1
|
Desiderio A, Pastorino M, Campitelli M, Longo M, Miele C, Napoli R, Beguinot F, Raciti GA. DNA methylation in cardiovascular disease and heart failure: novel prediction models? Clin Epigenetics 2024; 16:115. [PMID: 39175069 PMCID: PMC11342679 DOI: 10.1186/s13148-024-01722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVD) affect over half a billion people worldwide and are the leading cause of global deaths. In particular, due to population aging and worldwide spreading of risk factors, the prevalence of heart failure (HF) is also increasing. HF accounts for approximately 36% of all CVD-related deaths and stands as the foremost cause of hospitalization. Patients affected by CVD or HF experience a substantial decrease in health-related quality of life compared to healthy subjects or affected by other diffused chronic diseases. MAIN BODY For both CVD and HF, prediction models have been developed, which utilize patient data, routine laboratory and further diagnostic tests. While some of these scores are currently used in clinical practice, there still is a need for innovative approaches to optimize CVD and HF prediction and to reduce the impact of these conditions on the global population. Epigenetic biomarkers, particularly DNA methylation (DNAm) changes, offer valuable insight for predicting risk, disease diagnosis and prognosis, and for monitoring treatment. The present work reviews current information relating DNAm, CVD and HF and discusses the use of DNAm in improving clinical risk prediction of CVD and HF as well as that of DNAm age as a proxy for cardiac aging. CONCLUSION DNAm biomarkers offer a valuable contribution to improving the accuracy of CV risk models. Many CpG sites have been adopted to develop specific prediction scores for CVD and HF with similar or enhanced performance on the top of existing risk measures. In the near future, integrating data from DNA methylome and other sources and advancements in new machine learning algorithms will help develop more precise and personalized risk prediction methods for CVD and HF.
Collapse
Affiliation(s)
- Antonella Desiderio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Monica Pastorino
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
- Department of Molecular Medicine and Biotechnology, Federico II University of Naples, Naples, Italy
| | - Michele Campitelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Michele Longo
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Raffaele Napoli
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
| | - Gregory Alexander Raciti
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
| |
Collapse
|
2
|
Karlin H, Sooda M, Larson M, Rong J, Huan T, Mens MMJ, van Rooij FJA, Ikram MA, Courchesne P, Freedman JE, Joehanes R, Mueller GP, Kavousi M, Ghanbari M, Levy D. Plasma Extracellular MicroRNAs Associated With Cardiovascular Disease Risk Factors in Middle-Aged and Older Adults. J Am Heart Assoc 2024; 13:e033674. [PMID: 38860398 PMCID: PMC11255734 DOI: 10.1161/jaha.123.033674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/01/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Extracellular microRNAs (miRNAs) are a class of noncoding RNAs that remain stable in the extracellular milieu, where they contribute to various physiological and pathological processes by facilitating intercellular signaling. Previous studies have reported associations between miRNAs and cardiovascular diseases (CVDs); however, the plasma miRNA signatures of CVD and its risk factors have not been fully elucidated at the population level. METHODS AND RESULTS Plasma miRNA levels were measured in 4440 FHS (Framingham Heart Study) participants. Linear regression analyses were conducted to test the cross-sectional associations of each miRNA with 8 CVD risk factors. Prospective analyses of the associations of miRNAs with new-onset obesity, hypertension, type 2 diabetes, CVD, and all-cause mortality were conducted using proportional hazards regression. Replication was carried out in 1999 RS (Rotterdam Study) participants. Pathway enrichment analyses were conducted and target genes were predicted for miRNAs associated with ≥5 risk factors in the FHS. In the FHS, 6 miRNAs (miR-193b-3p, miR-122-5p, miR-365a-3p, miR-194-5p, miR-192-5p, and miR-193a-5p) were associated with ≥5 risk factors. This miRNA signature was enriched for pathways associated with CVD and several genes annotated to these pathways were predicted targets of the identified miRNAs. Furthermore, miR-193b-3p, miR-194-5p, and miR-193a-5p were each associated with ≥2 risk factors in the RS. Prospective analysis revealed 8 miRNAs associated with all-cause mortality in the FHS. CONCLUSIONS These findings highlight associations between miRNAs and CVD risk factors that may provide valuable insights into the underlying pathogenesis of CVD.
Collapse
Affiliation(s)
- Hannah Karlin
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Meera Sooda
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Martin Larson
- Framingham Heart StudyFraminghamMAUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Jian Rong
- Framingham Heart StudyFraminghamMAUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
| | - Tianxiao Huan
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
- Ophthalmology and Visual SciencesUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Michelle M. J. Mens
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
- Department of Social and Behavioral SciencesHarvard T.H Chan School of Public HealthBostonMAUSA
| | - Frank J. A. van Rooij
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Paul Courchesne
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Jane E. Freedman
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Roby Joehanes
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Gregory P. Mueller
- Department of Anatomy, Physiology, and Genetics, F. Edward Hebert School of MedicineUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Maryam Kavousi
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Mohsen Ghanbari
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Daniel Levy
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
- Boston University School of MedicineBostonMAUSA
| |
Collapse
|
3
|
Elahimanesh M, Shokri N, Mahdinia E, Mohammadi P, Parvaz N, Najafi M. Differential gene expression patterns in ST-elevation Myocardial Infarction and Non-ST-elevation Myocardial Infarction. Sci Rep 2024; 14:3424. [PMID: 38341440 PMCID: PMC10858964 DOI: 10.1038/s41598-024-54086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
The ST-elevation Myocardial Infarction (STEMI) and Non-ST-elevation Myocardial Infarction (NSTEMI) might occur because of coronary artery stenosis. The gene biomarkers apply to the clinical diagnosis and therapeutic decisions in Myocardial Infarction. The aim of this study was to introduce, enrich and estimate timely the blood gene profiles based on the high-throughput data for the molecular distinction of STEMI and NSTEMI. The text mining data (50 genes) annotated with DisGeNET data (144 genes) were merged with the GEO gene expression data (5 datasets) using R software. Then, the STEMI and NSTEMI networks were primarily created using the STRING server, and improved using the Cytoscape software. The high-score genes were enriched using the KEGG signaling pathways and Gene Ontology (GO). Furthermore, the genes were categorized to determine the NSTEMI and STEMI gene profiles. The time cut-off points were identified statistically by monitoring the gene profiles up to 30 days after Myocardial Infarction (MI). The gene heatmaps were clearly created for the STEMI (high-fold genes 69, low-fold genes 45) and NSTEMI (high-fold genes 68, low-fold genes 36). The STEMI and NSTEMI networks suggested the high-score gene profiles. Furthermore, the gene enrichment suggested the different biological conditions for STEMI and NSTEMI. The time cut-off points for the NSTEMI (4 genes) and STEMI (13 genes) gene profiles were established up to three days after Myocardial Infarction. The study showed the different pathophysiologic conditions for STEMI and NSTEMI. Furthermore, the high-score gene profiles are suggested to measure up to 3 days after MI to distinguish the STEMI and NSTEMI.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Mahdinia
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Parvaz
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci 2024; 25:1469. [PMID: 38338746 PMCID: PMC10855871 DOI: 10.3390/ijms25031469] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
Karimi B, Mokhtari K, Rozbahani H, Peymani M, Nabavi N, Entezari M, Rashidi M, Taheriazam A, Ghaedi K, Hashemi M. Pathological roles of miRNAs and pseudogene-derived lncRNAs in human cancers, and their comparison as prognosis/diagnosis biomarkers. Pathol Res Pract 2024; 253:155014. [PMID: 38128189 DOI: 10.1016/j.prp.2023.155014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
This review examines and compares the diagnostic and prognostic capabilities of miRNAs and lncRNAs derived from pseudogenes in cancer patients. Additionally, it delves into their roles in cancer pathogenesis. Both miRNAs and pseudogene-derived lncRNAs have undergone thorough investigation as remarkably sensitive and specific cancer biomarkers, offering significant potential for cancer detection and monitoring. . Extensive research is essential to gain a complete understanding of the precise roles these non-coding RNAs play in cancer, allowing the development of novel targeted therapies and biomarkers for improved cancer detection and treatment approaches.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Rozbahani
- Department of Psychology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Psychology, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Tsoporis JN, Triantafyllis AS, Kalogeropoulos AS, Izhar S, Rigopoulos AG, Rallidis LS, Sakadakis E, Toumpoulis IK, Salpeas V, Leong-Poi H, Parker TG, Rizos I. Differential Expression of Circulating Damage-Associated Molecular Patterns in Patients with Coronary Artery Ectasia. Biomolecules 2023; 14:10. [PMID: 38275751 PMCID: PMC10813324 DOI: 10.3390/biom14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Coronary artery ectasia (CAE) is defined as abnormal dilation of a coronary artery with a diameter exceeding that of adjacent normal arterial segment by >1.5 times. CAE is a pathological entity of the coronary arteries and characterized as a variant of coronary atherosclerosis. CAE frequently coexists with coronary artery disease (CAD). While inflammation appears to be involved, the pathophysiology of CAE remains unclear. Damage-associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue, are deemed as alarm signals by the innate immune system. Inflammatory agents can generate DAMPs and DAMPs can create a pro-inflammatory state. In a prospective cross-sectional study, we enrolled 29 patients with CAE and non-obstructive CAD, 19 patients with obstructive CAD without CAE, and 14 control subjects with normal (control) coronary arteries age- and sex-matched with the CAE patients, to investigate the differential expression of plasma DAMPs. Patients with CAE and non-obstructive CAD had increased plasma levels of the DAMPs S100B, S100A12, HMGB1, and HSP70, the DAMPs receptor TLR4, and miR328a-3p compared to CAD and controls. Plasma levels of the mir328a-3p target the protective soluble form of the DAMPs receptor for advanced glycation end products (sRAGE), and the antioxidant DJ-1 was decreased in both CAE and CAD compared to controls. In an in vitro human umbilical vein endothelial cells model, circulating levels of S100B, HMGB1, HSP70 as well as CAE patient plasma induced inflammatory responses. The differential expression of the DAMPs S100B, HSP70, HMGB1, and their receptors TLR4 and sRAGE in CAE versus CAD makes them attractive novel biomarkers as therapeutic targets and therapeutics.
