1
|
Cheng D, Liu X, Gao Y, Cui L, Wang M, Zheng Y, Lv W, Zhao L, Liu J. α-Ketoglutarate Attenuates Hyperlipidemia-Induced Endothelial Damage by Activating the Erk-Nrf2 Signaling Pathway to Inhibit Oxidative Stress and Mitochondrial Dysfunction. Antioxid Redox Signal 2023; 39:777-793. [PMID: 37154729 DOI: 10.1089/ars.2022.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aims: α-Ketoglutarate (AKG) is an intermediate of the tricarboxylic acid cycle and a key hub linking amino acid metabolism and glucose oxidation. Previous studies have shown that AKG improved cardiovascular diseases such as myocardial infarction and myocardial hypertrophy through antioxidant and lipid-lowering characteristics. However, its protective effect and mechanism on endothelial injury caused by hyperlipidemia have not been elucidated yet. In this study, we tested whether AKG possesses protective effects on hyperlipidemia-induced endothelial injury and studied the mechanism. Results: AKG administration both in vivo, and in vitro significantly suppressed the hyperlipidemia-induced endothelial damage, regulated ET-1 and nitric oxide levels, and reduced the inflammatory factor interleukin-6 and matrix metallopeptidase-1 by inhibiting oxidative stress and mitochondrial dysfunction. The protective effects were achieved by the mechanism of activating the Nrf2 phase II system through the ERK signaling pathway. Innovation: These results reveal the role of the AKG-ERK-Nrf2 signaling pathway in the prevention of hyperlipidemia-induced endothelial damage, and suggest that AKG, as a mitochondria-targeting nutrient, is a potential drug for the treatment of endothelial damage in hyperlipidemia. Conclusion: AKG ameliorated the hyperlipidemia-induced endothelial damage and inflammatory response by inhibiting oxidative stress and mitochondrial dysfunction. Antioxid. Redox Signal. 39, 777-793.
Collapse
Affiliation(s)
- Danyu Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuyun Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yilin Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Li Cui
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Min Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yezi Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weiqiang Lv
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
2
|
Valerio V, Keceli G, Moschetta D, Porro B, Ciccarelli M, Massaiu I, Songia P, Maione AS, Alfieri V, Myasoedova VA, Zanobini M, Paolocci N, Poggio P. Enduring Reactive Oxygen Species Emission Causes Aberrant Protein S-Glutathionylation Transitioning Human Aortic Valve Cells from a Sclerotic to a Stenotic Phenotype. Antioxid Redox Signal 2022; 37:1051-1071. [PMID: 35459416 PMCID: PMC9689771 DOI: 10.1089/ars.2021.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/12/2022]
Abstract
Aims: During calcific aortic valve stenosis (CAVS) progression, oxidative stress and endothelial dysfunction mark the initial pathogenic steps with a parallel dysregulation of the antioxidant systems. Here, we tested whether oxidation-induced protein S-glutathionylation (P-SSG) accounts for a phenotypic switch in human aortic valvular tissue, eventually leading to calcium deposition. Next, we tested whether countering this reactive oxygen species (ROS) surge would prevent these perturbations. Results: We employed state-of-the-art technologies, such as electron paramagnetic resonance (EPR), liquid chromatography-tandem mass spectrometry, imaging flow-cytometry, and live-cell imaging on human excised aortic valves and primary valve endothelial cells (VECs). We observed that a net rise in EPR-detected ROS emission marked the transition from fibrotic to calcific in human CAVS specimens, coupled to a progressive increment in P-SSG deposition. In human VECs (hVECs), treatment with 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid triggered highly oxidizing conditions prompting P-SSG accumulation, damaging mitochondria, and inducing endothelial nitric oxide synthase uncoupling. All the events conjured up in morphing these cells from their native endothelial phenotype into a damaged calcification-inducing one. As proof of principle, the use of the antioxidant N-acetyl-L-cysteine prevented these alterations. Innovation: Borne as a compensatory system to face excessive oxidative burden, with time, P-SSG contributes to the morphing of hVECs from their innate phenotype into a damaged one, paving the way to calcium deposition. Conclusion: Our data suggest that, in the human aortic valve, unremitted ROS emission along with a P-SSG build-up occurs and accounts, at least in part, for the morphological/functional changes leading to CAVS. Antioxid. Redox Signal. 37, 1051-1071.
Collapse
Affiliation(s)
- Vincenza Valerio
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donato Moschetta
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Benedetta Porro
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Michele Ciccarelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Salerno, Baronissi, Italy
| | - Ilaria Massaiu
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Paola Songia
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Angela S. Maione
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Valentina Alfieri
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Veronika A. Myasoedova
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Marco Zanobini
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Poggio
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
3
|
Ferreira DM, de Oliveira NM, Lopes L, Machado J, Oliveira MB. Potential Therapeutic Properties of the Leaf of Cydonia Oblonga Mill. Based on Mineral and Organic Profiles. PLANTS (BASEL, SWITZERLAND) 2022; 11:2638. [PMID: 36235504 PMCID: PMC9573453 DOI: 10.3390/plants11192638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 05/14/2023]
Abstract
Leaf extract of Cydonia Oblonga Mill. is interesting for further exploration of the potential of its substrates for therapeutic supplements. Quantitative and qualitative analyses were conducted on samples of green (October), yellow (November), and brown (December) quince leaves collected in the region of Pinhel, Portugal. Mineral analysis determined the measurements of the levels of several macro- and micro-elements. Organic analysis assessed the moisture content, total phenolic content (TPC), vitamin E, and fatty acid (FA) profiles. Mineral analysis was based on ICP-MS techniques, while the profiles of vitamin E and FA relied on HPLC-DAD-FLD and GC-FID techniques, respectively. Moisture content was determined through infrared hygrometry and TPC was determined by spectrophotometric methods. Regarding the mineral content, calcium, magnesium, and iron were the most abundant minerals. Concerning organic analysis, all leaf samples showed similar moisture content, while the TPC of gallic acid equivalents (GAE) and total vitamin E content, the most predominant of which was the α-tocopherol isomer, showed significant variations between green-brown and yellow leaves. FA composition in all leaf samples exhibited higher contents of SFA and PUFA than MUFA, with a predominance of palmitic and linolenic acids. Organic and inorganic analysis of quince leaves allow for the prediction of adequate physiological properties, mainly cardiovascular, pulmonary, and immunological defenses, which with our preliminary in silico studies suggest an excellent supplement to complementary therapy, including drastic pandemic situations.
Collapse
Affiliation(s)
- Diana Melo Ferreira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Natália M. de Oliveira
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Lara Lopes
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Jorge Machado
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Maria Beatriz Oliveira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Wang X, Wang Z, Liu D, Jiang H, Cai C, Li G, Yu G. Canagliflozin Prevents Lipid Accumulation, Mitochondrial Dysfunction, and Gut Microbiota Dysbiosis in Mice With Diabetic Cardiovascular Disease. Front Pharmacol 2022; 13:839640. [PMID: 35281938 PMCID: PMC8905428 DOI: 10.3389/fphar.2022.839640] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with cardiovascular disease (CVD) and sodium glucose cotransporter 2 inhibitors, as oral medications for T2DM treatment have shown the potential to improve vascular dysfunction. The aim of this study was to evaluate the ability of canagliflozin (Cana) to relieve CVD in T2DM mice and its possible action mechanism. Mice with diabetic CVD was conducted by a high-fat diet for 24 weeks, followed by oral gavaging with metformin (200 mg/kg/day) or Cana (50 mg/kg/day) for 6 weeks. The result demonstrated that Cana reduced serum lipid accumulation, and decreased the arteriosclerosis index and atherogenic index of plasma. In addition, Cana treatment reduced the circulating markers of inflammation. More importantly, Cana improved cardiac mitochondrial homeostasis and relieved oxidative stress. Moreover, Cana treatment alleviated the myocardial injury with decreasing levels of serous soluble cluster of differentiation 40 ligand and cardiac troponin I. Thus, cardiovascular abnormality was relieved by suppressing fibrosis and basement membrane thickening, while elevating the cluster of differentiation 31 expression level. Importantly, Cana increased the ratio of gut bacteria Firmicutes/Bacteroidetes and the relative abundance of Alistipes, Olsenella, and Alloprevotella, while it decreased the abundance of Mucispirillum, Helicobacter, and Proteobacteria at various taxonomic levels in mice with diabetic CVD. In short, Cana treatment altered the colonic microbiota composition close to the normal level, which was related with blood lipid, inflammation, and oxidative stress, and might play a vital role in CVD. In general, the improvements in the gut microbiota and myocardial mitochondrial homeostasis may represent the mechanism of Cana on CVD treatment.
Collapse
Affiliation(s)
- Xueliang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Di Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Shikonin Promotes Apoptosis and Attenuates Migration and Invasion of Human Esophageal Cancer Cells by Inhibiting Tumor Necrosis Factor Receptor-Associated Protein 1 Expression and AKT/mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5386050. [PMID: 34812264 PMCID: PMC8605926 DOI: 10.1155/2021/5386050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the anticancer effects of shikonin on esophageal cancer (EC) cells and explore the underlying molecular mechanism by identifying dysregulation in shikonin-induced tumor necrosis factor receptor-associated protein 1 (TRAP1) expression. The 3-(4, 5-dimethylthiazol-2-Yl)-2, 5-diphenyltetrazolium bromide assay and EDU assay were performed for cell viability determination. The reactive oxygen species level and mitochondrial membrane potential were evaluated using flow cytometry. The protein expression was detected using Western blot. In addition, cell migration and invasion were estimated. These results demonstrated that shikonin inhibited EC cell growth in a concentration-dependent manner and induced apoptosis through activation of the intracellular apoptotic signaling pathway. Moreover, TRAP1 downregulation promoted shikonin-induced reactive oxygen species release, whereas TRAP1 upregulation blocked it. Meanwhile, shikonin significantly promoted mitochondrial depolarization, accompanied by a large release of cytochrome C. Conversely, shikonin significantly decreased adenosine 5'-triphosphate release, demonstrating a significant intervention in the process of the glucose metabolism. In addition, not only shikonin but also short hairpin RNA (shRNA)-TRAP1 inhibited EC cell migration and invasion. shRNA-TRAP1 enhanced the inhibitory effect of shikonin on matrix metalloproteinase (MMP)2 and MMP9 expression. More interestingly, we demonstrated that shRNA-TRAP1 played a synergistic role in shikonin-mediated regulation of protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Collectively, shikonin promoted apoptosis and attenuated migration and invasion of EC cells by inhibiting TRAP1 expression and AKT/mTOR signaling, indicating that shikonin may be a new drug for treating EC.
