1
|
Mohring J, Leithäuser N, Wlazło J, Schulte M, Pilz M, Münch J, Küfer KH. Estimating the COVID-19 prevalence from wastewater. Sci Rep 2024; 14:14384. [PMID: 38909097 PMCID: PMC11193770 DOI: 10.1038/s41598-024-64864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
Wastewater based epidemiology has become a widely used tool for monitoring trends of concentrations of different pathogens, most notably and widespread of SARS-CoV-2. Therefore, in 2022, also in Rhineland-Palatinate, the Ministry of Science and Health has included 16 wastewater treatment sites in a surveillance program providing biweekly samples. However, the mere viral load data is subject to strong fluctuations and has limited value for political deciders on its own. Therefore, the state of Rhineland-Palatinate has commissioned the University Medical Center at Johannes Gutenberg University Mainz to conduct a representative cohort study called SentiSurv, in which an increasing number of up to 12,000 participants have been using sensitive antigen self-tests once or twice a week to test themselves for SARS-CoV-2 and report their status. This puts the state of Rhineland-Palatinate in the fortunate position of having time series of both, the viral load in wastewater and the prevalence of SARS-CoV-2 in the population. Our main contribution is a calibration study based on the data from 2023-01-08 until 2023-10-01 where we identified a scaling factor ( 0.208 ± 0.031 ) and a delay ( 5.07 ± 2.30 days) between the virus load in wastewater, normalized by the pepper mild mottle virus (PMMoV), and the prevalence recorded in the SentiSurv study. The relation is established by fitting an epidemiological model to both time series. We show how that can be used to estimate the prevalence when the cohort data is no longer available and how to use it as a forecasting instrument several weeks ahead of time. We show that the calibration and forecasting quality and the resulting factors depend strongly on how wastewater samples are normalized.
Collapse
Affiliation(s)
- Jan Mohring
- Fraunhofer Institute for Industrial Mathematics, 67663, Kaiserslautern, Germany.
| | - Neele Leithäuser
- Fraunhofer Institute for Industrial Mathematics, 67663, Kaiserslautern, Germany
| | - Jarosław Wlazło
- Fraunhofer Institute for Industrial Mathematics, 67663, Kaiserslautern, Germany
| | - Marvin Schulte
- Fraunhofer Institute for Industrial Mathematics, 67663, Kaiserslautern, Germany
| | - Maximilian Pilz
- Fraunhofer Institute for Industrial Mathematics, 67663, Kaiserslautern, Germany
| | - Johanna Münch
- Fraunhofer Institute for Industrial Mathematics, 67663, Kaiserslautern, Germany
| | - Karl-Heinz Küfer
- Fraunhofer Institute for Industrial Mathematics, 67663, Kaiserslautern, Germany
| |
Collapse
|
2
|
Gamage SD, Jinadatha C, Rizzo V, Chatterjee P, Choi H, Mayo L, Brackens E, Hwang M, Xu J, Bennett M, Kowalskyj O, Litvin EA, Minor L, McClarin J, Hofman R, Dulaney D, Roselle GA. Nursing home wastewater surveillance for early warning of SARS-CoV-2-positive occupants-Insights from a pilot project at 8 facilities. Am J Infect Control 2024; 52:701-706. [PMID: 38181902 DOI: 10.1016/j.ajic.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Wastewater surveillance for SARS-CoV-2 has been used widely in the United States for indication of community incidence during the COVID-19 pandemic, but less is known about the feasibility of its use on a building level in nursing homes to provide early warning and prevent transmission. METHODS A pilot study was conducted at 8 Department of Veterans Affairs nursing homes across the United States to examine operational feasibility. Wastewater from the participating facilities was sampled daily during the week for 6 months (January 11, 2021-July 2, 2021) and analyzed for SARS-CoV-2 genetic material. Wastewater results were compared to new SARS-CoV-2 infections in nursing home residents and employees to determine if wastewater surveillance could provide early warning of a COVID-19-positive occupant. RESULTS All 8 nursing homes had wastewater samples positive for SARS-CoV-2 and COVID-19-positive occupants. The sensitivity of wastewater surveillance for early warning of COVID-19-positive residents was 60% (3/5) and for COVID-19-positive employees was 46% (13/28). CONCLUSIONS Wastewater surveillance may provide additional information for reinforcing infection control practices and lead to preventing transmission in a setting with high-risk residents. The low sensitivity for early warning in this real-world pilot highlights limitations and insights for applicability in buildings.
Collapse
Affiliation(s)
- Shantini D Gamage
- National Infectious Diseases Service, Veterans Health Administration, Department of Veterans Affairs (VA), Washington, DC; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH.