Collapse
Affiliation(s)
- James N. Tsoporis
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Andreas S. Triantafyllis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
- Askepeion General Hospital, 16673 Athens, Greece
| | - Andreas S. Kalogeropoulos
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
- Hygeia HealthCare Group, Department of Cardiology, Mitera General Hospital, 15123 Athens, Greece
| | - Shehla Izhar
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Angelos G. Rigopoulos
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Loukianos S. Rallidis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Eleftherios Sakadakis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Ioannis K. Toumpoulis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Vasileios Salpeas
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Howard Leong-Poi
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Thomas G. Parker
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Ioannis Rizos
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| |
Collapse
|
7
|
Seyhan AA. Circulating microRNAs as Potential Biomarkers in Pancreatic Cancer-Advances and Challenges. Int J Mol Sci 2023; 24:13340. [PMID: 37686149 PMCID: PMC10488102 DOI: 10.3390/ijms241713340] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
There is an urgent unmet need for robust and reliable biomarkers for early diagnosis, prognosis, and prediction of response to specific treatments of many aggressive and deadly cancers, such as pancreatic cancer, and liquid biopsy-based miRNA profiling has the potential for this. MiRNAs are a subset of non-coding RNAs that regulate the expression of a multitude of genes post-transcriptionally and thus are potential diagnostic, prognostic, and predictive biomarkers and have also emerged as potential therapeutics. Because miRNAs are involved in the post-transcriptional regulation of their target mRNAs via repressing gene expression, defects in miRNA biogenesis pathway and miRNA expression perturb the expression of a multitude of oncogenic or tumor-suppressive genes that are involved in the pathogenesis of various cancers. As such, numerous miRNAs have been identified to be downregulated or upregulated in many cancers, functioning as either oncomes or oncosuppressor miRs. Moreover, dysregulation of miRNA biogenesis pathways can also change miRNA expression and function in cancer. Profiling of dysregulated miRNAs in pancreatic cancer has been shown to correlate with disease diagnosis, indicate optimal treatment options and predict response to a specific therapy. Specific miRNA signatures can track the stages of pancreatic cancer and hold potential as diagnostic, prognostic, and predictive markers, as well as therapeutics such as miRNA mimics and miRNA inhibitors (antagomirs). Furthermore, identified specific miRNAs and genes they regulate in pancreatic cancer along with downstream pathways can be used as potential therapeutic targets. However, a limited understanding and validation of the specific roles of miRNAs, lack of tissue specificity, methodological, technical, or analytical reproducibility, harmonization of miRNA isolation and quantification methods, the use of standard operating procedures, and the availability of automated and standardized assays to improve reproducibility between independent studies limit bench-to-bedside translation of the miRNA biomarkers for clinical applications. Here I review recent findings on miRNAs in pancreatic cancer pathogenesis and their potential as diagnostic, prognostic, and predictive markers.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Mohd Yunus SS, Soh HY, Abdul Rahman M, Peng X, Guo C, Ramli R. MicroRNA in medication related osteonecrosis of the jaw: a review. Front Physiol 2023; 14:1021429. [PMID: 37179831 PMCID: PMC10169589 DOI: 10.3389/fphys.2023.1021429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Medication related osteonecrosis of the jaw (MRONJ) is a condition caused by inhibition of the osteoclast activity by the anti-resorptive and anti-angiogenic drugs. Clinically, there is an exposure of the necrotic bone or a fistula which fails to heal for more than 8 weeks. The adjacent soft tissue is inflamed and pus may be present as a result of the secondary infection. To date, there is no consistent biomarker that could aid in the diagnosis of the disease. The aim of this review was to explore the literature on the microRNAs (miRNAs) related to medication related osteonecrosis of the jaw, and to describe the role of each miRNA as a biomarker for diagnostic purpose and others. Its role in therapeutics was also searched. It was shown that miR-21, miR-23a, and miR-145 were significantly different in a study involving multiple myeloma patients as well as in a human-animal study while miR-23a-3p and miR-23b-3p were 12- to 14-fold upregulated compared to the control group in an animal study. The role of the microRNAs in these studies were for diagnostics, predictor of progress of MRONJ and pathogenesis. Apart from its potential diagnostics role, microRNAs have been shown to be bone resorption regulator through miR-21, miR-23a and miR-145 and this could be utilized therapeutically.
Collapse
Affiliation(s)
- Siti Salmiah Mohd Yunus
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hui Yuh Soh
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mariati Abdul Rahman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing, China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing, China
| | - Roszalina Ramli
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Limkakeng AT, Rowlette LL, Hatch A, Nixon AB, Ilkayeva O, Corcoran D, Modliszewski J, Griffin SM, Ginsburg GS, Voora D. A precision medicine approach to stress testing using metabolomics and microribonucleic acids. Per Med 2022; 19:287-297. [DOI: 10.2217/pme-2021-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both transcriptomics and metabolomics hold promise for identifying acute coronary syndrome (ACS) but they have not been used in combination, nor have dynamic changes in levels been assessed as a diagnostic tool. We assessed integrated analysis of peripheral blood miRNA and metabolite analytes to distinguish patients with myocardial ischemia on cardiac stress testing. We isolated and quantified miRNA and metabolites before and after stress testing from seven patients with myocardial ischemia and 1:1 matched controls. The combined miRNA and metabolomic data were analyzed jointly in a supervised, dimension-reducing discriminant analysis. We implemented a baseline model (T0) and a stress-delta model. This novel integrative analysis of the baseline levels of metabolites and miRNA expression showed modest performance for distinguishing cases from controls. The stress-delta model showed worse performance. This pilot study shows potential for an integrated precision medicine approach to cardiac stress testing.
Collapse
Affiliation(s)
| | - Laura-Leigh Rowlette
- Sequencing & Genomic Technologies Shared Resource, Duke Center for Genomic & Computational Biology, Duke University, Durham, NC, USA
| | - Ace Hatch
- Division of Medical Oncology, Duke University, Durham, NC 27710, USA
| | - Andrew B Nixon
- Division of Medical Oncology, Duke University, Durham, NC 27710, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
- Division of Endocrinology, Metabolism & Nutrition, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Corcoran
- Genomic Analysis & Bioinformatics Shared Resource, Duke Center for Genomic & Computational Biology, Duke University, Durham, NC 27710, USA
| | - Jennifer Modliszewski
- Genomic Analysis & Bioinformatics Shared Resource, Duke Center for Genomic & Computational Biology, Duke University, Durham, NC 27710, USA
| | | | - Geoffrey S Ginsburg
- Center for Applied Genomics & Precision Medicine, Duke University, Durham, NC 27710, USA
- Division of Cardiology, Duke University, Durham, NC 27710, USA
| | - Deepak Voora
- Center for Applied Genomics & Precision Medicine, Duke University, Durham, NC 27710, USA
- Division of Cardiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
10
|
Leveraging Extracellular Non-coding RNAs to Diagnose and Treat Heart Diseases. J Cardiovasc Transl Res 2022; 15:456-468. [PMID: 35419773 DOI: 10.1007/s12265-022-10252-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, emerge to be crucial mediators of cell-to-cell communication in multiple organs. Non-coding RNAs loaded inside EVs contribute as one major mechanism for remote information transfer among different cell types or organs. Increasing evidence suggests that EV-associated non-coding RNAs derived from cardiovascular or non-cardiac cells regulate cardiovascular pathophysiology in heart development and diseases. The functional relevance of the EV-associated ncRNAs in heart diseases provides an avenue to develop novel diagnostic tools and therapies for heart diseases. In this review, we summarize the recent advancement of EV-associated ncRNAs in different cardiovascular diseases, including myocardial infarction, arrhythmias, cardiac hypertrophy, and heart failure, with an emphasis on the underlying molecular mechanisms.
Collapse
|
11
|
Kansakar U, Varzideh F, Mone P, Jankauskas SS, Santulli G. Functional Role of microRNAs in Regulating Cardiomyocyte Death. Cells 2022; 11:983. [PMID: 35326433 PMCID: PMC8946783 DOI: 10.3390/cells11060983] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
microRNAs (miRNA, miRs) play crucial roles in cardiovascular disease regulating numerous processes, including inflammation, cell proliferation, angiogenesis, and cell death. Herein, we present an updated and comprehensive overview of the functional involvement of miRs in the regulation of cardiomyocyte death, a central event in acute myocardial infarction, ischemia/reperfusion, and heart failure. Specifically, in this systematic review we are focusing on necrosis, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Fahimeh Varzideh
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Pasquale Mone
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Stanislovas S. Jankauskas
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
12
|
Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Galatou E, Mittas N, Theodoroula NF, Papazoglou AS, Karagiannidis E, Chatzidimitriou M, Papa A, Sianos G, Angelis L, Chatzidimitriou D, Vizirianakis IS. Dissecting miRNA–Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine. Cells 2022; 11:cells11040607. [PMID: 35203258 PMCID: PMC8870388 DOI: 10.3390/cells11040607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) create systems networks and gene-expression circuits through molecular signaling and cell interactions that contribute to health imbalance and the emergence of cardiovascular disorders (CVDs). Because the clinical phenotypes of CVD patients present a diversity in their pathophysiology and heterogeneity at the molecular level, it is essential to establish genomic signatures to delineate multifactorial correlations, and to unveil the variability seen in therapeutic intervention outcomes. The clinically validated miRNA biomarkers, along with the relevant SNPs identified, have to be suitably implemented in the clinical setting in order to enhance patient stratification capacity, to contribute to a better understanding of the underlying pathophysiological mechanisms, to guide the selection of innovative therapeutic schemes, and to identify innovative drugs and delivery systems. In this article, the miRNA–gene networks and the genomic signatures resulting from the SNPs will be analyzed as a method of highlighting specific gene-signaling circuits as sources of molecular knowledge which is relevant to CVDs. In concordance with this concept, and as a case study, the design of the clinical trial GESS (NCT03150680) is referenced. The latter is presented in a manner to provide a direction for the improvement of the implementation of pharmacogenomics and precision cardiovascular medicine trials.
