Dell'Osso B, Palazzo MC, Benatti B, Lietti L, Cattaneo E, Galimberti D, Fenoglio C, Cortini F, Scarpini E, Arosio B, Di Francesco A, Di Benedetto M, Romualdi P, Candeletti S, Mari D, Bergamaschini L, Bresolin N, Maccarrone M, Altamura AC. Selective DNA methylation of BDNF promoter in bipolar disorder: differences among patients with BDI and BDII. Neuropsychopharmacology 2012; 37:1647-55. [PMID: 22353757 PMCID: PMC3358733 DOI: 10.1038/npp.2012.10] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 01/08/2023]
Abstract
The etiology of bipolar disorder (BD) is still poorly understood, involving genetic and epigenetic mechanisms as well as environmental contributions. This study aimed to investigate the degree of DNA methylation at the promoter region of the brain-derived neurotrophic factor (BDNF) gene, as one of the candidate genes associated with major psychoses, in peripheral blood mononuclear cells isolated from 94 patients with BD (BD I=49, BD II=45) and 52 healthy controls. A significant BDNF gene expression downregulation was observed in BD II 0.53±0.11%; P<0.05), but not in BD I (1.13±0.19%) patients compared with controls (CONT: 1±0.2%). Consistently, an hypermethylation of the BDNF promoter region was specifically found in BD II patients (CONT: 24.0±2.1%; BDI: 20.4±1.7%; BDII: 33.3±3.5%, P<0.05). Of note, higher levels of DNA methylation were observed in BD subjects on pharmacological treatment with mood stabilizers plus antidepressants (34.6±4.2%, predominantly BD II) compared with those exclusively on mood-stabilizing agents (21.7±1.8%; P<0.01, predominantly BD I). Moreover, among the different pharmacological therapies, lithium (20.1±3.8%, P<0.05) and valproate (23.6±2.9%, P<0.05) were associated with a significant reduction of DNA methylation compared with other drugs (35.6±4.6%). Present findings suggest selective changes in DNA methylation of BDNF promoter in subjects with BD type II and highlight the importance of epigenetic factors in mediating the onset and/or susceptibility to BD, providing new insight into the mechanisms of gene expression. Moreover, they shed light on possible mechanisms of action of mood-stabilizing compounds vs antidepressants in the treatment of BD, pointing out that BDNF regulation might be a key target for their effects.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Bernardo Dell'Osso
- Department of Clinical Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Department of Mental Health, Department of Psychiatry, Milano, Italy
| | - Maria Carlotta Palazzo
- Department of Clinical Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Department of Mental Health, Department of Psychiatry, Milano, Italy
| | - Beatrice Benatti
- Department of Clinical Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Department of Mental Health, Department of Psychiatry, Milano, Italy
| | - Licia Lietti
- Department of Clinical Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Department of Mental Health, Department of Psychiatry, Milano, Italy
| | - Elisabetta Cattaneo
- Department of Clinical Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Department of Mental Health, Department of Psychiatry, Milano, Italy
| | - Daniela Galimberti
- Department of Neurological Sciences, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Department of Neurology, Milano, Italy
| | - Chiara Fenoglio
- Department of Neurological Sciences, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Department of Neurology, Milano, Italy
| | - Francesca Cortini
- Department of Neurological Sciences, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Department of Neurology, Milano, Italy
| | - Elio Scarpini
- Department of Neurological Sciences, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Department of Neurology, Milano, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Cà Granda Osp Maggiore Policlinico, University of Milan, Milano, Italy
| | | | | | | | | | - Daniela Mari
- Geriatric Unit, Fondazione IRCCS Cà Granda Osp Maggiore Policlinico, University of Milan, Milano, Italy
| | | | - Nereo Bresolin
- Department of Neurological Sciences, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Department of Neurology, Milano, Italy
| | - Mauro Maccarrone
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - A Carlo Altamura
- Department of Clinical Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Department of Mental Health, Department of Psychiatry, Milano, Italy
| |
Collapse
|
37
|
Abstract
Abstract
Objectives
Epigenetics refers to the heritable, but reversible regulation of various biological functions. Changes in DNA methylation and chromatin structure derived from histone modifications are involved in the brain development, pathogenesis and pharmacotherapy of brain disorders.
