1
|
Maity D, Kaundal RK. Exploring dysregulated miRNAs in ALS: implications for disease pathogenesis and early diagnosis. Neurol Sci 2025; 46:1661-1686. [PMID: 39570437 DOI: 10.1007/s10072-024-07840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease marked by motor neuron degeneration, leading to muscle weakness and paralysis, with no effective treatments available. Early diagnosis could slow disease progression and optimize treatment. MicroRNAs (miRNAs) are being investigated as potential biomarkers due to their regulatory roles in cellular processes and stability in biofluids. However, variability across studies complicates their diagnostic utility in ALS. This study aims to identify significantly dysregulated miRNAs in ALS through meta-analysis to elucidate disease mechanisms and improve diagnostic strategies. METHODS We systematically searched PubMed, Google Scholar, and the Cochrane Library, following predefined inclusion and exclusion criteria. The primary effect measure was the standardized mean difference (SMD) with a 95% confidence interval, analyzed using a random-effects model. Additionally, we used network pharmacology to examine the targets of dysregulated miRNAs and their roles in ALS pathology. RESULTS Analysing 34 studies, we found significant upregulation of hsa-miR-206, hsa-miR-133b, hsa-miR-23a, and hsa-miR-338-3p, and significant downregulation of hsa-miR-218, hsa-miR-21-5p, and hsa-let-7b-5p in ALS patients. These miRNAs are involved in ALS pathophysiology, including stress granule formation, nuclear pore complex, SMCR8 and Sig1R dysfunction, histone methyltransferase complex alterations, and MAPK signaling perturbation, highlighting their critical role in ALS progression. CONCLUSION This study identifies several dysregulated miRNAs in ALS patients, offering insights into their role in the disease and potential as diagnostic biomarkers. These findings enhance our understanding of ALS mechanisms and may inform future diagnostic strategies. Validating these results and exploring miRNA-based interventions are crucial for improving ALS diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Dipan Maity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
2
|
Yulak F, Joha Z, Öztürk A, İnan ZDŞ, Taşkıran AŞ. Enoxaparin Protects C6 Glioma Cells from Glutamate-Induced Cytotoxicity by Reducing Oxidative Stress and Apoptosis. Mol Neurobiol 2025; 62:4631-4640. [PMID: 39472385 DOI: 10.1007/s12035-024-04587-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/23/2024] [Indexed: 03/05/2025]
Abstract
Recent studies suggest enoxaparin may protect the central nervous system (CNS) from damage. However, its specific effects on glial cells and the underlying mechanisms involving cell death and oxidative stress require further investigation. Therefore, this research investigated enoxaparin's potential to safeguard C6 glioma cells against glutamate-induced cytotoxicity, specifically focusing on its influence on oxidative stress and apoptotic mechanisms. To investigate the neuroprotective effects of enoxaparin against glutamate-induced cytotoxicity in C6 cells, four groups were established: a control group, a group exposed to 10 mM glutamate, a group treated with enoxaparin at concentrations ranging from 25 to 200 µM, and a group receiving both 10 mM glutamate and enoxaparin at concentrations ranging from 25 to 200 µM. Cell viability was measured using an XTT assay. To evaluate the effects of enoxaparin on oxidative stress, superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured using ELISA, along with total antioxidant status (TAS) and total oxidant status (TOS). Apoptosis was evaluated using flow cytometry, and caspase-3 activity, a key marker of apoptosis, was assessed using caspase-3 immunofluorescence staining. Enoxaparin at 50, 100, and 200 µM markedly increased cell viability in the enoxaparin + glutamate group. Enoxaparin treatment in the enoxaparin + glutamate group also significantly elevated levels of SOD and TAS, while concurrently decreasing MDA and TOS levels. These changes indicate a reduction in oxidative stress. Enoxaparin treatment further resulted in a significant decline in cleaved caspase-3 levels, a marker of apoptosis. Enoxaparin pre-treatment reduced cell death according to flow cytometry analysis. This study suggests enoxaparin's potential to shield C6 glioma cells from glutamate-induced cell death by mitigating both oxidative stress and apoptotic pathways. More research is needed to confirm this effect.
Collapse
Affiliation(s)
- Fatih Yulak
- Department of Physiology, School of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ziad Joha
- Department of Pharmacology, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Ayşegül Öztürk
- Departments of Medical Services and Techniques, Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey
| | - Zeynep Deniz Şahin İnan
- Department of Histology-Embryology, School of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ahmet Şevki Taşkıran
- Department of Physiology, School of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
3
|
Velasquez E, Savchenko E, Marmolejo-Martínez-Artesero S, Challuau D, Aebi A, Pomeshchik Y, Lamas NJ, Vihinen M, Rezeli M, Schneider B, Raoul C, Roybon L. TNFα prevents FGF4-mediated rescue of astrocyte dysfunction and reactivity in human ALS models. Neurobiol Dis 2024; 201:106687. [PMID: 39362568 DOI: 10.1016/j.nbd.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024] Open
Abstract
Astrocytes play a crucial role in the onset and progression of amyotrophic lateral sclerosis (ALS), a fatal disorder marked by the degeneration of motor neurons (MNs) in the central nervous system. Although astrocytes in ALS are known to be toxic to MNs, the pathological changes leading to their neurotoxic phenotype remain poorly understood. In this study, we generated human astrocytes from induced pluripotent stem cells (iPSCs) carrying the ALS-associated A4V mutation in superoxide dismutase 1 (SOD1) to examine early cellular pathways and network changes. Proteomic analysis revealed that ALS astrocytes are both dysfunctional and reactive compared to control astrocytes. We identified significant alterations in the levels of proteins linked to ALS pathology and the innate immune cGAS-STING pathway. Furthermore, we found that ALS astrocyte reactivity differs from that of control astrocytes treated with tumor necrosis factor alpha (TNFα), a key cytokine in inflammatory reactions. We then evaluated the potential of fibroblast growth factor (FGF) 2, 4, 16, and 18 to reverse ALS astrocyte phenotype. Among these, FGF4 successfully reversed ALS astrocyte dysfunction and reactivity in vitro. When delivered to the spinal cord of the SOD1G93A mouse model of ALS, FGF4 lowered astrocyte reactivity. However, this was not sufficient to protect MNs from cell death. Further analysis indicated that TNFα abrogated the reactivity reduction achieved by FGF4, suggesting that complete rescue of the ALS phenotype by FGF4 is hindered by ongoing complex neuroinflammatory processes in vivo. In summary, our data demonstrate that astrocytes generated from ALS iPSCs are inherently dysfunctional and exhibit an immune reactive phenotype. Effectively targeting astrocyte dysfunction and reactivity in vivo may help mitigate ALS and prevent MN death.
Collapse
Affiliation(s)
- Erika Velasquez
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | - Ekaterina Savchenko
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | | | | | - Aline Aebi
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | - Nuno Jorge Lamas
- Anatomic Pathology Service, Pathology Department, Centro Hospitalar e Universitário do Porto, Largo Professor Abel Salazar, 4099-001 Porto, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, University of Minho, 4710-057 Braga, Portugal.
| | - Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, 22184 Lund, Sweden..
