1
|
Smolobochkin A, Gazizov A, Appazov N, Sinyashin O, Burilov A. Progress in the Stereoselective Synthesis Methods of Pyrrolidine-Containing Drugs and Their Precursors. Int J Mol Sci 2024; 25:11158. [PMID: 39456938 PMCID: PMC11508981 DOI: 10.3390/ijms252011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
The presented review systematizes and summarizes the data on the synthesis of pyrrolidine derivatives, which are precursors for obtaining drugs. Based on the analysis of published data, the most promising directions in the synthesis of biologically active compounds containing a pyrrolidine ring are identified. Stereoselective synthesis methods are classified based on the source of the pyrrolidine ring. The first group includes methods that use a pyrrolidine ring as the starting compound. The second group combines stereoselective methods of cyclization of acyclic starting compounds, which lead to optically pure pyrrolidine derivatives.
Collapse
Affiliation(s)
- Andrey Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Almir Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Nurbol Appazov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| |
Collapse
|
2
|
Kolesnikova TO, Demin KA, Costa FV, de Abreu MS, Kalueff AV. Zebrafish models for studying cognitive enhancers. Neurosci Biobehav Rev 2024; 164:105797. [PMID: 38971515 DOI: 10.1016/j.neubiorev.2024.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Cognitive decline is commonly seen both in normal aging and in neurodegenerative and neuropsychiatric diseases. Various experimental animal models represent a valuable tool to study brain cognitive processes and their deficits. Equally important is the search for novel drugs to treat cognitive deficits and improve cognitions. Complementing rodent and clinical findings, studies utilizing zebrafish (Danio rerio) are rapidly gaining popularity in translational cognitive research and neuroactive drug screening. Here, we discuss the value of zebrafish models and assays for screening nootropic (cognitive enhancer) drugs and the discovery of novel nootropics. We also discuss the existing challenges, and outline future directions of research in this field.
Collapse
Affiliation(s)
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Fabiano V Costa
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; West Caspian University, Baku, Azerbaijan.
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Suzhou Key Laboratory on Neurobiology and Cell Signaling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
3
|
Hu Y, Oleshko S, Firmani S, Zhu Z, Cheng H, Ulmer M, Arnold M, Colomé-Tatché M, Tang J, Xhonneux S, Marsico A. Path-based reasoning for biomedical knowledge graphs with BioPathNet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599219. [PMID: 39149355 PMCID: PMC11326122 DOI: 10.1101/2024.06.17.599219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Understanding complex interactions in biomedical networks is crucial for advancements in biomedicine, but traditional link prediction (LP) methods are limited in capturing this complexity. Representation-based learning techniques improve prediction accuracy by mapping nodes to low-dimensional embeddings, yet they often struggle with interpretability and scalability. We present BioPathNet, a novel graph neural network framework based on the Neural Bellman-Ford Network (NBFNet), addressing these limitations through path-based reasoning for LP in biomedical knowledge graphs. Unlike node-embedding frameworks, BioPathNet learns representations between node pairs by considering all relations along paths, enhancing prediction accuracy and interpretability. This allows visualization of influential paths and facilitates biological validation. BioPathNet leverages a background regulatory graph (BRG) for enhanced message passing and uses stringent negative sampling to improve precision. In evaluations across various LP tasks, such as gene function annotation, drug-disease indication, synthetic lethality, and lncRNA-mRNA interaction prediction, BioPathNet consistently outperformed shallow node embedding methods, relational graph neural networks and task-specific state-of-the-art methods, demonstrating robust performance and versatility. Our study predicts novel drug indications for diseases like acute lymphoblastic leukemia (ALL) and Alzheimer's, validated by medical experts and clinical trials. We also identified new synthetic lethality gene pairs and regulatory interactions involving lncRNAs and target genes, confirmed through literature reviews. BioPathNet's interpretability will enable researchers to trace prediction paths and gain molecular insights, making it a valuable tool for drug discovery, personalized medicine and biology in general.
Collapse
Affiliation(s)
- Yue Hu
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
| | - Svitlana Oleshko
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Samuele Firmani
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
| | - Zhaocheng Zhu
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Quebec, Canada
| | - Hui Cheng
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Maria Ulmer
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
| | - Matthias Arnold
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- Department of Psychiatry and Behavioural Sciences, Duke University, 905 W Main St., Durham, NC 27701, North Carolina, United States
| | - Maria Colomé-Tatché
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
- Faculty of Biology, Ludwig-Maximilian University of Munich, Grosshaderner Str. 2, Planegg-Martinsried, 82152, Bavaria, Germany
| | - Jian Tang
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, CIFAR AI Chair, 661 University Ave, Toronto, ON M5G 1M1, Ontario, Canada
- Department, HEC Montréal, 3000 Chem. de la Côte-Sainte-Catherine, Montréal, QC H3T 2A7, Quebec, Canada
| | - Sophie Xhonneux
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Quebec, Canada
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
| |
Collapse
|
4
|
Czapińska-Ciepiela EK, Łuszczki J, Czapiński P, Czuczwar SJ, Lasoń W. Presynaptic antiseizure medications - basic mechanisms and clues for their rational combinations. Pharmacol Rep 2024; 76:623-643. [PMID: 38776036 PMCID: PMC11294404 DOI: 10.1007/s43440-024-00603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 08/02/2024]
Abstract
Among clinically highly efficient antiseizure medications (ASMs) there are modifiers of the presynaptic release machinery. Of them, levetiracetam and brivaracetam show a high affinity to the synaptic vesicle protein type 2 A (SV2A), whereas pregabalin and gabapentin are selective ligands for the α2δ1 subunits of the voltage-gated calcium channels. In this paper, we present recent progress in understanding the significance of presynaptic release machinery in the neurochemical mechanisms of epilepsy and ASMs. Furthermore, we discuss whether the knowledge of the basic mechanisms of the presynaptically acting ASMs might help establish a rational polytherapy for drug-resistant epilepsy.
Collapse
Affiliation(s)
| | - Jarogniew Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, 20-090, Lublin, Poland
| | - Piotr Czapiński
- Epilepsy and Migraine Treatment Center, 31-209, Kraków, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, 31-343, Kraków, Poland.
| |
Collapse
|
5
|
Liu J, Yang N, Wang X, Wang W. Piracetam reduces oxidative stress and mitochondrial function impairment in an in vitro model of vascular dementia. Exp Brain Res 2024; 242:1841-1850. [PMID: 38842755 DOI: 10.1007/s00221-024-06868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Vascular dementia (VaD) is the most common cause of dementia in older adults. Due to the lack of effective treatment options, there is an urgent need to find an effective pharmaceutical compound to combat VaD. Piracetam has been reported to improve impaired cognitive function in a variety of conditions in both human and animal models. However, the role and mechanism of Piracetam in VaD remain unclear. Therefore this study aimed to elucidate the effect of Piracetam on a cellular model of VaD in vitro. We found that Piracetam enhanced the growth of OGD-stimulated SH-SY5Y cells. In addition, Piracetam inhibited the oxidative stress of OGD-stimulated SH-SY5Y cells. Further, Piracetam improved mitochondrial function of OGD-stimulated SH-SY5Y cells. Mechanistically, Piracetam inhibited the PI3K/Akt/mTOR pathway in OGD-stimulated SH-SY5Y cells. Collectively, Piracetam improved oxidative stress and mitochondrial dysfunction of OGD-stimulated SH-SY5Y cells through PI3K/Akt/mTOR axis. Hence, Piracetam has the potential to serve as a promising drug of VaD.
Collapse
Affiliation(s)
- Juan Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, No.48 FengHao Road(West), Lianhu District, Xi'an City, 710077, Shaanxi Province, China.
| | - Na Yang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, No.48 FengHao Road(West), Lianhu District, Xi'an City, 710077, Shaanxi Province, China
| | - Xiaomeng Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, No.48 FengHao Road(West), Lianhu District, Xi'an City, 710077, Shaanxi Province, China
| | - Wen Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, No.48 FengHao Road(West), Lianhu District, Xi'an City, 710077, Shaanxi Province, China
| |
Collapse
|
6
|
Gouhie FA, Barbosa KO, Cruz ABR, Wellichan MM, Zampolli TM. Cognitive effects of piracetam in adults with memory impairment: A systematic review and meta-analysis. Clin Neurol Neurosurg 2024; 243:108358. [PMID: 38878641 DOI: 10.1016/j.clineuro.2024.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION Piracetam, a widely recognized nootropic drug, is hypothesized to enhance memory function through its influence on synaptic plasticity and neurotransmitter levels. However, despite its popularity, there remains a lack of conclusive evidence regarding its impact on memory. Therefore, the present study aims to explore the effects of piracetam on memory in individuals with impaired cognitive function, comparing it to a placebo control group. OBJECTIVES This study will evaluate how piracetam affects memory function, compared to placebo in adults with impairment in this area. METHODS We carried out bibliographical research and meta-analysis of scientific clinical trials comparing memory function in people taking piracetam with those in the placebo group. The PubMed, Dimensions, Embase, and Cochrane Library databases were used. Statistical analysis was performed in R Studio version 4.3.1. RESULTS In our analysis, 199 articles were identified, of which we included eighteen studies, comprising a total of 886 patients, of which Piracetam was the treatment option in 442 (49.88 %) patients. Memory enhancement (SMD 0.75; 95 % CI [-0.19; 1.69]; p=0.12; I²=96 %) had no clinical difference between the intervention and the control group. CONCLUSION Upon the conclusion of this study, it is apparent that we cannot definitively ascertain the impact of piracetam on memory function. Further research is warranted to provide a clearer understanding of the cognitive effects of piracetam in individuals with memory impairment. This investigation serves as a significant contribution to the ongoing quest to elucidate the potential benefits of piracetam in the field of cognitive neuroscience.