Collapse
|
6
|
Structure and Function of Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Role in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4578809. [PMID: 34336092 PMCID: PMC8289621 DOI: 10.1155/2021/4578809] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Abnormal function of suborganelles such as mitochondria and endoplasmic reticulum often leads to abnormal function of cardiomyocytes or vascular endothelial cells and cardiovascular disease (CVD). Mitochondria-associated membrane (MAM) is involved in several important cellular functions. Increasing evidence shows that MAM is involved in the pathogenesis of CVD. MAM mediates multiple cellular processes, including calcium homeostasis regulation, lipid metabolism, unfolded protein response, ROS, mitochondrial dynamics, autophagy, apoptosis, and inflammation, which are key risk factors for CVD. In this review, we discuss the structure of MAM and MAM-associated proteins, their role in CVD progression, and the potential use of MAM as the therapeutic targets for CVD treatment.
Collapse
|
7
|
Lin HL, Cheng PW, Tu YC, Yeh BC, Wu BN, Shen KP. The effectiveness comparisons of eugenosedin-A, glibenclamide and pioglitazone on diabetes mellitus induced by STZ/NA and high-fat diet in SHR. J Pharm Pharmacol 2021; 73:835-845. [PMID: 33779726 DOI: 10.1093/jpp/rgab029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/05/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Eugenosedin-A (Eu-A), an adrenergic and serotonergic antagonist, is known to have anti-metabolic syndrome effects. In this study, we evaluated its protective effects against diabetes mellitus (DM) in spontaneous hypertensive rats (SHR) and compared it with two anti-diabetes medications, glibenclamide (Gli) and pioglitazone (Pio). METHODS We divided 10-week-old SHRs into five groups: a control group fed a normal diet; an untreated DM group induced by injecting the SHRs with STZ/NA and feeding them a high-fat diet (HFD); and three treated groups (after giving STZ/NA and HFD) gavage given with Eu-A, Gli or Pio (5 mg/kg per day) for 4 weeks. KEY FINDINGS The untreated DM group weighed less and had hyperglycaemia, hypoinsulinemia and hyperlipidemia. They were also found to have aberrant glucose-dependent insulin pathways, glucose metabolism and lipid synthesis proteins, while the controls did not. Eu-A, Gli and Pio ameliorated the above biochemical parameters in the treatment groups. Eu-A and Pio, but not Gli, improved hypertension and tachycardia. CONCLUSIONS Taken together, Eu-A ameliorated DM, hypertension and tachycardia by improving glucose, lipid homeostasis and anti-adrenergic, serotonergic activities. We concluded that Eu-A could be used in the development of an effective agent for controlling DM and its complications.
Collapse
Affiliation(s)
- Hui-Li Lin
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung, Taiwan
| | - Pei-Wen Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yi-Chen Tu
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung, Taiwan
| | - Bor-Chun Yeh
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuo-Ping Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| |
Collapse
|
8
|
Blood-derived extracellular vesicles isolated from healthy donors exposed to air pollution modulate in vitro endothelial cells behavior. Sci Rep 2020; 10:20138. [PMID: 33208829 PMCID: PMC7674466 DOI: 10.1038/s41598-020-77097-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
The release of Extracellular Vesicles (EVs) into the bloodstream is positively associated with Particulate Matter (PM) exposure, which is involved in endothelial dysfunction and related to increased risk of cardiovascular disease. Obesity modifies the effects of PM exposure on heart rate variability and markers of inflammation, oxidative stress, and acute phase response. We isolated and characterized plasmatic EVs from six healthy donors and confirmed a positive association with PM exposure. We stratified for Body Mass Index (BMI) and observed an increased release of CD61+ (platelets) and CD105+ (endothelium) derived-EVs after high PM level exposure in Normal Weight subjects (NW) and no significant variations in Overweight subjects (OW). We then investigated the ability to activate endothelial primary cells by plasmatic EVs after both high and low PM exposure. NW-high-PM EVs showed an increased endothelial activation, measured as CD105+/CD62e+ (activated endothelium) EVs ratio. On the contrary, cells treated with OW-high-PM EVs showed reduced endothelial activation. These results suggest the ability of NW plasmatic EVs to communicate to endothelial cells and promote the crosstalk between activated endothelium and peripheral cells. However, this capacity was lost in OW subjects. Our findings contribute to elucidate the role of EVs in endothelial activation after PM exposure.
Collapse
|
9
|
El-Shiekh RA, Saber FR, Abdel-Sattar EA. In vitro anti-hypertensive activity of Jasminum grandiflorum subsp. floribundum (Oleaceae) in relation to its metabolite profile as revealed via UPLC-HRMS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122334. [DOI: 10.1016/j.jchromb.2020.122334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
|
10
|
Goldstein BI, Baune BT, Bond DJ, Chen P, Eyler L, Fagiolini A, Gomes F, Hajek T, Hatch J, McElroy SL, McIntyre RS, Prieto M, Sylvia LG, Tsai S, Kcomt A, Fiedorowicz JG. Call to action regarding the vascular-bipolar link: A report from the Vascular Task Force of the International Society for Bipolar Disorders. Bipolar Disord 2020; 22:440-460. [PMID: 32356562 PMCID: PMC7522687 DOI: 10.1111/bdi.12921] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The association of bipolar disorder with early and excessive cardiovascular disease was identified over a century ago. Nonetheless, the vascular-bipolar link remains underrecognized, particularly with regard to how this link can contribute to our understanding of pathogenesis and treatment. METHODS An international group of experts completed a selective review of the literature, distilling core themes, identifying limitations and gaps in the literature, and highlighting future directions to bridge these gaps. RESULTS The association between bipolar disorder and vascular disease is large in magnitude, consistent across studies, and independent of confounding variables where assessed. The vascular-bipolar link is multifactorial and is difficult to study given the latency between the onset of bipolar disorder, often in adolescence or early adulthood, and subsequent vascular disease, which usually occurs decades later. As a result, studies have often focused on risk factors for vascular disease or intermediate phenotypes, such as structural and functional vascular imaging measures. There is interest in identifying the most relevant mediators of this relationship, including lifestyle (eg, smoking, diet, exercise), medications, and systemic biological mediators (eg, inflammation). Nonetheless, there is a paucity of treatment studies that deliberately engage these mediators, and thus far no treatment studies have focused on engaging vascular imaging targets. CONCLUSIONS Further research focused on the vascular-bipolar link holds promise for gleaning insights regarding the underlying causes of bipolar disorder, identifying novel treatment approaches, and mitigating disparities in cardiovascular outcomes for people with bipolar disorder.
Collapse
Affiliation(s)
- Benjamin I. Goldstein
- Centre for Youth Bipolar DisorderSunnybrook Health Sciences CentreTorontoONCanada,Departments of Psychiatry & PharmacologyFaculty of MedicineUniversity of TorontoTorontoONCanada
| | - Bernhard T. Baune
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany,Department of PsychiatryMelbourne Medical SchoolThe University of MelbourneMelbourneVICAustralia,The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - David J. Bond
- Department of Psychiatry and Behavioral ScienceUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Pao‐Huan Chen
- Department of PsychiatryTaipei Medical University HospitalTaipeiTaiwan,Department of PsychiatrySchool of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Lisa Eyler
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| | | | - Fabiano Gomes
- Department of PsychiatryQueen’s University School of MedicineKingstonONCanada
| | - Tomas Hajek
- Department of PsychiatryDalhousie UniversityHalifaxNSCanada,National Institute of Mental HealthKlecanyCzech Republic
| | - Jessica Hatch
- Centre for Youth Bipolar DisorderSunnybrook Health Sciences CentreTorontoONCanada,Departments of Psychiatry & PharmacologyFaculty of MedicineUniversity of TorontoTorontoONCanada
| | - Susan L. McElroy
- Department of Psychiatry and Behavioral NeuroscienceUniversity of Cincinnati College of MedicineCincinnatiOHUSA,Lindner Center of HOPEMasonOHUSA
| | - Roger S. McIntyre
- Departments of Psychiatry & PharmacologyFaculty of MedicineUniversity of TorontoTorontoONCanada,Mood Disorders Psychopharmacology UnitUniversity Health NetworkTorontoONCanada
| | - Miguel Prieto
- Department of PsychiatryFaculty of MedicineUniversidad de los AndesSantiagoChile,Mental Health ServiceClínica Universidad de los AndesSantiagoChile,Department of Psychiatry and PsychologyMayo Clinic College of Medicine and ScienceRochesterMNUSA
| | - Louisa G. Sylvia
- Department of PsychiatryMassachusetts General HospitalBostonMAUSA,Department of PsychiatryHarvard Medical SchoolCambridgeMAUSA
| | - Shang‐Ying Tsai
- Department of PsychiatryTaipei Medical University HospitalTaipeiTaiwan,Department of PsychiatrySchool of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Andrew Kcomt
- Hope+Me—Mood Disorders Association of OntarioTorontoONCanada
| | - Jess G. Fiedorowicz
- Departments of Psychiatry, Internal Medicine, & EpidemiologyCarver College of MedicineUniversity of IowaIowa CityIAUSA
| |
Collapse
|
11
|
Poznyak AV, Ivanova EA, Sobenin IA, Yet SF, Orekhov AN. The Role of Mitochondria in Cardiovascular Diseases. BIOLOGY 2020; 9:biology9060137. [PMID: 32630516 PMCID: PMC7344641 DOI: 10.3390/biology9060137] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
The role of mitochondria in cardiovascular diseases is receiving ever growing attention. As a central player in the regulation of cellular metabolism and a powerful controller of cellular fate, mitochondria appear to comprise an interesting potential therapeutic target. With the development of DNA sequencing methods, mutations in mitochondrial DNA (mtDNA) became a subject of intensive study, since many directly lead to mitochondrial dysfunction, oxidative stress, deficient energy production and, as a result, cell dysfunction and death. Many mtDNA mutations were found to be associated with chronic human diseases, including cardiovascular disorders. In particular, 17 mtDNA mutations were reported to be associated with ischemic heart disease in humans. In this review, we discuss the involvement of mitochondrial dysfunction in the pathogenesis of atherosclerosis and describe the mtDNA mutations identified so far that are associated with atherosclerosis and its risk factors.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia; (A.V.P.); (E.A.I.)
| | - Ekaterina A. Ivanova
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia; (A.V.P.); (E.A.I.)