| | - Chetan Jinadatha
- Department of Medicine, Central Texas Veterans Health Care System, Temple, TX; Department of Medical Education, College of Medicine, Texas A & M University, Bryan, TX
| | - Vincent Rizzo
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Piyali Chatterjee
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Hosoon Choi
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Lynn Mayo
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Emma Brackens
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Munok Hwang
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Jing Xu
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Morgan Bennett
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Oleh Kowalskyj
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Edward A Litvin
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Lisa Minor
- Office of Geriatrics and Extended Care, Veterans Health Administration, VA, Washington, DC
| | - Jody McClarin
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Richard Hofman
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Douglas Dulaney
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Gary A Roselle
- National Infectious Diseases Service, Veterans Health Administration, Department of Veterans Affairs (VA), Washington, DC; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH; Medical Service, Cincinnati VA Medical Center, Cincinnati, OH
| |
Collapse
|
3
|
Story A, Bell N, Schott S, Fletcher F, Kerr J. The Ethical Implications of Environmental Racism: Considerations for Advancing Health Equity. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2024; 24:35-37. [PMID: 38394020 DOI: 10.1080/15265161.2024.2303112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Affiliation(s)
- Alice Story
- Center for Medical Ethics and Health Policy, Baylor College of Medicine
| | | | - Sophie Schott
- Center for Medical Ethics and Health Policy, Baylor College of Medicine
| | - Faith Fletcher
- Health Promotion and Behavioral Sciences, University of Louisville
| | - Jelani Kerr
- Health Promotion and Behavioral Sciences, University of Louisville
| |
Collapse
|
4
|
Cohen A, Vikesland P, Pruden A, Krometis LA, Lee LM, Darling A, Yancey M, Helmick M, Singh R, Gonzalez R, Meit M, Degen M, Taniuchi M. Making waves: The benefits and challenges of responsibly implementing wastewater-based surveillance for rural communities. WATER RESEARCH 2024; 250:121095. [PMID: 38181645 DOI: 10.1016/j.watres.2023.121095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The sampling and analysis of sewage for pathogens and other biomarkers offers a powerful tool for monitoring and understanding community health trends and potentially predicting disease outbreaks. Since the early months of the COVID-19 pandemic, the use of wastewater-based testing for public health surveillance has increased markedly. However, these efforts have focused on urban and peri‑urban areas. In most rural regions of the world, healthcare service access is more limited than in urban areas, and rural public health agencies typically have less disease outcome surveillance data than their urban counterparts. The potential public health benefits of wastewater-based surveillance for rural communities are therefore substantial - though so too are the methodological and ethical challenges. For many rural communities, population dynamics and insufficient, aging, and inadequately maintained wastewater collection and treatment infrastructure present obstacles to the reliable and responsible implementation of wastewater-based surveillance. Practitioner observations and research findings indicate that for many rural systems, typical implementation approaches for wastewater-based surveillance will not yield sufficiently reliable or actionable results. We discuss key challenges and potential strategies to address them. However, to support and expand the implementation of responsible, reliable, and ethical wastewater-based surveillance for rural communities, best practice guidelines and standards are needed.
Collapse
Affiliation(s)
- Alasdair Cohen
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lisa M Lee
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Division of Scholarly Integrity and Research Compliance, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amanda Darling
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michelle Yancey
- Virginia Department of Health, Office of Environmental Health Services, Richmond, VA 23219, USA
| | - Meagan Helmick
- Virginia Department of Health, Mount Rogers Health District, Marion, VA 24354, USA
| | - Rekha Singh
- Virginia Department of Health, Office of Environmental Health Services, Richmond, VA 23219, USA; Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Raul Gonzalez
- Hampton Roads Sanitation District, Virginia Beach, VA 23455, USA
| | - Michael Meit
- Center for Rural Health Research, East Tennessee State University, Johnson City, TN 37614, USA
| | - Marcia Degen
- Virginia Department of Health, Office of Environmental Health Services, Richmond, VA 23219, USA
| | - Mami Taniuchi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Gogoi G, Singh SD, Kalyan E, Koch D, Gogoi P, Kshattry S, Mahanta HJ, Imran M, Pandey R, Bharali P. An interpretative review of the wastewater-based surveillance of the SARS-CoV-2: where do we stand on its presence and concern? Front Microbiol 2024; 15:1338100. [PMID: 38318336 PMCID: PMC10839012 DOI: 10.3389/fmicb.2024.1338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has been used for monitoring infectious diseases like polio, hepatitis, etc. since the 1940s. It is also being used for tracking the SARS-CoV-2 at the population level. This article aims to compile and assess the information for the qualitative and quantitative detection of the SARS-CoV-2 in wastewater. Based on the globally published studies, we highlight the importance of monitoring SARS-CoV-2 presence/detection in the wastewater and concurrently emphasize the development of early surveillance techniques. SARS-CoV-2 RNA sheds in the human feces, saliva, sputum and mucus that ultimately reaches to the wastewater and brings viral RNA into it. For the detection of the virus in the wastewater, different detection techniques have been optimized and are in use. These are based on serological, biosensor, targeted PCR, and next generation sequencing for whole genome sequencing or targeted amplicon sequencing. The presence of the SARS-CoV-2 RNA in wastewater could be used as a potential tool for early detection and devising the strategies for eradication of the virus before it is spread in the community. Additionally, with the right and timely understanding of viral behavior in the environment, an accurate and instructive model that leverages WBE-derived data may be created. This might help with the creation of technological tools and doable plans of action to lessen the negative effects of current viral epidemics or future potential outbreaks on public health and the economy. Further work toward whether presence of viral load correlates with its ability to induce infection, still needs evidence. The current increasing incidences of JN.1 variant is a case in point for continued early detection and surveillance, including wastewater.