Collapse
Affiliation(s)
- Felipe Araujo Gouhie
- Faculty of Medicine, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| | - Karina Oliveira Barbosa
- Faculty of Medicine, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
7
|
Conti F, McCue JJ, DiTuro P, Galpin AJ, Wood TR. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients 2024; 16:2430. [PMID: 39125311 PMCID: PMC11314487 DOI: 10.3390/nu16152430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Traumatic brain injuries (TBIs) constitute a significant public health issue and a major source of disability and death in the United States and worldwide. TBIs are strongly associated with high morbidity and mortality rates, resulting in a host of negative health outcomes and long-term complications and placing a heavy financial burden on healthcare systems. One promising avenue for the prevention and treatment of brain injuries is the design of TBI-specific supplementation and dietary protocols centred around nutraceuticals and biochemical compounds whose mechanisms of action have been shown to interfere with, and potentially alleviate, some of the neurophysiological processes triggered by TBI. For example, evidence suggests that creatine monohydrate and omega-3 fatty acids (DHA and EPA) help decrease inflammation, reduce neural damage and maintain adequate energy supply to the brain following injury. Similarly, melatonin supplementation may improve some of the sleep disturbances often experienced post-TBI. The scope of this narrative review is to summarise the available literature on the neuroprotective effects of selected nutrients in the context of TBI-related outcomes and provide an evidence-based overview of supplementation and dietary protocols that may be considered in individuals affected by-or at high risk for-concussion and more severe head traumas. Prophylactic and/or therapeutic compounds under investigation include creatine monohydrate, omega-3 fatty acids, BCAAs, riboflavin, choline, magnesium, berry anthocyanins, Boswellia serrata, enzogenol, N-Acetylcysteine and melatonin. Results from this analysis are also placed in the context of assessing and addressing important health-related and physiological parameters in the peri-impact period such as premorbid nutrient and metabolic health status, blood glucose regulation and thermoregulation following injury, caffeine consumption and sleep behaviours. As clinical evidence in this research field is rapidly emerging, a comprehensive approach including appropriate nutritional interventions has the potential to mitigate some of the physical, neurological, and emotional damage inflicted by TBIs, promote timely and effective recovery, and inform policymakers in the development of prevention strategies.
Collapse
Affiliation(s)
- Federica Conti
- School of Physics, University of Sydney, Sydney, NSW 2050, Australia;
| | - Jackson J. McCue
- School of Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Paul DiTuro
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew J. Galpin
- Center for Sport Performance, California State University, Fullerton, CA 92831, USA;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
8
|
Linder J, Mehra J, Miller S, Lewis MJ, Bentley RT, Thomovsky S. Use of levetiracetam for the successful treatment of suspected myoclonic seizures: five dogs (2016-2022). J Small Anim Pract 2024; 65:402-408. [PMID: 38566458 DOI: 10.1111/jsap.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 02/07/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Myoclonic seizures are considered a type of generalised seizure characterised by brief, jerking movements of the body. The aim of this study is to describe cases of suspected canine myoclonic seizure of idiopathic aetiology and to discuss the successful use of the anticonvulsant levetiracetam as treatment in each of these cases. MATERIALS AND METHODS Dogs with epileptic myoclonus suspected to be idiopathic in aetiology were considered for inclusion. Medical records were reviewed for physical and neurologic examination findings, clinicopathologic results, and diagnostic imaging results. All included dogs were treated with levetiracetam, and their response was reported. RESULTS Five dogs were included, all of which had suspected myoclonic seizures either observed in-person or on video recording by a board-certified veterinary neurologist. The duration of myoclonic seizures preceding treatment ranged from one day to one year. One dog also experienced a generalised tonic-clonic seizure. All dogs were treated with levetiracetam. Two dogs experienced long-term myoclonic seizure freedom (duration seizure-free of at least 1 year), and two dogs experienced marked decreased myoclonic seizure frequency. One dog experienced immediate abatement of myoclonic seizures, although levetiracetam was only utilised for 1 month following onset of myoclonic seizures in this patient. CLINICAL SIGNIFICANCE Myoclonic seizures can be idiopathic in aetiology. Levetiracetam can be used effectively to rapidly stop myoclonic seizures and to decrease the frequency of myoclonic seizures.
Collapse
Affiliation(s)
- J Linder
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - J Mehra
- VCA Animal Care Center of Sonoma County, Rohnert Park, CA, USA
| | - S Miller
- TruVet Specialty and Emergency Hospital, Petaluma, CA, USA
| | - M J Lewis
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - R T Bentley
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - S Thomovsky
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
9
|
Wu Y, Inoue M, Sakakura S, Hyodo K. γ-Lactam synthesis from cyclobutanone via transoximation and the Beckmann rearrangement. Org Biomol Chem 2024; 22:4364-4368. [PMID: 38738449 DOI: 10.1039/d4ob00566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
This manuscript describes the synthesis of γ-lactam from the nitrogen insertion reaction of cyclobutanones using an oxime as an aminating reagent with a catalytic amount of Brønsted acid. This method was employed with a more stable oxime reagent, which is a precursor analog of hydroxylamine derivatives with explosive properties. The reaction was tolerated by various substituted cyclobutanones and less strained five- or six-membered ketones. The obtained γ-lactam products could be transformed into γ-aminobutyric acid derivatives via ring-opening hydrolysis. The reaction mechanism is discussed from the perspective of the isotope effect, etc.
Collapse
Affiliation(s)
- Yuhao Wu
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Masanori Inoue
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Shota Sakakura
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Kengo Hyodo
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
10
|
Maqbool M, Jakobsson JE, Alluri SR, Kramer V, Riss PJ. A protocol for controlled reactivity shift in the 2,2-difluorovinyl motif used for selective S- 18F and C- 18F bond formation. Commun Chem 2024; 7:97. [PMID: 38684771 PMCID: PMC11058245 DOI: 10.1038/s42004-024-01132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Positron emission tomography (PET) is a powerful imaging technique for biomedical research, drug development and medical diagnosis. The power of PET lies in biochemically selective radiotracers, labelled with positron emitters like fluorine-18 image chemical processes in vivo. A rapid and remarkably efficient, unprecedented protocol to select between S-F and C-F bond formation based on activation of 1,1-difluoroethylene groups followed by selective oxidation or reduction is described. While transition metal mediated conditions can be employed, the reaction proceeds in high yield using unobjectionable chemical reagents amenable to routine radiotracer production. The latter bodes well for facile clinical translation of the method. The new technique affords radiotracers and the labelling reagent 2,2-difluoro-2-(fluoro-18F)ethyl 4-methylbenzenesulfonate ([18F]1b) in excellent yield. Following oxygenation of the reaction mixture with medical oxygen or air, sulfonyl fluorides are obtained as the primary product. The new protocol was employed in a proof of principle to develop a radiometric assay for quantitation of sulfonylation yield with sulfonyl fluoride reagents. With operational ease and mild conditions, the method bodes a high potential for radiolabelling of biomolecules, known enzyme inhibitors and other temperature-sensitive compounds.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Clinical Neurocience, OUS-Ullevål, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | | | - Vasko Kramer
- Positronpharma SA, Rancangua, Santiago de Chile, Santiago, Chile
| | - Patrick Johannes Riss
- Department of Clinical Neurocience, OUS-Ullevål, Oslo, Norway.
- Department of Chemistry, University of Oslo, Oslo, Norway.
- Department of Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany.
| |
Collapse
|
11
|
Hernández-Guadarrama A, Díaz-Román MA, Linzaga-Elizalde I, Domínguez-Mendoza BE, Aguilar-Guadarrama AB. In Silico Analysis: Anti-Inflammatory and α-Glucosidase Inhibitory Activity of New α-Methylene-γ-Lactams. Molecules 2024; 29:1973. [PMID: 38731463 PMCID: PMC11085531 DOI: 10.3390/molecules29091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
The research about α-methylene-γ-lactams is scarce; however, their synthesis has emerged in recent years mainly because they are isosters of α-methylene-γ-lactones. This last kind of compound is structurally most common in some natural products' nuclei, like sesquiterpene lactones that show biological activity such as anti-inflammatory, anticancer, antibacterial, etc., effects. In this work, seven α-methylene-γ-lactams were evaluated by their inflammation and α-glucosidase inhibition. Thus, compounds 3-methylene-4-phenylpyrrolidin-2-one (1), 3-methylene-4-(p-tolyl)pyrrolidin-2-one (2), 4-(4-chlorophenyl)-3-methylenepyrrolidin-2-one (3), 4-(2-chlorophenyl)-3-methylenepyrrolidin-2-one (4), 5-ethyl-3-methylene-4-phenylpyrrolidin-2-one (5), 5-ethyl-3-methylene-4-(p-tolyl)pyrrolidin-2-one (6) and 4-(4-chlorophenyl)-5-ethyl-3-methylenepyrrolidin-2-one (7) were evaluated via in vitro α-glucosidase assay at 1 mM concentration. From this analysis, 7 exerts the best inhibitory effect on α-glucosidase compared with the vehicle, but it shows a low potency compared with the reference drug at the same dose. On the other side, inflammation edema was induced using TPA (12-O-tetradecanoylphorbol 13-acetate) on mouse ears; compounds 1-7 were tested at 10 µg/ear dose. As a result, 1, 3, and 5 show a better inhibition than indomethacin, at the same doses. This is a preliminary report about the biological activity of these new α-methylene-γ-lactams.
Collapse
Affiliation(s)
| | | | | | | | - A. Berenice Aguilar-Guadarrama
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico; (A.H.-G.); (M.A.D.-R.); (I.L.-E.); (B.E.D.-M.)
| |
Collapse
|
12
|
Elbeltagy M, Khraisat B, AlZoubi L, Hmoud L, AlJeady A, Yousef M, Salman A. The neuroprotective effects of Piracetam on cisplatin-induced cognitive decline. Int J Neurosci 2023:1-8. [PMID: 38153438 DOI: 10.1080/00207454.2023.2300733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023]
Abstract
AIM This work explores the effect of Cisplatin-a chemotherapeutic agent known to cause deterioration in cognitive function in cancer patients, and spatial memory in mice. It also investigates the potential neuroprotective effects of Piracetam, which is a nootropic drug recognized for improving cognitive ability. MATERIALS AND METHODS The study incorporates four groups of mice receiving varied medication regimens, with memory tested using the Novel Location Recognition (NLR) method. RESULTS The findings from our study revealed that memory decline and a suppression of cellular proliferation were observed in adult male mice subjected to Cisplatin treatment; furthermore, a decline in antioxidant efficacy within the hippocampal dentate gyrus was evident. Moreover, analysis of treatment effects on the animals' weight revealed that the Cisplatin and Piracetam group exhibited the most significant weight loss during drug administration. Despite the significant weight loss, the simultaneous use of Cisplatin and Piracetam demonstrated a notable improvement in memory and an augmentation of hippocampal proliferation and antioxidant effect. LIMITATIONS It is important to note that our study was hampered by budget limits, a lack of additional animals, and mice's low tolerance for protracted treatment. CONCLUSIONS Should the outcomes of Piracetam observed in this investigation be applicable to patients, it might offer a relatively straightforward approach to mitigate the cognitive impacts endured by cancer survivors following exposure to chemotherapy. Future research will be needed to study Piracetam's effect on mice with brain cancer after Cisplatin treatment in order to extrapolate the results onto cancer patients.