Collapse
Affiliation(s)
- Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
- Labnet Laboratories, Department of Molecular Biology and Genetics, 54638 Thessaloniki, Greece
| | - Konstantinos A. Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Christos I. Papagiannopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Eleftheria Galatou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Nikolaos Mittas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Andreas S. Papazoglou
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Efstratios Karagiannidis
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Georgios Sianos
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Lefteris Angelis
- Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
- Correspondence: or
| |
Collapse
|
13
|
Chen J, Liu Z, Ma L, Gao S, Fu H, Wang C, Lu A, Wang B, Gu X. Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics. Front Genet 2022; 12:780649. [PMID: 34987550 PMCID: PMC8721121 DOI: 10.3389/fgene.2021.780649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the cardiovascular disease would advance the field and promote prophylactic methods targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies and surveillance. The present review reported the latest development on the epigenetic regulation of MI in terms of DNA methylation, histone modifications, and microRNA-dependent MI mechanisms and the novel therapies based on epigenetics.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Zhichao Liu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Li Ma
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Shengwei Gao
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Huanjie Fu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Can Wang
- Acupuncture Department, The First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Anmin Lu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Baohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Xufang Gu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
14
|
Potential Applications and Functional Roles of Exosomes in Cardiometabolic Disease. Pharmaceutics 2021; 13:pharmaceutics13122056. [PMID: 34959338 PMCID: PMC8703910 DOI: 10.3390/pharmaceutics13122056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Despite diagnostic and therapeutic advances, cardiometabolic disease remains the leading cause of death worldwide. Extracellular vesicles (EVs), which include exosomes and microvesicles, have gained particular interest because of their role in metabolic homeostasis and cardiovascular physiology. Indeed, EVs are recognized as critical mediators of intercellular communication in the cardiovascular system. Exosomes are naturally occurring nanocarriers that transfer biological information in the setting of metabolic abnormalities and cardiac dysfunction. The study of these EVs can increase our knowledge on the pathophysiological mechanisms of metabolic disorders and their cardiovascular complications. Because of their inherent properties and composition, exosomes have been proposed as diagnostic and prognostic biomarkers and therapeutics for specific targeting and drug delivery. Emerging fields of study explore the use exosomes as tools for gene therapy and as a cell-free alternative for regenerative medicine. Furthermore, innovative biomaterials can incorporate exosomes to enhance tissue regeneration and engineering. In this work, we summarize the most recent knowledge on the role of exosomes in cardiometabolic pathophysiology while highlighting their potential therapeutic applications.
Collapse
|
15
|
Lee GK, Hsieh YP, Hsu SW, Lan SJ. Exploring diagnostic and prognostic predictive values of microRNAs for acute myocardial infarction: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26627. [PMID: 34398018 PMCID: PMC8294880 DOI: 10.1097/md.0000000000026627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/10/2020] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Previous investigations yielded inconsistent results for diagnostic and prognostic predictive values of MicroRNAs (miRNAs) for acute myocardial infarction (AMI). METHODS AND RESULTS We systematically searched on PubMed and Web of Science for articles explored association of miRNAs and AMI published from January 1989 to March 2019. For diagnostic studies, a summary of sensitivity, specificity, positive likelihood ratios (PLR), negative likelihood ratios (NLR), and diagnostic odds ratio (DOR), which indicated the accuracy of microRNAs in the differentiation of AMI and no AMI, were calculated from the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) of each study. In addition, the summary receive-operating characteristics (SROC) curve was constructed to summarize the TP and FP rates. For follow-up study, we computed hazard ratios (HRs) and 95% confidence intervals (CIs) for individual clinical outcomes. The meta-analysis showed a sensitivity [0.72 (95% CI: 0.61--0.81)] and specificity [0.88 (95% CI: 0.79--0.94)] of miR-1 for AMI. In addition, miR-133 showed a sensitivity [0.73 (95% CI: 0.55--0.85)] and specificity [0.88 (95% CI: 0.74--0.95)] for AMI. Moreover, the present study showed a sensitivity [0.83 (95% CI: 0.74--0.89)] and specificity [0.96 (95% CI: 0.82--0.99)] of miR-208 for AMI. A significant association was found between miR-208 and mortality after AMI (HR 1.09, 95% CI 1.01--1.18). It also indicated a sensitivity [0.84 (95% CI: 0.70--0.92)] and specificity [0.97 (95% CI: 0.87--0.99)] of miR-499 for AMI. CONCLUSIONS Circulating miR-1, miR-133, miR-208, and miR-499 showed diagnostic values in AMI.
Collapse
Affiliation(s)
- Gien-Kuo Lee
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
- BenQ medical center, Emergency Department, Nanjing, China
- Wei Gong Memorial Hospital, Emergency Department, Miaoli, Taiwan
| | - Yen-Ping Hsieh
- Department of Long Term Care, National Quemoy University, Taiwan
| | - Shang-Wei Hsu
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Shou-Jen Lan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
The Role of miRNAs in Extracellular Matrix Repair and Chronic Fibrotic Lung Diseases. Cells 2021; 10:cells10071706. [PMID: 34359876 PMCID: PMC8304879 DOI: 10.3390/cells10071706] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
The lung extracellular matrix (ECM) plays a key role in the normal architecture of the lung, from embryonic lung development to mechanical stability and elastic recoil of the breathing adult lung. The lung ECM can modulate the biophysical environment of cells through ECM stiffness, porosity, topography and insolubility. In a reciprocal interaction, lung ECM dynamics result from the synthesis, degradation and organization of ECM components by the surrounding structural and immune cells. Repeated lung injury and repair can trigger a vicious cycle of aberrant ECM protein deposition, accompanied by elevated ECM stiffness, which has a lasting effect on cell and tissue function. The processes governing the resolution of injury repair are regulated by several pathways; however, in chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary disease (IPF) these processes are compromised, resulting in impaired cell function and ECM remodeling. Current estimates show that more than 60% of the human coding transcripts are regulated by miRNAs. miRNAs are small non-coding RNAs that regulate gene expressions and modulate cellular functions. This review is focused on the current knowledge of miRNAs in regulating ECM synthesis, degradation and topography by cells and their dysregulation in asthma, COPD and IPF.
Collapse
|
17
|
Bu S, Singh KK. Epigenetic Regulation of Autophagy in Cardiovascular Pathobiology. Int J Mol Sci 2021; 22:ijms22126544. [PMID: 34207151 PMCID: PMC8235464 DOI: 10.3390/ijms22126544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the number one cause of debilitation and mortality worldwide, with a need for cost-effective therapeutics. Autophagy is a highly conserved catabolic recycling pathway triggered by various intra- or extracellular stimuli to play an essential role in development and pathologies, including CVDs. Accordingly, there is great interest in identifying mechanisms that govern autophagic regulation. Autophagic regulation is very complex and multifactorial that includes epigenetic pathways, such as histone modifications to regulate autophagy-related gene expression, decapping-associated mRNA degradation, microRNAs, and long non-coding RNAs; pathways are also known to play roles in CVDs. Molecular understanding of epigenetic-based pathways involved in autophagy and CVDs not only will enhance the understanding of CVDs, but may also provide novel therapeutic targets and biomarkers for CVDs.
Collapse
Affiliation(s)
| | - Krishna K. Singh
- Correspondence: ; Tel.: +1-519-661-2111 (ext. 80542) (Office) or (ext. 85683) (Lab)
| |
Collapse
|
18
|
Silencing of Long Noncoding RNA Zinc Finger Antisense 1 Protects Against Hypoxia/Reoxygenation-induced Injury in HL-1 Cells Through Targeting the miR-761/Cell Death Inducing p53 Target 1 Axis. J Cardiovasc Pharmacol 2020; 76:564-573. [DOI: 10.1097/fjc.0000000000000896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Yin L, Tang Y, Jiang M. Research on the circular RNA bioinformatics in patients with acute myocardial infarction. J Clin Lab Anal 2020; 35:e23621. [PMID: 33063376 PMCID: PMC7891515 DOI: 10.1002/jcla.23621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Through the detection of circular RNA (circRNA) using expression profiling chips, we searched for circRNAs related to acute myocardial infarction (AMI) and explored their relationship and possible mechanisms with AMI. METHOD The study subjects included 3 AMI patients and 3 controls, and circRNA expression profiling analysis was performed using a microarray gene chip to identify circRNAs with large differences in expression between groups and to construct a circRNA-miRNA network. RESULTS Compared with the control group, there were 650 differentially expressed circRNAs found in AMI patients (P < .05, fold change > 2), including 535 up-regulated circRNAs, such as hsa_circ_0050908, hsa_circRNA4010-22, hsa_circ_0081241, hsa_circ_0010551, hsa_circRNA4010-20, hsa_circRNA14702, hsa_circ_0115392, has_circRNA1825-44, has_circRNA8493-7, and hsa_circ_0025097. Furthermore, there were 115 down-regulated circRNAs, such as hsa_circ_0066439, hsa_circ_0054211, hsa_circ_0095920, hsa_circ_0122984, hsa_circ_0113067, hsa_circ_0039155, hsa_circRNA4014-45, hsa_circ_0122979, hsa_circ_0059665, and hsa_circ_0009319. The circRNAs hsa_circ_0066439, hsa_circ_0081241, and hsa_circ_0122984 can regulate multiple signal pathways to participate in the AMI process through hsa-miR-1254, hsa-miR-328-5p, and other miRNAs. In addition, the expression of circRNA-miRNA in peripheral blood is related to the network. Differentially expressed circRNAs are involved in chromatin organization, chromatin-modifying enzymes, signal transduction, lysine degradation, the mitogen-activated protein kinase (MAPK) signaling pathway, focal adhesion, and a variety of other pathways, such as myocardial infarction, coronary heart disease, hypertension, and other diseases. The gene ontology analysis results show that molecular function mainly involves binding and molecular structural activity, whereas the biological process mainly involves a single biological process, a cellular component for organization, and a cellular process, and the cellular component mainly involves a protein complex, an extracellular matrix, and a membrane. CONCLUSION circRNA and microRNA interact to participate in the development of AMI. circRNA may be involved in the pathogenesis of AMI.