Key findings
Evidence suggests that epigenetic modulations play key roles in psychiatric diseases such as schizophrenia and bipolar disorder. The analysis of epigenetic aberrations in the mechanisms of psychoactive drugs helps to determine dysfunctional genes and pathways in the brain, to predict side effects of drugs on human genome and identify new pharmaceutical targets for treatment of psychiatric diseases.
Summary
Although numerous studies have concentrated on epigenetics of psychosis, the epigenetic studies of antipsychotics are limited. Here we present epigenetic mechanisms of various psychoactive drugs and review the current literature on psychiatric epigenomics. Furthermore, we discuss various epigenetic modulations in the pharmacology and toxicology of typical and atypical antipsychotics, methionine, lithium and valproic acid.
Collapse
Affiliation(s)
- Nadka Boyadjieva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria
- Department of Animal Sciences, Cook College, Rutgers University, New Brunswick, NJ, USA
| | - Miroslava Varadinova
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria
| |
Collapse
|
38
|
Harvey BH, Shahid M. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: Focus on pharmacology and preclinical translational models. Pharmacol Biochem Behav 2012; 100:775-800. [DOI: 10.1016/j.pbb.2011.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/24/2011] [Accepted: 06/09/2011] [Indexed: 11/29/2022]
|
39
|
van Munster BC, Zwinderman AH, de Rooij SE. Genetic variations in the interleukin-6 and interleukin-8 genes and the interleukin-6 receptor gene in delirium. Rejuvenation Res 2011; 14:425-8. [PMID: 21851175 DOI: 10.1089/rej.2011.1155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate whether genetic polymorphisms in the interleukin-6 gene (IL6), the IL-6 receptor gene (IL6R), and the IL-8 gene (IL8) were associated with delirium in a population of acutely admitted older patients. METHODS This was a prospective cohort study in the Academic Medical Center in Amsterdam, running from April, 2003, through August, 2008. A total of 881 patients, aged 65 years and older, acutely admitted to the medical department or to the surgical department following hip fracture, were included in the study. Delirium was diagnosed by the Confusion Assessment Method. Two single-nucleotide polymorphisms (SNPs) in the IL6 gene, one in the IL6R gene, and one in the IL8 gene were genotyped. RESULTS Fifty percent of the 115 surgical patients and 34% of the 605 medical patients experienced delirium. Delirious patients were older (82.8 years vs. 77.6 years) and had more frequent pre-existing functional (64% vs. 36%) or cognitive impairment (83% vs. 26%) (p < 0.001). The determination of polymorphisms had success rates between 87% and 96%. Rs1800697 and rs1800797 in the IL6 gene, rs8192284 in the IL6R gene, and rs4073 in the IL8 gene were not associated with the development of delirium. CONCLUSION Recent observations have indicated that IL-6 and IL-8 play a role in delirium in the elderly, but functional genetic variations in the IL6, IL6R, and IL8 genes were not associated with delirium. Still, the inflammatory hypothesis of delirium is gaining ground in the literature on the basis of recent animal research.
Collapse
Affiliation(s)
- Barbara C van Munster
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
40
|
Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S, Abdolmaleky HM. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res 2011; 45:1432-8. [PMID: 21820670 DOI: 10.1016/j.jpsychires.2011.06.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/06/2011] [Accepted: 06/17/2011] [Indexed: 12/23/2022]
Abstract
The failure in the discovery of etiology of psychiatric diseases, despite extensive genetic studies, has directed the attention of neuroscientists to the contribution of epigenetic modulations, which play important roles in fine-tuning of gene expression in response to environmental factors. Previously, we analyzed 115 human post-mortem brain samples from the frontal lobe and reported DNA hypo methylation of the membrane-bound catechol-O-methyltransferase (MB-COMT) gene promoter, associated with an increased gene expression, as a risk factor for schizophrenia (SCZ) and bipolar disorder (BD). Since most epigenetic modifications are tissue specific and the availability of brain tissue to identify epigenetic aberrations in living subjects is limited, detection of epigenetic abnormalities in other tissues that represent the brain epigenetic marks is one of the critical steps to develop diagnostic and therapeutic biomarkers for mental diseases. Here, hypothesizing that; those factors that lead to the brain MB-COMT promoter DNA hypo-methylation may also cause concurrent epigenetic aberrations in peripheral tissues, we analyzed MB-COMT promoter methylation in DNA derived from the saliva in SCZ, BD and their first-degree relatives (20 cases each) as well as 25 control subjects. Using bisulfite DNA sequencing and quantitative methylation specific PCR (qMSP), we found that similar to the brain, MB-COMT promoter was hypo-methylated (∼50%) in DNA derived from the saliva in SCZ and BD compared to the control subjects (p = 0.02 and 0.037, respectively). These studies suggest that DNA methylation analysis of MB-COMT promoter in saliva can potentially be used as an available epigenetic biomarker for disease state in SCZ and BD.