Collapse
Affiliation(s)
- Gayatri Gogoi
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sarangthem Dinamani Singh
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Emon Kalyan
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Devpratim Koch
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pronami Gogoi
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Suman Kshattry
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Hridoy Jyoti Mahanta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Md Imran
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Rajesh Pandey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Pankaj Bharali
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Clark EC, Neumann S, Hopkins S, Kostopoulos A, Hagerman L, Dobbins M. Changes to Public Health Surveillance Methods Due to the COVID-19 Pandemic: Scoping Review. JMIR Public Health Surveill 2024; 10:e49185. [PMID: 38241067 PMCID: PMC10837764 DOI: 10.2196/49185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Public health surveillance plays a vital role in informing public health decision-making. The onset of the COVID-19 pandemic in early 2020 caused a widespread shift in public health priorities. Global efforts focused on COVID-19 monitoring and contact tracing. Existing public health programs were interrupted due to physical distancing measures and reallocation of resources. The onset of the COVID-19 pandemic intersected with advancements in technologies that have the potential to support public health surveillance efforts. OBJECTIVE This scoping review aims to explore emergent public health surveillance methods during the early COVID-19 pandemic to characterize the impact of the pandemic on surveillance methods. METHODS A scoping search was conducted in multiple databases and by scanning key government and public health organization websites from March 2020 to January 2022. Published papers and gray literature that described the application of new or revised approaches to public health surveillance were included. Papers that discussed the implications of novel public health surveillance approaches from ethical, legal, security, and equity perspectives were also included. The surveillance subject, method, location, and setting were extracted from each paper to identify trends in surveillance practices. Two public health epidemiologists were invited to provide their perspectives as peer reviewers. RESULTS Of the 14,238 unique papers, a total of 241 papers describing novel surveillance methods and changes to surveillance methods are included. Eighty papers were review papers and 161 were single studies. Overall, the literature heavily featured papers detailing surveillance of COVID-19 transmission (n=187). Surveillance of other infectious diseases was also described, including other pathogens (n=12). Other public health topics included vaccines (n=9), mental health (n=11), substance use (n=4), healthy nutrition (n=1), maternal and child health (n=3), antimicrobial resistance (n=2), and misinformation (n=6). The literature was dominated by applications of digital surveillance, for example, by using big data through mobility tracking and infodemiology (n=163). Wastewater surveillance was also heavily represented (n=48). Other papers described adaptations to programs or methods that existed prior to the COVID-19 pandemic (n=9). The scoping search also found 109 papers that discuss the ethical, legal, security, and equity implications of emerging surveillance methods. The peer reviewer public health epidemiologists noted that additional changes likely exist, beyond what has been reported and available for evidence syntheses. CONCLUSIONS The COVID-19 pandemic accelerated advancements in surveillance and the adoption of new technologies, especially for digital and wastewater surveillance methods. Given the investments in these systems, further applications for public health surveillance are likely. The literature for surveillance methods was dominated by surveillance of infectious diseases, particularly COVID-19. A substantial amount of literature on the ethical, legal, security, and equity implications of these emerging surveillance methods also points to a need for cautious consideration of potential harm.
Collapse
Affiliation(s)
- Emily C Clark
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Sophie Neumann
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Stephanie Hopkins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Alyssa Kostopoulos
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Leah Hagerman
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Maureen Dobbins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
- School of Nursing, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
8
|
Khan M, Li L, Haak L, Payen SH, Carine M, Adhikari K, Uppal T, Hartley PD, Vasquez-Gross H, Petereit J, Verma SC, Pagilla K. Significance of wastewater surveillance in detecting the prevalence of SARS-CoV-2 variants and other respiratory viruses in the community - A multi-site evaluation. One Health 2023; 16:100536. [PMID: 37041760 PMCID: PMC10074727 DOI: 10.1016/j.onehlt.2023.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genome in wastewater has proven to be useful for tracking the trends of virus prevalence within the community. The surveillance also provides precise and early detection of any new and circulating variants, which aids in response to viral outbreaks. Site-specific monitoring of SARS-CoV-2 variants provides valuable information on the prevalence of new or emerging variants in the community. We sequenced the genomic RNA of viruses present in the wastewater samples and analyzed for the prevalence of SARS-CoV-2 variants as well as other respiratory viruses for a period of one year to account for seasonal variations. The samples were collected from the Reno-Sparks metropolitan area on a weekly basis between November 2021 to November 2022. Samples were analyzed to detect the levels of SARS-CoV-2 genomic copies and variants identification. This study confirmed that wastewater monitoring of SARS-CoV-2 variants can be used for community surveillance and early detection of circulating variants and supports wastewater-based epidemiology (WBE) as a complement to clinical respiratory virus testing as a healthcare response effort. Our study showed the persistence of the SARS-CoV-2 virus throughout the year compared to a seasonal presence of other respiratory viruses, implicating SARS-CoV-2's broad genetic diversity and strength to persist and infect susceptible hosts. Through secondary analysis, we further identified antimicrobial resistance (AMR) genes in the same wastewater samples and found WBE to be a feasible tool for community AMR detection and monitoring.