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, Lund, Sweden; BioMS - Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden.
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, 34091, Montpellier, France.
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Department of Neurodegenerative Science, the MiND program, Van Andel Institute, Grand Rapids, 49503, MI, USA.
| |
Collapse
|
4
|
Montiel-Troya M, Mohamed-Mohamed H, Pardo-Moreno T, González-Díaz A, Ruger-Navarrete A, de la Mata Fernández M, Tovar-Gálvez MI, Ramos-Rodríguez JJ, García-Morales V. Advancements in Pharmacological Interventions and Novel Therapeutic Approaches for Amyotrophic Lateral Sclerosis. Biomedicines 2024; 12:2200. [PMID: 39457513 PMCID: PMC11505100 DOI: 10.3390/biomedicines12102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease in which the patient suffers from an affection of both upper and lower motor neurons at the spinal and brainstem level, causing a progressive paralysis that leads to the patient's demise. Gender is also considered a predisposing risk factor for developing the disease. A brief review of the pathophysiological mechanisms of the disease is also described in this work. Despite the fact that a cure for ALS is currently unknown, there exists a variety of pharmacological and non-pharmacological therapies that can help reduce the progression of the disease over a certain period of time and alleviate symptoms. (2) We aim to analyze these pharmacological and non-pharmacological therapies through a systematic review. A comprehensive, multidisciplinary approach to treatment is necessary. (3) Drugs such as riluzole, edaravone, and sodium phenylbutyrate, among others, have been investigated. Additionally, it is important to stay updated on research on new drugs, such as masitinib, from which very good results have been obtained. (4) Therapies aimed at psychological support, speech and language, and physical therapy for the patient are also available, which increase the quality of life of the patients.
Collapse
Affiliation(s)
- María Montiel-Troya
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (H.M.-M.); (M.d.l.M.F.); (J.J.R.-R.)
| | - Teresa Pardo-Moreno
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Ana González-Díaz
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Azahara Ruger-Navarrete
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Mario de la Mata Fernández
- Department of Physiology, Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (H.M.-M.); (M.d.l.M.F.); (J.J.R.-R.)
| | - María Isabel Tovar-Gálvez
- Nursing Department, Faculty of Health Sciences, University of Granada, Avda. Ilustración 69, 18071 Granada, Spain
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (H.M.-M.); (M.d.l.M.F.); (J.J.R.-R.)
| | - Victoria García-Morales
- Department of Biomedicine, Biotechnology and Public Health, Physiology Area, Faculty of Medicine, University of Cádiz, Pl. Falla, 9, 11003 Cádiz, Spain;
| |
Collapse
|
5
|
Giménez S, Millan A, Mora-Morell A, Ayuso N, Gastaldo-Jordán I, Pardo M. Advances in Brain Stimulation, Nanomedicine and the Use of Magnetoelectric Nanoparticles: Dopaminergic Alterations and Their Role in Neurodegeneration and Drug Addiction. Molecules 2024; 29:3580. [PMID: 39124985 PMCID: PMC11314096 DOI: 10.3390/molecules29153580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Recent advancements in brain stimulation and nanomedicine have ushered in a new era of therapeutic interventions for psychiatric and neurodegenerative disorders. This review explores the cutting-edge innovations in brain stimulation techniques, including their applications in alleviating symptoms of main neurodegenerative disorders and addiction. Deep Brain Stimulation (DBS) is an FDA-approved treatment for specific neurodegenerative disorders, including Parkinson's Disease (PD), and is currently under evaluation for other conditions, such as Alzheimer's Disease. This technique has facilitated significant advancements in understanding brain electrical circuitry by enabling targeted brain stimulation and providing insights into neural network function and dysfunction. In reviewing DBS studies, this review places particular emphasis on the underlying main neurotransmitter modifications and their specific brain area location, particularly focusing on the dopaminergic system, which plays a critical role in these conditions. Furthermore, this review delves into the groundbreaking developments in nanomedicine, highlighting how nanotechnology can be utilized to target aberrant signaling in neurodegenerative diseases, with a specific focus on the dopaminergic system. The discussion extends to emerging technologies such as magnetoelectric nanoparticles (MENPs), which represent a novel intersection between nanoformulation and brain stimulation approaches. These innovative technologies offer promising avenues for enhancing the precision and effectiveness of treatments by enabling the non-invasive, targeted delivery of therapeutic agents as well as on-site, on-demand stimulation. By integrating insights from recent research and technological advances, this review aims to provide a comprehensive understanding of how brain stimulation and nanomedicine can be synergistically applied to address complex neuropsychiatric and neurodegenerative disorders, paving the way for future therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giménez
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Alexandra Millan
- Department of Neurobiology and Neurophysiology, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Alba Mora-Morell
- Faculty of Biological Sciences, Universidad de Valencia, 46100 Valencia, Spain;
| | - Noa Ayuso
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Isis Gastaldo-Jordán
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, 46017 Valencia, Spain;
| | - Marta Pardo
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), 46022 Valencia, Spain
| |
Collapse
|
6
|
Shuvaev A, Belozor O, Shuvaev A. Information Load from Neuromediator Diffusion to Extrasynaptic Space: The Interplay between the Injection Frequency and Clearance. BIOLOGY 2024; 13:566. [PMID: 39194504 DOI: 10.3390/biology13080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
In our study, we simulate the release of glutamate, a neurotransmitter, from the presynaptic cell by modeling the diffusion of glutamate into both synaptic and extrasynaptic space around the synapse. We have also incorporated a new factor into our model: convection. This factor represents the process by which the body clears glutamate from the synapse. Due to this process, the physiological mechanisms that typically prevent glutamate from spreading beyond the synapse are altered. This results in a different distribution of glutamate concentrations, with higher levels outside the synapse than inside it. The variety of biological effects that occur in response to this extrasynaptic glutamate highlights the importance of preventing neurotransmitters from spreading beyond the synapse. We aim to explain the physical reasons behind these biological effects, which are observed as excitotoxicity. Our results show that preventing the spread of glutamate outside the synapse increases the amount of information exchanged within the synapse and its surroundings for frequencies of glutamate release up to 30-50 Hz, followed by a decrease. Additionally, we find that the rate at which glutamate is cleared from the synapse is effective at relatively low levels (≤0.5 nm/μs in our calculation grid) and remains constant at higher levels.
