1
|
Jiang L, Zhu X, Shen Y, Wang D, Ren J, Li A, Pan Y. Control of drinking water disinfection byproducts with a novel bromide-selective anion exchange resin: Design, mechanism, and performance. WATER RESEARCH 2024; 268:122565. [PMID: 39378743 DOI: 10.1016/j.watres.2024.122565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
In regions where drinking water sources containing elevated bromide levels, the formation of brominated disinfection byproducts (Br-DBPs) is enhanced, which may increase risks of cancer and birth defects. Anion exchange resin (AER) adsorption is a promising approach for reducing precursors of Br-DBPs (e.g., bromide and natural organic matter) due to its strong electrostatic force for reversible ion exchange process. However, high bromide water sources typically have high salinities, and the presence of co-existing ions (e.g., sulfate, nitrate, chloride) can significantly diminish the efficiency of conventional AERs, which use polyacrylic or polystyrene skeletons with trimethyl-ammonium functional groups. This study designed a novel AER with the polystyrene skeleton and tripentyl-ammonium functional group for the selective bromide removal, which resisted interferences from co-existing ions based on ion dehydration and ion-pairing electrostatic interactions. Column experiments with continuous high-bromide water flows demonstrated that the novel AER exhibited up to three times the operating capacity of conventional AERs, achieving reductions of 71.2 %, 44.6 %, and 67.7 % in bromide, dissolved organic carbon, and specific UV absorbance, respectively. Competitive experiments showed that the novel AER's strong sulfate interference resistance enhanced its bromide selectivity. The electrostatic interactions between AER fragments and bromide or sulfate particles were quantitatively evaluated using density functional theory calculations. Treatment with the novel AER led to reductions in total organic bromine, aliphatic Br-DBPs, and cyclic Br-DBPs by 76.7 %, 62.5 %, and 90.5 %, respectively. Notably, cytotoxicity assays using Chinese hamster ovary cells indicated a 39.7 % decrease in overall cytotoxicity of chlorinated drinking water following treatment with the novel AER.
Collapse
Affiliation(s)
- Lu Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xingqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yifan Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dongxiao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jiafeng Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Leri AC, Hettithanthri O, Bolan S, Zhang T, Unrine J, Myneni S, Nachman DR, Tran HT, Phillips AJ, Hou D, Wang Y, Vithanage M, Padhye LP, Jasemi Zad T, Heitz A, Siddique KHM, Wang H, Rinklebe J, Kirkham MB, Bolan N. Bromine contamination and risk management in terrestrial and aquatic ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133881. [PMID: 38422740 PMCID: PMC11380803 DOI: 10.1016/j.jhazmat.2024.133881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments. Volcanic eruptions, geothermal streams, and seawater are the major natural sources of Br. In soils and sediments, Br undergoes natural cycling between organic and inorganic forms, with bromination reactions occurring both abiotically and through microbial activity. For organisms, Br is a non-essential element; it is passively taken up by plant roots in the form of the Br- anion. Elevated Br- levels can limit plant growth on coastal soils of arid and semi-arid environments. Br is used in the chemical industry to manufacture pesticides, flame retardants, pharmaceuticals, and other products. Anthropogenic sources of organobromine contaminants in the environment are primarily wastewater treatment, fumigants, and flame retardants. When aqueous Br- reacts with oxidants in water treatment plants, it can generate brominated disinfection by-products (DBPs), and exposure to DBPs is linked to adverse human health effects including increased cancer risk. Br- can be removed from aquatic systems using adsorbents, and amelioration of soils containing excess Br- can be achieved by leaching, adding various amendments, or phytoremediation. Developing cost-effective methods for Br- removal from wastewater would help address the problem of toxic brominated DBPs. Other anthropogenic organobromines, such as polybrominated diphenyl ether (PBDE) flame retardants, are persistent, toxic, and bioaccumulative, posing a challenge in environmental remediation. Future research directives for managing Br pollution sustainably in various environmental settings are suggested here.
Collapse
Affiliation(s)
- Alessandra C Leri
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States.