Collapse
Affiliation(s)
- Lianli Yin
- Department of Clinical Laboratory, Nanning Second People's Hospital, the Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yinghua Tang
- Department of Clinical Laboratory, Guangxi Hospital Of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Minghe Jiang
- Emergency cardiothoracic Department, Nanning Second People's Hospital, the Third Affiliated Hospital of Guangxi Medical University,, Nanning, Guangxi, China
| |
Collapse
|
20
|
Zhu Y, Zou C, Jia Y, Zhang H, Ma X, Zhang J. Knockdown of circular RNA circMAT2B reduces oxygen-glucose deprivation-induced inflammatory injury in H9c2 cells through up-regulating miR-133. Cell Cycle 2020; 19:2622-2630. [PMID: 32897801 DOI: 10.1080/15384101.2020.1814025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Myocardial infarction (MI) is the main cause of morbidity and mortality. Reperfusion ways can cause damage to cardiomyocytes. CircMAT2B, a novel circRNA, takes positive roles in regulating glucose metabolism under hypoxia. Therefore, we aimed to explore the effects of circMAT2B on MI. Oxygen-glucose deprivation (OGD)-induced H9c2 cell model was employed to stimulate MI. Ex-circMAT2B, si-circMAT2B, miR-133 inhibitor and relative control were transfected into H9c2 cells. qRT-PCR was employed to examine levels of circMAT2B and miR-133. Cell activity, apoptosis, ROS generation and release of inflammatory factors were assessed by CCK-8, flow cytometry, ROS species assay kit and ELISA, respectively. Moreover, the expression of apoptosis-related and pathway-related factors was detected through western blot analysis. The results showed that circMAT2B expression was notably up-regulated by OGD treatment. Moreover, circMAT2B knockdown could effectively decrease OGD-induced the increasing of apoptosis, ROS generation and the expression of IL-1β, IL-6 and TNF-α. Besides, miR-133 was positively regulated by si-circMAT2B. CircMAT2B knockdown attenuated OGD-induced H9c2 cell damage and alleviated OGD-induced the inhibition of PI3K/AKT and Raf/MEK/ERK pathways through up-regulating miR-133. In brief, circMAT2B knockdown works as an inflammatory inhibitor in OGD-induced H9c2 cells inflammatory injury through up-regulating miR-133.
Collapse
Affiliation(s)
- Yanhui Zhu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, China
| | - Chengwei Zou
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, China
| | - Yanting Jia
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, China
| | - Haizhou Zhang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, China
| | - Xiaochun Ma
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, China
| | - Jun Zhang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University , Jinan, Shandong, China
| |
Collapse
|
21
|
Zhang L, Ding H, Zhang Y, Wang Y, Zhu W, Li P. Circulating MicroRNAs: Biogenesis and Clinical Significance in Acute Myocardial Infarction. Front Physiol 2020; 11:1088. [PMID: 33013463 PMCID: PMC7494963 DOI: 10.3389/fphys.2020.01088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI) causes many deaths around the world. Early diagnosis can prevent the development of AMI and provide theoretical support for the subsequent treatment. miRNAs participate in the AMI pathological processes. We aim to determine the early diagnostic and the prognostic roles of circulating miRNAs in AMI in the existing studies and summarize all the data to provide a greater understanding of their utility for clinical application. We reviewed current knowledge focused on the AMI development and circulating miRNA formation. Meanwhile, we collected and analyzed the potential roles of circulating miRNAs in AMI diagnosis, prognosis and therapeutic strategies. Additionally, we elaborated on the challenges and clinical perspectives of the application of circulating miRNAs in AMI diagnosis. Circulating miRNAs are stable in the circulation and have earlier increases of circulating levels than diagnostic golden criteria. In addition, they are tissue and disease-specific. All these characteristics indicate that circulating miRNAs are promising biomarkers for the early diagnosis of AMI. Although there are several limitations to be resolved before clinical use, the application of circulating miRNAs shows great potential in the early diagnosis and the prognosis of AMI.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Han Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Kazimierczyk E, Eljaszewicz A, Kazimierczyk R, Tynecka M, Zembko P, Tarasiuk E, Kaminski K, Sobkowicz B, Moniuszko M, Tycinska A. Altered microRNA dynamics in acute coronary syndrome. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2020; 16:287-293. [PMID: 33597993 PMCID: PMC7863810 DOI: 10.5114/aic.2020.99263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/09/2020] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION In the course of acute myocardial infarction (AMI) cardiomyocyte injury, activation and destruction of endothelial cells together with inflammation lead to miRNA expression alterations. AIM To assess levels of circulating cardiac-specific (miR-1) and endothelial-specific (miR-126) miRNAs in the acute phase of AMI and after a follow-up period. MATERIAL AND METHODS Seventeen AMI patients (mean age: 64.24 ±13.83 years, mean left ventricle ejection fraction (LVEF): 42.6 ±9.65%), treated with primary percutaneous coronary intervention within the first 12 h, had plasma miRNAs isolated (quantitative real-time PCR, Exiqon) on admission and after 19.2 ±5.9 weeks. Measurements were also performed in a control group of healthy volunteers matched for age and sex. RESULTS Concentrations of both miRNAs were significantly higher in AMI patients as compared to healthy controls: miR-1: 5.93 (3.15-14.92) vs. 1.46 (0.06-2.96), p = 0.04; miR-126: 4.5 (3.11-7.64) vs. 0.54 (0.36-0.99), p = 0.00003, respectively. Levels of both miRNAs significantly decreased after the follow-up period: miR-1: 5.93 (3.15-14.92) vs. 1.34 (0.04-2.34), p = 0.002; miR-126: 4.5 (3.11-7.64) vs. 1.18 (0.49-1.68), p = 0.0005). Moreover, miR-1 correlated positively with maximal troponin I concentration (r = 0.59, p = 0.02) and negatively with LVEF (r = -0.76, p = 0.0004). CONCLUSIONS In our study, miR-1 emerged as a marker of cardiomyocyte injury and loss of myocardial contractility, whereas dynamics of miR-126 concentration may reflect endothelial activation and damage in the most extreme stage of atherosclerosis, followed by angiogenesis in ischemic myocardium. However, to fully elucidate the role of miR-1 and miR-126 as biomarkers of AMI and future therapeutic targets, further research is required.
Collapse
Affiliation(s)
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | | | - Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Paula Zembko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| | - Karol Kaminski
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
- Department of Population Medicine and Civilization Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Bozena Sobkowicz
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Tycinska
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
23
|
Zhai C, Li R, Hou K, Chen J, Alzogool M, Hu Y, Zhang J, Zhang Y, Wang L, Zhang R, Cong H. Value of Blood-Based microRNAs in the Diagnosis of Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. Front Physiol 2020; 11:691. [PMID: 32922300 PMCID: PMC7456928 DOI: 10.3389/fphys.2020.00691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Recent studies have shown that blood-based miRNAs are dysregulated in patients with acute myocardial infarction (AMI) and are therefore a potential tool for the diagnosis of AMI. Therefore, this study summarized and evaluated studies focused on microRNAs as novel biomarkers for the diagnosis of AMI from the last ten years. Methods: MEDLINE, the Cochrane Central database, and EMBASE were searched between January 2010 and December 2019. Studies that assessed the diagnostic accuracy of circulating microRNAs in AMI were chosen. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the curve (AUC) were used to assess the test performance of miRNAs. Results: A total of 58 studies that included 8,206 participants assessed the diagnostic accuracy of circulating miRNAs in AMI. The main results of the meta-analyses are as follows: (1) Total miRNAs: the overall pooled sensitivity and specificity were 0.82 (95% CI: 0.79-0.85) and 0.87 (95% CI: 0.84-0.90), respectively. The AUC value was 0.91 (95% CI: 0.88-0.93) in the overall summary receiver operator characteristic (SROC) curve. (2) The panel of two miRNAs: sensitivity: 0.88 (95% CI: 0.77-0.94), specificity: 0.84 (95% CI: 0.72-0.91), AUC: 0.92 (95% CI: 0.90-0.94). (3) The panel of three miRNAs: sensitivity: 0.91 (95% CI: 0.85-0.94), specificity: 0.87 (95% CI: 0.77-0.92), AUC: 0.92 (95% CI: 0.89-0.94). (4) Results by types of miRNAs: miRNA-1: sensitivity: 0.78 (95% CI: 0.71-0.84), specificity: 0.86 (95% CI: 0.77-0.91), AUC: 0.88 (95% CI: 0.85-0.90); miRNA-133a: sensitivity: 0.85 (95% CI: 0.69-0.94), specificity: 0.92 (95% CI: 0.61-0.99), AUC: 0.93 (95% CI: 0.91-0.95); miRNA-208b: sensitivity: 0.80 (95% CI: 0.69-0.88), specificity: 0.96 (95% CI: 0.77-0.99), AUC: 0.91 (95% CI: 0.88-0.93); miRNA-499: sensitivity: 0.85 (95% CI: 0.77-0.91), specificity: 0.95 (95% CI: 0.89-0.98), AUC: 0.96 (95% CI: 0.94-0.97). Conclusion: miRNAs may be used as potential biomarkers for the detection of AMI. For single, stand-alone miRNAs, miRNA-499 may have better diagnostic accuracy compared to other miRNAs. We propose that a panel of multiple miRNAs with high sensitivity and specificity should be tested.
Collapse
Affiliation(s)
- ChuanNan Zhai
- School of Medicine, NanKai University, Tianjin, China.,Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Rui Li
- Tianjin GongAn Hospital, Tianjin, China
| | - Kai Hou
- School of Medicine, NanKai University, Tianjin, China.,Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - JingYi Chen
- School of Medicine, NanKai University, Tianjin, China
| | | | - YueCheng Hu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - JingXia Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - YingYi Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Le Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Rui Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - HongLiang Cong
- School of Medicine, NanKai University, Tianjin, China.,Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
24
|
The Role of MicroRNAs in Regulating Cytokines and Growth Factors in Coronary Artery Disease: The Ins and Outs. J Immunol Res 2020; 2020:5193036. [PMID: 32775466 PMCID: PMC7397388 DOI: 10.1155/2020/5193036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022] Open
Abstract
Coronary artery diseases (CAD), as a leading cause of mortality around the world, has attracted the researchers' attention for years to find out its underlying mechanisms and causes. Among the various key players in the pathogenesis of CAD cytokines, microRNAs (miRNAs) are crucial. In this study, besides providing a comprehensive overview of the involvement of cytokines, growth factors, and miRNAs in CAD, the interplay between miRNA with cytokine or growth factors during the development of CAD is discussed.