Collapse
Affiliation(s)
- Andrey Shuvaev
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Olga Belozor
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Anton Shuvaev
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| |
Collapse
|
7
|
Karagianni K, Dafou D, Xanthopoulos K, Sklaviadis T, Kanata E. RNA editing regulates glutamatergic synapses in the frontal cortex of a molecular subtype of Amyotrophic Lateral Sclerosis. Mol Med 2024; 30:101. [PMID: 38997636 PMCID: PMC11241978 DOI: 10.1186/s10020-024-00863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a highly heterogenous neurodegenerative disorder that primarily affects upper and lower motor neurons, affecting additional cell types and brain regions. Underlying molecular mechanisms are still elusive, in part due to disease heterogeneity. Molecular disease subtyping through integrative analyses including RNA editing profiling is a novel approach for identification of molecular networks involved in pathogenesis. METHODS We aimed to highlight the role of RNA editing in ALS, focusing on the frontal cortex and the prevalent molecular disease subtype (ALS-Ox), previously determined by transcriptomic profile stratification. We established global RNA editing (editome) and gene expression (transcriptome) profiles in control and ALS-Ox cases, utilizing publicly available RNA-seq data (GSE153960) and an in-house analysis pipeline. Functional annotation and pathway analyses identified molecular processes affected by RNA editing alterations. Pearson correlation analyses assessed RNA editing effects on expression. Similar analyses on additional ALS-Ox and control samples (GSE124439) were performed for verification. Targeted re-sequencing and qRT-PCR analysis targeting CACNA1C, were performed using frontal cortex tissue from ALS and control samples (n = 3 samples/group). RESULTS We identified reduced global RNA editing in the frontal cortex of ALS-Ox cases. Differentially edited transcripts are enriched in synapses, particularly in the glutamatergic synapse pathway. Bioinformatic analyses on additional ALS-Ox and control RNA-seq data verified these findings. We identified increased recoding at the Q621R site in the GRIK2 transcript and determined positive correlations between RNA editing and gene expression alterations in ionotropic receptor subunits GRIA2, GRIA3 and the CACNA1C transcript, which encodes the pore forming subunit of a post-synaptic L-type calcium channel. Experimental data verified RNA editing alterations and editing-expression correlation in CACNA1C, highlighting CACNA1C as a target for further study. CONCLUSIONS We provide evidence on the involvement of RNA editing in the frontal cortex of an ALS molecular subtype, highlighting a modulatory role mediated though recoding and gene expression regulation on glutamatergic synapse related transcripts. We report RNA editing effects in disease-related transcripts and validated editing alterations in CACNA1C. Our study provides targets for further functional studies that could shed light in underlying disease mechanisms enabling novel therapeutic approaches.
Collapse
Affiliation(s)
- Korina Karagianni
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001, Thermi, Greece
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eirini Kanata
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
8
|
Vilardo B, De Marchi F, Raineri D, Manfredi M, De Giorgis V, Bebeti A, Scotti L, Kustrimovic N, Cappellano G, Mazzini L, Chiocchetti A. Shotgun Proteomics Links Proteoglycan-4 + Extracellular Vesicles to Cognitive Protection in Amyotrophic Lateral Sclerosis. Biomolecules 2024; 14:727. [PMID: 38927130 PMCID: PMC11202157 DOI: 10.3390/biom14060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder lacking reliable biomarkers for early diagnosis and disease progression monitoring. This study aimed to identify the novel biomarkers in plasmatic extracellular vesicles (EVs) isolated from ALS patients and healthy controls (HCs). A total of 61 ALS patients and 30 age-matched HCs were enrolled in the study and the protein content of circulating EVs was analyzed by shotgun proteomics. The study was divided into a discovery phase (involving 12 ALS and 12 HC patients) and a validation one (involving 49 ALS and 20 HC patients). In the discovery phase, more than 300 proteins were identified, with 32 proteins showing differential regulation in ALS patients compared to HCs. In the validation phase, over 400 proteins were identified, with 20 demonstrating differential regulation in ALS patients compared to HCs. Notably, seven proteins were found to be common to both phases, all of which were significantly upregulated in EVs from ALS patients. Most of them have previously been linked to ALS since they have been detected in the serum or cerebrospinal fluid of ALS patients. Among them, proteoglycan (PRG)-4, also known as lubricin, was of particular interest since it was significantly increased in ALS patients with normal cognitive and motor functions. This study highlights the significance of EVs as a promising avenue for biomarker discovery in ALS. Moreover, it sheds light on the unexpected role of PRG-4 in relation to cognitive status in ALS patients.
Collapse
Affiliation(s)
- Beatrice Vilardo
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Fabiola De Marchi
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Veronica De Giorgis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Alen Bebeti
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
| | - Lorenza Scotti
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Natasa Kustrimovic
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Letizia Mazzini
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| |
Collapse
|
9
|
Taufik SA, Ramli N, Tan AH, Lim SY, Ghani MTA, Shahrizaila N. Longitudinal Changes in the Retinal Nerve Fiber Layer Thickness in Amyotrophic Lateral Sclerosis and Parkinson's Disease. J Clin Neurol 2024; 20:285-292. [PMID: 38627230 PMCID: PMC11076187 DOI: 10.3988/jcn.2023.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND AND PURPOSE There is increasing evidence that the anterior visual pathways are involved in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). This study investigated longitudinal changes in retinal nerve fiber layer (RNFL) thickness in patients with ALS and PD with the aim of better understanding their roles as biomarkers of disease progression. METHODS This study recruited 21 ALS patients, 19 age-matched PD patients, and 21 agematched healthy controls. Patient demographics and clinical scores relating to the respective diseases were documented. The RNFL thickness was measured using optical coherence tomography at baseline and after 6 months. RESULTS At baseline, the RNFL in the superior quadrant was significantly thinner in the patients with ALS than in healthy controls (109.90±22.41 µm vs. 127.81±17.05 µm [mean±standard deviation], p=0.008). The RNFL thickness did not differ significantly between the ALS and PD patients or between the PD patients and healthy controls. At 6 months, there was further significant RNFL thinning in patients with ALS, for both the overall thickness (baseline: median=94.5 µm, range=83.0-106.0 µm; follow-up: median=93.5 µm, range=82.5-104.5 µm, p=0.043) and the thickness in the inferior quadrant (median=126 µm, range=109.5-142.5 µm; and median=117.5 µm, range=98.5-136.5 µm; respectively, p=0.032). However, these changes were not correlated with the ALS functional scores. In contrast, the patients with PD did not demonstrate a significant change in RNFL thickness between the two time points. CONCLUSIONS The RNFL thickness is a promising biomarker of disease progression in patients with ALS but not in those with PD, which has a slower disease progression.
Collapse
Affiliation(s)
- Sharifah Azira Taufik
- UM Eye Research Centre, Department of Ophthalmology, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia
| | - Norlina Ramli
- UM Eye Research Centre, Department of Ophthalmology, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia.