| | - Oshadi Hettithanthri
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, United States; Kentucky Water Research Institute, University of Kentucky, Lexington, KY 40506, United States
| | - Satish Myneni
- Department of Geosciences, Princeton Univ., Princeton, NJ 08544, United States
| | - Danielle R Nachman
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Huu Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145, India
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yidong Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Tahereh Jasemi Zad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Anna Heitz
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| |
Collapse
|
3
|
Psoras AW, McCoy SW, Reber KP, McCurry DL, Sivey JD. Ipso Substitution of Aromatic Bromine in Chlorinated Waters: Impacts on Trihalomethane Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18801-18810. [PMID: 37096875 DOI: 10.1021/acs.est.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Parabens and salicylates were examined as disinfection byproduct (DBP) precursors to explore the possible influence of ipso substitution (i.e., halogen exchange) on the yield and speciation of trihalomethanes (THMs) formed during water chlorination. Substoichiometric conversion of C-Br bonds into C-Cl bonds was confirmed for several parabens and salicylates. The co-occurrence of (mono)brominated and nonhalogenated precursors in the presence of free chlorine (but in the absence of added Br-) generated polybrominated THMs, implicating ipso substitution. The THM molar yield, bromine incorporation, and bromine recovery from brominated and nonhalogenated precursor mixtures were commensurate with those observed from equimolar additions of NaBr, indicating efficient displacement of aromatic bromine by free chlorine followed by reincorporation of liberated HOBr into DBP precursors. The THM molar yield from brominated precursors was enhanced by a factor of ≤20 relative to that from nonhalogenated precursors. Trends in THM molar yields and bromine incorporation differed between brominated parabens and brominated salicylates, suggesting that the influence of ipso substitution on THM formation varies with the structure of the organic precursor. Collectively, these results provide new evidence of the often-overlooked role ipso substitution can play in promoting halogen exchange and bromine enrichment among DBPs in chlorinated waters.
Collapse
Affiliation(s)
- Andrew W Psoras
- Environmental Science & Studies Program, Towson University, Towson, Maryland 21252, United States
| | - Seth W McCoy
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Keith P Reber
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - John D Sivey
- Environmental Science & Studies Program, Towson University, Towson, Maryland 21252, United States
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
- Urban Environmental Biogeochemistry Laboratory, Towson University, Towson, Maryland 21252, United States
| |
Collapse
|
4
|
Wang T, Deng L, Shen J, Tan C, Hu J, Singh RP. Formation, toxicity, and mechanisms of halonitromethanes from poly(diallyl dimethyl ammonium chloride) during UV/monochloramine disinfection in the absence and presence of bromide ion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117819. [PMID: 36996559 DOI: 10.1016/j.jenvman.2023.117819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Bromide ion (Br-) is known as a prevalent component in water environments, which exhibits significant impacts on halonitromethanes (HNMs) formation. This study was performed to explore and compare the formation, toxicity, and mechanisms of HNMs from poly(diallyl dimethyl ammonium chloride) (PDDACl) in the absence and presence of Br- in the UV/monochloramine (UV/NH2Cl) disinfection process. The results showed that chlorinated HNMs were found in the absence of Br-, while brominated (chlorinated) HNMs and brominated HNMs were found in the presence of Br-. Furthermore, the peaks of total HNMs were promoted by 2.0 and 2.4 times, respectively when 1.0 and 2.0 mg L-1 Br- were added. Also, the peaks of total HNMs were enhanced with the increase of the NH2Cl dosage, which were reduced with the increase of pH. It should be noted that Br- induced higher toxicity of HNMs, and the cytotoxicity and genotoxicity of HNMs with the addition of 2.0 mg L-1 Br- were 78.0 and 3.7 times those without the addition of Br-, respectively. Meanwhile, both the reaction mechanisms of HNMs produced from PDDACl were speculated in the absence and presence of Br-. Finally, different HNMs species and yields were discovered in these two real water samples compared to those in simulated waters. These findings of this work will be conducive to understanding the significance of Br- affecting HNMs formation and toxicity in the disinfection process.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China.
| | - Jiaxin Shen
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | | |
Collapse
|
5
|
Premarathna SM, Kastl G, Fisher I, Sathasivan A. Model for halo-acetic acids formation in bulk water of water supply systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159267. [PMID: 36208766 DOI: 10.1016/j.scitotenv.2022.159267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
With increased understanding of the differences in toxicity between species of haloacetic acids (HAAs) and the possibility of more stringent regulations, the ability to predict individual HAA species formation is important. Nine different haloacetic acids are regulated and their total concentration is referred to as HAA9. A mathematical model to predict concentrations of HAA species was proposed and tested using independent data sets. The amount of HAA9 formed per unit amount of chlorine consumed (μg-HAA9/mg-consumed chlorine) remained constant throughout the reaction times in each sample. Similarly, the fraction of a given HAA species largely remained constant during most of the reaction time. Thus, each HAA species was assumed to have its own yield with respect to consumed chlorine in a given water sample. The parallel second-order (2R) model describing chlorine decay kinetics was then extended to predict HAA species formation kinetics. The combined chlorine and HAA species model closely predicts all tested HAA species and its sum with standard error ≤ 5 μg/L. Within the tested waters having Cl2/N mass ratio ≥ 10.7 (g-Cl2/g-N), ammonia did not impact the mass yield. The mass yield of each HAA species can be calculated from three measurements (e.g. at 0, 4 and 24 h) of HAA species and chlorine. Once the yield is known, HAA species concentrations could be predicted for up to 120 h with only chlorine measurements. The model extends the previous work of predicting the trihalomethane species formation kinetics to HAA species formation kinetics. Further research is needed to understand how the yield varies with source water quality, treatment and in distribution systems.