Collapse
|
25
|
Cammarata G, Duro G, Chiara TD, Curto AL, Taverna S, Candore G. Circulating miRNAs in Successful and Unsuccessful Aging. A Mini-review. Curr Pharm Des 2020; 25:4150-4153. [PMID: 31742494 DOI: 10.2174/1381612825666191119091644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Aging is a multifactorial process that affects the organisms at genetic, molecular and cellular levels. This process modifies several tissues with a negative impact on cells physiology, tissues and organs functionality, altering their regeneration capacity. The chronic low-grade inflammation typical of aging, defined as inflammaging, is a common biological factor responsible for the decline and beginning of the disease in age. A murine parabiosis model that combines the vascular system of old and young animals, suggests that soluble factors released by young individuals may improve the regenerative potential of old tissue. Therefore, circulating factors have a key role in the induction of aging phenotype. Moreover, lifestyle can influence the physiological status of multiple organs, via epigenetic mechanisms. Recently, microRNAs are considered potential sensors of aging.
Collapse
Affiliation(s)
- Giuseppe Cammarata
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Tiziana Di Chiara
- U.O.C di Medicina Interna con Stroke Care, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S), University of Palermo, Palermo, Italy
| | - Alessia Lo Curto
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Simona Taverna
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
26
|
Siasos G, Bletsa E, Stampouloglou PK, Oikonomou E, Tsigkou V, Paschou SA, Vlasis K, Marinos G, Vavuranakis M, Stefanadis C, Tousoulis D. MicroRNAs in cardiovascular disease. Hellenic J Cardiol 2020; 61:165-173. [PMID: 32305497 DOI: 10.1016/j.hjc.2020.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains the predominant cause of human morbidity and mortality in developed countries. Currently, microRNAs have been investigated in many diseases as well-promising biomarkers for diagnosis, prognosis, and disease monitoring. Plenty studies have been designed so as to elucidate the properties of microRNAs in the classification and risk stratification of patients with CVD and also to evaluate their potentials in individualized management and guide treatment decisions. Therefore, in this review article, we aimed to present the most recent data concerning the role of microRNAs as potential novel biomarkers for cardiovascular disease.
Collapse
Affiliation(s)
- Gerasimos Siasos
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Evanthia Bletsa
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiota K Stampouloglou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Oikonomou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Vasiliki Tsigkou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Stavroula A Paschou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Vlasis
- Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Marinos
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Manolis Vavuranakis
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Christodoulos Stefanadis
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitris Tousoulis
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
27
|
Noncoding RNAs as Biomarkers for Acute Coronary Syndrome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3298696. [PMID: 32337239 PMCID: PMC7154975 DOI: 10.1155/2020/3298696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Acute coronary syndrome (ACS), consisting of acute myocardial infarction and unstable angina, is the most dangerous and fatal form of coronary heart disease. Acute coronary syndrome has sudden onset and rapid development, which may lead to malignant life-threatening conditions at any time. Therefore, early detection and diagnosis are critical for patients with ACS. Recent studies have found that noncoding RNA is of great significance in the diagnosis and treatment of cardiovascular diseases. In this review, we summarized recent data on circulating noncoding RNAs (including microRNA, long noncoding RNA, and circular RNA) as diagnostic and prognostic markers in ACS including acute myocardial infarction and unstable angina. Specifically, microRNAs (miRNAs) as diagnostic markers are divided into three types: miRNAs of increased expression in ACS, miRNAs of decreased expression in ACS, and miRNAs of contradictory expression in ACS. Moreover, we described these miRNAs of increased expression in ACS based on miRNAs family. This review may result in a great guidance of noncoding RNAs as biomarkers for ACS in clinical practice.
Collapse
|
28
|
Wexler Y, Nussinovitch U. The Diagnostic Value of Mir-133a in ST Elevation and Non-ST Elevation Myocardial Infarction: A Meta-Analysis. Cells 2020; 9:cells9040793. [PMID: 32218383 PMCID: PMC7226415 DOI: 10.3390/cells9040793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
Numerous studies have reported correlations between plasma microRNA signatures and cardiovascular disease. MicroRNA-133a (Mir-133a) has been researched extensively for its diagnostic value in acute myocardial infarction (AMI). While initial results seemed promising, more recent studies cast doubt on the diagnostic utility of Mir-133a, calling its clinical prospects into question. Here, the diagnostic potential of Mir-133a was analyzed using data from multiple papers. Medline, Embase, and Web of Science were systematically searched for publications containing “Cardiovascular Disease”, “MicroRNA”, “Mir-133a” and their synonyms. Diagnostic performance was assessed using area under the summary receiver operator characteristic curve (AUC), while examining the impact of age, sex, final diagnosis, and time. Of the 753 identified publications, 9 were included in the quantitative analysis. The pooled AUC for Mir-133a was 0.73. Analyses performed separately on studies using healthy vs. symptomatic controls yielded pooled AUCs of 0.89 and 0.68, respectively. Age and sex were not found to significantly affect diagnostic performance. Our findings indicate that control characteristics and methodological inconsistencies are likely the causes of incongruent reports, and that Mir-133a may have limited use in distinguishing symptomatic patients from those suffering AMI. Lastly, we hypothesized that Mir-133a may find a new use as a risk stratification biomarker in patients with specific subsets of non-ST elevation myocardial infarction (NSTEMI).
Collapse
Affiliation(s)
- Yehuda Wexler
- Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, POB 9649, Haifa 3109601, Israel;
| | - Udi Nussinovitch
- Applicative Cardiovascular Research Center (ACRC) and Department of Cardiology, Meir Medical Center, Kfar Saba 44281, Israel
- Correspondence: ; Tel.: +972-53-526-8535
| |
Collapse
|
29
|
Abstract
Cardiovascular diseases are one of the most common causes of death in both developing and developed countries worldwide. Even though there have been improvements in primary prevention, the prevalence of cardiovascular diseases continues to increase in recent years. Hence, it is crucial to both investigate the molecular pathophysiology of cardiovascular diseases in-depth and find novel biomarkers regarding the early and proper prevention and diagnosis of these diseases. MicroRNAs, or miRNAs, are endogenous, conserved, single-stranded non-coding RNAs of 21-25 nucleotides in length. miRNAs have important roles in various cellular events such as embryogenesis, proliferation, vasculogenesis, apoptosis, cell growth, differentiation, and tumorigenesis. They also have potential roles in the cardiovascular system, including angiogenesis, cardiac cell contractility, control of lipid metabolism, plaque formation, the arrangement of cardiac rhythm, and cardiac cell growth. Circulating miRNAs are promising novel biomarkers for purposes of the diagnosis and prognosis of cardiovascular diseases. Cell or tissue specificity, stability in serum or plasma, resistance to degradative factors such as freeze-thaw cycles or enzymes in the blood, and fast-release kinetics, provide the potential for miRNAs to be surrogate markers for the early and accurate diagnosis of disease and for predicting middle- or long-term prognosis. Moreover, it may be a logical approach to combine miRNAs with traditional biomarkers to improve risk stratification and long-term prognosis. In addition to their efficacy in both diagnosis and prognosis, miRNA-based therapeutics may be beneficial for treating cardiovascular diseases using novel platforms and computational tools and in combination with traditional methods of analysis. microRNAs are promising, novel therapeutic agents, which can affect multiple genes using different signaling pathways. miRNAs therapeutic modulation techniques have been used in the settings of atherosclerosis, acute myocardial infarction, restenosis, vascular remodeling, arrhythmias, hypertrophy and fibrosis, angiogenesis and cardiogenesis, aortic aneurysm, pulmonary hypertension, and ischemic injury. This review presents detailed information about miRNAs regarding structure and biogenesis, stages of synthesis and functions, expression profiles in serum/plasma of living organisms, diagnostic and prognostic potential as novel biomarkers, and therapeutic applications in various diseases.
Collapse
Affiliation(s)
| | - Mehmet Demir
- Department of Cardiology, University of Health Sciences, Bursa Yüksek İhtisas Research and Training Hospital, Bursa, Turkey
| |
Collapse
|
30
|
Ooi JYY, Bernardo BC. Translational Potential of Non-coding RNAs for Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:343-354. [PMID: 32285423 DOI: 10.1007/978-981-15-1671-9_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jenny Y Y Ooi
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
31
|
Barraclough JY, Joan M, Joglekar MV, Hardikar AA, Patel S. MicroRNAs as Prognostic Markers in Acute Coronary Syndrome Patients-A Systematic Review. Cells 2019; 8:cells8121572. [PMID: 31817254 PMCID: PMC6952952 DOI: 10.3390/cells8121572] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023] Open
Abstract
Background: The potential utility of microRNAs (miRNAs) in the diagnosis, prognosis, and treatment of multiple disease states has been an area of great interest since their discovery. In patients with cardiovascular disease, there is a large pool of literature amassed from the last decade assessing their diagnostic and prognostic potential. This systematic review sought to determine whether existing literature supports the use of miRNAs as prognostic markers after an Acute Coronary Syndrome (ACS) presentation. Methods: A systematic review of published articles from 2005–2019 using MEDLINE and EMBASE databases was undertaken independently by two reviewers. Studies addressing prognosis in an ACS population yielded 32 studies and 2 systematic reviews. Results/conclusion: 23 prospective studies reported significant differences in miRNA levels and 16 compared the predictive power of miRNAs. The most common miRNAs assessed included miR-133a, -208b, -21, -1, -34a, -150, and -423, shown to be involved in cell differentiation, apoptosis, and angiogenesis. Barriers to the use of miRNAs as prognostic markers include bias in miRNA selection, small sample size, variable normalization of data, and adjustment for confounders. Therefore, findings from this systematic review do not support the use of miRNAs for prognostication post-ACS beyond traditional cardiovascular risk factors, existing risk scores, and stratifications tools.