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia
| | - Mohd Taufiq Abdul Ghani
- Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia
| | - Nortina Shahrizaila
- Division of Neurology, Department of Medicine, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Lépine S, Nauleau-Javaudin A, Deneault E, Chen CXQ, Abdian N, Franco-Flores AK, Haghi G, Castellanos-Montiel MJ, Maussion G, Chaineau M, Durcan TM. Homozygous ALS-linked mutations in TARDBP/TDP-43 lead to hypoactivity and synaptic abnormalities in human iPSC-derived motor neurons. iScience 2024; 27:109166. [PMID: 38433895 PMCID: PMC10905001 DOI: 10.1016/j.isci.2024.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Cytoplasmic mislocalization and aggregation of the RNA-binding protein TDP-43 is a pathological hallmark of the motor neuron (MN) disease amyotrophic lateral sclerosis (ALS). Furthermore, while mutations in TARDBP (encoding TDP-43) have been associated with ALS, the pathogenic consequences of these mutations remain poorly understood. Using CRISPR-Cas9, we engineered two homozygous knock-in induced pluripotent stem cell lines carrying mutations in TARDBP encoding TDP-43A382T and TDP-43G348C, two common yet understudied ALS TDP-43 variants. Motor neurons (MNs) differentiated from knock-in iPSCs had normal viability and displayed no significant changes in TDP-43 subcellular localization, phosphorylation, solubility, or aggregation compared with isogenic control MNs. However, our results highlight synaptic impairments in both TDP-43A382T and TDP-43G348C MN cultures, as reflected in synapse abnormalities and alterations in spontaneous neuronal activity. Collectively, our findings suggest that MN dysfunction may precede the occurrence of TDP-43 pathology and neurodegeneration in ALS and further implicate synaptic and excitability defects in the pathobiology of this disease.
Collapse
Affiliation(s)
- Sarah Lépine
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Angela Nauleau-Javaudin
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric Deneault
- Centre for Oncology, Radiopharmaceuticals and Research; Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carol X.-Q. Chen
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Narges Abdian
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Anna Krystina Franco-Flores
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Ghazal Haghi
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - María José Castellanos-Montiel
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Gilles Maussion
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mathilde Chaineau
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Thomas Martin Durcan
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
11
|
Hammer M, Krzyzaniak C, Bahramnejad E, Smelser K, Hack J, Watkins J, Ronaldson P. Sex differences in physiological response to increased neuronal excitability in a knockin mouse model of pediatric epilepsy. Clin Sci (Lond) 2024; 138:205-223. [PMID: 38348743 PMCID: PMC10881277 DOI: 10.1042/cs20231572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Epilepsy is a common neurological disease; however, few if any of the currently marketed antiseizure medications prevent or cure epilepsy. Discovery of pathological processes in the early stages of epileptogenesis has been challenging given the common use of preclinical models that induce seizures in physiologically normal animals. Moreover, despite known sex dimorphism in neurological diseases, females are rarely included in preclinical epilepsy models. METHODS We characterized sex differences in mice carrying a pathogenic knockin variant (p.N1768D) in the Scn8a gene that causes spontaneous tonic-clonic seizures (TCs) at ∼3 months of age and found that heterozygous females are more resilient than males in mortality and morbidity. To investigate the cellular mechanisms that underlie female resilience, we utilized blood-brain barrier (BBB) and hippocampal transcriptomic analyses in heterozygous mice before seizure onset (pre-TC) and in mice that experienced ∼20 TCs (post-TC). RESULTS In the pre-TC latent phase, both sexes exhibited leaky BBB; however, patterns of gene expression were sexually dimorphic. Females exhibited enhanced oxidative phosphorylation and protein biogenesis, while males activated gliosis and CREB signaling. After seizure onset (chronic phase), females exhibited a metabolic switch to lipid metabolism, while males exhibited increased gliosis and BBB dysfunction and a strong activation of neuroinflammatory pathways. CONCLUSION The results underscore the central role of oxidative stress and BBB permeability in the early stages of epileptogenesis, as well as sex dimorphism in response to increasing neuronal hyperexcitability. Our results also highlight the need to include both sexes in preclinical studies to effectively translate results of drug efficacy studies.
Collapse
Affiliation(s)
- Michael F. Hammer
- BIO5 Institute, University of Arizona, Tucson, Arizona, U.S.A
- Department of Neurology, University of Arizona, Tucson, Arizona, U.S.A
| | | | - Erfan Bahramnejad
- BIO5 Institute, University of Arizona, Tucson, Arizona, U.S.A
- Department of Pharmacology, University of Arizona, Tucson, Arizona, U.S.A
| | | | - Joshua B. Hack
- BIO5 Institute, University of Arizona, Tucson, Arizona, U.S.A
| | - Joseph C. Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona, U.S.A
| | | |
Collapse
|
12
|
Berthiaume AA, Reda SM, Kleist KN, Setti SE, Wu W, Johnston JL, Taylor RW, Stein LR, Moebius HJ, Church KJ. ATH-1105, a small-molecule positive modulator of the neurotrophic HGF system, is neuroprotective, preserves neuromotor function, and extends survival in preclinical models of ALS. Front Neurosci 2024; 18:1348157. [PMID: 38389786 PMCID: PMC10881713 DOI: 10.3389/fnins.2024.1348157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurodegenerative disorder, primarily affects the motor neurons of the brain and spinal cord. Like other neurodegenerative conditions, ongoing pathological processes such as increased inflammation, excitotoxicity, and protein accumulation contribute to neuronal death. Hepatocyte growth factor (HGF) signaling through the MET receptor promotes pro-survival, anti-apoptotic, and anti-inflammatory effects in multiple cell types, including the neurons and support cells of the nervous system. This pleiotropic system is therefore a potential therapeutic target for treatment of neurodegenerative disorders such as ALS. Here, we test the effects of ATH-1105, a small-molecule positive modulator of the HGF signaling system, in preclinical models of ALS. Methods In vitro, the impact of ATH-1105 on HGF-mediated signaling was assessed via phosphorylation assays for MET, extracellular signal-regulated kinase (ERK), and protein kinase B (AKT). Neuroprotective effects of ATH-1105 were evaluated in rat primary neuron models including spinal motor neurons, motor neuron-astrocyte cocultures, and motor neuron-human muscle cocultures. The anti-inflammatory effects of ATH-1105 were evaluated in microglia- and macrophage-like cell systems exposed to lipopolysaccharide (LPS). In vivo, the impact of daily oral treatment with ATH-1105 was evaluated in Prp-TDP43A315T hemizygous transgenic ALS mice. Results In vitro, ATH-1105 augmented phosphorylation of MET, ERK, and AKT. ATH-1105 attenuated glutamate-mediated excitotoxicity in primary motor neurons and motor neuron- astrocyte cocultures, and had protective effects on motor neurons and neuromuscular junctions in motor neuron-muscle cocultures. ATH-1105 mitigated LPS-induced inflammation in microglia- and macrophage-like cell systems. In vivo, ATH-1105 treatment resulted in improved motor and nerve function, sciatic nerve axon and myelin integrity, and survival in ALS mice. Treatment with ATH-1105 also led to reductions in levels of plasma biomarkers of inflammation and neurodegeneration, along with decreased pathological protein accumulation (phospho-TDP-43) in the sciatic nerve. Additionally, both early intervention (treatment initiation at 1 month of age) and delayed intervention (treatment initiation at 2 months of age) with ATH-1105 produced benefits in this preclinical model of ALS. Discussion The consistent neuroprotective and anti-inflammatory effects demonstrated by ATH-1105 preclinically provide a compelling rationale for therapeutic interventions that leverage the positive modulation of the HGF pathway as a treatment for ALS.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wu
- Athira Pharma, Inc., Bothell, WA, United States
| | | | | | | | | | | |
Collapse
|
13
|
Sun H, Wei S, Gong Y, Ding K, Tang S, Sun W, Yuan C, Huang L, Liu Z, Chen C, Yao L. Neuroprotective effects of cordycepin inhibit glutamate-induced apoptosis in hippocampal neurons. Cell Stress Chaperones 2024; 29:10-20. [PMID: 38219840 PMCID: PMC10939076 DOI: 10.1016/j.cstres.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
Glutamate is a neurotransmitter that can cause excitatory neurotoxicity when its extracellular concentration is too high, leading to disrupted calcium balance and increased production of reactive oxygen species (ROS). Cordycepin, a nucleoside adenosine derivative, has been shown to protect against excitatory neurotoxicity induced by glutamate. To investigate its potential neuroprotective effects, the present study employed fluorescence detection and spectrophotometry techniques to analyze primary hippocampal-cultured neurons. The results showed that glutamate toxicity reduced hippocampal neuron viability, increased ROS production, and increased intracellular calcium levels. Additionally, glutamate-induced cytotoxicity activated acetylcholinesterase and decreased glutathione levels. However, cordycepin inhibited glutamate-induced cell death, improved cell viability, reduced ROS production, and lowered Ca2+ levels. It also inhibited acetylcholinesterase activation and increased glutathione levels. This study suggests that cordycepin can protect against glutamate-induced neuronal injury in cell models, and this effect was inhibited by adenosine A1 receptor blockers, indicating that its neuroprotective effect is achieved through activation of the adenosine A1 receptor.