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Mental Health Research Center, Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Genome-wide association studies have thus far failed to explain the observed heritability of complex human diseases. This is referred to as the “missing heritability” problem. However, these analyses have usually neglected to consider a role for epigenetic variation, which has been associated with many human diseases. We extend models of epigenetic inheritance to investigate whether environment-sensitive epigenetic modifications of DNA might explain observed patterns of familial aggregation. We find that variation in epigenetic state and environmental state can result in highly heritable phenotypes through a combination of epigenetic and environmental inheritance. These two inheritance processes together can produce familial covariances significantly higher than those predicted by models of purely epigenetic inheritance and similar to those expected from genetic effects. The results suggest that epigenetic variation, inherited both directly and through shared environmental effects, may make a key contribution to the missing heritability.
Collapse
|
42
|
Porton B, Wetsel WC, Kao HT. Synapsin III: role in neuronal plasticity and disease. Semin Cell Dev Biol 2011; 22:416-24. [PMID: 21827867 DOI: 10.1016/j.semcdb.2011.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/13/2011] [Indexed: 12/31/2022]
Abstract
Synapsin III was discovered in 1998, more than two decades after the first two synapsins (synapsins I and II) were identified. Although the biology of synapsin III is not as well understood as synapsins I and II, this gene is emerging as an important factor in the regulation of the early stages of neurodevelopment and dopaminergic neurotransmission, and in certain neuropsychiatric illnesses. Molecular genetic and clinical studies of synapsin III have determined that its neurodevelopmental effects are exerted at the levels of neurogenesis and axonogenesis. In vitro voltammetry studies have shown that synapsin III can control dopamine release in the striatum. Since dopaminergic dysfunction is implicated in many neuropsychiatric conditions, one may anticipate that polymorphisms in synapsin III can exert pervasive effects, especially since it is localized to extrasynaptic sites. Indeed, mutations in this gene have been identified in individuals diagnosed with schizophrenia, bipolar disorder and multiple sclerosis. These and other findings indicate that the roles of synapsin III differ significantly from those of synapsins I and II. Here, we focus on the unique roles of the newest synapsin, and where relevant, compare and contrast these with the actions of synapsins I and II.
Collapse
Affiliation(s)
- Barbara Porton
- Department of Psychiatry and Human Behavior, Brown University, BioMedical Center, 171 Meeting Street, Room 187, Providence, RI 02912, USA
| | | | | |
Collapse
|
43
|
Ghadirivasfi M, Nohesara S, Ahmadkhaniha HR, Eskandari MR, Mostafavi S, Thiagalingam S, Abdolmaleky HM. Hypomethylation of the serotonin receptor type-2A Gene (HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:536-45. [PMID: 21598376 DOI: 10.1002/ajmg.b.31192] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 03/11/2011] [Indexed: 02/02/2023]
Abstract
Several lines of evidence indicate that dysfunction of serotonin signaling and HTR2A receptor are involved in the pathogenesis of schizophrenia (SCZ) and bipolar disorder (BD). DNA methylation of HTR2A at T102C polymorphic site influences HTR2A expression and aberrant DNA methylation of HTR2A promoter was reported in postmortem brain of patients with SCZ and BD. Hypothesizing that the brain's epigenetic alteration of HTR2A may also exist in peripheral tissues that can be used as a diagnostic/therapeutic biomarker, we analyzed HTR2A promoter DNA methylation in DNA extracted from the saliva of patients with SCZ and BD, and their first degree relatives versus normal controls. Bisulfite sequencing was used to screen DNA methylation status of the HTR2A promoter CpGs and qMSP was used to quantify the degree of cytosine methylation at differentially methylated sites. Most of the cytosines of the HTR2A promoter were unmethylated. However, CpGs of the -1438A/G polymorphism site, -1420 and -1223 were >95% methylated. The CpG at T102C polymorphic site and neighboring CpGs were ∼70% methylated both in the patients and controls. qMSP analysis revealed that the cytosine of the T102C polymorphic site was significantly hypo-methylated in SCZ, BD, and their first degree relatives compared to the controls. Cytosine methylation of HTR2A at T102C polymorphic site in DNA derived from the saliva can potentially be used as a diagnostic, prognostic, and/or therapeutic biomarker in SCZ and BD. However, these preliminary observations need to be replicated in other populations with a larger sample size to be considered for clinical applications.