Collapse
Affiliation(s)
- Jennifer Y Barraclough
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney 2050, Australia
- Sydney Medical School, The University of Sydney, Sydney 2050, Australia
- Heart Research Institute, Sydney 2042, Australia
| | - Michelyn Joan
- Sydney Medical School, The University of Sydney, Sydney 2050, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney 2050, Australia
| | - Anandwardhan A Hardikar
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney 2050, Australia
| | - Sanjay Patel
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney 2050, Australia
- Sydney Medical School, The University of Sydney, Sydney 2050, Australia
- Heart Research Institute, Sydney 2042, Australia
| |
Collapse
|
32
|
Zhong Z, Wu H, Zhong W, Zhang Q, Yu Z. Expression profiling and bioinformatics analysis of circulating microRNAs in patients with acute myocardial infarction. J Clin Lab Anal 2019; 34:e23099. [PMID: 31721304 PMCID: PMC7083511 DOI: 10.1002/jcla.23099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/29/2019] [Accepted: 09/07/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Acute Myocardial Infarction (AMI) is the most severe type of coronary atherosclerotic heart diseases. MiRNA is a class of endogenous noncoding small molecule RNA, which plays an important regulatory role in the development of some diseases. METHODS We examined the miRNA expression profiles in 16 patients with AMI compared with 6 non-AMI controls using RNA sequencing. RESULTS Compared with the miRNA expression profiles of non-AMI controls, a total of 181 differentially expressed miRNAs were discriminated in AMI patients, of which 96 upregulated miRNAs and 85 downregulated miRNAs. The top ten upregulated miRNAs were as follows: miR-449a-5p, miR-126-5p, miR-93-5p, miR-199a-3p, miR-4454, miR-6880-3p, miR-3135a, miR-548ad-5p, miR-4508, and miR-556-5p; while the top ten downregulated were as follows: miR-6805-5p, miR-1228-5p, miR-939-5p, miR-615-3p, miR-6780a-5p, miR-6857-3p, miR-5088-55p, miR-7155-3p, miR-184, and miR-4525. And the qRT-PCR results of differentially expressed miRNAs showed the same result as high-throughput sequencing data. For these 181 differentially expressed miRNAs, 19 841 target genes were predicted by GO analysis. The enrichment analysis revealed 2061 involved in biological processes, 353 in molecular function and 303 in cellular components. To identify biological pathways in AMI as compared to non-AMI, the target genes of differentially expressed miRNAs were mapped to the classical signal transduction pathway in KEGG, indicating that 214 classes were enriched. ROC analysis showed that the circulating miRNAs had the important value for AMI diagnosis and supported the previous conclusions that circulating miRNAs were effective to diagnose the AMI as a novel biomarker. CONCLUSIONS Our findings require further research to confirm. It may provide a meaningful reference for the diagnosis and treatment of AMI.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.,Meizhou Municipal Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Heming Wu
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.,Meizhou Municipal Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.,Meizhou Municipal Engineering and Technological Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, China
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.,Meizhou Municipal Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Qifeng Zhang
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.,Meizhou Municipal Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Zhikang Yu
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.,Meizhou Municipal Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.,Meizhou Municipal Engineering and Technological Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, China
| |
Collapse
|
33
|
Mushtaque RS, Hameed S, Mushtaque R, Idrees M, Siraj F. Role of Cardio-Specific Micro-Ribonucleic Acids and Correlation with Cardiac Biomarkers in Acute Coronary Syndrome: A Comprehensive Systematic Review. Cureus 2019; 11:e5878. [PMID: 31772848 PMCID: PMC6837270 DOI: 10.7759/cureus.5878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute coronary syndrome (ACS) is an acute and severe manifestation of coronary artery disease (CAD); thus, timely diagnosis can save a life. Commonly, cardiac troponin T (CTnT), cardiac troponin I (CTnI) or creatine kinase muscle/brain subtype (CK-MB) have been used as cardiac biomarkers to assess ACS with certain limitations, such as increased time to rise for diagnosis and increased levels in the patients with chronic kidney disease (CKD). Recently, micro-ribonucleic acids (miRNAs) have become potential candidates as biomarkers for cardiac ischemia due to their remarkable stability and reproducibility. Certain miRNAs, for instance, miR-1, miR-133a/b, miR-208a/b, and miR-499a, strongly increase in the serum or plasma of patients with acute cardiac ischemia, making them as cardio-specific miRNAs and prospective biomarkers in ACS. This literature review gives enlightenment about the regulation of cardio-specific miRNA in acute myocardial ischemia (AMI) and correlation with common cardiac biomarkers and time at which they increase in the blood.
Collapse
Affiliation(s)
- Raja S Mushtaque
- Internal Medicine, Jinnah Postgraduate Medical Center, Karachi, PAK
| | | | - Rabia Mushtaque
- Cardiology, National Institute of Cardiovascular Diseases (NICVD), Karachi, PAK
| | | | - Farah Siraj
- Internal Medicine, Chandka Medical College Hospital, Larkana, PAK
| |
Collapse
|
34
|
Rizzacasa B, Amati F, Romeo F, Novelli G, Mehta JL. Epigenetic Modification in Coronary Atherosclerosis. J Am Coll Cardiol 2019; 74:1352-1365. [DOI: 10.1016/j.jacc.2019.07.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
|
35
|
Hanna J, Hossain GS, Kocerha J. The Potential for microRNA Therapeutics and Clinical Research. Front Genet 2019; 10:478. [PMID: 31156715 PMCID: PMC6532434 DOI: 10.3389/fgene.2019.00478] [Citation(s) in RCA: 519] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
As FDA-approved small RNA drugs start to enter clinical medicine, ongoing studies for the microRNA (miRNA) class of small RNAs expand its preclinical and clinical research applications. A growing number of reports suggest a significant utility of miRNAs as biomarkers for pathogenic conditions, modulators of drug resistance, and/or as drugs for medical intervention in almost all human health conditions. The pleiotropic nature of this class of nonprotein-coding RNAs makes them particularly attractive drug targets for diseases with a multifactorial origin and no current effective treatments. As candidate miRNAs begin to proceed toward initiation and completion of potential phase 3 and 4 trials in the future, the landscape of both diagnostic and interventional medicine will arguably continue to evolve. In this mini-review, we discuss miRNA drug discovery development and their current status in clinical trials.
Collapse
Affiliation(s)
- Johora Hanna
- Nova Clinical Research, LLC, Bradenton, FL, United States
| | - Gazi S Hossain
- Nova Clinical Research, LLC, Bradenton, FL, United States
| | - Jannet Kocerha
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA, United States
| |
Collapse
|
36
|
Fung EC, Butt AN, Eastwood J, Swaminathan R, Sodi R. Circulating microRNA in cardiovascular disease. Adv Clin Chem 2019; 91:99-122. [PMID: 31331491 DOI: 10.1016/bs.acc.2019.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acute myocardial infarction (AMI) and heart failure (HF) are two major causes of cardiovascular mortality and morbidity. Early diagnosis of these conditions is essential to instigate immediate treatment that may result in improved outcomes. Traditional biomarkers of AMI include cardiac troponins and other proteins released from the injured myocardium but there are a number of limitations with these biomarkers especially with regard to specificity. In the past few years circulating nucleic acids, notably microRNA that are small non-coding RNAs that regulate various cellular processes, have been investigated as biomarkers of disease offering improved sensitivity and specificity in the diagnosis and prognostication of various conditions. In this review, the role of microRNAs as biomarkers used in the diagnosis of AMI and HF is discussed, their advantage over traditional biomarkers is outlined and the potential for their implementation in clinical practice is critically assessed.
Collapse
Affiliation(s)
- En C Fung
- Department of Laboratory Services, Raja Isteri Pengiran Anak Saleha (RIPAS) Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Asif N Butt
- Department of Clinical Biochemistry, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jarlath Eastwood
- Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, United Kingdom
| | - Ramasamyiyer Swaminathan
- Department of Clinical Biochemistry, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ravinder Sodi
- Department of Blood Sciences, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom; Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.
| |
Collapse
|
37
|
Wadley GD, Lamon S, Alexander SE, McMullen JR, Bernardo BC. Noncoding RNAs regulating cardiac muscle mass. J Appl Physiol (1985) 2018; 127:633-644. [PMID: 30571279 DOI: 10.1152/japplphysiol.00904.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Noncoding RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) play roles in the development and homeostasis of nearly every tissue of the body, including the regulation of processes underlying heart growth. Cardiac hypertrophy can be classified as either physiological (beneficial heart growth) or pathological (detrimental heart growth), the latter of which results in impaired cardiac function and heart failure and is predictive of a higher incidence of death due to cardiovascular disease. Several miRNAs have a functional role in exercise-induced cardiac hypertrophy, while both miRNAs and lncRNAs are heavily involved in pathological heart growth and heart failure. The latter have the potential to act as an endogenous sponge RNA and interact with specific miRNAs to control cardiac hypertrophy, adding another level of complexity to our understanding of the regulation of cardiac muscle mass. In addition to tissue-specific effects, ncRNA-mediated tissue cross talk occurs via exosomes. In particular, miRNAs can be internalized in exosomes and secreted from various cardiac and vascular cell types to promote angiogenesis, as well as protection and repair of ischemic tissues. ncRNAs hold promising therapeutic potential to protect the heart against ischemic injury and aid in regeneration. Numerous preclinical studies have demonstrated the therapeutic potential of ncRNAs, specifically miRNAs, for the treatment of cardiovascular disease. Most of these studies employ antisense oligonucleotides to inhibit miRNAs of interest; however, off-target effects often limit their potential to be translated to the clinic. In this context, approaches using viral and nonviral delivery tools are promising means to provide targeted delivery in vivo.