Collapse
Affiliation(s)
- Huizhen Sun
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China; Shan County Renmin Road Primary School, Heze, Shandong,PR China
| | - Shanshan Wei
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Yanchun Gong
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China; School of Physical Education and Health, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Kaizhi Ding
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Shan Tang
- School of Physical Education and Health, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Wei Sun
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Chunhua Yuan
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, PR China
| | - Zhibing Liu
- School of Physical Education and Health, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Chong Chen
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China; School of Physical Education and Health, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Lihua Yao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China; School of Physical Education and Health, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
14
|
Sharma S, Mehan S, Khan Z, Gupta GD, Narula AS. Icariin prevents methylmercury-induced experimental neurotoxicity: Evidence from cerebrospinal fluid, blood plasma, brain samples, and in-silico investigations. Heliyon 2024; 10:e24050. [PMID: 38226245 PMCID: PMC10788811 DOI: 10.1016/j.heliyon.2024.e24050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that causes significant neurodegeneration. Methylmercury (MeHg+) is a neurotoxin that induces axonal neurodegeneration and motor nerve degeneration by destroying oligodendrocytes, degenerating white matter, inducing apoptosis, excitotoxicity, and reducing myelin basic protein (MBP). This study examines the inhibition of SIRT-1 (silence information regulator 1), Nrf-2 (nuclear factor E2-related factor 2), HO-1 (heme oxygenase 1), and TDP-43 (TAR-DNA-binding protein 43) accumulation in the context of ALS, as well as the modulation of these proteins by icariin (15 and 30 mg/kg, orally), a glycoside flavonoid with neuroprotective properties. Neuroprotective icariin activates SIRT-1, Nrf-2, and HO-1, mitigating inflammation and neuronal injury in neurodegenerative disorders. In-vivo and in-silico testing of experimental ALS models confirmed icariin efficacy in modulating these cellular targets. The addition of sirtinol 10 mg/kg, an inhibitor of SIRT-1, helps determine the effectiveness of icariin. In this study, we also examined neurobehavioral, neurochemical, histopathological, and LFB (Luxol fast blue) markers in various biological samples, including Cerebrospinal fluid (CSF), blood plasma, and brain homogenates (Cerebral Cortex, Hippocampus, Striatum, mid-brain, and Cerebellum). These results demonstrate that the administration of icariin ameliorates experimental ALS and that the mechanism underlying these benefits is likely related to regulating the SIRT-1, Nrf-2, and HO-1 signaling pathways.
Collapse
Affiliation(s)
- Sarthak Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | | |
Collapse
|
15
|
Mázala DA, Chen D, Chin ER. SERCA1 Overexpression in Skeletal Muscle Attenuates Muscle Atrophy and Improves Motor Function in a Mouse Model of ALS. J Neuromuscul Dis 2024; 11:315-326. [PMID: 38217607 PMCID: PMC10977371 DOI: 10.3233/jnd-230123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/15/2024]
Abstract
Background Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of muscle mass and muscle function. Previous work from our lab demonstrated that skeletal muscles from a mouse model of ALS show elevated intracellular calcium (Ca2+) levels and heightened endoplasmic reticulum (ER) stress. Objective To investigate whether overexpression of sarcoplasmic reticulum (SR) Ca2+ ATPase 1 (SERCA1) in skeletal muscle would improve intracellular Ca2+ handling, attenuate ER stress, and improve motor function ALS transgenic mice. Methods B6SJL-Tg (SOD1*G93A)1Gur/J (ALS-Tg) mice were bred with skeletal muscle α-actinin SERCA1 overexpressing mice to generate wild type (WT), SERCA1 overexpression (WT/+SERCA1), ALS-Tg, and SERCA1 overexpressing ALS-Tg (ALS-Tg/+SERCA1) mice. Motor function (grip test) was assessed weekly and skeletal muscles were harvested at 16 weeks of age to evaluate muscle mass, SR-Ca2+ ATPase activity, levels of SERCA1 and ER stress proteins - protein disulfide isomerase (PDI), Grp78/BiP, and C/EBP homologous protein (CHOP). Single muscle fibers were also isolated from the flexor digitorum brevis muscle to assess changes in resting and peak Fura-2 ratios. Results ALS-Tg/+SERCA1 mice showed improved motor function, delayed onset of disease, and improved muscle mass compared to ALS-Tg. Further, ALS-Tg/+SERCA1 mice returned levels of SERCA1 protein and SR-Ca2+ ATPase activity back to levels in WT mice. Unexpectedly, SERCA-1 overexpression increased levels of the ER stress maker Grp78/BiP in both WT and ALS-Tg mice, while not altering protein levels of PDI or CHOP. Lastly, single muscle fibers from ALS-Tg/+SERCA1 had similar resting but lower peak Fura-2 levels (at 30 Hz and 100 Hz) compared to ALS-Tg mice. Conclusions These data indicate that SERCA1 overexpression attenuates the progressive loss of muscle mass and maintains motor function in ALS-Tg mice while not lowering resting Ca2+ levels or ER stress.