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, 121552 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System & Central Laboratory of Pathology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan;
| | - Alexander N. Orekhov
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya st., 125315 Moscow, Russia
- Correspondence: ; Tel./Fax: +7-(495)-415-9594
| |
Collapse
|
12
|
Bahia PK, Hadley SH, Barannikov I, Sowells I, Kim SH, Taylor-Clark TE. Antimycin A increases bronchopulmonary C-fiber excitability via protein kinase C alpha. Respir Physiol Neurobiol 2020; 278:103446. [PMID: 32360368 DOI: 10.1016/j.resp.2020.103446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022]
Abstract
Inflammation can increase the excitability of bronchopulmonary C-fibers leading to excessive sensations and reflexes (e.g. wheeze and cough). We have previously shown modulation of peripheral nerve terminal mitochondria by antimycin A causes hyperexcitability in TRPV1-expressing bronchopulmonary C-fibers through the activation of protein kinase C (PKC). Here, we have investigated the PKC isoform responsible for this signaling. We found PKCβ1, PKCδ and PKCε were expressed by many vagal neurons, with PKCα and PKCβ2 expressed by subsets of vagal neurons. In dissociated vagal neurons, antimycin A caused translocation of PKCα but not the other isoforms, and only in TRPV1-lineage neurons. In bronchopulmonary C-fiber recordings, antimycin A increased the number of action potentials evoked by α,β-methylene ATP. Selective inhibition of PKCα, PKCβ1 and PKCβ2 with 50 nM bisindolylmaleimide I prevented the antimycin-induced bronchopulmonary C-fiber hyperexcitability, whereas selective inhibition of only PKCβ1 and PKCβ2 with 50 nM LY333531 had no effect. We therefore conclude that PKCα is required for antimycin-induced increases in bronchopulmonary C-fiber excitability.
Collapse
Affiliation(s)
- Parmvir K Bahia
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Stephen H Hadley
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ivan Barannikov
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Isobel Sowells
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Seol-Hee Kim
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
13
|
Chen W, Zhang YN, Jia QQ, Ji A, Shao SX, Zhang L, Gong M, Yin Q, Huang XL. MicroRNA-214 protects L6 skeletal myoblasts against hydrogen peroxide-induced apoptosis. Free Radic Res 2020; 54:162-172. [PMID: 32131653 DOI: 10.1080/10715762.2020.1730828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) have been reported as key gene regulators, and they control many fundamental biological processes. Previously, we demonstrated that miR-214 had a protective effect against myocardial apoptosis and myocardial fibrosis. In this study, we sought to investigate the expression of miR-214 in L6 skeletal myoblast (SKM), the regulatory effect of miR-214 on hydrogen peroxide (H2O2) induced cell apoptosis and the underlying mechanisms of the antiapoptotic effect. MiR-214 expression was up-regulated by H2O2 in a dose and time-dependent manner in L6 SKMs. To investigate the regulatory effects of miR-214 on L6 SKM, both gain-of-function and loss-of-function approaches were applied. The results showed that miR-214 improved cell survival and inhibited cell apoptosis, and blockage of miR-214 abrogated the protective effect on cell survival and resistance to apoptosis. Phosphatase and tensin homolog (PTEN) was negatively regulated by miR-214, and PTEN inhibitor obviously reversed the effect of miR-214 blockage on enhancing cell apoptosis. In addition, miR-214 up-regulated antiapoptotic protein Bcl-2, down-regulated proapoptotic protein Bax, prevented release of cytochrome c and inhibited caspase-3 activation. In summary, H2O2-induced injury increases miR-214 expression in L6 SKM, and miR-214 contributes to the protection of L6 SKM against apoptosis via lowering PTEN and subsequently inhibiting the mitochondrial-mediated caspase-dependent apoptotic signaling pathway.
Collapse
Affiliation(s)
- Wei Chen
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ya-Nan Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiong-Qiong Jia
- Department of Emergency, People's Hospital of Zhengding, Shijiazhuang, Hebei, China
| | - An Ji
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Su-Xia Shao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Miao Gong
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Yin
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin-Li Huang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
14
|
Cordeiro ER, Filetti FM, Simões MR, Vassallo DV. Mercury induces nuclear estrogen receptors to act as vasoconstrictors promoting endothelial denudation via the PI3K/Akt signaling pathway. Toxicol Appl Pharmacol 2019; 381:114710. [PMID: 31415774 DOI: 10.1016/j.taap.2019.114710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/29/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Cardiovascular diseases (CVD) are more frequent among postmenopausal women due to the decline of estrogen concentration in plasma. However, the role of the vascular modulator effect of estrogen is controversial, since it occurs both in physiological and pathological conditions, increasing or reducing vascular reactivity. As mercury is widely associated with the development of CVD, we investigated putative hazardous effects on the mechanisms that modulate vascular reactivity in aortic rings of female Wistar rats promoted by acute mercury exposure. Mercury increased vascular reactivity and oxidative stress possibly due to NADPH oxidase participation, increased production of cyclooxygenase-2 (COX-2) and thromboxane A2 (TXA2) formation. The metal also induced endothelial denudation in the aorta by reducing the bioavailability of nitric oxide (NO) and enhancing the activity of the PI3K/Akt signaling pathway. Mercury exposure also induced nuclear estrogen receptors (ERα, ERβ) to act as vasoconstrictors. Our findings suggest that mercury might increase the chances of developing cardiovascular diseases in females and should be considered an important environmental risk factor.
Collapse
Affiliation(s)
- Evellyn Rodrigues Cordeiro
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Filipe Martinuzo Filetti
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Maylla Ronacher Simões
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Dalton Valentim Vassallo
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil; Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402, Brazil.
| |
Collapse
|
15
|
Lu YT, Xiao YF, Li YF, Li J, Nan FJ, Li JY. Sulfuretin protects hepatic cells through regulation of ROS levels and autophagic flux. Acta Pharmacol Sin 2019; 40:908-918. [PMID: 30560904 PMCID: PMC6786379 DOI: 10.1038/s41401-018-0193-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 12/09/2022] Open
Abstract
Palmitate (PA) exposure induces stress conditions featuring ROS accumulation and upregulation of p62 expression, resulting in autophagic flux blockage and cell apoptosis. Sulfuretin (Sul) is a natural product isolated from Rhus verniciflua Stokes; the cytoprotective effect of Sul on human hepatic L02 cells and mouse primary hepatocytes under PA-induced stress conditions was investigated in this study. Sul induced mitophagy by activation of p-TBK1 and LC3 and produced a concomitant decline in p62 expression. Autophagosome formation and mitophagy were assessed by the sensitive dual fluorescence reporter mCherry-EGFP-LC3B, and mitochondrial fragmentation was analyzed using MitoTracker Deep Red FM. A preliminary structure-activity relationship (SAR) for Sul was also investigated, and the phenolic hydroxyl group was found to be pivotal for maintaining the cytoprotective bioactivity of Sul. Furthermore, experiments using flow cytometry and western blots revealed that Sul reversed the cytotoxic effect stimulated by the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ), and its cytoprotective effect was almost eliminated when the autophagy-related 5 (Atg5) gene was knocked down. These studies suggest that, in addition to its antioxidative effects, Sul stimulates mitophagy and restores impaired autophagic flux, thus protecting hepatic cells from apoptosis, and that Sul has potential future medical applications for hepatoprotection.