Collapse
Affiliation(s)
- Maha Elbeltagy
- Faculty of Medicine, The University of Jordan, Amman, Jordan
- Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Bann Khraisat
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Lujain AlZoubi
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Leen Hmoud
- Faculty of Dentistry, The University of Jordan, Amman, Jordan
| | | | - Mohammed Yousef
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Ahmed Salman
- Faculty of Medicine, The University of Jordan, Amman, Jordan
- Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
13
|
Borozdenko DA, Gonchar DI, Bogorodova VI, Tarasenko DV, Kramarova EP, Khovanova SS, Golubev YV, Kiseleva NM, Shmigol TA, Ezdoglian AA, Sobyanin KA, Negrebetsky VV, Baukov YI. The Antidepressant Activity of a Taurine-Containing Derivative of 4-Phenylpyrrolidone-2 in a Model of Chronic Unpredictable Mild Stress. Int J Mol Sci 2023; 24:16564. [PMID: 38068887 PMCID: PMC10705968 DOI: 10.3390/ijms242316564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
This study investigates the therapeutic potential of a new compound, potassium 2-[2-(2-oxo-4-phenylpyrrolidin-1-yl) acetamido]ethanesulfonate (Compound I), in depression. Willner's chronic unpredictable mild stress model of male Wistar rats was used as a depression model. The rats were randomized into four groups, including an intact group, a Compound I group, a Fluoxetine group, and a control group with saline. Behavioral tests, such as the Porsolt forced swim test, hole-board test, elevated plus maze test, and light-dark box, were used to assess the animals' conditions. Our results demonstrated that Compound I effectively reduced the immobilization time of rats in the forced swim test, increased orientation and exploratory behavior, and decreased the latency period of going into the dark compartment compared to the control group. Hippocampal and striatal serotonin concentrations were increased in the Compound I group, and the compound also reduced the level of corticosterone in the blood plasma of rats compared to the intact animals. These results suggest that Compound I has reliable antidepressant activity, comparable to that of the reference antidepressant Fluoxetine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yuri I. Baukov
- Institute of Pharmacy and Medicinal Chemistry, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (D.I.G.); (V.I.B.); (D.V.T.); (E.P.K.); (S.S.K.); (Y.V.G.); (N.M.K.); (T.A.S.); (A.A.E.); (K.A.S.); (V.V.N.)
| |
Collapse
|
14
|
Salamah A, Darwish AH. Docosahexaenoic Acid Plus Piracetam Versus Piracetam Alone for Treatment of Breath-Holding Spells in Children: A Randomized Clinical Trial. Pediatr Neurol 2023; 148:32-36. [PMID: 37651975 DOI: 10.1016/j.pediatrneurol.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/19/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Piracetam is the most widely used drug in breath-holding spells (BHS); however, its efficacy might not be satisfying to parents. This study aimed to compare the efficacy of docosahexaenoic acid (DHA) plus piracetam with piracetam alone in reducing the frequency and severity of BHS in infants and preschool children. METHODS This randomized clinical trial included two groups diagnosed with BHS. Group I included 50 patients who received DHA plus piracetam. Group II (control group) included 50 children who were managed with piracetam plus a placebo. Children were re-evaluated at one, three, and six months after treatment. Occurrences of BHS and drug side effects were recorded. The primary outcome was to evaluate the effect of the combined treatment of piracetam and DHA on the frequency and severity of spells. RESULTS BHS were reported in only 16% of children six months after treatment with piracetam and DHA compared with 50% of those treated with piracetam only (P value = 0.001). CONCLUSION DHA plus piracetam is more effective than piracetam alone in decreasing the frequency and severity of BHS in children.
Collapse
Affiliation(s)
- Abeer Salamah
- Lecturer Pediatric Neurology, Faculty of Medicine, Pediatrics Department, Kafr El-Sheik University, Kafr El-Sheik, Egypt
| | - Amira Hamed Darwish
- Associate Professor Pediatric Neurology, Faculty of Medicine, Pediatrics Department, Tanta University, Gharbia, Egypt.
| |
Collapse
|
15
|
Niknahad H, Mobasheri A, Arjmand A, Rafiei E, Alidaee S, Razavi H, Bagheri S, Rezaei H, Sabouri S, Najibi A, Khodaei F, Kashani SMA, Ommati MM, Heidari R. Hepatic encephalopathy complications are diminished by piracetam via the interaction between mitochondrial function, oxidative stress, inflammatory response, and locomotor activity. Heliyon 2023; 9:e20557. [PMID: 37810869 PMCID: PMC10551565 DOI: 10.1016/j.heliyon.2023.e20557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
Background of the study: Hepatic encephalopathy (HE) is a complication in which brain ammonia (NH4+) levels reach critically high concentrations because of liver failure. HE could lead to a range of neurological complications from locomotor and behavioral disturbances to coma. Several tactics have been established for subsiding blood and brain NH4+. However, there is no precise intervention to mitigate the direct neurological complications of NH4+. Purpose It has been found that oxidative stress, mitochondrial damage, and neuro-inflammation play a fundamental role in NH4+ neurotoxicity. Piracetam is a drug used clinically in neurological complications such as stroke and head trauma. Piracetam could significantly diminish oxidative stress and improve brain mitochondrial function. Research methods In the current study, piracetam (100 and 500 mg/kg, oral) was used in a mice model of HE induced by thioacetamide (TA, 800 mg/kg, single dose, i.p). Results Significant disturbances in animals' locomotor activity, along with increased oxidative stress biomarkers, including reactive oxygen species formation, protein carbonylation, lipid peroxidation, depleted tissue glutathione, and decreased antioxidant capacity, were evident in the brain of TA-treated mice. Meanwhile, mitochondrial permeabilization, mitochondrial depolarization, suppression of dehydrogenases activity, and decreased ATP levels were found in the brain of the TA group. The level of pro-inflammatory cytokines was also significantly high in the brain of HE animals. Conclusion It was found that piracetam significantly enhanced mice's locomotor activity, blunted oxidative stress biomarkers, decreased inflammatory cytokines, and improved mitochondrial indices in hyperammonemic mice. These data suggest piracetam as a neuroprotective agent which could be repurposed for the management of HE.
Collapse
Affiliation(s)
- Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics, And Technology, Faculty of Medicine, University of Oulu, FI-90014, Oulu, Finland
- University Medical Center Utrecht, Departments of Orthopedics Rheumatology and Clinical Immunology, 3508, GA, Utrecht, the Netherlands
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania
| | - Abdollah Arjmand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Rafiei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Alidaee
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Razavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Bagheri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Shanxi Key Laboratory of Ecological, Animal Sciences, And Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouzan Khodaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mohammad Amin Kashani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shanxi Key Laboratory of Ecological, Animal Sciences, And Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Li Y, Cui R, Liu S, Qin Z, Sun W, Cheng Y, Liu Q. The efficacy and safety of post-stroke cognitive impairment therapies: an umbrella review. Front Pharmacol 2023; 14:1207075. [PMID: 37693907 PMCID: PMC10483224 DOI: 10.3389/fphar.2023.1207075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Background: Stroke survivors are at significantly increased risk of cognitive impairment, which affects patients' independence of activities of daily living (ADLs), social engagement, and neurological function deficit. Many studies have been done to evaluate the efficacy and safety of post-stroke cognitive impairment (PSCI) treatment, and due to the largely inconsistent clinical data, there is a need to summarize and analyze the published clinical research data in this area. Objective: An umbrella review was performed to evaluate the efficacy and safety of PSCI therapies. Methods: Three independent authors searched for meta-analyses and systematic reviews on PubMed, the Cochrane Library, and the Web of Science to address this issue. We examined ADL and Barthel index (BI), Montreal Cognitive Assessment (MoCA), neurological function deficit as efficacy endpoints, and the incidence of adverse events as safety profiles. Results: In all, 312 studies from 19 eligible publications were included in the umbrella review. The results showed that angiotensin-converting enzyme inhibitors (ACEI) and N-methyl-D-aspartate (NMDA) antagonists, cell therapies, acupuncture, and EGB76 can improve the MoCA and ADL, and the adverse effects were mild for the treatment of PSCI. Moreover, Vinpocetine, Oxiracetam, Citicoline, thrombolytic therapy, Actovegin, DL-3-n-Butylphthalide, and Nimodipine showed adverse events or low article quality in patients with PSCI. However, the research evidence is not exact and further research is needed. Conclusion: Our study demonstrated that ACEI inhibitors (Donepezil) and NMDA antagonists (Memantine), EGB761, and acupuncture are the ADL and BI, MoCA, and neurological function deficit medication/therapy, respectively, for patients with PSCI. Clinical Trial Registration: https://inplasy.com/inplasy-2022-11-0139/; Identifier: INPLASY2022110139.
Collapse
Affiliation(s)
- Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Ruyi Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaobo Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Zhiping Qin
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Wenjing Sun
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Qingshan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| |
Collapse
|
17
|
Stockbridge MD, Keser Z. Supporting Post-Stroke Language and Cognition with Pharmacotherapy: Tools for Each Phase of Care. Curr Neurol Neurosci Rep 2023; 23:335-343. [PMID: 37271792 PMCID: PMC10257638 DOI: 10.1007/s11910-023-01273-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF REVIEW There is enormous enthusiasm for the possibility of pharmacotherapies to treat language deficits that can arise after stroke. Speech language therapy remains the most frequently utilized and most strongly evidenced treatment, but the numerous barriers to patients receiving the therapy necessary to recover have motivated the creation of a relatively modest, yet highly cited, body of evidence to support the use of pharmacotherapy to treat post-stroke aphasia directly or to augment traditional post-stroke aphasia treatment. In this review, we survey the use of pharmacotherapy to preserve and support language and cognition in the context of stroke across phases of care, discuss key ongoing clinical trials, and identify targets that may become emerging interventions in the future. RECENT FINDINGS Recent trials have shifted focus from short periods of drug therapy supporting therapy in the chronic phase to longer terms approaching pharmacological maintenance beginning more acutely. Recent innovations in hyperacute stroke care, such as tenecteplase, and acute initiation of neuroprotective agents and serotonin reuptake inhibitors are important areas of ongoing research that complement the ongoing search for effective adjuvants to later therapy. Currently there are no drugs approved in the United States for the treatment of aphasia. Nevertheless, pharmacological intervention may provide a benefit to all phases of stroke care.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 4, Suite 446, Baltimore, MD, 21287, USA.
| | - Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
18
|
Berthier ML, Dávila G. Pharmacotherapy for post-stroke aphasia: what are the options? Expert Opin Pharmacother 2023; 24:1221-1228. [PMID: 37263978 DOI: 10.1080/14656566.2023.2221382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Aphasia is a common, long-lasting aftermath of stroke lesions. There is an increased integration of pharmacotherapy as an adjunctive strategy to speech and language therapy (SLT) for post-stroke aphasia (PSA). Nevertheless, more research in pharmacotherapy for acute and chronic PSA is necessary, including the election of drugs that target different neurotransmitter systems and deficits in specific language domains. AREAS COVERED This article updates the role of pharmacotherapy for PSA, focusing the spotlight on some already investigated drugs and candidate agents deserving of future research. Refining the precision of drug election would require using multimodal biomarkers to develop personalized treatment approaches. There is a solid need to devise feasible randomized controlled trials adapted to the particularities of the PSA population. The emergent role of multimodal interventions combining one or two drugs with noninvasive brain stimulation to augment SLT is emphasized. EXPERT OPINION Pharmacotherapy can improve language deficits not fully alleviated by SLT. In addition, the 'drug-only' approach can also be adopted when administering SLT is not possible. The primary goal of pharmacotherapy is reducing the overall aphasia severity, although targeting language-specific deficits (i.e. naming, spoken output) also contributes to improving functional communication. Unfortunately, there is still little information for recommending a drug for specific language deficits.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga - IBIMA, Malaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga - IBIMA, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| |
Collapse
|
19
|
Olorocisimo JP, Diaz LA, Co DE, Carag HM, Ibana JA, Velarde MC. Lactobacillus delbrueckii reduces anxiety-like behavior in zebrafish through a gut microbiome - brain crosstalk. Neuropharmacology 2023; 225:109401. [PMID: 36565853 DOI: 10.1016/j.neuropharm.2022.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Certain bacteria possess the ability to reduce anxiety- and stress-related behaviors through the gut microbiome-brain axis. Such bacteria are called psychobiotics, and can be used to improve mood and cognition. However, only a few bacteria have been characterized as psychobiotics, and their exact mechanism of action remains unclear. Hence, in this study we analyzed three different species under the Lactobacillacea family, namely, Lactobacillus delbrueckii, Lacticaseibacillus casei, and Lacticaseibacillus paracasei for their potential psychobiotic activities. L. delbrueckii treatment reduced anxiety-like behavior and increased brain and gut glutamic acid decarboxylase (gad) gene expression in zebrafish. It also altered zebrafish gut microbial community as determined by PCR-DGGE and 16S rRNA-based metagenomics analysis. Overall, this paper showed that L. delbrueckii but not L. paracasei and L. casei, induced a consistent improvement in anxiety-like behavior in zebrafish, implicating its potential role as a psychobiotic to reduce anxiety. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.
Collapse
Affiliation(s)
- Joshua P Olorocisimo
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Leomir A Diaz
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines; Career Incentive Program Scholarship Division, Science Education Institute, Department of Science and Technology, Bicutan Taguig City, Philippines.
| | - Daniel E Co
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Harold M Carag
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Joyce A Ibana
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| |
Collapse
|
20
|
Abomosallam M, Hendam BM, Abdallah AA, Refaat R, Elshatory A, Gad El Hak HN. Neuroprotective effect of piracetam-loaded magnetic chitosan nanoparticles against thiacloprid-induced neurotoxicity in albino rats. Inflammopharmacology 2023; 31:943-965. [PMID: 36745244 PMCID: PMC10140136 DOI: 10.1007/s10787-023-01151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
Thiacloprid (TH) is a neurotoxic agricultural insecticide and potential food contaminant. The purpose of this study was to investigate the relationship between TH exposure and memory dysfunction in rats, as well as the potential protective effect of piracetam and piracetam-loaded magnetic chitosan nanoparticles (PMC NPs). Rats were divided into five equal groups (six rats/group). The control group received saline. Group II was treated with PMC NPs at a dose level of 200 mg/kg body weight (Bwt); Group III was treated with 1/10 LD50 of TH (65 mg/kg Bwt); Group IV was treated with TH (65 mg/kg Bwt) and piracetam (200 mg/kg Bwt); Group V was co-treated with TH (65 mg/kg Bwt) and PMC NPs (200 mg/kg Bwt). All animal groups were dosed daily for 6 weeks by oral gavage. Footprint analysis, hanging wire test, open field test, and Y-maze test were employed to assess behavioral deficits. Animals were euthanized, and brain tissues were analyzed for oxidative stress biomarkers, proinflammatory cytokines, and gene expression levels of glial fibrillary acidic protein (GFAP), amyloid-beta precursor protein (APP), B-cell lymphoma 2 (Bcl-2), and caspase-3. Brain and sciatic nerve tissues were used for the evaluation of histopathological changes and immunohistochemical expression of tau protein and nuclear factor kappa B (NF-κB), respectively. The results revealed that TH-treated rats suffered from oxidative damage and inflammatory effect on the central and peripheral nerves. The administration of PMC NPs considerably protected against TH-induced neuronal damage, increased antioxidant enzyme activity, decreased inflammatory markers, and improved behavioral performance than the group treated with piracetam. The neuroprotective effect of PMC NPs was mediated through the inhibition of GFAP, APP, caspase-3, Tau, and NF-κB gene expression with induction of Bcl-2 expression. In conclusion, TH could induce oxidative stress, inflammatory and neurobehavior impairment in rats. However, PMC NPs administration markedly mitigated TH-induced brain toxicity, possibly via oxidative and inflammatory modulation rather than using piracetam alone.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma M Hendam
- Husbandry and Development of Animal Wealth Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amr A Abdallah
- Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, 12619, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Ahmed Elshatory
- Forensic Medicine and Clinical Toxicology Department, School of Medicine, Cairo University, Cairo, 11865, Egypt
| | | |
Collapse
|
21
|
Nozari A, Sharma A, Wang Z, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Wiklund L, Sharma HS. Co-administration of Nanowired Oxiracetam and Neprilysin with Monoclonal Antibodies to Amyloid Beta Peptide and p-Tau Thwarted Exacerbation of Brain Pathology in Concussive Head Injury at Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:271-313. [PMID: 37480464 DOI: 10.1007/978-3-031-32997-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Environmental temperature adversely affects the outcome of concussive head injury (CHI)-induced brain pathology. Studies from our laboratory showed that animals reared at either cold environment or at hot environment exacerbate brain pathology following CHI. Our previous experiments showed that nanowired delivery of oxiracetam significantly attenuated CHI-induced brain pathology and associated neurovascular changes. Military personnel are the most susceptible to CHI caused by explosion, blasts, missile or blunt head trauma leading to lifetime functional and cognitive impairments affecting the quality of life. Severe CHI leads to instant death and/or lifetime paralysis. Military personnel engaged in combat operations are often subjected to extreme high or low environmental temperature zones across the globe. Thus, further exploration of novel therapeutic agents at cold or hot ambient temperatures following CHI are the need of the hour. CHI is also a major risk factor for developing Alzheimer's disease by enhancing amyloid beta peptide deposits in the brain. In this review, effect of hot environment on CHI-induced brain pathology is discussed. In addition, whether nanodelivery of oxiracetam together with neprilysin and monoclonal antibodies (mAb) to amyloid beta peptide and p-tau could lead to superior neuroprotection in CHI is explored. Our results show that co-administration of oxiracetam with neprilysin and mAb to AβP and p-tau significantly induced superior neuroprotection following CHI in hot environment, not reported earlier.
Collapse
Affiliation(s)
- Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Mani V, Rabbani SI, Shariq A, Amirthalingam P, Arfeen M. Piracetam as a Therapeutic Agent for Doxorubicin-Induced Cognitive Deficits by Enhancing Cholinergic Functions and Reducing Neuronal Inflammation, Apoptosis, and Oxidative Stress in Rats. Pharmaceuticals (Basel) 2022; 15:ph15121563. [PMID: 36559014 PMCID: PMC9781976 DOI: 10.3390/ph15121563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer chemotherapy is known to cause cognitive defects in patients. Our study investigated the effect of piracetam (PIRA; 200 or 400 mg/kg) against doxorubicin (DOX)-induced cognitive deficits in a rat model. The cognitive parameters were analyzed using elevated plus-maze, novel object recognition, and Y-maze tests. Acetylcholinesterase (AChE), neuroinflammatory mediators (cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nuclear factor-κB (NF-κB), tumor necrosis factor-alpha (TNF-α)), apoptotic proteins (B-cell lymphoma-2 (Bcl-2), Bcl2 associated X protein (Bax), cysteine aspartate specific protease-3 (caspase-3)), oxidative parameters (malondialdehyde (MDA), catalase (CAT), and glutathione (GSH)) were also determined in the brain. PIRA administration offered significant protection against DOX-induced cognitive deficits in all maze tests and restored cholinergic functions via a significant reduction in AChE levels. Additionally, PIRA suppressed DOX-induced neuroinflammatory mediators (COX-2, PGE2, NF-κB, and TNF-α), pro-apoptotic proteins (Bax and caspase-3), and oxidative stress (MDA). Besides, it facilitated antioxidant (CAT and GSH) levels. Hence, our study highlighted that the neuroprotective activity of PIRA against DOX-induced cognitive deficits can be linked to reductions of AChE levels, neuro-inflammatory mediators, pro-apoptotic proteins, and oxidative stress.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (V.M.); (M.A.); Tel.: +966-508695644 (V.M.)