Collapse
Affiliation(s)
- Davi A.G. Mázala
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, USA
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Dapeng Chen
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
- Zeteo Tech, Inc., Sykesville, MD, USA
| | - Eva R. Chin
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
- Solve FSHD, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Belosludtseva NV, Matveeva LA, Belosludtsev KN. Mitochondrial Dyshomeostasis as an Early Hallmark and a Therapeutic Target in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:16833. [PMID: 38069154 PMCID: PMC10706047 DOI: 10.3390/ijms242316833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal multisystem disease characterized by progressive death of motor neurons, loss of muscle mass, and impaired energy metabolism. More than 40 genes are now known to be associated with ALS, which together account for the majority of familial forms of ALS and only 10% of sporadic ALS cases. To date, there is no consensus on the pathogenesis of ALS, which makes it difficult to develop effective therapy. Accumulating evidence indicates that mitochondria, which play an important role in cellular homeostasis, are the earliest targets in ALS, and abnormalities in their structure and functions contribute to the development of bioenergetic stress and disease progression. Mitochondria are known to be highly dynamic organelles, and their stability is maintained through a number of key regulatory pathways. Mitochondrial homeostasis is dynamically regulated via mitochondrial biogenesis, clearance, fission/fusion, and trafficking; however, the processes providing "quality control" and distribution of the organelles are prone to dysregulation in ALS. Here, we systematically summarized changes in mitochondrial turnover, dynamics, calcium homeostasis, and alterations in mitochondrial transport and functions to provide in-depth insights into disease progression pathways, which may have a significant impact on current symptomatic therapies and personalized treatment programs for patients with ALS.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia;
| | - Lyudmila A. Matveeva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia;
| | - Konstantin N. Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia;
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia;
| |
Collapse
|
17
|
Lapshina MA, Shevtsova EF, Grigoriev VV, Aksinenko AY, Ustyugov AA, Steinberg DA, Maleev GV, Dubrovskaya ES, Goreva TV, Epishina TA, Zamoyski VL, Makhaeva GF, Fisenko VP, Veselov IM, Vinogradova DV, Bachurin SO. New Adamantane-Containing Edaravone Conjugates as Potential Neuroprotective Agents for ALS Treatments. Molecules 2023; 28:7567. [PMID: 38005288 PMCID: PMC10673157 DOI: 10.3390/molecules28227567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, there are no effective drugs for the treatment of amyotrophic lateral sclerosis (ALS). Only two drugs-edaravone and riluzole-have been approved, but they have very limited efficacy. The aim of this work was to modify the structural core of the Edaravone-phenylpyrazolone moiety and combine it with aminoadamantane pharmacophore in order to expand the spectrum of its action to a number of processes involved in the pathogenesis of ALS. New conjugates of edaravone derivatives with 1-aminoadamantanes combined with alkylene or hydroxypropylene spacers were synthesized, and their biological activity was investigated. Compounds were found that could inhibit lipid peroxidation and calcium-related mitochondrial permeability, block fast sodium currents of CNS neurons, and reduce aggregation of the mutated form of the FUS-protein typical to ALS. So, the proposed modification of the edaravone molecule has allowed the obtaining of new original structures that combine some prospective therapeutic mechanisms against key chains of the pathogenesis of ALS. The identified lead compounds can be used for further optimization and development of new promising drugs on this basis for the treatment of ALS.
Collapse
Affiliation(s)
- Maria A. Lapshina
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Elena F. Shevtsova
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Vladimir V. Grigoriev
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Aleksey Yu. Aksinenko
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Aleksey A. Ustyugov
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Daniil A. Steinberg
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Grigoriy V. Maleev
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Elena S. Dubrovskaya
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Tatiana V. Goreva
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Tatiana A. Epishina
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Vladimir L. Zamoyski
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Vladimir P. Fisenko
- Department of Pharmacology, Sechenov I. M. First Moscow State Medical University, 8 Build. 2 Trubetskaya Str., 119991 Moscow, Russia;
| | - Ivan M. Veselov
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Daria V. Vinogradova
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij proezd, 142432 Chernogolovka, Russia; (M.A.L.); (E.F.S.); (V.V.G.); (A.Y.A.); (A.A.U.); (D.A.S.); (G.V.M.); (E.S.D.); (T.V.G.); (T.A.E.); (V.L.Z.); (G.F.M.); (I.M.V.); (D.V.V.)
| |
Collapse
|
18
|
Leng Y, Li X, Zheng F, Liu H, Wang C, Wang X, Liao Y, Liu J, Meng K, Yu J, Zhang J, Wang B, Tan Y, Liu M, Jia X, Li D, Li Y, Gu Z, Fan Y. Advances in In Vitro Models of Neuromuscular Junction: Focusing on Organ-on-a-Chip, Organoids, and Biohybrid Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211059. [PMID: 36934404 DOI: 10.1002/adma.202211059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The neuromuscular junction (NMJ) is a peripheral synaptic connection between presynaptic motor neurons and postsynaptic skeletal muscle fibers that enables muscle contraction and voluntary motor movement. Many traumatic, neurodegenerative, and neuroimmunological diseases are classically believed to mainly affect either the neuronal or the muscle side of the NMJ, and treatment options are lacking. Recent advances in novel techniques have helped develop in vitro physiological and pathophysiological models of the NMJ as well as enable precise control and evaluation of its functions. This paper reviews the recent developments in in vitro NMJ models with 2D or 3D cultures, from organ-on-a-chip and organoids to biohybrid robotics. Related derivative techniques are introduced for functional analysis of the NMJ, such as the patch-clamp technique, microelectrode arrays, calcium imaging, and stimulus methods, particularly optogenetic-mediated light stimulation, microelectrode-mediated electrical stimulation, and biochemical stimulation. Finally, the applications of the in vitro NMJ models as disease models or for drug screening related to suitable neuromuscular diseases are summarized and their future development trends and challenges are discussed.
Collapse
Affiliation(s)
- Yubing Leng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xiaorui Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Hui Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xudong Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yulong Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jiangyue Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Kaiqi Meng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jiaheng Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jingyi Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Binyu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Deyu Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| |
Collapse
|
19
|
Grigoriev VV, Shevtsova EF, Aksinenko AY, Veselov IM, Goreva TV, Gabrelyan AV, Bachurin SO. New Hybrid Structures Based on Memanthine and Edaravone Molecules. DOKL BIOCHEM BIOPHYS 2023; 512:284-287. [PMID: 38093132 DOI: 10.1134/s1607672923700461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 12/18/2023]
Abstract
New hybrid structures based on memantine and edaravone molecules, in which the pyrazolone ring and adamantane fragments are linked by an alkyl linker, were synthesized. It was found that, in addition to the ability to block the intrachannel site of NMDA receptors, the new hybrid compounds exhibit the property of blockers of the allosteric site of NMDA receptors, which is not inherent in memantine and edaravone preparations. The most active hit compound was determined, which, along with the properties of a two-site blocker of the NMDA receptor, exhibits a pronounced activity as an inhibitor of lipid peroxidation, similarly to the drug edaravone.