Collapse
Affiliation(s)
| | - George Kastl
- School of Computing, Engineering and Mathematics, Western Sydney University, NSW 2751, Australia.
| | - Ian Fisher
- School of Computing, Engineering and Mathematics, Western Sydney University, NSW 2751, Australia; Watervale Systems Pty Ltd, PO Box 318, Potts Point, NSW 1335, Australia.
| | - Arumugam Sathasivan
- School of Computing, Engineering and Mathematics, Western Sydney University, NSW 2751, Australia.
| |
Collapse
|
6
|
Guo Y, Yang Q, Xu J, Bai X, Han Q, Nie J, Zhang L, Li H, Gao H, Zhou W, Li J. Formation of organic chloramines during chlorination of 18 compounds. WATER RESEARCH 2021; 204:117570. [PMID: 34464745 DOI: 10.1016/j.watres.2021.117570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Organic chloramines have attracted considerable attention because of their potential toxicity and reactivity. However, the lack of suitable and effective analytical methods has limited the study of organic chloramines due to their volatile and unstable properties. In this study, membrane introduction mass spectrometry (MIMS) combined with DPD/FAS titration was used to monitor the formation of organic chloramines. N-chlorodimethylamine [(CH3)2NCl] and N-chlorodiethylamine [(C2H5)2NCl] were detected and identified as the dominant volatile DBPs during chlorination of 18 organic compounds with dimethylamine or diethylamine functional groups, with yields ranging from 0.3% to 51.1% at a chlorine to precursor (Cl/P) molar ratio of 8.0. (CH3)2NBr was formed in the presence of bromide, while the formation of (CH3)2NCl was decreased. The reaction of phenol with (CH3)2NCl combined with theoretical calculations confirmed that the reactivity of (CH3)2NCl was similar to that of monochloramine. Moreover, (CH3)2NCl and (C2H5)2NCl were observed at the ppb level during chlorination of actual water samples collected from different areas. The results suggest that (CH3)2NCl and (C2H5)2NCl are important organic chloramines during chlorination, which may lead to the occurrence of further oxidation reactions and promote the formation of other disinfection byproducts simultaneously and should be of concern.
Collapse
Affiliation(s)
- Yang Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Qian Yang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Jie Xu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Xueling Bai
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Qihuan Han
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Jie Nie
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Luo Zhang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zheng Zhou 450052, China
| | - Hongtao Li
- Institute of Geographical Sciences, Henan Academy of Sciences, Zheng Zhou 450052, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - WenFeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
7
|
Yang X, Zheng Q, He M, Chen B, Hu B. Bromine and iodine species in drinking water supply system along the Changjiang River in China: Occurrence and transformation. WATER RESEARCH 2021; 202:117401. [PMID: 34252864 DOI: 10.1016/j.watres.2021.117401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Bromine (Br) and iodine (I) in source water can form highly toxic brominated or iodinated disinfection byproducts in treatment plants. For the first time, the occurrence of Br and I speciation and their proportion, transformation in the drinking water supply system along the Changjiang River were investigated. 96 water samples were collected from eight drinking water treatment plants under conditions of low, normal, and flood water regimes. Total Br (TBr) and total I (TI) concentrations were quantified by inductively coupled plasma mass spectrometry (ICPMS) and inorganic Br/I forms (bromide, bromate, iodide, and iodate) were determined by high-performance liquid chromatography coupled with ICPMS. Concentrations of organic Br/I were calculated as the difference between total Br/I and inorganic Br/I. Water regimes had different effect on Br and I species, and there were different rules in untreated and treated water samples. Apparent increase of TBr and TI concentrations after water treatment were observed, which indicated the possibility of Br/I introduction by chlorine-containing disinfectant. The occurrence of TBr, TI, bromide, and total organic I in the river were investigated to increase with the direction of flow. In addition, TBr and TI concentrations correlated with the concentrations of artificial sweeteners (e.g., acesulfame and sucralose, a kind of wastewater indicator), suggesting the influence of domestic sewage on Br and I in the river. In untreated water, bromide was the main Br species, and after treatment more than 50% was transformed into organic Br. Iodoorganics were the majority of I species in raw water and were partly transformed into iodate after treatment. Overall, the Br/I species have accumulation potential in the Changjiang River and organic forms occupy high proportion in treated water samples, which should be paid more attention.
Collapse
Affiliation(s)
- Xiaoqiu Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Djam S, Najafi M, Ahmadi SH, Shoeibi S. Bottled water safety evaluations in IRAN: determination of bromide and oxyhalides (chlorite, chlorate, bromate) by ion chromatography. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:609-616. [PMID: 33312587 PMCID: PMC7721822 DOI: 10.1007/s40201-020-00486-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 05/13/2020] [Indexed: 06/12/2023]
Abstract
Bottled water is most well liked within the world and attention is drawn due to its health issues. Oxyhalides is one amongst the foremost important by-products in bottled water which is produced by disinfection process such as "ozonation". International standards have been set and justified to permissible levels for chlorate, chlorite and bromate as 700, 700 and 10 μg/l. Thereafter, 168 samples of bottled water (mineral and drinking water) from Iran market obtained with the optimal working conditions and analyzed by ion chromatography (IC) with conductivity detector. The results actuated that 23 and 17 out of 168 samples as mineral and drinking water revealed bromate content in charge of the national permissible level, found as the mean level of 37.04 and 33.58 μg/l, respectively. According to risk assessment results, the average of hazard quotient (HQ) and lifetime excess cancer (ELCR) were calculated 6.955 × 10-3 and 0.25 × 10-3, respectively. Thereupon, it is indispensable to control as well as make consumers aware of oxyholides hazard especially bromate following governmental authorities with an insight to health sectors monitoring guidelines due to its obvious harmful effects and aspects on health issues.