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Shariq
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Palanisamy Amirthalingam
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (V.M.); (M.A.); Tel.: +966-508695644 (V.M.)
| |
Collapse
|
23
|
Bonifacino T, Micheli L, Torazza C, Ghelardini C, Farina C, Bonanno G, Milanese M, Di Cesare Mannelli L, Scherz MW. Pharmacological Profile of MP-101, a Novel Non-racemic Mixture of R- and S-dimiracetam with Increased Potency in Rat Models of Cognition, Depression and Neuropathic Pain. Cells 2022; 11:cells11244027. [PMID: 36552791 PMCID: PMC9776800 DOI: 10.3390/cells11244027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The racemic mixture dimiracetam negatively modulates NMDA-induced glutamate release in rat spinal cord synaptosomal preparations and is orally effective in models of neuropathic pain. In this study, we compared the effects of dimiracetam, its R- or S-enantiomers, and the R:S 3:1 non-racemic mixture (MP-101). In vitro, dimiracetam was more potent than its R- or S-enantiomers in reducing the NMDA-induced [3H]D-aspartate release in rat spinal cord synaptosomes. Similarly, acute oral administration of dimiracetam was more effective than a single enantiomer in the sodium monoiodoacetate (MIA) paradigm of painful osteoarthritis. Then, we compared the in vitro effects of a broad range of non-racemic enantiomeric mixtures on the NMDA-induced [3H]D-aspartate release. Dimiracetam was a more potent blocker than each isolated enantiomer but the R:S 3:1 non-racemic mixture (MP-101) was even more potent than dimiracetam, with an IC50 in the picomolar range. In the chronic oxaliplatin-induced neuropathic pain model, MP-101 showed a significantly improved anti-neuropathic profile, and its effect continued one week after treatment suspension. MP-101 also performed better than dimiracetam in animal models of cognition and depression. Based on the benign safety and tolerability profile previously observed with racemic dimiracetam, MP-101 appears to be a novel, promising clinical candidate for the prevention and treatment of several neuropathic and neurological disorders.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genoa, 16148 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - Carola Torazza
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genoa, 16148 Genoa, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - Carlo Farina
- Metys Pharmaceuticals c/o Novaremed AG, 4051 Basel, Switzerland
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genoa, 16148 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genoa, 16148 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence: (M.M.); (L.D.C.M.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
- Correspondence: (M.M.); (L.D.C.M.)
| | | |
Collapse
|
24
|
Panzer JK, Tamayo A, Caicedo A. Restoring glutamate receptor signaling in pancreatic alpha cells rescues glucagon responses in type 1 diabetes. Cell Rep 2022; 41:111792. [PMID: 36516761 DOI: 10.1016/j.celrep.2022.111792] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/19/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Glucagon secretion from pancreatic alpha cells is crucial to prevent hypoglycemia. People with type 1 diabetes lose this glucoregulatory mechanism and are susceptible to dangerous hypoglycemia for reasons still unclear. Here we determine that alpha cells in living pancreas slices from donors with type 1 diabetes do not mount an adequate glucagon response and cannot activate the positive autocrine feedback mediated by AMPA/kainate glutamate receptors. This feedback is required to elicit full glucagon responses in the healthy state. Reactivating residual AMPA/kainate receptor function with positive allosteric modulators restores glucagon secretion in human slices from donors with type 1 diabetes as well as glucose counterregulation in non-obese diabetic mice. Our study thus identifies a defect in autocrine signaling that contributes to alpha cell failure. The use of positive allosteric modulators of AMPA/kainate receptors overcomes this deficiency and prevents hypoglycemia, an effect that could be used to improve the management of diabetes.
Collapse
Affiliation(s)
- Julia K Panzer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Alejandro Tamayo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
25
|
Gorodnicheva NV, Vasil’eva OS, Ostroglyadov ES, Baichurin RI, Litvinov IA, Tyurenkov IN, Kovalev NS, Bakulin DA, Kurkin DV, Baichurina LV, Makarenko SV. Synthesis, structure, and biological activity of 4-hetaryl-2-pyrrolidones containing a pyrazole ring. Chem Heterocycl Compd (N Y) 2022; 58:598-607. [PMID: 36467774 PMCID: PMC9708518 DOI: 10.1007/s10593-022-03140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022]
Abstract
Single diastereomers of 4-hetaryl-2-pyrrolidone-3(5)-carbo- and 2-[4-hetaryl-2-pyrrolidon-1-yl]acetohydrazides were used in reactions with 2,4-pentanedione, providing (3R*,4S*)-3-, (4R*,5R*)-5-(3,5-dimethyl-1H-pyrazole-1-carbonyl)- and 1-[2-(3,5-dimethyl-1H-pyrazol-1-yl)-2-oxoethyl]-4-hetaryl-2-pyrrolidones. The structures of the synthesized compounds were confirmed by spectral methods and X-ray structural analysis. Some of the obtained compounds were shown to possess nootropic and anxiolytic activity. Supplementary Information The online version contains supplementary material available at 10.1007/s10593-022-03140-4.
Collapse
Affiliation(s)
- Natal’ya V. Gorodnicheva
- Herzen State Pedagogical University of Russia, 48 Moyka River Embankment, Saint Petersburg, 191186 Russia
| | - Olga S. Vasil’eva
- Herzen State Pedagogical University of Russia, 48 Moyka River Embankment, Saint Petersburg, 191186 Russia
| | - Evgeny S. Ostroglyadov
- Herzen State Pedagogical University of Russia, 48 Moyka River Embankment, Saint Petersburg, 191186 Russia
| | - Ruslan I. Baichurin
- Herzen State Pedagogical University of Russia, 48 Moyka River Embankment, Saint Petersburg, 191186 Russia
| | - Igor A. Litvinov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, 8 Akademika Arbuzova St., Kazan, 420088 Russia
| | - Ivan N. Tyurenkov
- Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd, 400131 Russia
| | - Nikolay S. Kovalev
- Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd, 400131 Russia
| | - Dmitry A. Bakulin
- Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd, 400131 Russia
| | - Denis V. Kurkin
- Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd, 400131 Russia
| | - Larisa V. Baichurina
- Kirov Military Medical Academy, 6 Akademika Lebedeva St., Saint Petersburg, 194044 Russia
| | - Sergey V. Makarenko
- Herzen State Pedagogical University of Russia, 48 Moyka River Embankment, Saint Petersburg, 191186 Russia
| |
Collapse
|
26
|
Zhou Q, Han C, Xia Y, Wan F, Yin S, Li Y, Kou L, Chi X, Hu J, Sun Y, Wu J, Zou W, Huang J, Wang T. Efficacy and safety of 3-n-butylphthalide for the treatment of cognitive impairment: A systematic review and meta-analysis. CNS Neurosci Ther 2022; 28:1706-1717. [PMID: 36047338 PMCID: PMC9532910 DOI: 10.1111/cns.13952] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Current evidence for the efficacy of pharmacological treatment in improving cognitive function is absent. Recent studies have reported that 3-n-butylphthalide (NBP) has a positive effect on improving cognitive impairment; however, its clinical efficacy and safety is unclear. Therefore, we conducted a meta-analysis to assess its efficacy and safety for cognitive impairment. METHODS We systematically searched the PubMed, EMBASE, Cochrane Library, Web of Science, and Scopus databases, and two reviewers independently screened and extracted the data from included studies. We synthesized the data using the Review Manager Software version 5.3. RESULTS We included six randomized clinical trials (RCTs), encompassing 851 patients with cognitive impairment. The results showed that NBP improved cognitive impairment. Specifically, the clinical efficacy was better than that in the control group, with better performance in improving the Mini-Mental State Examination and the Montreal Cognitive Assessment scores, while decreasing the Alzheimer's Disease Assessment Scale-Cognitive subscale and the Clinician's Interview-Based Impression of Change plus caregiver input scores. There was no significant difference in the incidence of adverse events between both groups. CONCLUSION The NBP is effective and safe in improving cognitive impairment; however, more high-quality RCTs are needed to confirm these findings.
Collapse
Affiliation(s)
- Qiulu Zhou
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Chao Han
- Department of NeurologyThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Yun Xia
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Fang Wan
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Sijia Yin
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Yunna Li
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Liang Kou
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaosa Chi
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Junjie Hu
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Yadi Sun
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Jiawei Wu
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wenkai Zou
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Jinsha Huang
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Tao Wang
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
27
|
Levetiracetam Ameliorates Doxorubicin-Induced Chemobrain by Enhancing Cholinergic Transmission and Reducing Neuroinflammation Using an Experimental Rat Model and Molecular Docking Study. Molecules 2022; 27:molecules27217364. [PMID: 36364190 PMCID: PMC9653834 DOI: 10.3390/molecules27217364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer chemotherapy-induced cognitive impairment (chemobrain) is a major complication that affects the prognosis of therapy. Our study evaluates the nootropic-like activity of levetiracetam (LEVE) against doxorubicin (DOX)-induced memory defects using in vivo and molecular modelling. Rats were treated with LEVE (100 and 200 mg/kg, 30 days) and chemobrain was induced by four doses of DOX (2 mg/kg, i.p.). Spatial memory parameters were evaluated using an elevated plus maze (EPM) and Y-maze. Additionally, acetylcholinesterase (AChE) and the neuroinflammatory biomarkers cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nuclear factor-κB (NF-κB), and tumor necrosis factor-alpha (TNF-α) were analyzed using brain homogenate. PharmMapper was used for inverse docking and AutoDock Vina was used for molecular docking. LEVE treatment significantly diminished the DOX-induced memory impairment parameters in both the EPM and Y-maze. In addition, the drug treatment significantly reduced AChE, COX-2, PGE2, NF-κB, and TNF-α levels compared to DOX-treated animals. The inverse docking procedures resulted in the identification of AChE as the potential target. Further molecular modelling studies displayed interactions with residues Gly118, Gly119, and Ser200, critical for the hydrolysis of ACh. Analysis of the results suggested that administration of LEVE improved memory-related parameters in DOX-induced animals. The ‘nootropic-like’ activity could be related to diminished AChE and neuroinflammatory mediator levels.
Collapse
|
28
|
Chayrov R, Volkova T, Perlovich G, Zeng L, Li Z, Štícha M, Liu R, Stankova I. Synthesis, Neuroprotective Effect and Physicochemical Studies of Novel Peptide and Nootropic Analogues of Alzheimer Disease Drug. Pharmaceuticals (Basel) 2022; 15:ph15091108. [PMID: 36145329 PMCID: PMC9500833 DOI: 10.3390/ph15091108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Glutamate is an excitatory neurotransmitter in the nervous system. Excessive glutamate transmission can lead to increased calcium ion expression, related to increased neurotoxicity. Memantine is used for treating patients with Alzheimer’s disease (AD) due to its protective action on the neurons against toxicity caused by over activation of N-methyl-D-aspartate receptors. Nootropics, also called “smart drugs”, are used for the treatment of cognitive deficits. In this work, we evaluate the neuroprotective action of four memantine analogues of glycine derivatives, including glycyl-glycine, glycyl-glycyl-glycine, sarcosine, dimethylglycine and three conjugates with nootropics, modafinil, piracetam and picamilon. The new structural memantine derivatives improved cell viability against copper-induced neurotoxicity in APPswe cells and glutamate-induced neurotoxicity in SH-SY5Y cells. Among these novel compounds, modafinil-memantine, piracetam-memantine, sarcosine-memantine, dimethylglycine-memantine, and glycyl-glycine-memantine were demonstrated with good EC50 values of the protective effects on APPswe cells, accompanied with moderate amelioration from glutamate-induced neurotoxicity. In conclusion, our study demonstrated that novel structural derivatives of memantine might have the potential to develop promising lead compounds for the treatment of AD. The solubility of memantine analogues with nootropics and memantine analogues with glycine derivatives in buffer solutions at pH 2.0 and pH 7.4 simulating the biological media at 298.15 K was determined and the mutual influence of the structural fragments in the molecules on the solubility behavior was analyzed. The significative correlation equations relating the solubility and biological properties with the structural HYBOT (Hydrogen Bond Thermodynamics) descriptors were derived. These equations would greatly simplify the task of the directed design of the memantine analogues with improved solubility and enhanced bioavailability.