Collapse
Affiliation(s)
- Yu-Ting Lu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yu-Feng Xiao
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Feng Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Fa-Jun Nan
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
16
|
Huang MZ, Yang YJ, Liu XW, Qin Z, Li JY. Aspirin eugenol ester attenuates oxidative injury of vascular endothelial cells by regulating NOS and Nrf2 signalling pathways. Br J Pharmacol 2019; 176:906-918. [PMID: 30706438 DOI: 10.1111/bph.14592] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/03/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Aspirin eugenol ester (AEE) is a new drug compound synthesized by combining aspirin with eugenol. It was reported to possess anti-thrombotic, anti-atherosclerotic, and anti-oxidative effects. However, its molecular mechanism against oxidative injury is unclear. This study investigated how AEE affected the oxidative injury of vascular endothelial cells in vivo and in vitro. EXPERIMENTAL APPROACH A hamster model of atherosclerosis induced by a high fat diet (HFD) and an in vitro model of oxidative stress, H2 O2 -induced apoptosis of HUVECs, were used to investigate the anti-oxidative effects of AEE. KEY RESULTS AEE significantly reduced the stimulatory effect of HFD on malondialdehyde, the inhibitory effect of HFD on SOD activity and GSH/GSSG ratio, and the overexpression of inducible NOS (iNOS) in the aorta. In vitro, incubation of HUVECs with H2 O2 led their apoptosis, dysfunctions of the NO systems (including increased iNOS activity, decreased endothelial NOS activity, and increased production of NO), an imbalance in calcium homeostasis and energy metabolism with an increase in intracellular free calcium and decrease in ATP, and a down-regulation of Nrf2. In contrast, in the HUVECs pretreated with 1 μM AEE for 24 hr, the above adverse effects induced by H2 O2 were significantly ameliorated. Moreover, the decrease in NO production and activity of iNOS induced by AEE was significantly attenuated in Nrf2-inhibited HUVECs. CONCLUSION AND IMPLICATION AEE protects vascular endothelial cells from oxidative injury by regulating NOS and Nrf2 signalling pathways. This suggests that AEE is a novel potential agent for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Mei-Zhou Huang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
17
|
Guo C, Wang J, Jing L, Ma R, Liu X, Gao L, Cao L, Duan J, Zhou X, Li Y, Sun Z. Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:926-936. [PMID: 29074197 DOI: 10.1016/j.envpol.2017.10.060] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 05/15/2023]
Abstract
As silica nanoparticles (SiNPs) pervade the global economy, however, the followed emissions during the manufacturing, use, and disposal stages inevitably bring an environmental release, potentially result in harmful impacts. Endothelial dysfunction precedes cardiovascular disease, and is often accompanied by mitochondrial impairment and dysfunction. We had reported endothelial dysfunction induced by SiNPs, however, the related mechanisms by which SiNPs interact with mitochondria are not well understood. In the present study, we examined SiNPs-induced mitochondrial dysfunction, and further demonstrated their adverse effects on mitochondrial dynamics and biogenesis in endothelial cells (HUVECs). Consequently, SiNPs entered mitochondria, caused mitochondrial swelling, cristae disruption and even disappearance. Further analyses revealed SiNPs increased the intracellular level of mitochondrial reactive oxygen species, eventually resulting in the collapse of mitochondrial membrane potential, impairments in ATP synthesis, cellular respiration and the activities of three ATP-dependent enzymes (including Na+/K+-ATPase, Ca2+-ATPase and Ca2+/Mg2+-ATPase), as well as an elevated intracellular calcium level. Furthermore, mitochondria in SiNPs-treated HUVECs displayed a fission phenotype. Accordingly, dysregulation of the key gene expressions (FIS1, DRP1, OPA1, Mfn1 and Mfn2) involved in fission/fusion event further certified the SiNPs-induced perturbation of mitochondrial dynamics. Meanwhile, SiNPs-treated HUVECs displayed declined levels of mitochondrial DNA copy number, PGC-1α, NRF1 and also TFAM, indicating an inhibition of mitochondrial biogenesis triggered by SiNPs via PGC-1α-NRF1-TFAM signaling. Overall, SiNPs triggered endothelial toxicity through mitochondria as target, including the induction of mitochondrial dysfunction, as well as the perturbations of their dynamics and biogenesis.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Li Jing
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lifang Gao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lige Cao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Junchao Duan
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
18
|
Cvetkovska K, Bauer B. Ethnopharmacological and toxicological review of Cydonia oblonga M. MAKEDONSKO FARMACEVTSKI BILTEN 2018. [DOI: 10.33320/maced.pharm.bull.2018.64.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Cydonia oblonga M. is a medicinal plant of family Rosaceae which is used to prevent or treat several ailments such as cancer, diabetes, hepatitis, ulcer, respiratory, and urinary infections, etc. Cydonia oblonga commonly known as quince is rich in useful secondary metabolites such as phenolics, steroids, flavonoids, terpenoids, tannins, organic acids, and glycosides. It shows a wide range of pharmacological effects like antioxidant, antibacterial, antifungal, anti-inflammatory, hepatoprotective, cardiovascular, antidepressant, hypolipidemic, diuretic, etc. The polysaccharide mucus, glucuronoxylane located in the seeds of the quince, is used in the dermatology, for the production of wound patches.
The aim of this paper focuses on detailed research on the value of phytochemicals, as pharmacological and attributes of phytomedicine herbs.
Keywords: Cydonia oblonga, phytomedicine, pharmacological attributes, folk medicinal uses, quince
Collapse
Affiliation(s)
- Katerina Cvetkovska
- Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, Republic of Macedonia
| | - Biljana Bauer
- Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, Republic of Macedonia
| |
Collapse
|
19
|
Fang J, Tang M. Exercise improves high fat diet-impaired vascular function. Biomed Rep 2017; 7:337-342. [PMID: 29085629 DOI: 10.3892/br.2017.972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The prevalence of metabolic syndrome and cardiovascular disease is increasing due to increases in the consumption of high fat diets (HFDs) and the epidemic of obesity. In the present study, it was hypothesized that swimming exercise may prevent HFD-induced impairment of aortic function and that these changes are associated with reduction of oxidative stress, proinflammatory adipokines/cytokines. Male, 6-week-old C57BL/6J mice were fed a 60% lipid composition HFD with or without swimming exercise (90 min/swim and 2 swims/day) for 16 weeks. Exercise training prevented HFD-induced increases in visceral fat weight, total cholesterol and triglycerides. Furthermore, exercise training improved HFD-impaired aortic endothelium-dependent dilation that was associated with reduction of oxidative stress, leptin, resistin, monocyte chemoattractant protein 1, interleukin (IL)6 and IL8. In addition, exercise inhibited HFD-induced vascular endothelial growth factor expression in gastrocnemius skeletal muscle. These data demonstrate that swimming exercise prevents aortic tissue oxidative stress, inflammation and vascular dysfunction in HFD-induced obesity.
Collapse
Affiliation(s)
- Jun Fang
- Division of Nephrology, Department of Internal Medicine, Xianning Central Hospital and The First Clinical Hospital of Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Mei Tang
- Infusion Preparation Center of the Pharmacy Department, Xianning Central Hospital and The First Clinical Hospital of Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
20
|
Daiber A, Oelze M, Steven S, Kröller-Schön S, Münzel T. Taking up the cudgels for the traditional reactive oxygen and nitrogen species detection assays and their use in the cardiovascular system. Redox Biol 2017; 12:35-49. [PMID: 28212522 PMCID: PMC5312509 DOI: 10.1016/j.redox.2017.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS such as H2O2, nitric oxide) confer redox regulation of essential cellular functions (e.g. differentiation, proliferation, migration, apoptosis), initiate and catalyze adaptive stress responses. In contrast, excessive formation of RONS caused by impaired break-down by cellular antioxidant systems and/or insufficient repair of the resulting oxidative damage of biomolecules may lead to appreciable impairment of cellular function and in the worst case to cell death, organ dysfunction and severe disease phenotypes of the entire organism. Therefore, the knowledge of the severity of oxidative stress and tissue specific localization is of great biological and clinical importance. However, at this level of investigation quantitative information may be enough. For the development of specific drugs, the cellular and subcellular localization of the sources of RONS or even the nature of the reactive species may be of great importance, and accordingly, more qualitative information is required. These two different philosophies currently compete with each other and their different needs (also reflected by different detection assays) often lead to controversial discussions within the redox research community. With the present review we want to shed some light on these different philosophies and needs (based on our personal views), but also to defend some of the traditional assays for the detection of RONS that work very well in our hands and to provide some guidelines how to use and interpret the results of these assays. We will also provide an overview on the "new assays" with a brief discussion on their strengths but also weaknesses and limitations.
Collapse
Affiliation(s)
- Andreas Daiber
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Steven
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Münzel
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
21
|
Pan Y, Chen D, Lu Q, Liu L, Li X, Li Z. Baicalin prevents the apoptosis of endplate chondrocytes by inhibiting the oxidative stress induced by H2O2. Mol Med Rep 2017; 16:2985-2991. [DOI: 10.3892/mmr.2017.6904] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/08/2017] [Indexed: 11/06/2022] Open
|
22
|
Ganoderma atrum polysaccharide ameliorates anoxia/reoxygenation-mediated oxidative stress and apoptosis in human umbilical vein endothelial cells. Int J Biol Macromol 2017; 98:398-406. [DOI: 10.1016/j.ijbiomac.2017.01.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/04/2017] [Accepted: 01/15/2017] [Indexed: 11/23/2022]
|
23
|
Klein SG, Cambier S, Hennen J, Legay S, Serchi T, Nelissen I, Chary A, Moschini E, Krein A, Blömeke B, Gutleb AC. Endothelial responses of the alveolar barrier in vitro in a dose-controlled exposure to diesel exhaust particulate matter. Part Fibre Toxicol 2017; 14:7. [PMID: 28264691 PMCID: PMC5339948 DOI: 10.1186/s12989-017-0186-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 02/06/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND During the last 250 years, the level of exposure to combustion-derived particles raised dramatically in western countries, leading to increased particle loads in the ambient air. Among the environmental particles, diesel exhaust particulate matter (DEPM) plays a special role because of its omnipresence and reported effects on human health. During recent years, a possible link between air pollution and the progression of atherosclerosis is recognized. A central effect of DEPM is their impact on the endothelium, especially of the alveolar barrier. In the present study, a complex 3D tetraculture model of the alveolar barrier was used in a dose-controlled exposure scenario with realistic doses of DEPM to study the response of endothelial cells. RESULTS Tetracultures were exposed to different doses of DEPM (SRM2975) at the air-liquid-interface. DEPM exposure did not lead to the mRNA expression of relevant markers for endothelial inflammation such as ICAM-1 or E-selectin. In addition, we observed neither a significant change in the expression levels of the genes relevant for antioxidant defense, such as HMOX1 or SOD1, nor the release of pro-inflammatory second messengers, such as IL-6 or IL-8. However, DEPM exposure led to strong nuclear translocation of the transcription factor Nrf2 and significantly altered expression of CYP1A1 mRNA in the endothelial cells of the tetraculture. CONCLUSION In the present study, we demonstrated the use of a complex 3D tetraculture system together with a state-of-the-art aerosol exposure equipment to study the effects of in vivo relevant doses of DEPM on endothelial cells in vitro. To the best of our knowledge, this study is the first that focuses on indirect effects of DEPM on endothelial cells of the alveolar barrier in vitro. Exposure to DEPM led to significant activation and nuclear translocation of the transcription factor Nrf2 in endothelial cells. The considerably low doses of DEPM had a low but measurable effect, which is in line with recent data from in vivo studies.
Collapse
Affiliation(s)
- Sebastian G. Klein
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
- Department of Environmental Toxicology, University Trier, Universitätsring 15, 54296 Trier, Germany
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Jennifer Hennen
- Department of Environmental Toxicology, University Trier, Universitätsring 15, 54296 Trier, Germany
| | - Sylvain Legay
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Tommaso Serchi
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Inge Nelissen
- VITO NV, Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Elisa Moschini
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Andreas Krein
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Brunhilde Blömeke
- Department of Environmental Toxicology, University Trier, Universitätsring 15, 54296 Trier, Germany
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| |
Collapse
|
24
|
Ashraf MU, Muhammad G, Hussain MA, Bukhari SNA. Cydonia oblonga M., A Medicinal Plant Rich in Phytonutrients for Pharmaceuticals. Front Pharmacol 2016; 7:163. [PMID: 27445806 PMCID: PMC4914572 DOI: 10.3389/fphar.2016.00163] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 01/06/2023] Open
Abstract
Cydonia oblonga M. is a medicinal plant of family Rosaceae which is used to prevent or treat several ailments such as cancer, diabetes, hepatitis, ulcer, respiratory, and urinary infections, etc. Cydonia oblonga commonly known as Quince is rich in useful secondary metabolites such as phenolics, steroids, flavonoids, terpenoids, tannins, sugars, organic acids, and glycosides. A wide range of pharmacological activities like antioxidant, antibacterial, antifungal, anti-inflammatory, hepatoprotective, cardiovascular, antidepressant, antidiarrheal, hypolipidemic, diuretic, and hypoglycemic have been ascribed to various parts of C. oblonga. The polysaccharide mucilage, glucuronoxylan extruded from seeds of C. oblonga is used in dermal patches to heal wounds. This review focuses on detailed investigations of high-valued phytochemicals as well as pharmacological and phytomedicinal attributes of the plant.