Collapse
Affiliation(s)
- Sima Djam
- Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Najafi
- Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Seyyed Hamid Ahmadi
- Department of Environmental Analytical Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
9
|
Ates N, Kaplan-Bekaroglu SS, Dadaser-Celik F. Spatial/temporal distribution and multi-pathway cancer risk assessment of trihalomethanes in low TOC and high bromide groundwater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2276-2290. [PMID: 33103680 DOI: 10.1039/d0em00239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aims (1) to determine the seasonal and spatial distribution of THMs formed in chlorinated groundwater containing low levels of organic matter (0.4-0.8 mg L-1) and low to high levels of bromine (40-380 μg L-1), and (2) to evaluate the multi-route cancer risks associated with them. The study was conducted in Kayseri (Turkey), where drinking water is supplied from groundwater after chlorination only. THM formation in 50 water samples from 18 storage tanks and 32 distribution points was investigated to evaluate the spatial and temporal changes in THM concentrations for 12 months. The lifetime cancer risk associated with exposure to THMs through multiple pathways (i.e., oral ingestion, dermal absorption, and inhalation) was estimated for males and females. For a 12 month sampling period, the minimum and maximum THM concentrations varied from 2 μg L-1 to 17 μg L-1 and from 2 μg L-1 to 29 μg L-1 in storage tanks and distribution points, respectively. The ranges of median concentrations of THM were 5 μg L-1 to 9 μg L-1 in storage tanks and 5 μg L-1 to 12 μg L-1 in distribution points. In all samples dibromochloromethane was the dominant species, followed by bromoform, chloroform, and bromodichloromethane. The average values of total cancer risk associated with exposure to THMs via oral ingestion, dermal absorption, and inhalation for females and males were 1.31 × 10-5 and 1.25 × 10-5 in storage tanks, and 1.46 × 10-5 and 1.39 × 10-5 in distribution points, respectively. Although THM concentrations were very low, cancer risk values are 1.0 × 10-6 < CR < 1.0 × 10-4, which are higher than the negligible risk level (1.0 × 10-6).
Collapse
Affiliation(s)
- Nuray Ates
- Environmental Engineering Dept., Erciyes University, Kayseri, Turkey.
| | | | | |
Collapse
|
10
|
Tian D, Moe B, Huang G, Jiang P, Ling ZC, Li XF. Cytotoxicity of Halogenated Tyrosyl Compounds, an Emerging Class of Disinfection Byproducts. Chem Res Toxicol 2020; 33:1028-1035. [PMID: 32200635 DOI: 10.1021/acs.chemrestox.0c00049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Halogenated amino acids and peptides are an emerging class of disinfection byproducts (DBPs), having been detected in drinking water and in washed food products. However, the toxicological significance of these emerging DBPs remains unclear. In this study, the cytotoxicity of eight halogenated tyrosyl compounds was investigated in Chinese hamster ovary (CHO) cells using real-time cell analysis (RTCA). Dihalogenated tyrosyl compounds are more cytotoxic than their monohalogenated analogues. The cytotoxicity of the dihalogenated compounds is associated with their ability to induce intracellular reactive oxygen species (ROS), suggesting that oxidative stress is an important toxicity pathway of these compounds. Pearson correlation analysis of the cytotoxicity (IC50 values) of these compounds with eight physicochemical parameters showed strong associations with their lipophilicity (logP) and reactivity (polarizability, ELUMO). Finally, cytotoxicity testing of the concentrated extracts of a chloraminated mixture of eight dipeptides with bromide or iodide showed the cytotoxicity of these mixtures in the order: iodinated peptides > brominated peptides ≥ chlorinated peptides. These results demonstrate that halogenated peptide DBPs are toxicologically relevant, and further research is needed to understand the implications of long-term exposure for human health.