Collapse
Affiliation(s)
- Radoslav Chayrov
- Department of Chemistry, Faculty of Mathematics & Natural Sciences, South-West University “Neofit Rilski”, 2700 Blagoevgrad, Bulgaria
| | - Tatyana Volkova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - German Perlovich
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Li Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Martin Štícha
- Faculty of Science, Charles University in Prague, 128 43 Prague, Czech Republic
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (R.L.); (I.S.); Tel.: +86-10-67087731 (R.L.); +359-897-295919 (I.S.)
| | - Ivanka Stankova
- Department of Chemistry, Faculty of Mathematics & Natural Sciences, South-West University “Neofit Rilski”, 2700 Blagoevgrad, Bulgaria
- Correspondence: (R.L.); (I.S.); Tel.: +86-10-67087731 (R.L.); +359-897-295919 (I.S.)
| |
Collapse
|
29
|
Malík M, Tlustoš P. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients 2022; 14:3367. [PMID: 36014874 PMCID: PMC9415189 DOI: 10.3390/nu14163367] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/22/2022] Open
Abstract
Nootropics, also known as "smart drugs" are a diverse group of medicinal substances whose action improves human thinking, learning, and memory, especially in cases where these functions are impaired. This review provides an up-to-date overview of the potential effectiveness and importance of nootropics. Based on their nature and their effects, this heterogeneous group of drugs has been divided into four subgroups: classical nootropic compounds, substances increasing brain metabolism, cholinergic, and plants and their extracts with nootropic effects. Each subgroup of nootropics contains several main representatives, and for each one, its uses, indications, experimental treatments, dosage, and possible side effects and contraindications are discussed. For the nootropic plant extracts, there is also a brief description of each plant representative, its occurrence, history, and chemical composition of the medicinal part. Lastly, specific recommendations regarding the use of nootropics by both ill and healthy individuals are summarized.
Collapse
Affiliation(s)
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
30
|
Smith SN, Trujillo C, Connon SJ. Catalytic, asymmetric azidations at carbonyls: achiral and meso-anhydride desymmetrisation affords enantioenriched γ-lactams. Org Biomol Chem 2022; 20:6384-6393. [PMID: 35861618 DOI: 10.1039/d2ob01040b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented organocatalytic process involving the asymmetric addition of azide to meso-anhydrides has been developed, promoted by novel sulfamide-substituted Cinchona alkaloid-based catalysts. Readily available glutaric anhydrides can be smoothly converted to enantioenriched hemi-acyl azides and from there to either γ-amino acids or γ-lactams.
Collapse
Affiliation(s)
- Simon N Smith
- Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Cristina Trujillo
- Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Stephen J Connon
- Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
31
|
Wei YD, Chen XX, Yang LJ, Gao XR, Xia QR, Qi CC, Ge JF. Resveratrol ameliorates learning and memory impairments induced by bilateral hippocampal injection of streptozotocin in mice. Neurochem Int 2022; 159:105385. [PMID: 35843421 DOI: 10.1016/j.neuint.2022.105385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023]
Abstract
Resveratrol (RES) is a polyphenol with diverse beneficial pharmacological activities, and our previous results have demonstrated its neuroprotective potential. The purpose of this study was to investigate the therapeutic effect of RES in Alzheimer's disease (AD)-like behavioral dysfunction induced by streptozotocin (STZ) and explore it's potential mechanism of action. STZ was microinjected bilaterally into the dorsal hippocampus of C57BL/6J mice at a dose of 3 mg/kg, and RES was administered intragastrically at a dose of 25 mg/kg for 5 weeks. Neurobehavioral performance was observed, and serum concentrations of insulin and Nesfatin-1 were measured. Moreover, the protein expression of amyloid beta 1-42 (Aβ1-42), Tau, phosphorylated Tau (p-Tau) (Ser396), synaptic ras GTPase activation protein (SynGAP), postsynaptic density protein 95 (PSD95), synapsin-1, synaptogomin-1, and key molecules of the Wnt/β-catenin signaling pathway in the hippocampus and prefrontal cortex (PFC) were assessed. Finally, pathological damage to hippocampal tissue was examined by Nissl and immunofluorescence staining. The results showed that compared with the controls, bilateral hippocampal microinjections of STZ induced task-specific learning and memory impairments, as indicated by the disadvantaged performances in the novel object recognition test (NOR) and Morris water maze (MWM), but not the contextual fear conditioning test (CFC). Treatment with RES could improve these behavioral disadvantages. The serum concentrations of insulin and Nesfatin-1 in the model group were remarkably higher than those of the control group. In addition, protein expression of Aβ1-42, Tau, and p-Tau (Ser396) was increased but expression of SynGAP, PSD95, brain-derived neurotrophic factor (BDNF), and p-GSK-3β/GSK-3β were decreased in the hippocampus. Although the protein expression of BDNF and SynGAP was also markedly decreased in the PFC of the model mice, there was no significant difference among groups in the protein expression of PSD95, BDNF, synapsin-1, synaptogomin-1, and p-GSK-3β/GSK-3β. RES (25 mg/kg) reversed the enhanced insulin level, the abnormal protein expression of Aβ1-42, Tau, and p-Tau (Ser396) in the hippocampus and PFC, and the hippocampal protein expression of SynGAP, PSD95 and BDNF. In addition, RES reversed the STZ-induced decrease in the number of Nissl bodies and the increase in fluorescence intensity of IBA1 in the hippocampal CA1 region. These findings indicate that RES could ameliorate STZ-induced AD-like neuropathological injuries, the mechanism of which could be partly related to its regulation of BDNF expression and synaptic plasticity-associated proteins in the hippocampus.
Collapse
Affiliation(s)
- Ya-Dong Wei
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xing-Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Long-Jun Yang
- Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Xin-Ran Gao
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qing-Rong Xia
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China; Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Cong-Cong Qi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, And Department of Laboratory Animal Science, Fudan University, Shanghai, China.
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
32
|
Kolesnikova TO, Galstyan DS, Demin KA, Barabanov MA, Pestov AV, S de Abreu M, Strekalova T, Kalueff AV. Pharmacological characterization of a novel putative nootropic beta-alanine derivative, MB-005, in adult zebrafish. J Psychopharmacol 2022; 36:892-902. [PMID: 35713386 DOI: 10.1177/02698811221098192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cognitive deficits represent an urgent biomedical problem, and are commonly reduced by nootropic drugs. Animal models, including both rodents and zebrafish, offer a valuable tool for studying cognitive phenotypes and screening novel nootropics. Beta-alanine and its derivatives have recently been proposed to exert nootropic activity. AIMS This study aimed to characterize putative nootropic profile of a novel β-alanine analogue, 1,3-diaminopropane (MB-005), in adult zebrafish. METHODS Nootropic profile of MB-005 was assessed in adult zebrafish in the novel tank and conditioned place aversion (CPA) tests acutely, and in cued-learning plus-maze (PMT) tests chronically. RESULTS/OUTCOMES MB-005 did not alter zebrafish anxiety-like behavior or monoamine neurochemistry acutely, improved short-term memory in the CPA test, but impaired cognitive performance in both CPA and PMT tests chronically. CONCLUSIONS/INTERPRETATION This study reveals high sensitivity of zebrafish cognitive phenotypes to MB-005, suggesting it as a potential novel cognitive enhancer acutely, but raises concerns over its cognitive (and, possibly, other) side-effects chronically.
Collapse
Affiliation(s)
| | - David S Galstyan
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.,Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Konstantin A Demin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.,Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.,Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, Saint Petersburg, Russia
| | - Mikhail A Barabanov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexander V Pestov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Ural Federal University, Yekaterinburg, Russia
| | | | - Tatyana Strekalova
- Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.,Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.,Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia.,Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, Saint Petersburg, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia.,Maastricht University, Maastricht, The Netherlands.,COBRAIN Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia.,Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia.,School of Pharmacy, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Wang B, Zou L, Li M, Zhou L. Astrocyte: A Foe or a Friend in Intellectual Disability-Related Diseases. Front Synaptic Neurosci 2022; 14:877928. [PMID: 35812794 PMCID: PMC9259964 DOI: 10.3389/fnsyn.2022.877928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Intellectual disabilities are a type of neurodevelopmental disease caused by neurological dysfunction. Their incidence is largely associated with neural development. Astrocytes are the most widely distributed cells in the mammalian brain. Previous studies have reported that astrocytes only supported and separated the neurons in the brain. However, recent studies have found that they also play an important role in neural development. Understanding the astrocyte mechanism in intellectual development disorder-related diseases will help provide new therapeutic targets for the treatment of intellectual disability-related diseases. This mini-review introduced the association between astrocyte and intellectual disabilities. Furthermore, recent advances in genetic and environmental factors causing intellectual disability and different pharmaceutical effects of intellectual disability-related drugs on astrocytes have been summarised. Finally, we discussed future perspectives of astrocyte-based therapy for intellectual disability.
Collapse
Affiliation(s)
| | | | | | - Liang Zhou
- *Correspondence: Liang Zhou, , orcid.org/0000-0003-0820-1520
| |
Collapse
|
34
|
Han J, Escorihuela J, Fustero S, Landa A, Soloshonok VA, Sorochinsky A. Asymmetric Michael Addition in Synthesis of β-Substituted GABA Derivatives. Molecules 2022; 27:3797. [PMID: 35744921 PMCID: PMC9231165 DOI: 10.3390/molecules27123797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
γ-Aminobutyric acid (GABA) represents one of the most prolific structural units widely used in the design of modern pharmaceuticals. For example, β-substituted GABA derivatives are found in numerous neurological drugs, such as baclofen, phenibut, tolibut, pregabalin, phenylpiracetam, brivaracetam, and rolipram, to mention just a few. In this review, we critically discuss the literature data reported on the preparation of substituted GABA derivatives using the Michael addition reaction as a key synthetic transformation. Special attention is paid to asymmetric methods featuring synthetically useful stereochemical outcomes and operational simplicity.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain;
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain;
| | - Aitor Landa
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain; (A.L.); (V.A.S.)
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain; (A.L.); (V.A.S.)