Collapse
Affiliation(s)
| | - Gulzar Muhammad
- Department of Chemistry, University of SargodhaSargodha, Pakistan
| | | | - Syed N. A. Bukhari
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| |
Collapse
|
25
|
Kim WS, Kim I, Kim WK, Choi JY, Kim DY, Moon SG, Min HK, Song MK, Sung JH. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation. Biomol Ther (Seoul) 2016; 24:305-11. [PMID: 26869457 PMCID: PMC4859794 DOI: 10.4062/biomolther.2015.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 11/21/2022] Open
Abstract
Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material.
Collapse
Affiliation(s)
- Won-Serk Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Ikyon Kim
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Wang-Kyun Kim
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Ju-Yeon Choi
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Doo Yeong Kim
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Sung-Guk Moon
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Hyung-Keun Min
- Cleanup Dermatologic Clinic, Seoul 07301, Republic of Korea
| | - Min-Kyu Song
- Cleanup Dermatologic Clinic, Seoul 07301, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
26
|
Xie L, Feng H, Li S, Meng G, Liu S, Tang X, Ma Y, Han Y, Xiao Y, Gu Y, Shao Y, Park CM, Xian M, Huang Y, Ferro A, Wang R, Moore PK, Wang H, Ji Y. SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells. Antioxid Redox Signal 2016; 24:329-43. [PMID: 26422756 PMCID: PMC4761821 DOI: 10.1089/ars.2015.6331] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Oxidative stress is a key contributor to endothelial dysfunction and associated cardiovascular pathogenesis. Hydrogen sulfide (H2S) is an antioxidant gasotransmitter that protects endothelial cells against oxidative stress. Sirtuin3 (SIRT3), which belongs to the silent information regulator 2 (SIR2) family, is an important deacetylase under oxidative stress. H2S is able to regulate the activity of several sirtuins. The present study aims to investigate the role of SIRT3 in the antioxidant effect of H2S in endothelial cells. RESULTS Cultured EA.hy926 endothelial cells were exposed to hydrogen peroxide (H2O2) as a model of oxidative stress-induced cell injury. GYY4137, a slow-releasing H2S donor, improved cell viability, reduced oxidative stress and apoptosis, and improved mitochondrial function following H2O2 treatment. H2S reversed the stimulation of MAPK phosphorylation, downregulation of SIRT3 mRNA and reduction of the superoxide dismutase 2 and isocitrate dehydrogenase 2 expression which were induced by H2O2. H2S also increased activator protein 1 (AP-1) binding activity with SIRT3 promoter and this effect was absent in the presence of the specific AP-1 inhibitor, SR11302 or curcumin. Paraquat administration to mice induced a defected endothelium-dependent aortic vasodilatation and increased oxidative stress in both mouse aorta and small mesenteric artery, which were alleviated by GYY4137 treatment. This vasoprotective effect of H2S was absent in SIRT3 knockout mice. INNOVATION The present results highlight a novel role for SIRT3 in the protective effect of H2S against oxidant damage in the endothelium both in vitro and in vivo. CONCLUSION H2S enhances AP-1 binding activity with the SIRT3 promoter, thereby upregulating SIRT3 expression and ultimately reducing oxidant-provoked vascular endothelial dysfunction. Antioxid. Redox Signal. 24, 329-343.
Collapse
Affiliation(s)
- Liping Xie
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Haihua Feng
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Sha Li
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Guoliang Meng
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China .,2 Department of Pharmacology, School of Pharmacy, Nantong University , Nantong, China
| | - Shangmin Liu
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Xin Tang
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Yan Ma
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Yi Han
- 3 Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University , Nanjing, China
| | - Yujiao Xiao
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Yue Gu
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Yongfeng Shao
- 4 Department of Cardiothoracic Surgery, the First Affiliated Hospital of Nanjing Medical University , Nanjing, China
| | - Chung-Min Park
- 5 Department of Chemistry, Washington State University , Pullman, Washington
| | - Ming Xian
- 5 Department of Chemistry, Washington State University , Pullman, Washington
| | - Yu Huang
- 6 Institute of Vascular Biology, Chinese University of Hong Kong , Hong Kong, China
| | - Albert Ferro
- 7 Cardiovascular Division, Department of Clinical Pharmacology, School of Medicine, King's College London , London, United Kingdom
| | - Rui Wang
- 8 Department of Biology, Cardivascular and Molecular Research Unit, Lakehead University , Thunder Bay, Ontario, Canada
| | - Philip K Moore
- 9 Department of Pharmacology, National University of Singapore , Singapore
| | - Hong Wang
- 10 Department of Pharmacology, Center for Metabolic Disease Research, Temple University School of Medicine , Philadelphia, Pennsylvania
| | - Yong Ji
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| |
Collapse
|
27
|
Chen W, Liu Y, Xue G, Zhang L, Zhang L, Shao S. Diazoxide protects L6 skeletal myoblasts from H2O2-induced apoptosis via the phosphatidylinositol-3 kinase/Akt pathway. Inflamm Res 2015; 65:53-60. [PMID: 26525360 DOI: 10.1007/s00011-015-0890-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES AND DESIGN Transplanted cell survival might greatly improve the therapeutic efficacy of cell therapy. Diazoxide (DZ), a highly selective mitochondrial ATP-sensitive potassium channel opener, is known to suppress cell apoptosis and protect cells in oxidative stressed ischemic environment. We explored the mechanisms involved in DZ pre-treatment-induced anti-apoptotic effect on L6 skeletal myoblast (SKM). MATERIALS AND METHODS L6 SKMs were divided into control group, H2O2 group, DZ + H2O2 group and DZ + LY + H2O2 group. Treatments of 400 μmol/L H2O2 for 24 h alone, or after 200 μmol/L DZ pre-treatment for 30 min, or after DZ and 50 μmol/L LY294002 co-administration for 30 min were performed. The cell apoptosis rates were assessed by flow cytometric analysis. The changes of mitochondrial membrane potential were determined by JC-1 mitochondrial staining. The activation of phosphatidylinositol-3 kinase (PI3K)/Akt, caspase-9 and caspase-3 was detected by western blot. RESULTS Compared with the H2O2 group, DZ pre-treatment protected cells from H2O2-induced damage, increased Akt phosphorylation, prevented mitochondrial membrane depolarization as well as the activation of caspase-9 and caspase-3 and decreased the cell apoptosis rate. However, the DZ-induced cytoprotective and anti-apoptosis effects were partly inhibited by co-administration of a PI3K inhibitor, LY294002. CONCLUSIONS These data suggest that DZ pre-treatment contributes to protection of L6 SKMs against apoptosis at least partly by activating the PI3K/Akt pathway and subsequently inhibiting the mitochondrial-mediated caspase-dependent apoptotic signalling pathway.
Collapse
Affiliation(s)
- Wei Chen
- Department of Histology and Embryology, Basic Medical College, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang City, 050017, Hebei Province, People's Republic of China
| | - Yan Liu
- Department of Endocrinology, The 3rd Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Guoyu Xue
- Department of Histology and Embryology, Basic Medical College, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang City, 050017, Hebei Province, People's Republic of China
| | - Lisi Zhang
- Department of Histology and Embryology, Basic Medical College, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang City, 050017, Hebei Province, People's Republic of China
| | - Lei Zhang
- Department of Histology and Embryology, Basic Medical College, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang City, 050017, Hebei Province, People's Republic of China
| | - Suxia Shao
- Department of Histology and Embryology, Basic Medical College, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang City, 050017, Hebei Province, People's Republic of China.
| |
Collapse
|
28
|
Mikhed Y, Görlach A, Knaus UG, Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol 2015; 5:275-289. [PMID: 26079210 PMCID: PMC4475862 DOI: 10.1016/j.redox.2015.05.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.
Collapse
Affiliation(s)
- Yuliya Mikhed
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Agnes Görlach
- German Heart Center Munich at the Technical University Munich, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Andreas Daiber
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
29
|
Chernoivanenko IS, Matveeva EA, Gelfand VI, Goldman RD, Minin AA. Mitochondrial membrane potential is regulated by vimentin intermediate filaments. FASEB J 2015; 29:820-7. [PMID: 25404709 PMCID: PMC4422353 DOI: 10.1096/fj.14-259903] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/06/2014] [Indexed: 11/11/2022]
Abstract
This study demonstrates that the association of mitochondria with vimentin intermediate filaments (VIFs) measurably increases their membrane potential. This increase is detected by quantitatively comparing the fluorescence intensity of mitochondria stained with the membrane potential-sensitive dye tetramethylrhodamine-ethyl ester (TMRE) in murine vimentin-null fibroblasts with that in the same cells expressing human vimentin (∼35% rise). When vimentin expression is silenced by small hairpin RNA (shRNA) to reduce vimentin by 90%, the fluorescence intensity of mitochondria decreases by 20%. The increase in membrane potential is caused by specific interactions between a subdomain of the non-α-helical N terminus (residues 40 to 93) of vimentin and mitochondria. In rho 0 cells lacking mitochondrial DNA (mtDNA) and consequently missing several key proteins in the mitochondrial respiratory chain (ρ(0) cells), the membrane potential generated by an alternative anaerobic process is insensitive to the interactions between mitochondria and VIF. The results of our studies show that the close association between mitochondria and VIF is important both for determining their position in cells and their physiologic activity.