Collapse
Affiliation(s)
- Dayong Tian
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3.,College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, Henan, P. R. China
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3.,Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, CanadaT2N 4N1
| | - Guang Huang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Ping Jiang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Zong-Chao Ling
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, CanadaT2N 4N1
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
11
|
Kolb C, Good KD, VanBriesen JM. Modeling Trihalomethane Increases Associated with Source Water Bromide Contributed by Coal-Fired Power Plants in the Monongahela River Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:726-734. [PMID: 31846301 DOI: 10.1021/acs.est.9b01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increases in source water bromide concentrations are challenging for drinking water utilities since bromide contributes to the formation of disinfection byproducts (DBPs) that have negative human-health effects. The present work evaluates the role of coal-fired power plant wet flue gas desulfurization (FGD)-associated bromide loads on in-stream bromide concentrations in the Monongahela River Basin in the water year (WY) 1998 (during a nationwide study) and over a five-year period from WYs 2013 through 2017. Under mean flow conditions in the lower Monongahela River for the WYs of interest, the median-estimated wet FGD bromide discharges are modeled to represent a significant fraction (27-57%) of observed bromide concentrations with the range representing the change in load conditions across WYs. Seasonal effects are predicted due to changes in the dilution capacity of the river with elevated concentrations under lower flows in the third and fourth quarters (July through December). The effect of these bromide concentration contributions, which range from 6.8 to 23 μg/L under median load estimates and median flow conditions, on trihalomethane (THM) formation and associated risk were assessed. A simple model was applied to demonstrate an analytical approach for evaluating the power plant total THM (TTHM) and risk contributions. Utilizing this model, the power plant TTHM contribution was estimated to range from 7.6 to 27 μg/L with a median risk contribution of 0.0014.
Collapse
|
12
|
Wang L, Renwick DV, Regli S. Re-assessing ICR GAC Treatment Study Database: Effect of Bromide on DBP Formation. AWWA WATER SCIENCE 2019; 1:10.1002/aws2.1147. [PMID: 32462113 PMCID: PMC7252525 DOI: 10.1002/aws2.1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/03/2019] [Indexed: 06/11/2023]
Abstract
While granular active carbon (GAC) can effectively remove disinfection byproduct (DBP) precursors, its use has raised concerns over increased formation of some brominated DBP species in treated water following postchlorination, especially for waters with high bromide concentrations. The Information Collection Rule Treatment Study Database contains results of the most extensive GAC studies ever conducted nationwide. Data were analyzed to assess the extent of DBP speciation changes and overall reduction of brominated DBPs by GAC to gain new insights of the bromide effect. Results showed that formation of three brominated trihalomethanes (collectively, Br-THM3) varied greatly depending on TOC removal and bromide concentrations. Low TOC concentrations in GAC effluents resulted in greatly reduced Br-THM3 formation, except for a few cases where Br-THM3 formation increased. GAC followed by chloramination were likely to better control Br-THM3 formation for waters with high TOC and high bromide. Lastly, the chlorine demand reduction by GAC was quantified.
Collapse
Affiliation(s)
- Lili Wang
- Corresponding Author: U.S. Environmental Protection Agency, 1200 Pennsylvania Ave, NW, Washington, DC 20460, USA; phone: (202) 564-9156;
| | | | | |
Collapse
|
13
|
Neil CW, Zhao Y, Zhao A, Neal J, Meyer M, Yang YJ. Trihalomethane precursor reactivity changes in drinking water treatment unit processes during a storm event. WATER SCIENCE & TECHNOLOGY, WATER SUPPLY 2019; 19:2098-2106. [PMID: 33623499 PMCID: PMC7898137 DOI: 10.2166/ws.2019.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Source water quality can significantly impact the efficacy of water treatment unit processes and the formation of chlorinated and brominated trihalomethanes (THMs). Current water treatment plant performance models may not accurately capture how source water quality variations, such as organic matter variability, can impact treatment unit processes. To investigate these impacts, a field study was conducted wherein water samples were collected along the treatment train for 72 hours during a storm event. Systematic sampling and detailed analyses of water quality parameters, including non-purgeable organic carbon (NPOC), UV absorbance, and THM concentrations, as well as chlorine spiking experiments, reveal how the THM formation potential changes in response to treatment unit processes. Results show that the NPOC remaining after treatment has an increased reactivity towards forming THMs, and that brominated THMs form more readily than chlorinated counterparts in a competitive reaction. Thus both the reactivity and quantity of THM precursors must be considered to maintain compliance with drinking water standards, a finding that should be incorporated into the development of model-assisted treatment operation and optimization. Advanced granular activated carbon (GAC) treatment beyond conventional coagulation-flocculation-sedimentation processes may also be necessary to remove the surge loading of THM-formation precursors during a storm event.