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Alexander Sorochinsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska Str., 02094 Kyiv, Ukraine
| |
Collapse
|
35
|
Kumar R, Yadav N, Jain H, Deswal N, Upadhyay RK, Leekha A, Verma AK, Kareem A, Chikati R, Kumar LS. Microwave‐Assisted Synthesis of 4‐Aryl‐1,4‐dihydropyridines as Potent Anticancer Agent and Their
In‐Silico Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rakesh Kumar
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Neha Yadav
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Harshita Jain
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Nidhi Deswal
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | | | - Ankita Leekha
- Nano Biotech Laboratory Department of Zoology Kirori Mal College University of Delhi Delhi 110007 India
| | - Anita Kamra Verma
- Nano Biotech Laboratory Department of Zoology Kirori Mal College University of Delhi Delhi 110007 India
| | | | - Rajasekhar Chikati
- Department of Biochemistry Yogivemana University Kadpa- 516005 Andhra Pradesh India
| | | |
Collapse
|
36
|
Contreras-García IJ, Cárdenas-Rodríguez N, Romo-Mancillas A, Bandala C, Zamudio SR, Gómez-Manzo S, Hernández-Ochoa B, Mendoza-Torreblanca JG, Pichardo-Macías LA. Levetiracetam Mechanisms of Action: From Molecules to Systems. Pharmaceuticals (Basel) 2022; 15:ph15040475. [PMID: 35455472 PMCID: PMC9030752 DOI: 10.3390/ph15040475] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.
Collapse
Affiliation(s)
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico;
| | - Cindy Bandala
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Sergio R. Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Julieta Griselda Mendoza-Torreblanca
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Correspondence: (J.G.M.-T.); (L.A.P.-M.); Tel.: +52-55-1084-0900 (ext. 1441) (J.G.M.-T.)
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
- Correspondence: (J.G.M.-T.); (L.A.P.-M.); Tel.: +52-55-1084-0900 (ext. 1441) (J.G.M.-T.)
| |
Collapse
|
37
|
Enantioseparation of 4C-Substituted Pyrrolidin-2-One Derivatives on Polysaccharide and Macrocyclic Glycopeptide Chiral Stationary Phases. Chromatographia 2022. [DOI: 10.1007/s10337-022-04145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Koomson AE, Kukuia KKE, Amoateng P, Biney RP, Tagoe TA, Mensah JA, Ameyaw EO, Torbi J, Amponsah SK. Extract of Xylopia aethiopica and its Kaurene Diterpene, Xylopic Acid, Improve Learning and Memory in Mice. IBRO Neurosci Rep 2022; 12:249-259. [PMID: 35746979 PMCID: PMC9210480 DOI: 10.1016/j.ibneur.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Awo Efua Koomson
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
- Correspondence to: Department of Medical Pharmacology, University of Ghana Medical School College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Patrick Amoateng
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana
- Corresponding author.
| | - Robert Peter Biney
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Thomas Amatey Tagoe
- Department of Physiology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Jeffrey Amoako Mensah
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Elvis Ofori Ameyaw
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Joseph Torbi
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| |
Collapse
|
39
|
Gayke M, Narode H, Eppa G, Bhosale RS, Yadav JS. Synthetic Approaches toward the Synthesis of Brivaracetam: An Antiepileptic Drug. ACS OMEGA 2022; 7:2486-2503. [PMID: 35097251 PMCID: PMC8793090 DOI: 10.1021/acsomega.1c05378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 05/28/2023]
Abstract
Epilepsy is a chronic neurological disorder in the brain, affecting individuals of all age groups. Nearly 1% of the world population is affected by seizure disorder, of which 80% of the patients are observed in underdeveloped and developing countries. The predominant treatment option for epilepsy includes an antiepileptic drug named brivaracetam. This drug emerged as an unusual success of rational drug discovery in clinical development by exhibiting magnificent affinity toward synaptic vesicle glycoprotein as compared to conventional drug levetiracetam and piracetam. Given its efficiency in limiting the progression of epilepsy, this drug has drawn considerable attention of researchers to devise novel routes of its synthesis. The present review encapsulates the reported literature on synthetic strategies for brivaracetam, which will assist medicinal chemists in the further progress of its synthesis.
Collapse
|
40
|
Stockbridge MD. Better language through chemistry: Augmenting speech-language therapy with pharmacotherapy in the treatment of aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:261-272. [PMID: 35078604 PMCID: PMC11289691 DOI: 10.1016/b978-0-12-823384-9.00013-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Speech and language therapy is the standard treatment of aphasia. However, many individuals have barriers in seeking this measure of extensive rehabilitation treatment. Investigating ways to augment therapy is key to improving poststroke language outcomes for all patients with aphasia, and pharmacotherapies provide one such potential solution. Although no medications are currently approved for the treatment of aphasia by the United States Food and Drug Administration, numerous candidate mechanisms for pharmaceutical manipulation continue to be identified based on our evolving understanding of the neurometabolic experience of stroke recovery across molecular, cellular, and functional levels of inquiry. This chapter will review evidence for catecholaminergic, glutamatergic, cholinergic, and serotonergic drug therapies and discuss future directions for both candidate drug selection and pharmacotherapy practice in people with aphasia.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
41
|
Chalyk BA, Khutorianskyi AV, Vashchenko BV, Danyleiko K, Grynyova A, Osipova AO, Kozytskiy A, Syniuchenko D, Tsymbaliuk A, Gavrilenko KS, Biitseva AV, Volochnyuk DM, Komarov IV, Grygorenko OO. Reductive Recyclization of sp 3-Enriched Functionalized Isoxazolines into α-Hydroxy Lactams. J Org Chem 2021; 87:1001-1018. [PMID: 34843235 DOI: 10.1021/acs.joc.1c02301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient synthesis (up to a 200 g scale) of 3-hydroxypyrrolidin-2-ones bearing alkyl substituents or functional groups at the C-5 position is described. The reaction sequence started from 1,3-dipolar cycloaddition of in situ generated nitrile oxides with (meth-)acrylates into 3-substituted isoxazoline-5-carboxylates. The catalytic hydrogenolysis of the isoxazoline N-O bond was optimal upon using H2 (1 atm) at rt, with the following order of the catalyst activity: Pd-C > Pd(OH)2-C > Pt-C. The reactions with Pt-C were more selective for the synthesis of pyrrolidones, while Pd-C provided the fastest conversion rates. The stirring efficiency had a positive impact on conversion rather than elevated temperatures (up to 40 °C) or pressure (up to 50 atm). The diastereoselectivity was governed mainly by steric factors, with a dr of 1:1 to 3:1 (cis- and trans-isomers could be separated). Higher homologues (isoxazolinylacetates and -propanoates) were suitable for the synthesis of 6- or 7-substituted 4-hydroxypiperidones and 5-hydroxyazepanones, respectively. The proposed methods are tolerant to functional groups, including CF3 (but not CHF2 or CH2Cl), ester, and most N-Boc-protected amines. The utility of hydroxyl groups in lactams was shown by functional group transformations. Hydrogenolysis of C(5)-functionalized isoxazolines, bearing trimethylsilyl, phosphonate, or sulfone groups, was also studied to demonstrate limitations.
Collapse
Affiliation(s)
- Bohdan A Chalyk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02094, Ukraine
| | - Andrii V Khutorianskyi
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Bohdan V Vashchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Kyrylo Danyleiko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Anastasiia Grynyova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02094, Ukraine.,Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
| | - Anastasiia O Osipova
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Andriy Kozytskiy
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,L. V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Nauky Avenue, 31, Kyiv 03028, Ukraine
| | - Darya Syniuchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Anton Tsymbaliuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Konstantin S Gavrilenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Angelina V Biitseva
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Dmitriy M Volochnyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02094, Ukraine.,Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Igor V Komarov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| |
Collapse
|
42
|
Mohammat MF, Safyudin U, Rashid FNAA, Salleh SNM, Johari SA, Shaameri Z, Hamzah AS. Synthesis of Ethyl 3-Methyl-4,5-dioxo-1,2-diphenylpyrrolidine-3-carboxylate Analogues Using Green and Expeditious Grinding Method. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Borozdenko DA, Ezdoglian AA, Shmigol TA, Gonchar DI, Lyakhmun DN, Tarasenko DV, Golubev YV, Cherkashova EA, Namestnikova DD, Gubskiy IL, Lagunin AA, Gubsky LV, Chekhonin VP, Borisevich SS, Gureev MA, Shagina AD, Kiseleva NM, Negrebetsky VV, Baukov YI. A Novel Phenylpyrrolidine Derivative: Synthesis and Effect on Cognitive Functions in Rats with Experimental Ishemic Stroke. Molecules 2021; 26:molecules26206124. [PMID: 34684709 PMCID: PMC8541353 DOI: 10.3390/molecules26206124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
We performed an in silico, in vitro, and in vivo assessment of a potassium 2-[2-(2-oxo-4-phenylpyrrolidin-1-yl) acetamido]ethanesulfonate (compound 1) as a potential prodrug for cognitive function improvement in ischemic brain injury. Using in silico methods, we predicted the pharmacological efficacy and possible safety in rat models. In addition, in silico data showed neuroprotective features of compound 1, which were further supported by in vitro experiments in a glutamate excitotoxicity-induced model in newborn rat cortical neuron cultures. Next, we checked whether compound 1 is capable of crossing the blood-brain barrier in intact and ischemic animals. Compound 1 improved animal behavior both in intact and ischemic rats and, even though the concentration in intact brains was low, we still observed a significant anxiety reduction and activity escalation. We used molecular docking and molecular dynamics to support our hypothesis that compound 1 could affect the AMPA receptor function. In a rat model of acute focal cerebral ischemia, we studied the effects of compound 1 on the behavior and neurological deficit. An in vivo experiment demonstrated that compound 1 significantly reduced the neurological deficit and improved neurological symptom regression, exploratory behavior, and anxiety. Thus, here, for the first time, we show that compound 1 can be considered as an agent for restoring cognitive functions.