Collapse
Affiliation(s)
- Majid Khan
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| | - Shannon Harger Payen
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Madeline Carine
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| | - Kabita Adhikari
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Paul D. Hartley
- Nevada Genomics Center, University of Nevada, Reno, NV 89557, USA
| | - Hans Vasquez-Gross
- Nevada Bioinformatics Center (RRID:SCR_017802), University of Nevada, Reno, NV 89557, USA
| | - Juli Petereit
- Nevada Bioinformatics Center (RRID:SCR_017802), University of Nevada, Reno, NV 89557, USA
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Krishna Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| |
Collapse
|
9
|
Davis A, Keely SP, Brinkman NE, Bohrer Z, Ai Y, Mou X, Chattopadhyay S, Hershey O, Senko J, Hull N, Lytmer E, Quintero A, Lee J. Evaluation of intra- and inter-lab variability in quantifying SARS-CoV-2 in a state-wide wastewater monitoring network. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2023; 9:1053-1068. [PMID: 37701755 PMCID: PMC10494892 DOI: 10.1039/d2ew00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
In December 2019, SARS-CoV-2, the virus that causes coronavirus disease 2019, was first reported and subsequently triggered a global pandemic. Wastewater monitoring, a strategy for quantifying viral gene concentrations from wastewater influents within a community, has served as an early warning and management tool for the spread of SARS-CoV-2 in a community. Ohio built a collaborative statewide wastewater monitoring network that is supported by eight labs (university, government, and commercial laboratories) with unique sample processing workflows. Consequently, we sought to characterize the variability in wastewater monitoring results for network labs. Across seven trials between October 2020 and November 2021, eight participating labs successfully quantified two SARS-CoV-2 RNA targets and human fecal indicator virus targets in wastewater sample aliquots with reproducible results, although recovery efficiencies of spiked surrogates ranged from 3 to 75%. When SARS-CoV-2 gene fragment concentrations were adjusted for recovery efficiency and flow, the proportion of variance between laboratories was minimized, serving as the best model to account for between-lab variance. Another adjustment factor (alone and in different combinations with the above factors) considered to account for sample and measurement variability includes fecal marker normalization. Genetic quantification variability can be attributed to many factors, including the methods, individual samples, and water quality parameters. In addition, statistically significant correlations were observed between SARS-CoV-2 RNA and COVID-19 case numbers, supporting the notion that wastewater surveillance continues to serve as an effective monitoring tool. This study serves as a real-time example of multi-laboratory collaboration for public health preparedness for infectious diseases.
Collapse
Affiliation(s)
- Angela Davis
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210, USA
| | - Scott P Keely
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Nichole E Brinkman
- United States Environmental Protection Agency, Office of Research and Development, USA
| | | | - Yuehan Ai
- Department of Food Science & Technology, The Ohio State University, USA
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, Department of Biology and Department of Geosciences, University of Toledo, USA
| | - Olivia Hershey
- Department of Geosciences and Biology, University of Akron, USA
| | - John Senko
- Department of Geosciences and Biology, University of Akron, USA
| | - Natalie Hull
- Department of Civil, Environmental and Geodetic Engineering and Sustainability Institute, The Ohio State University, USA
| | - Eva Lytmer
- Department of Biological Sciences, Bowling Green State University, USA
| | | | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210, USA
- Department of Food Science & Technology, The Ohio State University, USA
- Infectious Diseases Institute, The Ohio State University, USA
| |
Collapse
|
10
|
Bhattacharya S, Abhishek K, Samiksha S, Sharma P. Occurrence and transport of SARS-CoV-2 in wastewater streams and its detection and remediation by chemical-biological methods. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100221. [PMID: 36818681 PMCID: PMC9762044 DOI: 10.1016/j.hazadv.2022.100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
This paper explains the transmission of SARS-CoV and influences of several environmental factors in the transmission process. The article highlighted several methods of collection, sampling and monitoring/estimation as well as surveillance tool for detecting SARS-CoV in wastewater streams. In this context, WBE (Wastewater based epidemiology) is found to be the most effective surveillance tool. Several methods of genomic sequencing are discussed in the paper, which are applied in WBE, like qPCR-based wastewater testing, metagenomics-based analysis, next generation sequencing etc. Additionally, several types of biosensors (colorimetric biosensor, mobile phone-based biosensors, and nanomaterials-based biosensors) showed promising results in sensing SARS-CoV in wastewater. Further, this review paper outlined the gaps in assessing the factors responsible for transmission and challenges in detection and monitoring along with the remediation and disinfection methods of this virus in wastewater. Various methods of disinfection of SARS-CoV-2 in wastewater are discussed (primary, secondary, and tertiary phases) and it is found that a suite of disinfection methods can be used for complete disinfection/removal of the virus. Application of ultraviolet light, ozone and chlorine-based disinfectants are also discussed in the context of treatment methods. This study calls for continuous efforts to gather more information about the virus through continuous monitoring and analyses and to address the existing gaps and identification of the most effective tool/ strategy to prevent SARS-CoV-2 transmission. Wastewater surveillance can be very useful in effective surveillance of future pandemics and epidemics caused by viruses, especially after development of new technologies in detecting and disinfecting viral pathogens more effectively.