Collapse
Affiliation(s)
- Chelsea W Neil
- Office of Research and Development, National Risk Management Research Laboratory, US Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Yingying Zhao
- Office of Research and Development, National Risk Management Research Laboratory, US Environmental Protection Agency, Cincinnati, OH 45268, USA; College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
| | - Amy Zhao
- Office of Research and Development, National Risk Management Research Laboratory, US Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Jill Neal
- Office of Research and Development, National Risk Management Research Laboratory, US Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Maria Meyer
- Greater Cincinnati Water Works, 5651 Kellogg Ave, Cincinnati, OH 45230, USA
| | - Y Jeffrey Yang
- Office of Research and Development, National Risk Management Research Laboratory, US Environmental Protection Agency, Cincinnati, OH 45268, USA
| |
Collapse
|
14
|
Neale PA, Leusch FDL. Assessing the role of different dissolved organic carbon and bromide concentrations for disinfection by-product formation using chemical analysis and bioanalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17100-17109. [PMID: 31001769 DOI: 10.1007/s11356-019-05017-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Concerns regarding disinfection by-product (DBP) formation during drinking water treatment have led water utilities to apply treatment processes to reduce the concentration of DBP precursor natural organic matter (NOM). However, these processes often do not remove bromide, leading to high bromide to dissolved organic carbon (DOC) ratios after treatment, which can increase the formation of more toxic brominated DBPs. In the current study, we investigated the formation and effect of DBPs in a matrix of synthetic water samples containing different concentrations of bromide and DOC after disinfection with chlorine. Trihalomethanes and haloacetic acids were analysed by chemical analysis, while effect was evaluated using in vitro bioassays indicative of the oxidative stress response and bacterial toxicity. While the addition of increasing bromide concentrations did not alter the sum molar concentration of DBPs formed, the speciation changed, with greater bromine incorporation with an increasing Br:DOC ratio. However, the observed effect did not correlate with the Br:DOC ratio, but instead, effect increased with increasing DOC concentration. Water samples with low DOC and high bromide did not exceed the available oxidative stress response effect-based trigger value (EBT), while all samples with high DOC, irrespective of the bromide concentration, exceeded the EBT. This suggests that treatment processes that remove NOM can improve drinking water quality, even if they are unable to remove bromide. Further, iceberg modelling showed that detected DBPs only explained a small fraction of the oxidative stress response, supporting the application of both chemical analysis and bioanalysis for monitoring DBP formation.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
| |
Collapse
|
15
|
Padhi RK, Subramanian S, Satpathy KK. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO 2-,andClO 3-) during treatment of different source water with chlorine and chlorine dioxide. CHEMOSPHERE 2019; 218:540-550. [PMID: 30500715 DOI: 10.1016/j.chemosphere.2018.11.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Formation potential and speciation characteristics of two important groups of disinfection byproducts (DBPs), namely, trihalomethanes (THMs) and haloacetic acids (HAAS), during Cl2 and ClO2 treatment of water samples collected from three different sources, namely, sea, river, and reservoir, were investigated with reference to key controlling parameters. Formation of inorganic DBPs such as chlorate and chlorite was evaluated. Dissolved organic carbon (DOC) and UV absorbance (UV254) of the sea, river, and reservoir samples were 3.35 ± 0.05, 3.12 ± 0.05, and 3.23 ± 0.05 mg/L and 0.062 ± 0.01, 0.074 ± 0.01, and 0.055 ± 0.01 cm-1, respectively. For Cl2 and ClO2 treatments, the respective formation potential of THMs and HAAs from the three water sources studied exhibited unidentical trend suggesting that higher THM formation was not necessarily associated with higher HAA formation. On chlorination, the concentrations of total HAAs formed were 9.8 μg/L (sea), 12.8 μg/L (river), and 20.6 μg/L (reservoir) and total THM yields were 38.3 μg/L (sea), 18.8 μg/L (river), and 21.5 μg/L (reservoir) for a Cl2 dose of 1 mg/L and 30 min reaction time. The trend of formation of THMs and HAAs for Cl2 treatment was similar to that for ClO2 treatment. However, the amount of HAAs (3.5 μg/L (sea), 1.8 μg/L (river), and 1.9 μg/L (reservoir)) and THMs (not detected) formed was much lower than that formed during chlorination. Regardless of source water type, di-HAAs were the most favored HAAs, followed by tri-HAAs with a small amount of mono-HAAs formed for both Cl2 and ClO2 treatment. Chlorination yielded more THMs than HAAs, whereas it was reverse for chlorine dioxide treatment. Irrespective of treatment with ClO2 or Cl2, seawater samples showed the highest bromine incorporation percentage (BIP) in both THMs and HAAs followed by that for river and reservoir water samples. HAAs were found to be always associated with lower amount of BIP than THMs.
Collapse
Affiliation(s)
- R K Padhi
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603102, India; Health Safety and Environment Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India.
| | - S Subramanian
- Health Safety and Environment Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India
| | - K K Satpathy
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603102, India; Health Safety and Environment Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India.
| |
Collapse
|
16
|
|
17
|
Good KD, VanBriesen JM. Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11829-11838. [PMID: 28945074 DOI: 10.1021/acs.est.7b03003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems have been implicated in increasing bromide levels and subsequent increases in disinfection byproducts at downstream drinking water plants. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and to assess the potential for bromide discharge effects. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August conditions (generally low-flow, minimal dilution) in receiving rivers, the median predicted bromide concentrations contributed by wet FGD at Pennsylvania intake locations ranged from 5.2 to 62 μg/L for the Base scenario (including only natural bromide in coal) and from 16 to 190 μg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.