Collapse
Affiliation(s)
- Mohammad Ghadirivasfi
- Mental Health Research Center, Department of Psychiatry, Tehran University of Medical Sciences, Iran
| | | | | | | | | | | | | |
Collapse
|
44
|
Naserbakht M, Ahmadkhaniha HR, Mokri B, Smith CL. Advanced paternal age is a risk factor for schizophrenia in Iranians. Ann Gen Psychiatry 2011; 10:15. [PMID: 21513574 PMCID: PMC3094249 DOI: 10.1186/1744-859x-10-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 04/24/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Since 1958 many, but not all studies have demonstrated that paternal age is a risk factor for schizophrenia. There may be many different explanations for differences between studies, including study design, sample size, collection criteria, heterogeneity and the confounding effects of environmental factors that can for example perturb epigenetic programming and lead to an increase in disease risk. The small number of children in Western families makes risk comparisons between siblings born at different paternal ages difficult. In contrast, more Eastern families have children both at early and later periods of life. In the present study, a cross-sectional population study in an Iranian population was performed to compare frequency of schizophrenia in younger offspring (that is, older paternal age) versus older offspring. METHODS A total of 220 patients with the diagnosis of schizophrenia (cases) from both psychiatric hospitals and private clinics and 220 individuals from other hospital wards (controls), matched for sex and age were recruited for this study. Patients with neurological problem, substance abuse, mental retardation and mood disorder were excluded from both groups. RESULTS Birth rank comparisons revealed that 35% vs 24% of the cases vs the controls were in the third or upper birth rank (P = 0.01). Also, the mean age of fathers at birth in case group (30 ± 6.26 years) was significantly more than the control group (26.45 ± 5.64 years; P = 0.0001). The age of 76 fathers at birth in case group was over 32 versus 33 fathers in control group. Individuals whose fathers' age was more than 32 (at birth) were at higher risk (2.77 times) for schizophrenia versus others (P < 0.0001, 95% CI 1.80 to 4.27). The maternal age at parturition of the case versus controls groups was 26.1 ± 5.41 vs 25.07 ± 4.47 (P = 0.02). Logistic regression analysis suggests that maternal age is less likely to be involved in the higher risk of schizophrenia than advanced parental age. DISCUSSION This study demonstrates a relationship between paternal age and schizophrenia in large families of an Iranian population. Arguments have been put forth that DNA bases changes or epigenetic changes in sperm account for the increased risk associated with older fathers. However, it would not be surprising that both de novo germline mutations and epigenetic changes contribute to disease occurrence because DNA replication and DNA methylation are closely linked at both the macromolecular level (that is, methylation closely follows replication), and at the metabolic level (both processes require folate), and susceptible to modulation by the environment. Further research on samples such as those collected here are needed to sort out the contributions of de novo mutations versus epigenetic changes to schizophrenia.