Collapse
Affiliation(s)
- Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Kumar Abhishek
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
- Department of Environment Forest and Climate Change, Government of Bihar, Patna, 800015, Bihar, India
| | - Shilpi Samiksha
- Bihar State Pollution Control Board, Patna, 800015, Bihar, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| |
Collapse
|
11
|
SARS-CoV-2 RNA Is Readily Detectable at Least 8 Months after Shedding in an Isolation Facility. mSphere 2022; 7:e0017722. [PMID: 36218344 PMCID: PMC9769851 DOI: 10.1128/msphere.00177-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Environmental monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for research and public health purposes has grown exponentially throughout the coronavirus disease 2019 (COVID-19) pandemic. Monitoring wastewater for SARS-CoV-2 provides early warning signals of virus spread and information on trends in infections at a community scale. Indoor environmental monitoring (e.g., swabbing of surfaces and air filters) to identify potential outbreaks is less common, and the evidence for its utility is mixed. A significant challenge with surface and air filter monitoring in this context is the concern of "relic RNA," noninfectious RNA found in the environment that is not from recently deposited virus. Here, we report detection of SARS-CoV-2 RNA on surfaces in an isolation unit (a university dorm room) for up to 8 months after a COVID-19-positive individual vacated the space. Comparison of sequencing results from the same location over two time points indicated the presence of the entire viral genome, and sequence similarity confirmed a single source of the virus. Our findings highlight the need to develop approaches that account for relic RNA in environmental monitoring. IMPORTANCE Environmental monitoring of SARS-CoV-2 is rapidly becoming a key tool in infectious disease research and public health surveillance. Such monitoring offers a complementary and sometimes novel perspective on population-level incidence dynamics relative to that of clinical studies by potentially allowing earlier, broader, more affordable, less biased, and less invasive identification. Environmental monitoring can assist public health officials and others when deploying resources to areas of need and provides information on changes in the pandemic over time. Environmental surveillance of the genetic material of infectious agents (RNA and DNA) in wastewater became widely applied during the COVID-19 pandemic. There has been less research on other types of environmental samples, such as surfaces, which could be used to indicate that someone in a particular space was shedding virus. One challenge with surface surveillance is that the noninfectious genetic material from a pathogen (e.g., RNA from SARS-CoV-2) may be detected in the environment long after an infected individual has left the space. This study aimed to determine how long SARS-CoV-2 RNA could be detected in a room after a COVID-positive person had been housed there.
Collapse
|
12
|
Gafurov A, Baláž A, Amman F, Boršová K, Čabanová V, Klempa B, Bergthaler A, Vinař T, Brejová B. VirPool: model-based estimation of SARS-CoV-2 variant proportions in wastewater samples. BMC Bioinformatics 2022; 23:551. [PMID: 36536300 PMCID: PMC9761630 DOI: 10.1186/s12859-022-05100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The genomes of SARS-CoV-2 are classified into variants, some of which are monitored as variants of concern (e.g. the Delta variant B.1.617.2 or Omicron variant B.1.1.529). Proportions of these variants circulating in a human population are typically estimated by large-scale sequencing of individual patient samples. Sequencing a mixture of SARS-CoV-2 RNA molecules from wastewater provides a cost-effective alternative, but requires methods for estimating variant proportions in a mixed sample. RESULTS We propose a new method based on a probabilistic model of sequencing reads, capturing sequence diversity present within individual variants, as well as sequencing errors. The algorithm is implemented in an open source Python program called VirPool. We evaluate the accuracy of VirPool on several simulated and real sequencing data sets from both Illumina and nanopore sequencing platforms, including wastewater samples from Austria and France monitoring the onset of the Alpha variant. CONCLUSIONS VirPool is a versatile tool for wastewater and other mixed-sample analysis that can handle both short- and long-read sequencing data. Our approach does not require pre-selection of characteristic mutations for variant profiles, it is able to use the entire length of reads instead of just the most informative positions, and can also capture haplotype dependencies within a single read.
Collapse
Affiliation(s)
- Askar Gafurov
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrej Baláž
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Fabian Amman
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, 1090 Vienna, Austria
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalsgasse 15, Vienna, 1090 Austria
| | - Kristína Boršová
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktória Čabanová
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, 1090 Vienna, Austria
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalsgasse 15, Vienna, 1090 Austria
| | - Tomáš Vinař
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Broňa Brejová
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
13
|
Cohen A, Maile-Moskowitz A, Grubb C, Gonzalez RA, Ceci A, Darling A, Hungerford L, Fricker R, Finkielstein CV, Pruden A, Vikesland PJ. Subsewershed SARS-CoV-2 Wastewater Surveillance and COVID-19 Epidemiology Using Building-Specific Occupancy and Case Data. ACS ES&T WATER 2022; 2:2047-2059. [PMID: 37552724 PMCID: PMC9128018 DOI: 10.1021/acsestwater.2c00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 08/10/2023]
Abstract
To evaluate the use of wastewater-based surveillance and epidemiology to monitor and predict SARS-CoV-2 virus trends, over the 2020-2021 academic year we collected wastewater samples twice weekly from 17 manholes across Virginia Tech's main campus. We used data from external door swipe card readers and student isolation/quarantine status to estimate building-specific occupancy and COVID-19 case counts at a daily resolution. After analyzing 673 wastewater samples using reverse transcription quantitative polymerase chain reaction (RT-qPCR), we reanalyzed 329 samples from isolation and nonisolation dormitories and the campus sewage outflow using reverse transcription digital droplet polymerase chain reaction (RT-ddPCR). Population-adjusted viral copy means from isolation dormitory wastewater were 48% and 66% higher than unadjusted viral copy means for N and E genes (1846/100 mL to 2733/100 mL/100 people and 2312/100 mL to 3828/100 mL/100 people, respectively; n = 46). Prespecified analyses with random-effects Poisson regression and dormitory/cluster-robust standard errors showed that the detection of N and E genes were associated with increases of 85% and 99% in the likelihood of COVID-19 cases 8 days later (incident-rate ratio (IRR) = 1.845, p = 0.013 and IRR = 1.994, p = 0.007, respectively; n = 215), and one-log increases in swipe card normalized viral copies (copies/100 mL/100 people) for N and E were associated with increases of 21% and 27% in the likelihood of observing COVID-19 cases 8 days following sample collection (IRR = 1.206, p < 0.001, n = 211 for N; IRR = 1.265, p < 0.001, n = 211 for E). One-log increases in swipe normalized copies were also associated with 40% and 43% increases in the likelihood of observing COVID-19 cases 5 days after sample collection (IRR = 1.403, p = 0.002, n = 212 for N; IRR = 1.426, p < 0.001, n = 212 for E). Our findings highlight the use of building-specific occupancy data and add to the evidence for the potential of wastewater-based epidemiology to predict COVID-19 trends at subsewershed scales.