Collapse
Affiliation(s)
- Kelly D Good
- Graduate Research Assistant, Department of Civil and Environmental Engineering, Carnegie Mellon University , 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Jeanne M VanBriesen
- Duquesne Light Company Professor, Director of Water Quality in Urban Environmental Systems (Water-QUEST), Department of Civil and Environmental Engineering and Department of Engineering and Public Policy, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
18
|
Fakhri Y, Mohseni-Bandpei A, Oliveri Conti G, Keramati H, Zandsalimi Y, Amanidaz N, Hosseini Pouya R, Moradi B, Bahmani Z, Rasouli Amirhajeloo L, Baninameh Z. Health risk assessment induced by chloroform content of the drinking water in Iran: systematic review. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1370601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yadolah Fakhri
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anoushiravan Mohseni-Bandpei
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA), ‘G.F. Ingrassia’ Department, Hygiene and Public Health, University of Catania, Catania, Italy
| | - Hassan Keramati
- Department of Environmental Health Engineering, School of Public Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Yahya Zandsalimi
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nazak Amanidaz
- Environmental Health Research Center, Golestan University of Medical Sciences, Golestan, Iran
| | | | - Bigard Moradi
- Department of Health Public, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Bahmani
- Environmental Health Engineering, Developmental Center for Student Research and Technology Talent, Faculty of School of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Rasouli Amirhajeloo
- Department of Environmental Health Engineering, School of Public Health, Qom University of Medical Sciences, Qom, Iran
| | - Zahra Baninameh
- Sina Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Synthesis and characterization of new tyrosine capped anisotropic silver nanoparticles and their exploitation for the selective determination of iodide ions. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Kolb C, Francis RA, VanBriesen JM. Disinfection byproduct regulatory compliance surrogates and bromide-associated risk. J Environ Sci (China) 2017; 58:191-207. [PMID: 28774609 DOI: 10.1016/j.jes.2017.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/15/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Natural and anthropogenic factors can alter bromide concentrations in drinking water sources. Increasing source water bromide concentrations increases the formation and alters the speciation of disinfection byproducts (DBPs) formed during drinking water treatment. Brominated DBPs are more toxic than their chlorinated analogs, and thus have a greater impact on human health. However, DBPs are regulated based on the mass sum of DBPs within a given class (e.g., trihalomethanes and haloacetic acids), not based on species-specific risk or extent of bromine incorporation. The regulated surrogate measures are intended to protect against not only the species they directly represent, but also against unregulated DBPs that are not routinely measured. Surrogates that do not incorporate effects of increasing bromide may not adequately capture human health risk associated with drinking water when source water bromide is elevated. The present study analyzes trihalomethanes (THMs), measured as TTHM, with varying source water bromide concentrations, and assesses its correlation with brominated THM, TTHM risk and species-specific THM concentrations and associated risk. Alternative potential surrogates are evaluated to assess their ability to capture THM risk under different source water bromide concentration conditions. The results of the present study indicate that TTHM does not adequately capture risk of the regulated species when source water bromide concentrations are elevated, and thus would also likely be an inadequate surrogate for many unregulated brominated species. Alternative surrogate measures, including THM3 and the bromodichloromethane concentration, are more robust surrogates for species-specific THM risk at varying source water bromide concentrations.
Collapse
Affiliation(s)
- Chelsea Kolb
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Royce A Francis
- Department of Engineering Management and Systems Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jeanne M VanBriesen
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
21
|
Kristiana I, Liew D, Henderson RK, Joll CA, Linge KL. Formation and control of nitrogenous DBPs from Western Australian source waters: Investigating the impacts of high nitrogen and bromide concentrations. J Environ Sci (China) 2017; 58:102-115. [PMID: 28774599 DOI: 10.1016/j.jes.2017.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 05/27/2023]
Abstract
We studied the formation of four nitrogenous DBPs (N-DBPs) classes (haloacetonitriles, halonitromethanes, haloacetamides, and N-nitrosamines), as well as trihalomethanes and total organic halogen (TOX), after chlorination or chloramination of source waters. We also evaluated the relative and additive toxicity of N-DBPs and water treatment options for minimisation of N-DBPs. The formation of halonitromethanes, haloacetamides, and N-nitrosamines was higher after chloramination and positively correlated with dissolved organic nitrogen or total nitrogen. N-DBPs were major contributors to the toxicity of both chlorinated and chloraminated waters. The strong correlation between bromide concentration and the overall calculated DBP additive toxicity for both chlorinated and chloraminated source waters demonstrated that formation of brominated haloacetonitriles was the main contributor to toxicity. Ozone-biological activated carbon treatment was not effective in removing N-DBP precursors. The occurrence and formation of N-DBPs should be investigated on a case-by-case basis, especially where advanced water treatment processes are being considered to minimise their formation in drinking waters, and where chloramination is used for final disinfection.