Collapse
Affiliation(s)
- Ivan S Chernoivanenko
- *Institute of Protein Research, Russian Academy of Sciences, Group of Cell Biology, Moscow, Russia; and Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elena A Matveeva
- *Institute of Protein Research, Russian Academy of Sciences, Group of Cell Biology, Moscow, Russia; and Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vladimir I Gelfand
- *Institute of Protein Research, Russian Academy of Sciences, Group of Cell Biology, Moscow, Russia; and Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert D Goldman
- *Institute of Protein Research, Russian Academy of Sciences, Group of Cell Biology, Moscow, Russia; and Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander A Minin
- *Institute of Protein Research, Russian Academy of Sciences, Group of Cell Biology, Moscow, Russia; and Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
30
|
Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Proc Natl Acad Sci U S A 2015; 112:2343-8. [PMID: 25675492 DOI: 10.1073/pnas.1417047112] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many diseases are associated with oxidative stress, which occurs when the production of reactive oxygen species (ROS) overwhelms the scavenging ability of an organism. Here, we evaluated the carbon nanoparticle antioxidant properties of poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs) by electron paramagnetic resonance (EPR) spectroscopy, oxygen electrode, and spectrophotometric assays. These carbon nanoparticles have 1 equivalent of stable radical and showed superoxide (O2 (•-)) dismutase-like properties yet were inert to nitric oxide (NO(•)) as well as peroxynitrite (ONOO(-)). Thus, PEG-HCCs can act as selective antioxidants that do not require regeneration by enzymes. Our steady-state kinetic assay using KO2 and direct freeze-trap EPR to follow its decay removed the rate-limiting substrate provision, thus enabling determination of the remarkable intrinsic turnover numbers of O2 (•-) to O2 by PEG-HCCs at >20,000 s(-1). The major products of this catalytic turnover are O2 and H2O2, making the PEG-HCCs a biomimetic superoxide dismutase.
Collapse
|
31
|
Mao CY, Lu HB, Kong N, Li JY, Liu M, Yang CY, Yang P. Levocarnitine protects H9c2 rat cardiomyocytes from H2O2-induced mitochondrial dysfunction and apoptosis. Int J Med Sci 2014; 11:1107-15. [PMID: 25170293 PMCID: PMC4147636 DOI: 10.7150/ijms.9153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/31/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Although the protective effects of levocarnitine in patients with ischemic heart disease are related to the attenuation of oxidative stress injury, the exact mechanisms involved have yet to be fully understood. Our aim was to investigate the potential protective effects of levocarnitine pretreatment against oxidative stress in rat H9c2 cardiomyocytes. METHODS Cardiomyocytes were exposed to H2O2 to create an oxidative stress model. The cells were pretreated with 50, 100, or 200 μM levocarnitine for 1 hour before H2O2 exposure. RESULTS H2O2 exposure led to significant activation of oxidative stress in the cells, characterized by reduced viability, increased intracellular reactive oxygen species, lipid peroxidation, and reduced intracellular antioxidant activity. Mitochondrial dysfunction was also observed following H2O2 exposure, reflected by the loss of mitochondrial transmembrane potential and intracellular adenosine triphosphate. These pathophysiological processes led to cardiomyocyte apoptosis through activation of the intrinsic apoptotic pathway. More importantly, the levocarnitine pretreatment attenuated the H2O2-induced oxidative injury significantly, preserved mitochondrial function, and partially prevented cardiomyocyte apoptosis during the oxidative stress reaction. Western blotting analyses suggested that levocarnitine pretreatment increased plasma protein levels of Bcl-2, reduced Bax, and attenuated cytochrome C leakage from the mitochondria in the cells. CONCLUSION Our in vitro study indicated that levocarnitine pretreatment may protect cardiomyocytes from oxidative stress-related damage.
Collapse
Affiliation(s)
- Cui-Ying Mao
- 1. Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Hai-Bin Lu
- 2. College of Pharmacy, Jilin University, Changchun, China
| | - Ning Kong
- 2. College of Pharmacy, Jilin University, Changchun, China
| | - Jia-Yu Li
- 1. Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Miao Liu
- 1. Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chun-Yan Yang
- 1. Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ping Yang
- 1. Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
32
|
Decursin attenuates hepatic fibrogenesis through interrupting TGF-beta-mediated NAD(P)H oxidase activation and Smad signaling in vivo and in vitro. Life Sci 2014; 108:94-103. [DOI: 10.1016/j.lfs.2014.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 05/15/2014] [Indexed: 11/27/2022]
|
33
|
Homocysteine in renovascular complications: hydrogen sulfide is a modulator and plausible anaerobic ATP generator. Nitric Oxide 2014; 41:27-37. [PMID: 24963795 DOI: 10.1016/j.niox.2014.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
Homocysteine (Hcy) is a non-protein amino acid derived from dietary methionine. High levels of Hcy, known as hyperhomocysteinemia (HHcy) is known to cause vascular complications. In the mammalian tissue, Hcy is metabolized by transsulfuration enzymes to produce hydrogen sulfide (H2S). H2S, a pungent smelling gas was previously known for its toxic effects in the central nervous system, recent studies however has revealed protective effects in a variety of diseases including hypertension, diabetes, inflammation, atherosclerosis, and renal disease progression and failure. Interestingly, under stress conditions including hypoxia, H2S can reduce metabolic demand and also act as a substrate for ATP production. This review highlights some of the recent advances in H2S research as a potential therapeutic agent targeting renovascular diseases associated with HHcy.
Collapse
|
34
|
Sindler AL, Devan AE, Fleenor BS, Seals DR. Inorganic nitrite supplementation for healthy arterial aging. J Appl Physiol (1985) 2014; 116:463-77. [PMID: 24408999 PMCID: PMC3949212 DOI: 10.1152/japplphysiol.01100.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/03/2014] [Indexed: 12/12/2022] Open
Abstract
Aging is the major risk factor for cardiovascular diseases (CVD). This is attributable primarily to adverse changes in arteries, notably, increases in large elastic artery stiffness and endothelial dysfunction mediated by inadequate concentrations of the vascular-protective molecule, nitric oxide (NO), and higher levels of oxidative stress and inflammation. Inorganic nitrite is a promising precursor molecule for augmenting circulating and tissue NO bioavailability because it requires only a one-step reduction to NO. Nitrite also acts as an independent signaling molecule, exerting many of the effects previously attributed to NO. Results of recent studies indicate that nitrite may be effective in the treatment of vascular aging. In old mice, short-term oral sodium nitrite supplementation reduces aortic pulse wave velocity, the gold-standard measure of large elastic artery stiffness, and ameliorates endothelial dysfunction, as indicated by normalization of NO-mediated endothelium-dependent dilation. These improvements in age-related vascular dysfunction with nitrite are mediated by reductions in oxidative stress and inflammation, and may be linked to increases in mitochondrial biogenesis and health. Increasing nitrite levels via dietary intake of nitrate appears to have similarly beneficial effects in many of the same physiological and clinical settings. Several clinical trials are being performed to determine the broad therapeutic potential of increasing nitrite bioavailability on human health and disease, including studies related to vascular aging. In summary, inorganic nitrite, as well as dietary nitrate supplementation, represents a promising therapy for treatment of arterial aging and prevention of age-associated CVD in humans.
Collapse
Affiliation(s)
- Amy L Sindler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | | | | | | |
Collapse
|
35
|
Ishii S, Miyao M, Mizuno Y, Tanaka-Ishikawa M, Akishita M, Ouchi Y. Association between serum uric acid and lumbar spine bone mineral density in peri- and postmenopausal Japanese women. Osteoporos Int 2014; 25:1099-105. [PMID: 24318630 DOI: 10.1007/s00198-013-2571-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/26/2013] [Indexed: 02/04/2023]
Abstract
SUMMARY Previous studies on the association between uric acid and bone mineral density yielded conflicting results. In this study, we demonstrated positive association between uric acid and lumbar spine bone mineral density in peri- and postmenopausal Japanese women. Further research is needed to elucidate the underlying mechanism. INTRODUCTION Oxidative stress has been implicated in the pathogenesis of osteoporosis. Uric acid, a potent antioxidant substance, has been associated with bone mineral density but previous studies have yielded conflicting results. The objective of the study was to examine the association between serum uric acid and lumbar spine bone mineral density (BMD). METHODS This was a retrospective analysis of medical records of 615 women, aged 45-75 years, who had lumbar spine BMD measurement by dual-energy X-ray absorptiometry as a part of health checkup from August 2011 to July 2012. RESULTS Mean serum uric acid level was 4.7 mg/dL. Serum uric acid level was positively and significantly associated with lumbar spine BMD independent of age, body mass index, smoking, drinking, physical activity, years after menopause, diabetes mellitus, hypertension, serum calcium, estimated glomerular filtration rate, plasma C-reactive protein, and serum alkaline phosphatase (standardized beta = 0.078, p = 0.049). Uric acid rapidly increased until the age of 60 years, and then decelerated but continued to increase thereafter. The association between lumbar spine BMD and uric acid remained significantly positive after excluding women older than 60 years. CONCLUSION The present study showed that higher uric acid levels were linearly associated with higher lumbar spine BMD in peri- and postmenopausal Japanese women. Further research is needed to elucidate the underlying mechanism of the association between uric acid and BMD.