Collapse
Affiliation(s)
- V V Grigoriev
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia.
| | - E F Shevtsova
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - A Yu Aksinenko
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - I M Veselov
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - T V Goreva
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - A V Gabrelyan
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - S O Bachurin
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| |
Collapse
|
20
|
Bornstein R, Mulholland MT, Sedensky M, Morgan P, Johnson SC. Glutamine metabolism in diseases associated with mitochondrial dysfunction. Mol Cell Neurosci 2023; 126:103887. [PMID: 37586651 PMCID: PMC10773532 DOI: 10.1016/j.mcn.2023.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023] Open
Abstract
Mitochondrial dysfunction can arise from genetic defects or environmental exposures and impact a wide range of biological processes. Among these are metabolic pathways involved in glutamine catabolism, anabolism, and glutamine-glutamate cycling. In recent years, altered glutamine metabolism has been found to play important roles in the pathologic consequences of mitochondrial dysfunction. Glutamine is a pleiotropic molecule, not only providing an alternate carbon source to glucose in certain conditions, but also playing unique roles in cellular communication in neurons and astrocytes. Glutamine consumption and catabolic flux can be significantly altered in settings of genetic mitochondrial defects or exposure to mitochondrial toxins, and alterations to glutamine metabolism appears to play a particularly significant role in neurodegenerative diseases. These include primary mitochondrial diseases like Leigh syndrome (subacute necrotizing encephalopathy) and MELAS (mitochondrial myopathy with encephalopathy, lactic acidosis, and stroke-like episodes), as well as complex age-related neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Pharmacologic interventions targeting glutamine metabolizing and catabolizing pathways appear to provide some benefits in cell and animal models of these diseases, indicating glutamine metabolism may be a clinically relevant target. In this review, we discuss glutamine metabolism, mitochondrial disease, the impact of mitochondrial dysfunction on glutamine metabolic processes, glutamine in neurodegeneration, and candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca Bornstein
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Michael T Mulholland
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Phil Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA; Department of Neurology, University of Washington, Seattle, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK.
| |
Collapse
|
21
|
Yang L, Cheng Y, Zhu Y, Cui L, Li X. The Serotonergic System and Amyotrophic Lateral Sclerosis: A Review of Current Evidence. Cell Mol Neurobiol 2023; 43:2387-2414. [PMID: 36729314 PMCID: PMC11410157 DOI: 10.1007/s10571-023-01320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the premature death of motor neurons. Serotonin (5-HT) is a crucial neurotransmitter, and its dysfunction, whether as a contributor or by-product, has been implicated in ALS pathogenesis. Here, we summarize current evidence linking serotonergic alterations to ALS, including results from post-mortem and neuroimaging studies, biofluid testing, and studies of ALS animal models. We also discuss the possible role of 5-HT in modulating some important mechanisms of ALS (i.e. glutamate excitotoxity and neuroinflammation) and in regulating ALS phenotypes (i.e. breathing dysfunction and metabolic defects). Finally, we discuss the promise and limitations of the serotonergic system as a target for the development of ALS biomarkers and therapeutic approaches. However, due to a relative paucity of data and standardized methodologies in previous studies, proper interpretation of existing results remains a challenge. Future research is needed to unravel the mechanisms linking serotonergic pathways and ALS and to provide valid, reproducible, and translatable findings.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yanfei Cheng
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaoguang Li
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China.
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
22
|
Barbieri R, Nizzari M, Zanardi I, Pusch M, Gavazzo P. Voltage-Gated Sodium Channel Dysfunctions in Neurological Disorders. Life (Basel) 2023; 13:life13051191. [PMID: 37240836 DOI: 10.3390/life13051191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The pore-forming subunits (α subunits) of voltage-gated sodium channels (VGSC) are encoded in humans by a family of nine highly conserved genes. Among them, SCN1A, SCN2A, SCN3A, and SCN8A are primarily expressed in the central nervous system. The encoded proteins Nav1.1, Nav1.2, Nav1.3, and Nav1.6, respectively, are important players in the initiation and propagation of action potentials and in turn of the neural network activity. In the context of neurological diseases, mutations in the genes encoding Nav1.1, 1.2, 1.3 and 1.6 are responsible for many forms of genetic epilepsy and for Nav1.1 also of hemiplegic migraine. Several pharmacological therapeutic approaches targeting these channels are used or are under study. Mutations of genes encoding VGSCs are also involved in autism and in different types of even severe intellectual disability (ID). It is conceivable that in these conditions their dysfunction could indirectly cause a certain level of neurodegenerative processes; however, so far, these mechanisms have not been deeply investigated. Conversely, VGSCs seem to have a modulatory role in the most common neurodegenerative diseases such as Alzheimer's, where SCN8A expression has been shown to be negatively correlated with disease severity.
Collapse
Affiliation(s)
| | - Mario Nizzari
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Ilaria Zanardi
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Michael Pusch
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| |
Collapse
|
23
|
López-Pingarrón L, Almeida H, Soria-Aznar M, Reyes-Gonzales MC, Terrón MP, García JJ. Role of Oxidative Stress on the Etiology and Pathophysiology of Amyotrophic Lateral Sclerosis (ALS) and Its Relation with the Enteric Nervous System. Curr Issues Mol Biol 2023; 45:3315-3332. [PMID: 37185741 PMCID: PMC10136958 DOI: 10.3390/cimb45040217] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons in the spinal cord, cerebral cortex, and medulla oblongata. Most patients present a clinical phenotype of classic ALS-with predominant atrophy, muscle weakness, and fasciculations-and survival of 3 to 5 years following diagnosis. In the present review, we performed a literature search to provide an update on the etiology and pathophysiological mechanisms involved in ALS. There are two types of ALS: the familial form with genetic involvement, and the sporadic form with a multifactorial origin. ALS pathophysiology is characterized by involvement of multiple processes, including oxidative stress, glutamate excitotoxicity, and neuroinflammation. Moreover, it is proposed that conditioning risk factors affect ALS development, such as susceptibility to neurodegeneration in motor neurons, the intensity of performed physical activity, and intestinal dysbiosis with involvement of the enteric nervous system, which supports the existing theories of disease generation. To improve patients' prognosis and survival, it is necessary to further deepen our understanding of the etiopathogenesis of ALS.
Collapse
Affiliation(s)
- Laura López-Pingarrón
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Henrique Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, Porto University, 4200-135 Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
- Department of Obstetrics and Gynecology, Hospital-CUF Porto, 4100-180 Porto, Portugal
| | - Marisol Soria-Aznar
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Marcos C Reyes-Gonzales
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - María Pilar Terrón
- Department of Physiology, Faculty of Medicine and Health Sciences, University of Badajoz, 06006 Badajoz, Spain
| | - Joaquín J García
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
24
|
Bedlack R, Barkhaus PE, Barnes B, Beauchamp M, Bertorini T, Bromberg MB, Carter GT, Chaudry V, Cudkowicz M, Jackson C, Levitsky G, Lund I, McDermott C, Novella S, Olby N, Ostrow L, Pattee GL, Heiman-Patterson T, Ratner D, Salmon K, Steves S, Terrelonge M, Wicks P, Wills AM. ALSUntangled #63: ketogenic diets. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:159-163. [PMID: 34645313 DOI: 10.1080/21678421.2021.1990346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 01/26/2023]
Abstract
ALSUntangled reviews alternative and off label treatments with a goal of helping patients make more informed decisions about them. Here we review ketogenic diets. We shows that these have plausible mechanisms, including augmenting cellular energy balance and reducing excitotoxicity, neuroinflammation and oxidative stress. We review a mouse model study, anecdotal reports and trials in ALS and other diseases. We conclude that there is yet not enough data to recommend ketogenic diets for patients with ALS, especially in light of the many side effects these can have.