Collapse
Affiliation(s)
- Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Sarah E Alexander
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia.,Department of Medicine, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Kumari R, Kumar S, Kant R. Role of circulating miRNAs in the pathophysiology of CVD: As a potential biomarker. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Zhang X, Xin G, Sun D. Serum exosomal miR-328, miR-575, miR-134 and miR-671-5p as potential biomarkers for the diagnosis of Kawasaki disease and the prediction of therapeutic outcomes of intravenous immunoglobulin therapy. Exp Ther Med 2018; 16:2420-2432. [PMID: 30186482 PMCID: PMC6122496 DOI: 10.3892/etm.2018.6458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
The present study was conducted to screen serum exosomal microRNAs (miRNAs) for the early diagnosis of Kawasaki disease (KD) and to investigate their underlying mechanisms by analyzing microarray data under accession numbers GSE60965 [exosomal miRNA, including three pooled serum samples from 5 healthy children, 5 patients with KD and 5 patients with KD following intravenous immunoglobulin (IVIG) therapy] and GSE73577 (mRNA, including peripheral blood mononuclear cell samples from 19 patients with KD prior to and following IVIG treatment) from the Gene Expression Omnibus database. Differentially expressed miRNAs (DE-miRNAs) and genes (DEGs) were identified using the Linear Models for Microarray data method, and the mRNA targets of DE-miRNAs were predicted using the miRWalk 2.0 database. The functions of the target genes were analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). As a result, 65 DE-miRNAs were identified with different expression patterns between the healthy children and patients with KD and between patients with KD and patients with KD following IVIG therapy. The target genes of 15 common DE-miRNAs were predicted. Following overlapping the target genes of DE-miRNAs with 355 DEGs, 28 common genes were identified and further screened to construct a network containing 30 miRNA-mRNA regulatory associations. Of these associations, only miR-328-spectrin α, erythrocytic 1, miR-575-cyclic AMP-responsive element-binding protein 5/b-1,4-galactosyltransferase 5/WD repeat and FYVE domain-containing 3/cystatin-A/C-X-C motif chemokine receptor 1/protein phosphatase 1 regulatory subunit 3B, miR-134-acyl-CoA synthetase long chain family member 1/C-type lectin domain family 1 member A and miR-671-5p-tripartite motif containing 25/leucine rich repeat kinase 2/kinesin family member 1B/leucine rich repeat neuronal 1 were involved in the negative regulation of gene expression. Functional analysis indicated that the identified target genes may be associated with inflammation. Accordingly, serum exosomal miR-328, miR-575, miR-134 and miR-671-5p may act as potential biomarkers for the diagnosis of KD and the prediction of outcomes of the IVIG therapy by influencing the expression of inflammatory genes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guangda Xin
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dajun Sun
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
40
|
Nuclear Transcription Factor Kappa B (NF-кB) and Molecular Damage Mechanisms in Acute Cardiovascular Diseases. A Review. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2018. [DOI: 10.2478/jce-2018-0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Worldwide, cardiovascular diseases (CVDs) represent one of the main causes of morbidity and mortality, and acute coronary syndromes are responsible for a large number of sudden cardiac deaths. One of the main challenges that still exist in this area is represented by the early detection and targeted monitoring of the pathophysiology involved in CVDs. During the last couple of years, researchers have highlighted the importance of molecular and epigenetic mechanisms involved in the initiation and augmentation of CVDs, culminating in their most severe form represented by acute myocardial infarction. One of the most studied molecular factors involved in this type of pathology is represented by nuclear transcription factor kappa B (NF-κB), as well as the involvement of microRNAs (miRNAs). It has been suggested that miRNAs can also be involved in the complex process of atheromatous plaque vulnerabilization that leads to an acute cardiac event. In this review paper, we describe the most important molecular mechanisms involved in the pathogenesis of CVDs and atheromatous plaque progression and vulnerabilization, which include molecular mechanisms dependent on NF-κB. For this paper, we used international databases (PubMed and Scopus). The keywords used for the search were “miRNAs biomarkers”, “miRNAs in cardiovascular disease”, “NF-κB in cardiovascular disease”, “molecular mechanism in cardiovascular disease”, and “myocardial NF-κB mechanisms”. Numerous molecular reactions that have NF-κB as a trigger are involved in the pathogenesis of CVDs. Moreover, miRNAs play an important role in initiating and aggravating certain segments of CVDs. Therefore, miRNAs can be used as biomarkers for early evaluation of CVDs. Furthermore, in the future, miRNAs could be used as a targeted molecular therapy in order to block certain mechanisms responsible for inducing CVDs and leading to acute cardiovascular events.
Collapse
|
41
|
Wang C, Jing Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol Sin 2018; 39:1110-1119. [PMID: 29698386 DOI: 10.1038/aps.2017.205] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/25/2017] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is a main threat to human lives worldwide. Early and accurate diagnoses warrant immediate medical care, which would reduce mortality and improve prognoses. Circulating non-coding RNAs have been demonstrated to serve as competent biomarkers for various diseases. Following the identification of cardiac-specific microRNA miR-208a in circulation, more non-coding RNAs (miR-1, miR-499 and miR-133) have been identified as biomarkers not only for the diagnosis of AMI but also for prognosis post infarction. Here, we summarized recent findings on non-coding RNAs as biomarkers for early diagnosis of ST-segment elevation myocardial infarction and for disease monitoring of myocardial infarction. In addition, the prognostic potential of non-coding RNAs in patients treated with percutaneous coronary intervention was also described. We also include studies based on biobanks, and build a miRNA release spectrum after AMI, which provides quantitative and time-lapse monitoring of AMI progress. With this spectrum, we are able to customize personal medical care, which prevents further damage. By constructing a network of circulating non-coding RNAs with high specificity and sensitivity, detailed diagnostic information was provided for personalized medicine. Unveiling the roles and kinetics of circulating non-coding RNAs may lead to a revolution in clinical diagnosis.
Collapse
|
42
|
miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018; 39:1073-1084. [PMID: 29877320 PMCID: PMC6289363 DOI: 10.1038/aps.2018.30] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/07/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality in the world. Although considerable progress has been made in the diagnosis, treatment and prognosis of CVD, there is still a critical need for novel diagnostic biomarkers and new therapeutic interventions to decrease the incidence of this disease. Recently, there is increasing evidence that circulating miRNAs (miRNAs), i.e. endogenous, stable, single-stranded, short, non-coding RNAs, can be used as diagnostic biomarkers for CVD. Furthermore, miRNAs represent potential novel therapeutic targets for several cardiovascular disorders. In this review we provides an overview of the effects of several CVD; including heart failure, acute myocardial infarction, arrhythmias and pulmonary hypertension; on levels of circulating miRNAs. In addition, the use of miRNA as therapeutic targets is also discussed, as well as challenges and recommendations in their use in the diagnosis of CVD.
Collapse
|
43
|
Kim JS, Pak K, Goh TS, Jeong DC, Han ME, Kim J, Oh SO, Kim CD, Kim YH. Prognostic Value of MicroRNAs in Coronary Artery Diseases: A Meta-Analysis. Yonsei Med J 2018; 59:495-500. [PMID: 29749132 PMCID: PMC5949291 DOI: 10.3349/ymj.2018.59.4.495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Coronary artery diseases (CADs) are the leading causes of death in the world. Recent studies have reported that differentially expressed microRNAs (miRNAs) are associated with prognosis or major adverse cardiac events (MACEs) in CAD patients. In a previous meta-analysis, the authors made serious mistakes that we aimed to correct through an updated systematic review and meta-analysis of the prognostic value of altered miRNAs in patients with CADs. MATERIALS AND METHODS We performed a systematic search of MEDLINE (from inception to May 2017) and EMBASE (from inception to May 2017) for English-language publications. Studies of CADs with results on miRNAs that reported survival data or MACEs were included. Data were extracted from each publication independently by two reviewers. RESULTS After reviewing 515 articles, a total eight studies were included in this study. We measured pooled hazard ratios (HRs) and 95% confidence intervals (CIs) of miRNA 133a with a fixed-effect model (pooled HR, 2.35; 95% CI, 1.56-3.55). High expression of miRNA 133a, 208b, 126, 197, 223, and 122-5p were associated with high mortality. Additionally, high levels of miRNA 208b, 499-5p, 134, 328, and 34a were related with MACEs. CONCLUSION The present study confirmed that miRNA 133a, which was associated with high mortality in CAD patients, holds prognostic value in CAD. More importantly, this study corrected issues raised against a prior meta-analysis and provides accurate information.
Collapse
Affiliation(s)
- Ji Suk Kim
- BEER, Busan Society of Evidence-based Mdicine and Research, Busan, Korea
- Department of Family Medicine, BHS Han Seo Hospital, Busan, Korea
| | - Kyoungjune Pak
- BEER, Busan Society of Evidence-based Mdicine and Research, Busan, Korea
- Department of Nuclear Medicine, Pusan National University Hospital, Busan, Korea
| | - Tae Sik Goh
- BEER, Busan Society of Evidence-based Mdicine and Research, Busan, Korea
- Department of Orthopaedic Surgery, Pusan National University Hospital, Busan, Korea
| | | | - Myoung Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jihyun Kim
- Department of Family Medicine, BHS Han Seo Hospital, Busan, Korea
| | - Sae Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Yun Hak Kim
- BEER, Busan Society of Evidence-based Mdicine and Research, Busan, Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea.
| |
Collapse
|
44
|
Wu J, Cai H, Xiang YB, Matthews CE, Ye F, Zheng W, Cai Q, Shu XO. Intra-individual variation of miRNA expression levels in human plasma samples. Biomarkers 2018; 23:339-346. [PMID: 29378466 DOI: 10.1080/1354750x.2018.1427794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Circulating miRNAs as potential non-invasive biomarkers for disease risk assessment and cancer early diagnosis have attracted increasing interest. Little information, however, is available regarding the intra-individual variation of circulating miRNA levels. METHODS We measured expression levels of a panel of 800 miRNAs in repeated plasma samples from 51 healthy individuals that were collected 6 to 12 months apart and evaluated the intra-individual variation by the intra-class correlation coefficient (ICC). RESULTS After background correction, a total of 185 miRNAs were detected in at least 10% of the plasma samples, with 69 and 28 miRNAs being detected in 50% and 90% of samples, respectively. The median ICC was 0.46 for these 185 miRNAs. Among them, 41% (75 miRNAs) had an ICC ≥ 0.5, and 23% (42 miRNAs) had an ICC ≥ 0.6. The ICC is higher for miRNAs with higher expression levels or higher detection rates, when compared to those with lower expression levels or lower detection rates. CONCLUSIONS These results suggest that common circulating miRNAs are stable over a relatively long period and can serve as reliable biomarkers for epidemiological and clinical research.