Collapse
Affiliation(s)
- S Ishii
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan,
| | | | | | | | | | | |
Collapse
|
36
|
Liu LL, Yan L, Chen YH, Zeng GH, Zhou Y, Chen HP, Peng WJ, He M, Huang QR. A role for diallyl trisulfide in mitochondrial antioxidative stress contributes to its protective effects against vascular endothelial impairment. Eur J Pharmacol 2014; 725:23-31. [PMID: 24440170 DOI: 10.1016/j.ejphar.2014.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/23/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
Persistent hyperglycemia increases a systemic oxidative stress, causing the onset of vascular endothelial dysfunction and atherosclerosis. Diallyl trisulfide (DAT), a natural organosulfur compound in garlic, has been reported to have actions of dilating blood vessels and antibacteria, etc. In this study, models of obese diabetic rat in vivo and high glucose concentration (HG)-induced endothelial cell injury in vitro were used to investigate the protective effects of DAT on vascular endothelial injury and its underlying mechanisms. In the in vivo model, the obese diabetic rats were injected venously with DAT (5.0 mg kg(-1)d(-1)) and Vitamin E (1.0 mg kg(-1)d(-1)) respectively, once daily for 7 consecutive days. In the in vitro model, HG-injured HUVEC were treated with or without DAT (25 µmol L(-1), 50 µmol L(-1), 100 µmol L(-1)) or Vitamin E (25 µmol L(-1)) respectively for 24h. The extents of vascular endothelial injury and protective effects of DAT were evaluated. The results both in vivo and in vitro displayed that DAT-treatment significantly attenuated the endothelial cell impairments. Besides, DAT-treatment markedly decreased the levels of malondialdehyde (MDA) and reactive oxygen species, whereas elevated the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in mitochondrium. Moreover, DAT-treatment considerably improved mitochondrial respiration function. Taken together, our results suggest that DAT protects vascular endothelium from HG or hyperglycemia induced-injury by reducing mitochondrial oxidative stress. The findings provide a novel insight for DAT to potentially treat the oxidative stress diseases, i.e., atherosclerosis, diabetes, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Li-Li Liu
- Key Laboratory of Basic Pharmacology in Jiangxi Province, Nanchang University, Nanchang 330006, PR China
| | - Li Yan
- Key Laboratory of Basic Pharmacology in Jiangxi Province, Nanchang University, Nanchang 330006, PR China
| | - Yuan-Hong Chen
- Key Laboratory of Basic Pharmacology in Jiangxi Province, Nanchang University, Nanchang 330006, PR China
| | - Guo-Hua Zeng
- Key Laboratory of Basic Pharmacology in Jiangxi Province, Nanchang University, Nanchang 330006, PR China
| | - Ying Zhou
- Key Laboratory of Basic Pharmacology in Jiangxi Province, Nanchang University, Nanchang 330006, PR China
| | - He-Ping Chen
- Key Laboratory of Basic Pharmacology in Jiangxi Province, Nanchang University, Nanchang 330006, PR China
| | - Wei-Jie Peng
- Key State Laboratory of Food Science & Technology, Nanchang University, Nanchang 330047, PR China; Key Laboratory of Basic Pharmacology in Jiangxi Province, Nanchang University, Nanchang 330006, PR China
| | - Ming He
- Key State Laboratory of Food Science & Technology, Nanchang University, Nanchang 330047, PR China; Key Laboratory of Basic Pharmacology in Jiangxi Province, Nanchang University, Nanchang 330006, PR China.
| | - Qi-Ren Huang
- Key State Laboratory of Food Science & Technology, Nanchang University, Nanchang 330047, PR China; Key Laboratory of Basic Pharmacology in Jiangxi Province, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
37
|
Schulz E, Wenzel P, Münzel T, Daiber A. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal 2014; 20:308-24. [PMID: 22657349 PMCID: PMC3887453 DOI: 10.1089/ars.2012.4609] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Oxidative stress is a well established hallmark of cardiovascular disease and there is strong evidence for a causal role of reactive oxygen and nitrogen species (RONS) therein. RECENT ADVANCES Improvement of cardiovascular complications by genetic deletion of RONS producing enzymes and overexpression of RONS degrading enzymes proved the involvement of these species in cardiovascular disease at a molecular level. Vice versa, overexpression of RONS producing enzymes as well as deletion of antioxidant enzymes was demonstrated to aggravate cardiovascular complications. CRITICAL ISSUES With the present overview we present and discuss different pathways how mitochondrial RONS interact (crosstalk) with other sources of oxidative stress, namely NADPH oxidases, xanthine oxidase and an uncoupled nitric oxide synthase. The potential mechanisms of how this crosstalk proceeds are discussed in detail. Several examples from the literature are summarized (including hypoxia, angiotensin II mediated vascular dysfunction, cellular starvation, nitrate tolerance, aging, hyperglycemia, β-amyloid stress and others) and the underlying mechanisms are put together to a more general concept of redox-based activation of different sources of RONS via enzyme-specific "redox switches". Mitochondria play a key role in this concept providing redox triggers for oxidative damage in the cardiovascular system but also act as amplifiers to increase the burden of oxidative stress. FUTURE DIRECTIONS Based on these considerations, the characterization of the role of mitochondrial RONS formation in cardiac disease as well as inflammatory processes but also the role of mitochondria as potential therapeutic targets in these pathophysiological states should be addressed in more detail in the future.
Collapse
Affiliation(s)
- Eberhard Schulz
- 1 2nd Medical Clinic, Molecular Cardiology, Medical Center of the Johannes Gutenberg University , Mainz, Germany
| | | | | | | |
Collapse
|
38
|
Maiwald S, Zwetsloot PP, Sivapalaratnam S, Dallinga-Thie GM. Monocyte gene expression and coronary artery disease. Curr Opin Clin Nutr Metab Care 2013; 16:411-7. [PMID: 23739627 DOI: 10.1097/mco.0b013e32836236f9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Despite current therapy, coronary artery disease (CAD) remains the major cause of morbidity and mortality worldwide. CAD is the consequence of a complex array of deranged metabolic processes including the immune system. In this context, monocytes and macrophages are indisputable players. Thus, monocyte gene expression analysis could be a powerful tool to provide new insights in the pathophysiology of CAD and improve identification of individuals at risk. We discuss current literature assessing monocyte gene expression and its association with CAD. RECENT FINDINGS Monocyte surface markers CD14 ⁺⁺and CD16⁺ have been established as biomarkers for increased cardiovascular disease risk in a large number of studies. More in-depth gene expression analysis identified several interesting genes, such as ABCA1, CD36 and MSR1 with an increased expression in circulating monocytes from patients with CAD. The results for CD36 were replicated in one other study. For ABCA1 and MSR1 conflicting data are published. SUMMARY Recent findings indicate that genetic differences exist in circulating monocytes of patients suffering from CAD, giving us more insights into the underlying mechanisms. However, larger studies are required to prove that monocytes' expression signature could serve as a marker for diagnostic purposes in the future.
Collapse
Affiliation(s)
- Stephanie Maiwald
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 2013; 305:H459-76. [PMID: 23748424 DOI: 10.1152/ajpheart.00936.2012] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also produce increased amounts of reactive oxygen species, with detrimental structural and functional consequences for the cardiovascular system. The age-related accumulation of dysfunctional mitochondrial likely results from the combination of impaired clearance of damaged organelles by autophagy and inadequate replenishment of the cellular mitochondrial pool by mitochondriogenesis. In this review, we summarize the current knowledge about relevant mechanisms and consequences of age-related mitochondrial decay and alterations in mitochondrial quality control in the cardiovascular system. The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Kang MH, Balaratnasingam C, Yu PK, Morgan WH, McAllister IL, Cringle SJ, Yu DY. Alterations to vascular endothelium in the optic nerve head in patients with vascular comorbidities. Exp Eye Res 2013; 111:50-60. [DOI: 10.1016/j.exer.2013.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/19/2013] [Accepted: 03/05/2013] [Indexed: 02/07/2023]
|
41
|
Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013; 14:6306-44. [PMID: 23528859 PMCID: PMC3634422 DOI: 10.3390/ijms14036306] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023] Open
Abstract
The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
| | - Edgar A. Jaimes
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
- Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
42
|
Chen HZ, Wan YZ, Liu DP. Cross-talk between SIRT1 and p66Shc in vascular diseases. Trends Cardiovasc Med 2013; 23:237-41. [PMID: 23499302 DOI: 10.1016/j.tcm.2013.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/29/2022]
Abstract
Accumulating evidence indicates that oxidative stress can occur through overproduction of reactive oxygen species (ROS) and/or reduced anti-oxidant potentials under pathophysiological conditions and plays an important role in the development of cardiovascular diseases (CVDs). Adapter protein p66Shc has the property to directly stimulate mitochondrial ROS generation by an oxidoreductase activity. A growing body of evidence implies that p66Shc plays a critical role in the pathophysiology of age-related vascular diseases. Silent mating type information regulator 2 homolog 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase (HDAC), has also been implicated in protection against vascular aging and age-related vascular diseases. Recently, we demonstrated that SIRT1 protects blood vessels from hyperglycemia-induced endothelial dysfunction through a novel mechanism involving the downregulation of p66Shc expression. In this review, we discuss the cross-talk between these two longevity genes as a mechanism of preventing vascular diseases by involving anti-oxidative stress responses and inhibiting endothelial senescence.
Collapse
Affiliation(s)
- Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, PR China
| | | | | |
Collapse
|
43
|
Nesuashvili L, Hadley SH, Bahia PK, Taylor-Clark TE. Sensory nerve terminal mitochondrial dysfunction activates airway sensory nerves via transient receptor potential (TRP) channels. Mol Pharmacol 2013; 83:1007-19. [PMID: 23444014 DOI: 10.1124/mol.112.084319] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial dysfunction and subsequent oxidative stress has been reported for a variety of cell types in inflammatory diseases. Given the abundance of mitochondria at the peripheral terminals of sensory nerves and the sensitivity of transient receptor potential (TRP) ankyrin 1 (A1) and TRP vanilloid 1 (V1) to reactive oxygen species (ROS) and their downstream products of lipid peroxidation, we investigated the effect of nerve terminal mitochondrial dysfunction on airway sensory nerve excitability. Here we show that mitochondrial dysfunction evoked by acute treatment with antimycin A (mitochondrial complex III Qi site inhibitor) preferentially activated TRPA1-expressing "nociceptor-like" mouse bronchopulmonary C-fibers. Action potential discharge was reduced by the TRPA1 antagonist HC-030031. Inhibition of TRPV1 further reduced C-fiber activation. In mouse dissociated vagal neurons, antimycin A induced Ca(2+) influx that was significantly reduced by pharmacological inhibition or genetic knockout of either TRPA1 or TRPV1. Inhibition of both TRPA1 and TRPV1 was required to abolish antimycin A-induced Ca(2+) influx in vagal neurons. Using an HEK293 cell expression system, antimycin A induced concentration-dependent activation of both hTRPA1 and hTRPV1 but failed to activate nontransfected cells. Myxothiazol (complex III Qo site inhibitor) inhibited antimycin A-induced TRPA1 activation, as did the reducing agent dithiothreitol. Scavenging of both superoxide and hydrogen peroxide inhibited TRPA1 activation following mitochondrial modulation. In conclusion, we present evidence that acute mitochondrial dysfunction activates airway sensory nerves preferentially via TRPA1 through the actions of mitochondrially-derived ROS. This represents a novel mechanism by which inflammation may be transduced into nociceptive electrical signaling.