Collapse
Affiliation(s)
- Alasdair Cohen
- Department of Population Health Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Ayella Maile-Moskowitz
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Christopher Grubb
- Department of Statistics, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Raul A. Gonzalez
- Hampton Roads Sanitation
District, Virginia Beach, Virginia 23455, United
States
| | - Alessandro Ceci
- Molecular Diagnostics Laboratory, Fralin Biomedical
Research Institute, Virginia Tech, Roanoke, Virginia 24016,
United States
| | - Amanda Darling
- Department of Population Health Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Laura Hungerford
- Department of Population Health Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Ronald
D. Fricker
- Department of Statistics, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Carla V. Finkielstein
- Molecular Diagnostics Laboratory, Fralin Biomedical
Research Institute, Virginia Tech, Roanoke, Virginia 24016,
United States
- Integrated Cellular Responses Laboratory, Fralin
Biomedical Research Institute at VTC, Roanoke, Virginia 24016,
United States
- Department of Biological Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Amy Pruden
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Peter J. Vikesland
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| |
Collapse
|
14
|
Pang X, Gao T, Ellehoj E, Li Q, Qiu Y, Maal-Bared R, Sikora C, Tipples G, Diggle M, Hinshaw D, Ashbolt NJ, Talbot J, Hrudey SE, Lee BE. Wastewater-Based Surveillance Is an Effective Tool for Trending COVID-19 Prevalence in Communities: A Study of 10 Major Communities for 17 Months in Alberta. ACS ES&T WATER 2022; 2:2243-2254. [PMID: 36380772 PMCID: PMC9514327 DOI: 10.1021/acsestwater.2c00143] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The correlations between SARS-CoV-2 RNA levels in wastewater from 12 wastewater treatment plants and new COVID-19 cases in the corresponding sewersheds of 10 communities were studied over 17 months. The analysis from the longest continuous surveillance reported to date revealed that SARS-CoV-2 RNA levels correlated well with temporal changes of COVID-19 cases in each community. The strongest correlation was found during the third wave (r = 0.97) based on the population-weighted SARS-CoV-2 RNA levels in wastewater. Different correlations were observed (r from 0.51 to 0.86) in various sizes of communities. The population in the sewershed had no observed effects on the strength of the correlation. Fluctuation of SARS-CoV-2 RNA levels in wastewater mirrored increases and decreases of COVID-19 cases in the corresponding community. Since the viral shedding to sewers from all infected individuals is included, wastewater-based surveillance provides an unbiased and no-discriminate estimation of the prevalence of COVID-19 compared with clinical testing that was subject to testing-seeking behaviors and policy changes. Wastewater-based surveillance on SARS-CoV-2 represents a temporal trend of COVID-19 disease burden and is an effective and supplementary monitoring when the number of COVID-19 cases reaches detectable thresholds of SARS-CoV-2 RNA in wastewater of treatment facilities serving various sizes of populations.
Collapse
Affiliation(s)
- Xiaoli Pang
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Tiejun Gao
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Erik Ellehoj
- Ellehoj
Redmond Consulting, Edmonton, Alberta T6G 0Y4, Canada
| | - Qiaozhi Li
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Yuanyuan Qiu
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | | | - Christopher Sikora
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Graham Tipples
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Mathew Diggle
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Deena Hinshaw
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | | | - James Talbot
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Steve E. Hrudey
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Bonita E. Lee
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| |
Collapse
|
15
|
Wartell BA, Proano C, Bakalian L, Kaya D, Croft K, McCreary M, Lichtenstein N, Miske V, Arcellana P, Boyer J, Benschoten IV, Anderson M, Crabb A, Gilson S, Gourley A, Wheeler T, Trest B, Bowman G, Kjellerup BV. Implementing wastewater surveillance for SARS-CoV-2 on a university campus: Lessons learned. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10807. [PMID: 36372781 PMCID: PMC9827968 DOI: 10.1002/wer.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Wastewater surveillance, also known as wastewater-based epidemiology (WBE), has been successfully used to detect SARS-CoV-2 and other viruses in sewage in many locations in the United States and globally. This includes implementation of the surveillance on college and university campuses. A two-phase study was conducted during the 2020-2021 academic year to test the feasibility of a WBE system on campus and to supplement the clinical COVID-19 testing performed for the student, staff, and faculty body. The primary objective during the Fall 2020 semester was to monitor a large portion of the on-campus population and to obtain an understanding of the spreading of the SARS-CoV-2 virus. The Spring 2021 objective was focused on selected residence halls and groups of residents on campus, as this was more efficient and relevant for an effective follow-up response. Logistical problems and planning oversights initially occurred but were corrected with improved communication and experience. Many lessons were learned, including effective mapping, site planning, communication, personnel organization, and equipment management, and obtained along the way, thereby paving an opportune guide for future planning efforts. PRACTITIONER POINTS: WBE was successful in the detection of many SARS-CoV-2 variants incl. Alpha, Beta, Gamma, Delta, Lambda, Mu, and Omicron. Careful planning and contingencies were essential for a successful implementation of a SARS-CoV-2 monitoring program. A surveillance program may be important for detection and monitoring of other public health relevant targets in wastewater incl. bacteria, viruses, fungi and viruses. Diverse lessons were learned incl. effective mapping, site planning, communication, personnel organization, and equipment management, thereby providing a guide for future planning efforts.