Collapse
Affiliation(s)
- Morteza Naserbakht
- Social Medicine, Mental Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid-Reza Ahmadkhaniha
- Tehran University of Medical Science, Tehran, Iran
- Mental Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Psychiatric Institute, Tehran, Iran
| | - Bahareh Mokri
- Department of Internal Medicine, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University. M.C, Iran
| | - Cassandra L Smith
- Biomedical Engineering Department, Boston University, Boston MA, USA
| |
Collapse
|
45
|
|
46
|
Abstract
Tardive dyskinesia (TD) is one of the most serious adverse side effects of antipsychotic drugs and is an important topic of pharmacogenetic studies. Since there is a genetic susceptibility for developing this adverse reaction, and given that it is hard to predict its development prior to or during the early period of medication, the genetic study of TD is a promising research topic that has a direct clinical application. Moreover, such studies would improve our understanding of the genetic mechanism(s) underlying abnormal dyskinetic movement. A substantial number of case-control association studies of TD have been performed, with numbers of studies focusing on the genes involved in antipsychotic drug metabolism, such as those for cytochrome P450 (CYP) and oxidative stress related genes as well as various neurotransmitter related genes. These studies have produced relatively consistent though controversial findings for certain polymorphisms such as CYP2D6*10, DRD2 Taq1A, DRD3 Ser9Gly, HTR2A T102C, and MnSOD Ala9Val. Moreover, the application of the genome-wide association study (GWAS) to the susceptibility of TD has revealed certain associated genes that previously were never considered to be associated with TD, such as the rs7669317 on 4q24, GLI2 gene, GABA pathway genes, and HSPG2 gene. Although a substantial number of genetic studies have investigated TD, many of the positive findings have not been replicated or are inconsistent, which could be due to differences in study design, sample size, and/or subject ethnicity. We expect that more refined research will be performed in the future to resolve these issues, which will then enable the genetic prediction of TD and clinical application thereof.
Collapse
|
47
|
Tenback DE, van Harten PN. Epidemiology and Risk Factors for (Tardive) Dyskinesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:211-30. [DOI: 10.1016/b978-0-12-381328-2.00009-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Abstract
We systematically mistreat psychological phenomena, both logically and clinically. This article explores three contentions: that the dominant discourse in modern cognitive, affective, and clinical neuroscience assumes that we know how psychology/biology causation works when we do not; that there are serious intellectual, clinical, and policy costs to pretending we do know; and that crucial scientific and clinical progress will be stymied as long as we frame psychology, biology, and their relationship in currently dominant ways. The arguments are developed with emphasis on misguided attempts to localize psychological function via neuroimaging, misunderstandings about the role of genetics in psychopathology, and untoward constraints on health-care policy and clinical service delivery. A particular challenge, articulated but not resolved in this article, is determining what constitutes adequate explanation in the relationship between psychology and biology.
Collapse
Affiliation(s)
- Gregory A Miller
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, and Zukunfstkolleg, University of Konstanz, Konstanz, Germany
| |
Collapse
|
49
|
Genetic repositories for the study of major psychiatric conditions: what do we know about ethnic minorities' genetic vulnerability? Mol Psychiatry 2010; 15:970-5. [PMID: 20177407 DOI: 10.1038/mp.2010.11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In spite of considerable efforts, no genes of major effect have been found across an entire diagnostic category in psychiatry. Possible reasons for this may include difficulties in defining the phenotype, the complex relationship between genotype and gene expression and population stratification. This last problem has often been managed by restricting genetic sampling to only one ethnic group. An unintended consequence of using this strategy is that the major repositories of genetic material for the study of psychiatric conditions in the United States suffer from a paucity of genetic samples from non-Caucasian groups. Thus, these groups are being relatively understudied in terms of the genetic antecedents to psychiatric disease. The authors provide solutions including the need to augment the representation of African-American, Latino and Asian-Americans among research participants; a more nuanced approach to identify ancestry; and the development of analytic and genetic strategies to handle the issue of ethnic heterogeneity in samples.
Collapse
|
50
|
Nöthen MM, Nieratschker V, Cichon S, Rietschel M. New findings in the genetics of major psychoses. DIALOGUES IN CLINICAL NEUROSCIENCE 2010. [PMID: 20373670 PMCID: PMC3181946 DOI: 10.31887/dcns.2010.12.1/mnoethen] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Schizophrenia and bipolar disorder have a largely unknown pathophysiology and etiology, but they are highly heritable. Although linkage and association studies have identified a series of chromosomal regions likely to contain susceptibility genes, progress in identifying causative genes has been largely disappointing. However, rapid technological advances are beginning to lead to new insights. Systematic genome-wide association and follow-up studies have reported genome-wide significant association findings of common variants for schizophrenia and bipolar disorder. The risk conferred by individual variants is small, and some variants confer a risk for both disorders. In addition, recent studies have identified rare, large structural variants (copy number variants) that confer a greater risk for schizophrenia. This review summarizes recent developments in genetic research into schizophrenia and bipolar disorder, and discusses possible future directions in this field.
Collapse
Affiliation(s)
- Markus M Nöthen
- Department of Genomics, Life & Brain Centre, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|