Collapse
Affiliation(s)
- Ina Kristiana
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Perth, Western Australia 6102, Australia.
| | - Deborah Liew
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Perth, Western Australia 6102, Australia
| | - Rita K Henderson
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Perth, Western Australia 6102, Australia
| | - Kathryn L Linge
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Perth, Western Australia 6102, Australia
| |
Collapse
|
22
|
Hong H, Yan X, Song X, Qin Y, Sun H, Lin H, Chen J, Liang Y. Bromine incorporation into five DBP classes upon chlorination of water with extremely low SUVA values. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:720-728. [PMID: 28302307 DOI: 10.1016/j.scitotenv.2017.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
The main objective of this study was to assess the effects of disinfection conditions on bromine incorporation into disinfection by-products (DBPs) during chlorination of water with low specific UV absorbance (SUVA). Five classes of DBPs were included: trihalomethanes (THMs), dihaloacetic acids (di-HAAs), trihaloacetic acids (tri-HAAs), dihaloacetonitriles (DHANs) and trihalonitromethanes (THNMs). Results showed that the bromine utilization in DBPs formation was positive related with reaction time, pH and temperature. On the other hand, the bromine substitution factors (BSFs) of DBPs were generally increased with pH (except tri-HAAs) and bromide concentration, but decreased with the reaction time, temperature and chlorine dose. Moreover, the BSFs values varied with DBP classes with the ranking being as following: THNMs≫DHANs≫tri-HAAs>THM≈di-HAAs. These results were mostly similar with the references, yet the pH effect on BSFs as well as the rank of BSFs for different DBP classes may differ with the specific UV absorbance of organic matter.
Collapse
Affiliation(s)
- Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China.
| | - Xiaoqing Yan
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, P. R. China.
| | - Xuhui Song
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Yanyan Qin
- Shenzhen Polytechnic, Guangdong Province, Shenzhen 518055, P. R. China
| | - Hongjie Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Yan Liang
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, P. R. China
| |
Collapse
|
23
|
Krasner SW, Lee TCF, Westerhoff P, Fischer N, Hanigan D, Karanfil T, Beita-Sandí W, Taylor-Edmonds L, Andrews RC. Granular Activated Carbon Treatment May Result in Higher Predicted Genotoxicity in the Presence of Bromide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9583-91. [PMID: 27467860 DOI: 10.1021/acs.est.6b02508] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Certain unregulated disinfection byproducts (DBPs) are more of a health concern than regulated DBPs. Brominated species are typically more cytotoxic and genotoxic than their chlorinated analogs. The impact of granular activated carbon (GAC) on controlling the formation of regulated and selected unregulated DBPs following chlorine disinfection was evaluated. The predicted cyto- and genotoxicity of DBPs was calculated using published potencies based on the comet assay for Chinese hamster ovary cells (assesses the level of DNA strand breaks). Additionally, genotoxicity was measured using the SOS-Chromotest (detects DNA-damaging agents). The class sum concentrations of trihalomethanes, haloacetic acids, and unregulated DBPs, and the SOS genotoxicity followed the breakthrough of dissolved organic carbon (DOC), however the formation of brominated species did not. The bromide/DOC ratio was higher than the influent through much of the breakthrough curve (GAC does not remove bromide), which resulted in elevated brominated DBP concentrations in the effluent. Based on the potency of the haloacetonitriles and halonitromethanes, these nitrogen-containing DBPs were the driving agents of the predicted genotoxicity. GAC treatment of drinking or reclaimed waters with appreciable levels of bromide and dissolved organic nitrogen may not control the formation of unregulated DBPs with higher genotoxicity potencies.
Collapse
Affiliation(s)
- Stuart W Krasner
- Metropolitan Water District of Southern California, Water Quality, La Verne, California 91750, United States
| | - Tiffany Chih Fen Lee
- Metropolitan Water District of Southern California, Water Quality, La Verne, California 91750, United States
| | - Paul Westerhoff
- Arizona State University , School of Sustainable Engineering and the Built Environment, Tempe, Arizona 85259-3005, United States
| | - Natalia Fischer
- Arizona State University , School of Sustainable Engineering and the Built Environment, Tempe, Arizona 85259-3005, United States
| | - David Hanigan
- University of Nevada , Department of Civil and Environmental Engineering, Reno, Nevada 89557-0258, United States
| | - Tanju Karanfil
- Clemson University , Department of Environmental Engineering and Earth Sciences, Anderson, South Carolina 29625, United States
| | - Wilson Beita-Sandí
- Clemson University , Department of Environmental Engineering and Earth Sciences, Anderson, South Carolina 29625, United States
- University of Costa Rica , Research Center of Environmental Pollution (CICA), San José, Costa Rica 2060, and
| | - Liz Taylor-Edmonds
- University of Toronto , Department of Civil Engineering, Toronto, Ontario Canada , M5S 1A4
| | - Robert C Andrews
- University of Toronto , Department of Civil Engineering, Toronto, Ontario Canada , M5S 1A4
| |
Collapse
|