Collapse
Affiliation(s)
- Brian A. Wartell
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Camila Proano
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Lena Bakalian
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Devrim Kaya
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Kristen Croft
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Michael McCreary
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Naomi Lichtenstein
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Victoria Miske
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Patricia Arcellana
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Jessica Boyer
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Isabelle Van Benschoten
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Marya Anderson
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Andrea Crabb
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Susan Gilson
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Anthony Gourley
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Tim Wheeler
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Brian Trest
- Facilities ManagementUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Glynnis Bowman
- Facilities ManagementUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Birthe V. Kjellerup
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| |
Collapse
|
16
|
Bivins A, Kaya D, Ahmed W, Brown J, Butler C, Greaves J, Leal R, Maas K, Rao G, Sherchan S, Sills D, Sinclair R, Wheeler RT, Mansfeldt C. Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155347. [PMID: 35460780 PMCID: PMC9020839 DOI: 10.1016/j.scitotenv.2022.155347] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 05/09/2023]
Abstract
Much of what is known and theorized concerning passive sampling techniques has been developed considering chemical analytes. Yet, historically, biological analytes, such as Salmonella typhi, have been collected from wastewater via passive sampling with Moore swabs. In response to the COVID-19 pandemic, passive sampling is re-emerging as a promising technique to monitor SARS-CoV-2 RNA in wastewater. Method comparisons and disease surveillance using composite, grab, and passive sampling for SARS-CoV-2 RNA detection have found passive sampling with a variety of materials routinely produced qualitative results superior to grab samples and useful for sub-sewershed surveillance of COVID-19. Among individual studies, SARS-CoV-2 RNA concentrations derived from passive samplers demonstrated heterogeneous correlation with concentrations from paired composite samples ranging from weak (R2 = 0.27, 0.31) to moderate (R2 = 0.59) to strong (R2 = 0.76). Among passive sampler materials, electronegative membranes have shown great promise with linear uptake of SARS-CoV-2 RNA observed for exposure durations of 24 to 48 h and in several cases RNA positivity on par with composite samples. Continuing development of passive sampling methods for the surveillance of infectious diseases via diverse forms of fecal waste should focus on optimizing sampler materials for the efficient uptake and recovery of biological analytes, kit-free extraction, and resource-efficient testing methods capable of rapidly producing qualitative or quantitative data. With such refinements passive sampling could prove to be a fundamental tool for scaling wastewater surveillance of infectious disease, especially among the 1.8 billion persons living in low-resource settings served by non-traditional wastewater collection infrastructure.
Collapse
Affiliation(s)
- Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA.
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Caitlyn Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, 130 Natural Resources Rd., Amherst, MA 01003, USA
| | - Justin Greaves
- School of Environmental Sustainability, Loyola University Chicago, 6364 N. Sheridan Rd, Chicago, IL 60660, USA
| | - Raeann Leal
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Kendra Maas
- Microbial Analyses, Resources, and Services Facility, University of Connecticut, Storrs, CT 06269, USA
| | - Gouthami Rao
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA; Center for Climate and Health, Morgan State University, Baltimore, MD 21251, USA
| | - Deborah Sills
- Bucknell University, Department of Civil and Environmental Engineering, Lewisburg, PA 17837, USA
| | - Ryan Sinclair
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA
| | - Cresten Mansfeldt
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, USA
| |
Collapse
|
17
|
Zheng X, Deng Y, Xu X, Li S, Zhang Y, Ding J, On HY, Lai JCC, In Yau C, Chin AWH, Poon LLM, Tun HM, Zhang T. Comparison of virus concentration methods and RNA extraction methods for SARS-CoV-2 wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153687. [PMID: 35134418 PMCID: PMC8816846 DOI: 10.1016/j.scitotenv.2022.153687] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/16/2022] [Accepted: 02/01/2022] [Indexed: 05/02/2023]
Abstract
Wastewater surveillance is a promising tool for population-level monitoring of the spread of infectious diseases, such as the coronavirus disease 2019 (COVID-19). Different from clinical specimens, viruses in community-scale wastewater samples need to be concentrated before detection because viral RNA is highly diluted. The present study evaluated eleven different virus concentration methods for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. First, eight concentration methods of different principles were compared using spiked wastewater at a starting volume of 30 mL. Ultracentrifugation was the most effective method with a viral recovery efficiency of 25 ± 6%. The second-best option, AlCl3 precipitation method, yielded a lower recovery efficiency, only approximately half that of the ultracentrifugation method. Second, the potential of increasing method sensitivity was explored using three concentration methods starting with a larger volume of 1000 mL. Although ultracentrifugation using a large volume outperformed the other two large-volume methods, it only yielded a comparable method sensitivity as the ultracentrifugation using a small volume (30 mL). Thus, ultracentrifugation using less volume of wastewater is more preferable considering the sample processing throughput. Third, a comparison of two viral RNA extraction methods showed that the lysis-buffer-based extraction method resulted in higher viral recovery efficiencies, with cycle threshold (Ct) values 0.9-4.2 lower than those obtained for the acid-guanidinium-phenol-based method using spiked samples. These results were further confirmed by using positive wastewater samples concentrated by ultracentrifugation and extracted separately by the two viral RNA extraction methods. In summary, concentration using ultracentrifugation followed by the lysis buffer-based extraction method enables sensitive and robust detection of SARS-CoV-2 for wastewater surveillance.