Collapse
Affiliation(s)
- Lika Nesuashvili
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
44
|
Yang L, Qu M, Wang Y, Duan H, Chen P, Wang Y, Shi W, Danielson P, Zhou Q. Trichostatin A inhibits transforming growth factor-β-induced reactive oxygen species accumulation and myofibroblast differentiation via enhanced NF-E2-related factor 2-antioxidant response element signaling. Mol Pharmacol 2013; 83:671-80. [PMID: 23284002 DOI: 10.1124/mol.112.081059] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Trichostatin A (TSA) has been shown to prevent fibrosis in vitro and in vivo. The present study aimed at investigating the role of reactive oxygen species (ROS) scavenging by TSA on transforming growth factor-β (TGF-β)-induced myofibroblast differentiation of corneal fibroblasts in vitro. Human immortalized corneal fibroblasts were treated with TGF-β in the presence of TSA, the NAD(P)H oxidase inhibitor diphenyleneiodonium (DPI), the antioxidant N-acetyl-cysteine (NAC), the NF-E2-related factor 2-antioxidant response element (Nrf2-ARE) activator sulforaphane, or small interfering RNA. Myofibroblast differentiation was assessed by α-smooth muscle actin (α-SMA) expression, F-actin bundle formation, and collagen gel contraction. ROS, H(2)O(2), intracellular glutathione (GSH) level, cellular total antioxidant capacity, and the activation of Nrf2-ARE signaling were determined with various assays. Treatment with TSA and the Nrf2-ARE activator resulted in increased inhibition of the TGF-β-induced myofibroblast differentiation as compared with treatment with DPI or NAC. Furthermore, TSA also decreased cellular ROS and H(2)O(2) accumulation induced by TGF-β, whereas it elevated intracellular GSH level and cellular total antioxidant capacity. In addition, TSA induced Nrf2 nuclear translocation and up-regulated the expression of Nrf2-ARE downstream antioxidant genes, whereas Nrf2 knockdown by RNA interference blocked the inhibition of TSA on myofibroblast differentiation. In conclusion, this study provides the first evidence implicating that TSA inhibits TGF-β-induced ROS accumulation and myofibroblast differentiation via enhanced Nrf2-ARE signaling.
Collapse
Affiliation(s)
- Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhou Q, Duan H, Wang Y, Qu M, Yang L, Xie L. ROCK inhibitor Y-27632 increases the cloning efficiency of limbal stem/progenitor cells by improving their adherence and ROS-scavenging capacity. Tissue Eng Part C Methods 2012; 19:531-7. [PMID: 23151007 DOI: 10.1089/ten.tec.2012.0429] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 has been shown to increase proliferative capacity and even immortalize primary keratinocytes. Here, we demonstrate that rabbit primary limbal epithelial cells (LECs) treated with Y-27632 also exhibited improved colony-forming efficiency by enhancing the expansion of the stem/progenitor cells. Moreover, Y-27632 treatment improved the rapid adherence of limbal stem/progenitor cells in the initial inoculation of primary cells. In addition, Y-27632 treatment elevated the intracellular glutathione level and decreased cellular reactive oxygen species (ROS) accumulation during the expansion of LECs. Therefore, ROCK inhibitor Y-27632 increased the cloning efficiency of rabbit limbal stem/progenitor cells by improving their adherence and ROS scavenging capacity.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | | | | | | | | | | |
Collapse
|
46
|
Fidan V, Alp H, Karaca F, Ozcan A, Ozcan K. Effect of endoscopic sinus surgery on plasma asymmetric dimethylarginine levels in patients with extensive nasal polyposis. J Int Med Res 2012; 40:565-71. [PMID: 22613417 DOI: 10.1177/147323001204000218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This study examined the effect of endoscopic sinus surgery (ESS) on plasma levels of asymmetric dimethylarginine (ADMA) and mean pulmonary arterial pressure (mPAP) in patients with extensive nasal polyposis (ENP). METHODS Preoperative and 3 month post-ESS plasma levels of ADMA and mPAP were measured in patients with ENP and in age-and gender-matched controls. RESULTS The study included 45 patients with ENP and 31 controls (mean ± SD age 39.4 ± 8.8 and 38.1 ± 9.6 years, respectively). The mean preoperative ADMA level in ENP patients (0.69 ± 0.27 μmol/l) was statistically significantly lower than in the control group (1.08 ± 0.37 μmol/l). The postoperative ADMA level increased significantly in ENP patients (0.97 ± 0.36 μmol/l) versus the preoperative level. Mean preoperative mPAP in ENP patients (25.7 ± 5.4 mmHg) was statistically significantly higher than in the control group (20.8 ± 2.1 mmHg), and ENP patients showed significant decreases in mPAP after (21.9 ± 3.5 mmHg) versus before ESS. CONCLUSION Patients with ENP had lower plasma ADMA levels compared with healthy controls, however ADMA levels and mPAP improved in ENP patients after ESS.
Collapse
Affiliation(s)
- V Fidan
- Ear, Nose and Throat Department, Erzurum Education and Research Hospital, Erzurum, Turkey.
| | | | | | | | | |
Collapse
|
47
|
Latha R, Shanthi P, Sachdanandam P. Kalpaamruthaa ameliorates myocardial and aortic damage in cardiovascular complications associated with type 2 diabetes mellitus. Can J Physiol Pharmacol 2012; 91:116-23. [PMID: 23458195 DOI: 10.1139/cjpp-2012-0292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myocardial and aortic damage in cardiovascular complications (CVD) associated with type 2 diabetes mellitus and the protective efficacy of Kalpaamruthaa (KA) are evaluated in this study. CVD developed in 8 weeks after type 2 diabetes mellitus was induced by the administration of a high-fat diet for 2 weeks, and then with streptozotocin (2 × 35 mg·(kg body mass)(-1), by intraperitonal injection, at 24 h intervals) in male Sprague-Dawley rats. CVD-induced rats were treated with KA at 200 mg·(kg body mass)(-1)·(day)(-1) orally for 28 days. Increased oxidative stress in CVD-induced rats lowers antioxidant defense in the aorta. Treatment with KA reduced oxidative stress by increasing antioxidant status with decreased lipid peroxides in CVD-induced rats. Histological examination of the myocardium and aorta provided support for the cytoprotective effect of KA in CVD. Ultrastructural changes in the myocardium of CVD-induced rats were improved by KA treatment. Aortic damage was observed through decreased endothelial nitric oxide synthase and increased NADPH oxidase mRNA expressions in CVD-induced rats. KA reduced the aortic damage by ameliorating these levels back to normal. KA treatment reduced the pro-inflammatory cytokines tumor necrosis factor-α and interleukin 6 in CVD-induced rats. Immunohistochemical expressions of matrix metalloproteinase-2 and -9 were observed to be elevated in the myocardium of CVD-induced rats, but these were decreased by the administration of KA. This study demonstrates the cardiovascular protective effect of KA in type 2 diabetes.
Collapse
Affiliation(s)
- Raja Latha
- Department of Medical Biochemistry, Dr. A.L.M. Post-Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | | | | |
Collapse
|
48
|
Abstract
Vascular endothelial dysfunction is determined by both genetic and environmental factors that cause decreased bioavailability of the vasodilator nitric oxide. This is a hallmark of atherosclerosis, hypertension, and coronary heart disease, which are major complications of metabolic disorders, including diabetes and obesity. Several therapeutic interventions, including changes in lifestyle as well as pharmacologic treatments, are useful for improving endothelial dysfunction in the face of lipotoxicity. This review discusses the current understanding of molecular and physiologic mechanisms underlying lipotoxicity-mediated endothelial dysfunction as well as relevant therapeutic approaches to ameliorate dyslipidemia and consequent endothelial dysfunction that have the potential to improve cardiovascular and metabolic outcomes.
Collapse
Affiliation(s)
- Jeong-a Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1808 7th Avenue South, BDB 777, Birmingham, AL 35294-0012, USA
- Department of Cell Biology, University of Alabama at Birmingham, 1808 7th Avenue South, BDB 777, Birmingham, AL 35294, USA
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University “Aldo Moro” at Bari, Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Sruti Chandrasekran
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland at Baltimore, 660 West Redwood Street, HH 495, Baltimore, MD 21201, USA
| | - Michael J. Quon
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland at Baltimore, 660 West Redwood Street, HH 495, Baltimore, MD 21201, USA
| |
Collapse
|
49
|
Analysis of the structural and mechanistic factors in antioxidants that preserve mitochondrial function and confer cytoprotection. Bioorg Med Chem 2012; 20:5188-201. [DOI: 10.1016/j.bmc.2012.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 12/31/2022]
|
50
|
Kurtz A, Oh SJ, Wu J, Chen H, Zhang Y, Zhao X, Chen X, Du W, Wang D, Lin X. Age related changes of the extracellular matrix and stem cell maintenance. Prev Med 2012; 54 Suppl:S50-6. [PMID: 22285947 DOI: 10.1016/j.ypmed.2012.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 02/07/2023]
Abstract
Aging is characterized by reduced tissue and organ function, regenerative capacity, and accompanied by a decrease in tissue resident stem cell numbers and a loss of potency. The impact of aging on stem cell populations differs between tissues and depends on a number of non cell-intrinsic factors, including systemic changes associated with immune system alterations, as well as senescence related changes of the local cytoarchitecture. The latter has been studied in the context of environmental niche properties required for stem cell maintenance. Here, we will discuss the impact of the extracellular matrix (ECM) on stem cell maintenance, its changes during aging and its significance for stem cell therapy. We provide an overview on ECM components and examples of age associated remodeling of the cytoarchitecture. The interaction of stem cells with the ECM will be described and the importance of an intact and hospitable ECM for stem cell maintenance, differentiation and stem cell initiated tissue repair outlined. It is concluded that a remodeled ECM due to age related inflammation, fibrosis or oxidative stress provides an inadequate environment for endogenous regeneration or stem cell therapies. Means to provide adequate ECM for stem cell therapies and endogenous regeneration and the potential of antioxidants to prevent ECM damage and promote its repair and subsequently support regeneration are discussed.
Collapse
Affiliation(s)
- Andreas Kurtz
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|