Collapse
Affiliation(s)
- Denis A. Borozdenko
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Aiarpi A. Ezdoglian
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Tatiana A. Shmigol
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Darya I. Gonchar
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Dmitri N. Lyakhmun
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Dmitri V. Tarasenko
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Yaroslav V. Golubev
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Elvira A. Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Medicine Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies, Federal Medical Bio-logical Agency, 117997 Moscow, Russia; (E.A.C.); (D.D.N.); (I.L.G.)
| | - Daria D. Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Medicine Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies, Federal Medical Bio-logical Agency, 117997 Moscow, Russia; (E.A.C.); (D.D.N.); (I.L.G.)
| | - Ilya L. Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Medicine Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies, Federal Medical Bio-logical Agency, 117997 Moscow, Russia; (E.A.C.); (D.D.N.); (I.L.G.)
| | - Alexey A. Lagunin
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Leonid V. Gubsky
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Medicine Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies, Federal Medical Bio-logical Agency, 117997 Moscow, Russia; (E.A.C.); (D.D.N.); (I.L.G.)
| | - Vladimir P. Chekhonin
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Sophia S. Borisevich
- Laboratory of Physical Chemistry, Ufa Institute of Chemistry UFRS RAS, pr. Oktyabrya 71, 450054 Ufa, Russia;
| | - Maxim A. Gureev
- Laboratory of Bioinformatics, Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov University, 119991 Moscow, Russia;
- Laboratory of Bioinformatics and Computational Modelling of Biological Systems, Department of Computational Biology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasia D. Shagina
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Nina M. Kiseleva
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Vadim V. Negrebetsky
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Yuri I. Baukov
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
- Correspondence:
| |
Collapse
|
44
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Menon PK, Patnaik R, Wiklund L, Sharma HS. Nanodelivery of oxiracetam enhances memory, functional recovery and induces neuroprotection following concussive head injury. PROGRESS IN BRAIN RESEARCH 2021; 265:139-230. [PMID: 34560921 DOI: 10.1016/bs.pbr.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Military personnel are the most susceptible to concussive head injury (CHI) caused by explosion, blast or missile or blunt head trauma. Mild to moderate CHI could induce lifetime functional and cognitive disturbances causing significant decrease in quality of life. Severe CHI leads to instant death and lifetime paralysis. Thus, further exploration of novel therapeutic agents or new features of known pharmacological agents are needed to enhance quality of life of CHI victims. Previous reports from our laboratory showed that mild CHI induced by weight drop technique causing an impact of 0.224N results in profound progressive functional deficit, memory impairment and brain pathology from 5h after trauma that continued over several weeks of injury. In this investigation we report that TiO2 nanowired delivery of oxiracetam (50mg/kg, i.p.) daily for 5 days after CHI resulted in significant improvement of functional deficit on the 8th day. This was observed using Rota Rod treadmill, memory improvement assessed by the time spent in finding hidden platform under water. The motor function improvement is seen in oxiracetam treated CHI group by placing forepaw on an inclined mesh walking and foot print analysis for stride length and distance between hind feet. TiO2-nanowired oxiracetam also induced marked improvements in the cerebral blood flow, reduction in the BBB breakdown and edema formation as well as neuroprotection of neuronal, glial and myelin damages caused by CHI at light and electron microscopy on the 7th day after 5 days TiO2 oxiracetam treatment. Adverse biochemical events such as upregulation of CSF nitrite and nitrate, IL-6, TNF-a and p-Tau are also reduced significantly in oxiracetam treated CHI group. On the other hand post treatment of 100mg/kg dose of normal oxiracetam in identical conditions after CHI is needed to show slight but significant neuroprotection together with mild recovery of memory function and functional deficits on the 8th day. These observations are the first to point out that nanowired delivery of oxiracetam has superior neuroprotective ability in CHI. These results indicate a promising clinical future of TiO2 oxiracetam in treating CHI patients for better quality of life and neurorehabilitation, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
45
|
Kadriu B, Musazzi L, Johnston JN, Kalynchuk LE, Caruncho HJ, Popoli M, Zarate CA. Positive AMPA receptor modulation in the treatment of neuropsychiatric disorders: A long and winding road. Drug Discov Today 2021; 26:2816-2838. [PMID: 34358693 DOI: 10.1016/j.drudis.2021.07.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
Glutamatergic transmission is widely implicated in neuropsychiatric disorders, and the discovery that ketamine elicits rapid-acting antidepressant effects by modulating α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) signaling has spurred a resurgence of interest in the field. This review explores agents in various stages of development for neuropsychiatric disorders that positively modulate AMPARs, both directly and indirectly. Despite promising preclinical research, few direct and indirect AMPAR positive modulators have progressed past early clinical development. Challenges such as low potency have created barriers to effective implementation. Nevertheless, the functional complexity of AMPARs sets them apart from other drug targets and allows for specificity in drug discovery. Additional effective treatments for neuropsychiatric disorders that work through positive AMPAR modulation may eventually be developed.
Collapse
Affiliation(s)
- Bashkim Kadriu
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Jenessa N Johnston
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Carlos A Zarate
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
46
|
Xu R, Xu T, Wang G. Study on the Regulation of Piracetam Crystallization Behavior. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202000117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ronghui Xu
- Shenyang University of Chemical Technology Shenyang Liaoning 110142 China
| | - Tingting Xu
- Shenyang University of Chemical Technology Shenyang Liaoning 110142 China
| | - Guosheng Wang
- Shenyang University of Chemical Technology Shenyang Liaoning 110142 China
| |
Collapse
|
47
|
Singh HP, Kumar P. Developments in the human machine interface technologies and their applications: a review. J Med Eng Technol 2021; 45:552-573. [PMID: 34184601 DOI: 10.1080/03091902.2021.1936237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human-machine interface (HMI) techniques use bioelectrical signals to gain real-time synchronised communication between the human body and machine functioning. HMI technology not only provides a real-time control access but also has the ability to control multiple functions at a single instance of time with modest human inputs and increased efficiency. The HMI technologies yield advanced control access on numerous applications such as health monitoring, medical diagnostics, development of prosthetic and assistive devices, automotive and aerospace industry, robotic controls and many more fields. In this paper, various physiological signals, their acquisition and processing techniques along with their respective applications in different HMI technologies have been discussed.
Collapse
Affiliation(s)
- Harpreet Pal Singh
- Department of Mechanical Engineering, Punjabi University, Patiala, India
| | - Parlad Kumar
- Department of Mechanical Engineering, Punjabi University, Patiala, India
| |
Collapse
|
48
|
Treating of focal epilepsy: a patent review. Pharm Pat Anal 2021; 10:165-173. [PMID: 34076528 DOI: 10.4155/ppa-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Focal epilepsy is one of the most frequent specific type of epilepsies, with 30% treatment-resistant patients. There are several directions researchers can follow to improve existing treatment of focal epilepsy: synthesis of new compounds with anticonvulsant activity, repurposing drugs approved for other indications, finding drugs targeted to specific genetic and biochemical defects that underlie focal epilepsy syndromes, development of viral vectors for specific gene therapy, creation of devices and methods for suppression of seizures by electrostimulation and development of methods to increase safety of epilepsy surgery. Improvement of efficacy and safety of current therapies is necessary, as well as developing targeted treatment of genetic epilepsy syndromes that will not only suppress seizures, but stop further epileptogenesis.
Collapse
|
49
|
Głowacka IE, Hartwich A, Rozpara I, Piotrowska DG. Synthesis of Functionalized Diethyl(pyrrolidin-2-yl)phosphonate and Diethyl(5-oxopyrrolidin-2-yl)phosphonate. Molecules 2021; 26:molecules26113160. [PMID: 34070623 PMCID: PMC8197975 DOI: 10.3390/molecules26113160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Short and efficient syntheses of functionalized (pyrrolidin-2-yl)phosphonate and (5-oxopyrrolidin-2-yl)phosphonate have been developed. The synthetic strategy involved the diastereospecific 1,3-dipolar cycloaddition of N-benzyl-C-(diethoxyphosphoryl)nitrone to cis-1,4-dihydroxybut-2-ene and dimethyl maleate, respectively. O,O-Diethyl 3-carbamoyl-4-hydroxy(5-oxopyrrolidin-2-yl)phosphonate was obtained from O,O-diethyl 2-benzyl-4,5-dimethoxycarbonyl(isoxazolidin-3-yl)phosphonate by hydrogenation and subsequent treatment with ammonia, whereas transformation of O,O-diethyl 2-benzyl-4,5-dihydroxymethyl(isoxazolidin-3-yl)phosphonate into O,O-diethyl 3-aminomethyl-4-hydroxy(pyrrolidin-2-yl)phosphonate was accomplished by mesylation followed by hydrogenolysis to undergo intramolecular cyclization and the introduction of amino group via ammonolysis. Stereochemistry of the isoxazolidine cycloadducts, as well as the final functionalized (pyrrolidin-2-yl)- and (5-oxopyrrolidin-2-yl)phosphonates were established based on conformational analyses using vicinal H-H, H-P, and C-P couplings and supported by the observed diagnostic NOESY correlation signals.
Collapse
|
50
|
González-Fernández R, Grigoruţă M, Chávez-Martínez S, Ruiz-May E, Elizalde-Contreras JM, Valero-Galván J, Martínez-Martínez A. Liver proteome alterations in psychologically distressed rats and a nootropic drug. PeerJ 2021; 9:e11483. [PMID: 34055494 PMCID: PMC8140599 DOI: 10.7717/peerj.11483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Chronic psychological distress is considered today a pandemic due to the modern lifestyle and has been associated with various neurodegenerative, autoimmune, or systemic inflammation-related diseases. Stress is closely related to liver disease exacerbation through the high activity of the endocrine and autonomic nervous systems, and the connection between the development of these pathologies and the physiological effects induced by oxidative stress is not yet completely understood. The use of nootropics, as the cognitive enhancer and antioxidant piracetam, is attractive to repair the oxidative damage. A proteomic approach provides the possibility to obtain an in-depth comprehension of the affected cellular processes and the possible consequences for the body. Therefore, we considered to describe the effect of distress and piracetam on the liver proteome. METHODS We used a murine model of psychological stress by predatory odor as a distress paradigm. Female Sprague-Dawley rats were distributed into four experimental groups (n = 6 - 7/group) and were exposed or not to the stressor for five days and treated or not with piracetam (600 mg/kg) for six days. We evaluated the liver proteome by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D-SDS-PAGE) followed by liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). Besides, we analyzed the activity of liver antioxidant enzymes, the biochemical parameters in plasma and rat behavior. RESULTS Our results showed that distress altered a wide range of proteins involved in amino acids metabolism, glucose, and fatty acid mobilization and degradation on the way to produce energy, protein folding, trafficking and degradation, redox metabolism, and its implications in the development of the non-alcoholic fatty liver disease (NAFLD). Piracetam reverted the changes in metabolism caused by distress exposure, and, under physiological conditions, it increased catabolism rate directed towards energy production. These results confirm the possible relationship between chronic psychological stress and the progression of NAFLD, as well as we newly evidenced the controversial beneficial effects of piracetam. Finally, we propose new distress biomarkers in the liver as the protein DJ-1 (PARK7), glutathione peroxidase 1 (GPX), peroxiredoxin-5 (PRDX5), glutaredoxin 5 (GLRX5), and thioredoxin reductase 1 (TXNDR1), and in plasma as biochemical parameters related to kidney function such as urea and blood urea nitrogen (BUN) levels.
Collapse
Affiliation(s)
- Raquel González-Fernández
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - Mariana Grigoruţă
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - Sarahi Chávez-Martínez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | | | - José Valero-Galván
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - Alejandro Martínez-Martínez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| |
Collapse
|