Collapse
Affiliation(s)
- Jie Wu
- a Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Hui Cai
- a Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Yong-Bing Xiang
- b Department of Epidemiology , Shanghai Cancer Institute , Shanghai , China
| | - Charles E Matthews
- c Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics , National Cancer Institute , Bethesda , MD , USA
| | - Fei Ye
- d Department of Biostatistics , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Wei Zheng
- a Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Qiuyin Cai
- a Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Xiao-Ou Shu
- a Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
45
|
Baldassarre A, Felli C, Prantera G, Masotti A. Circulating microRNAs and Bioinformatics Tools to Discover Novel Diagnostic Biomarkers of Pediatric Diseases. Genes (Basel) 2017; 8:genes8090234. [PMID: 28925938 PMCID: PMC5615367 DOI: 10.3390/genes8090234] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the post-transcriptional level. Current studies have shown that miRNAs are also present in extracellular spaces, packaged into various membrane-bound vesicles, or associated with RNA-binding proteins. Circulating miRNAs are highly stable and can act as intercellular messengers to affect many physiological processes. MicroRNAs circulating in body fluids have generated strong interest in their potential use as clinical biomarkers. In fact, their remarkable stability and the relative ease of detection make circulating miRNAs ideal tools for rapid and non-invasive diagnosis. This review summarizes recent insights about the origin, functions and diagnostic potential of extracellular miRNAs by especially focusing on pediatric diseases in order to explore the feasibility of alternative sampling sources for the development of non-invasive pediatric diagnostics. We will also discuss specific bioinformatics tools and databases for circulating miRNAs focused on the identification and discovery of novel diagnostic biomarkers of pediatric diseases.
Collapse
Affiliation(s)
| | - Cristina Felli
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, 00146 Rome, Italy.
| | - Giorgio Prantera
- Department of Ecology and Biology, Università della Tuscia, 01100 Viterbo, Italy.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, 00146 Rome, Italy.
| |
Collapse
|
46
|
Feng Y, Zou L, Yan D, Chen H, Xu G, Jian W, Cui P, Chao W. Extracellular MicroRNAs Induce Potent Innate Immune Responses via TLR7/MyD88-Dependent Mechanisms. THE JOURNAL OF IMMUNOLOGY 2017; 199:2106-2117. [PMID: 28768728 DOI: 10.4049/jimmunol.1700730] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Tissue ischemia, such as transient myocardial ischemia, leads to release of cellular RNA including microRNA(miRNA) into the circulation and extracellular (ex-) space, but the biological function of the ex-RNA is poorly understood. We recently reported that cardiac RNA of both human and rodent origins induced cytokine production and immune cell activation. However, the identity of the ex-RNA responsible for the proinflammatory effect remains unclear. In the current study, using an miRNA array, we profiled the plasma miRNAs 4 h after transient myocardial ischemia (45 min) or sham procedure. Among 38 plasma miRNAs that were elevated following ischemia, eight were tested for their ability to induce cytokine response in macrophages and cardiomyocytes. We found that six miRNA mimics (miR-34a, -122, -133a, -142, -146a, and -208a) induced cytokine production in a dose-dependent manner. The effects of miRNAs (miR-133a, -146a, and -208a) were diminished by uridine→adenosine mutation and by RNase pretreatment. The miRNA-induced cytokine (MIP-2, TNF-α, and IL-6) production was abolished in cells deficient of TLR7 or MyD88, or by a TLR7 antagonist, but remained the same in TLR3- or Trif-deficient cells. In vivo, mice i.p. injected with miR-133a or miR-146a had marked peritoneal neutrophil and monocyte migration, which was significantly attenuated in TLR7-/- mice. Moreover, locked nucleic acid anti-miRNA inhibitors of these six miRNAs markedly reduced cardiac RNA-induced cytokine production. Taken together, these data demonstrate that ex-miRNA mimics (miR-34a, -122, -133a, -142, -146a, and -208a) are potent innate immune activators and that the miRNAs most likely induce cytokine production and leukocyte migration through TLR7 signaling.
Collapse
Affiliation(s)
- Yan Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144; and .,Department of Anesthesiology, Shock Trauma Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lin Zou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144; and.,Department of Anesthesiology, Shock Trauma Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Dan Yan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144; and
| | - Hongliang Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144; and
| | - Ganqiong Xu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144; and
| | - Wenling Jian
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144; and
| | - Ping Cui
- Department of Anesthesiology, Shock Trauma Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Wei Chao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144; and .,Department of Anesthesiology, Shock Trauma Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
47
|
Wang Q, Ma J, Jiang Z, Wu F, Ping J, Ming L. Identification of microRNAs as diagnostic biomarkers for acute myocardial infarction in Asian populations: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e7173. [PMID: 28614255 PMCID: PMC5478340 DOI: 10.1097/md.0000000000007173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is one of the leading causes of mortality and morbidity worldwide. Recently, several studies have revealed the diagnostic value of circulating microRNAs (miRNAs) for AMI detection. However, the diagnostic capacity of miRNAs for AMI is still controversial due to the inconsistent results among studies. METHODS A systematic literature search was conducted to retrieve relevant articles in PubMed and other databases up to February 2017. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were used to assess the overall test performance of miRNAs. Subgroup analysis was conducted to explore the potential sources of heterogeneity. We evaluated the publication bias by the Deeks' funnel plot asymmetry test and all statistical analyses were performed using Meta-disc 1.4 and Stata software. RESULTS A total of 26 articles comprising 1973 AMI patients and 1236 healthy controls were included in this meta-analysis. The overall pooled diagnostic data was as follows: the pooled sensitivity of 0.76 (95% confidence interval [CI]: 0.75-0.78), the pooled specificity of 0.82 (95% CI: 0.81-0.84), the pooled PLR of 4.68 (95% CI: 3.92-5.59), the pooled NLR of 0.28 (95% CI: 0.25-0.32), and the pooled DOR of 18.66 (95% CI: 14.11-24.68). The AUC value was 0.8661 in the overall summary receiver operator characteristic curve. Subgroup analysis indicated that miRNA-499 had better diagnostic accuracy over other miRNAs. CONCLUSION MiRNAs may serve as promising diagnostic biomarkers in the early diagnosis of AMI. Further studies were needed to evaluate the diagnostic value of miRNAs for AMI before clinical application.
Collapse
Affiliation(s)
- Qian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Junfen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Zhiyun Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Fan Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Jiedan Ping
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
48
|
Mattera R, Benvenuto M, Giganti MG, Tresoldi I, Pluchinotta FR, Bergante S, Tettamanti G, Masuelli L, Manzari V, Modesti A, Bei R. Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes. Nutrients 2017; 9:nu9050523. [PMID: 28531112 PMCID: PMC5452253 DOI: 10.3390/nu9050523] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases are the main cause of mortality and morbidity in the world. Hypertension, ischemia/reperfusion, diabetes and anti-cancer drugs contribute to heart failure through oxidative and nitrosative stresses which cause cardiomyocytes nuclear and mitochondrial DNA damage, denaturation of intracellular proteins, lipid peroxidation and inflammation. Oxidative or nitrosative stress-mediated injury lead to cardiomyocytes apoptosis or necrosis. The reactive oxygen (ROS) and nitrogen species (RNS) concentration is dependent on their production and on the expression and activity of anti-oxidant enzymes. Polyphenols are a large group of natural compounds ubiquitously expressed in plants, and epidemiological studies have shown associations between a diet rich in polyphenols and the prevention of various ROS-mediated human diseases. Polyphenols reduce cardiomyocytes damage, necrosis, apoptosis, infarct size and improve cardiac function by decreasing oxidative stress-induced production of ROS or RNS. These effects are achieved by the ability of polyphenols to modulate the expression and activity of anti-oxidant enzymes and several signaling pathways involved in cells survival. This report reviews current knowledge on the potential anti-oxidative effects of polyphenols to control the cardiotoxicity induced by ROS and RNS stress.
Collapse
Affiliation(s)
- Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | | | - Sonia Bergante
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Guido Tettamanti
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", 00164 Rome, Italy.
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
49
|
Liu Y, Liang Y, Zhang JF, Fu WM. MicroRNA-133 mediates cardiac diseases: Mechanisms and clinical implications. Exp Cell Res 2017; 354:65-70. [PMID: 28322824 DOI: 10.1016/j.yexcr.2017.03.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) belong to the family of small non-coding RNAs that mediate gene expression by post-transcriptional regulation. Increasing evidence have demonstrated that miR-133 is enriched in muscle tissues and myogenic cells, and its aberrant expression could induce the occurrence and development of cardiac disorders, such as cardiac hypertrophy, heart failure, etc. In this review, we summarized the regulatory roles of miR-133 in cardiac disorders and the underlying mechanisms, which suggest that miR-133 may be a potential diagnostic and therapeutic tool for cardiac disorders.
Collapse
Affiliation(s)
- Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yan Liang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jin-Fang Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
50
|
Yu H, Lu K, Zhu J, Wang J. Stem cell therapy for ischemic heart diseases. Br Med Bull 2017; 121:135-154. [PMID: 28164211 DOI: 10.1093/bmb/ldw059] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Ischemic heart diseases, especially the myocardial infarction, is a major hazard problem to human health. Despite substantial advances in control of risk factors and therapies with drugs and interventions including bypass surgery and stent placement, the ischemic heart diseases usually result in heart failure (HF), which could aggravate social burden and increase the mortality rate. The current therapeutic methods to treat HF stay at delaying the disease progression without repair and regeneration of the damaged myocardium. While heart transplantation is the only effective therapy for end-stage patients, limited supply of donor heart makes it impossible to meet the substantial demand from patients with HF. Stem cell-based transplantation is one of the most promising treatment for the damaged myocardial tissue. SOURCES OF DATA Key recent published literatures and ClinicalTrials.gov. AREAS OF AGREEMENT Stem cell-based therapy is a promising strategy for the damaged myocardial tissue. Different kinds of stem cells have their advantages for treatment of Ischemic heart diseases. AREAS OF CONTROVERSY The efficacy and potency of cell therapies vary significantly from trial to trial; some clinical trials did not show benefit. Diverged effects of cell therapy could be affected by cell types, sources, delivery methods, dose and their mechanisms by which delivered cells exert their effects. GROWING POINTS Understanding the origin of the regenerated cardiomyocytes, exploring the therapeutic effects of stem cell-derived exosomes and using the cell reprogram technology to improve the efficacy of cell therapy for cardiovascular diseases. AREAS TIMELY FOR DEVELOPING RESEARCH Recently, stem cell-derived exosomes emerge as a critical player in paracrine mechanism of stem cell-based therapy. It is promising to exploit exosomes-based cell-free therapy for ischemic heart diseases in the future.
Collapse
Affiliation(s)
- Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Kai Lu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China.,Department of Cardiology, The First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, Zhejiang Province, 313000, P.R. China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| |
Collapse
|