Collapse
Affiliation(s)
- Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yulin Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hei Yin On
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Jimmy C C Lai
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Chung In Yau
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Hein M Tun
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
18
|
Kumblathan T, Piroddi N, Hrudey SE, Li XF. Wastewater Based Surveillance of SARS-CoV-2: Challenges and Perspective from a Canadian Inter-laboratory Study. J Environ Sci (China) 2022; 116:229-232. [PMID: 35219421 PMCID: PMC8789553 DOI: 10.1016/j.jes.2022.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Teresa Kumblathan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Albert T6G 2G3a, Canada
| | - Nicholas Piroddi
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Albert T6G 2G3a, Canada
| | - Steve E Hrudey
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Albert T6G 2G3a, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Albert T6G 2G3a, Canada.
| |
Collapse
|
19
|
Haramoto E, Medema G, Meschke JS, Petterson S. Editorial: SARS-CoV-2 in water. JOURNAL OF WATER AND HEALTH 2022; 20:iii-vi. [PMID: 36366985 DOI: 10.2166/wh.2022.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| | - Gertjan Medema
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| | - John Scott Meschke
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| | - Susan Petterson
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| |
Collapse
|
20
|
Hrudey SE, Bischel HN, Charrois J, Chik AHS, Conant B, Delatolla R, Dorner S, Graber TE, Hubert C, Isaac-Renton J, Pons W, Safford H, Servos M, Sikora C. Wastewater Surveillance for SARS-CoV-2 RNA in Canada. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Wastewater surveillance for SARS-CoV-2 RNA is a relatively recent adaptation of long-standing wastewater surveillance for infectious and other harmful agents. Individuals infected with COVID-19 were found to shed SARS-CoV-2 in their faeces. Researchers around the world confirmed that SARS-CoV-2 RNA fragments could be detected and quantified in community wastewater. Canadian academic researchers, largely as volunteer initiatives, reported proof-of-concept by April 2020. National collaboration was initially facilitated by the Canadian Water Network. Many public health officials were initially skeptical about actionable information being provided by wastewater surveillance even though experience has shown that public health surveillance for a pandemic has no single, perfect approach. Rather, different approaches provide different insights, each with its own strengths and limitations. Public health science must triangulate among different forms of evidence to maximize understanding of what is happening or may be expected. Well-conceived, resourced, and implemented wastewater-based platforms can provide a cost-effective approach to support other conventional lines of evidence. Sustaining wastewater monitoring platforms for future surveillance of other disease targets and health states is a challenge. Canada can benefit from taking lessons learned from the COVID-19 pandemic to develop forward-looking interpretive frameworks and capacity to implement, adapt, and expand such public health surveillance capabilities.
Collapse
Affiliation(s)
- Steve E. Hrudey
- Professor Emeritus, Analytical & Environmental Toxicology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2G3 Canada
| | - Heather N. Bischel
- Associate Professor, Department of Civil & Environmental Engineering, University of California, Davis, Davis, CA 95616 USA
| | - Jeff Charrois
- Senior Manager, Analytical Operations and Process Development Teams, EPCOR Water Services Inc, Edmonton, AB T5K 0A5 Canada
| | - Alex H. S. Chik
- Project Manager, Wastewater Surveillance Initiative, Ontario Clean Water Agency, Mississauga, ON L5A 4G1 Canada
| | - Bernadette Conant
- Past Chief Executive Officer, Canadian Water Network, Waterloo, ON N2L 3G1 Canada
| | - Rob Delatolla
- Professor, Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Sarah Dorner
- Professor, Civil, Geological & Mining Engineering, Polytechnique Montréal, Montréal, PQ H3T 1J4 Canada
| | - Tyson E. Graber
- Associate Scientist, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1 Canada
| | - Casey Hubert
- Professor, Campus Alberta Innovates Program Chair in Geomicrobiology, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Judy Isaac-Renton
- Professor Emerita, Dept. Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Calgary, AB, T2N 3V9 Canada
| | - Wendy Pons
- Professor, Bachelor of Environmental Health Program Conestoga College Institute of Technology and Advanced Learning, Kitchener, ON N2P 2N6 Canada
| | - Hannah Safford
- Associate Director of Science Policy, Federation of American Scientists, Arlington, VA 22205 USA
| | - Mark Servos
- Professor & Canada Research Chair, Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Christopher Sikora
- Medical Officer of Health, Edmonton Region, Alberta Health Services, Edmonton, AB T5J 3E4 Canada
| |
Collapse
|