Collapse
Affiliation(s)
- Richard Bedlack
- Neurology Department, Duke University, Durham, NC, United States
| | - Paul E Barkhaus
- Neurology Department, Froedtert & the Medical College of Wisconsin, Kenosha, WI, United States
| | - Benjamin Barnes
- Neurology Department, Augusta University Medical College of Georgia, Augusta, GA, United States
| | | | - Tulio Bertorini
- Neurology Department, The University of Tennessee Health Science Center VolShop Memphis, Memphis, TN, United States
| | - Mark B Bromberg
- Neurology Department, University of Utah Health Hospitals and Clinics, Salt Lake City, UT, United States
| | - Gregory T Carter
- St Lukes Rehabilitation Hospital, Physical Medicine and Rehabilitation, Chesterfield, MO, United States
| | - Vinay Chaudry
- Neurology Department, University of North Carolina School of Medicine Neuroscience Center, Chapel Hill, NC, United States
| | - Merit Cudkowicz
- Neurology Department, Mass General Brigham Inc., Boston, MA, United States
| | - Ce Jackson
- Neurology Department, The University of Texas Health Science Center at San Antonio - Greehey Academic and Research Campus, San Antonio, TX, United States
| | | | - Isaac Lund
- Green Hope High School, Cary, NC, United States
| | - Christopher McDermott
- The University of Sheffield Institute for Translational Neuroscience, Sheffield, United Kingdom
| | - Steven Novella
- Neurology Department, Yale University, New Haven, CT, United States
| | - Natasha Olby
- Neurology Department, North Carolina State University, Raleigh, NC, United States
| | - Lyle Ostrow
- Neurology Department, Johns Hopkins University, Baltimore, MD, United States
| | - Gary L Pattee
- Neurology Department, University of Nebraska Medical Center College of Medicine, Omaha, NE, United States
| | | | - Dylan Ratner
- Longmeadow High School, Longmeadow, MA, United States
| | - Kristiana Salmon
- Neurology Department, McGill Centre for Research in Neuroscience, Montreal, Canada
| | - Susan Steves
- Nutrition Department, Duke University, Durham, NC, United States
| | - Mark Terrelonge
- Neurology Department, University of California San Francisco, San Francisco, CA, United States
| | | | - Anne-Marie Wills
- Neurology Department, Mass General Brigham Inc., Boston, MA, United States
| |
Collapse
|
25
|
Barbo M, Ravnik-Glavač M. Extracellular Vesicles as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Genes (Basel) 2023; 14:genes14020325. [PMID: 36833252 PMCID: PMC9956314 DOI: 10.3390/genes14020325] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is described as a fatal and rapidly progressive neurodegenerative disorder caused by the degeneration of upper motor neurons in the primary motor cortex and lower motor neurons of the brainstem and spinal cord. Due to ALS's slowly progressive characteristic, which is often accompanied by other neurological comorbidities, its diagnosis remains challenging. Perturbations in vesicle-mediated transport and autophagy as well as cell-autonomous disease initiation in glutamatergic neurons have been revealed in ALS. The use of extracellular vesicles (EVs) may be key in accessing pathologically relevant tissues for ALS, as EVs can cross the blood-brain barrier and be isolated from the blood. The number and content of EVs may provide indications of the disease pathogenesis, its stage, and prognosis. In this review, we collected a recent study aiming at the identification of EVs as a biomarker of ALS with respect to the size, quantity, and content of EVs in the biological fluids of patients compared to controls.
Collapse
|
26
|
Choi SH, Yousefian-Jazi A, Hyeon SJ, Nguyen PTT, Chu J, Kim S, Kim S, Ryu HL, Kowall NW, Ryu H, Lee J. Modulation of histone H3K4 dimethylation by spermidine ameliorates motor neuron survival and neuropathology in a mouse model of ALS. J Biomed Sci 2022; 29:106. [PMID: 36536341 PMCID: PMC9764677 DOI: 10.1186/s12929-022-00890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive paralysis due to motor neuron degeneration. It has been proposed that epigenetic modification and transcriptional dysregulation may contribute to motor neuron death. In this study, we investigate the basis for therapeutic approaches to target lysine-specific histone demethylase 1 (LSD1) and elucidate the mechanistic role of LSD1-histone H3K4 signaling pathway in ALS pathogenesis. METHODS In order to examine the role of spermidine (SD), we administered SD to an animal model of ALS (G93A) and performed neuropathological analysis, body weight, and survival evaluation. RESULTS Herein, we found that LSD1 activity is increased while levels of H3K4me2, a substrate of LSD1, is decreased in cellular and animal models of ALS. SD administration modulated the LSD1 activity and restored H3K4me2 levels in ChAT-positive motor neurons in the lumbar spinal cord of ALS mice. SD prevented cellular damage by improving the number and size of motor neurons in ALS mice. SD administration also reduced GFAP-positive astrogliogenesis in the white and gray matter of the lumbar spinal cord, improving the neuropathology of ALS mice. Moreover, SD administration improved the rotarod performance and gait analysis of ALS mice. Finally, SD administration delayed disease onset and prolonged the lifespan of ALS (G93A) transgenic mice. CONCLUSION Together, modulating epigenetic targets such as LSD1 by small compounds may be a useful therapeutic strategy for treating ALS.
Collapse
Affiliation(s)
- Seung-Hye Choi
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Ali Yousefian-Jazi
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Seung Jae Hyeon
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Phuong Thi Thanh Nguyen
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.412786.e0000 0004 1791 8264KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792 South Korea
| | - Jiyeon Chu
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.222754.40000 0001 0840 2678Integrated Biomedical and Life Science Department, Graduate School, Korea University, Seoul, 02841 South Korea
| | - Sojung Kim
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Suhyun Kim
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Hannah L. Ryu
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA
| | - Neil W. Kowall
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130 USA
| | - Hoon Ryu
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.412786.e0000 0004 1791 8264KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792 South Korea
| | - Junghee Lee
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130 USA
| |
Collapse
|
27
|
Aragón-González A, Shaw PJ, Ferraiuolo L. Blood-Brain Barrier Disruption and Its Involvement in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms232315271. [PMID: 36499600 PMCID: PMC9737531 DOI: 10.3390/ijms232315271] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is a highly specialized and dynamic compartment which regulates the uptake of molecules and solutes from the blood. The relevance of the maintenance of a healthy BBB underpinning disease prevention as well as the main pathomechanisms affecting BBB function will be detailed in this review. Barrier disruption is a common aspect in both neurodegenerative diseases, such as amyotrophic lateral sclerosis, and neurodevelopmental diseases, including autism spectrum disorders. Throughout this review, conditions altering the BBB during the earliest and latest stages of life will be discussed, revealing common factors involved. Due to the barrier's role in protecting the brain from exogenous components and xenobiotics, drug delivery across the BBB is challenging. Potential therapies based on the BBB properties as molecular Trojan horses, among others, will be reviewed, as well as innovative treatments such as stem cell therapies. Additionally, due to the microbiome influence on the normal function of the brain, microflora modulation strategies will be discussed. Finally, future research directions are highlighted to address the current gaps in the literature, emphasizing the idea that common therapies for both neurodevelopmental and neurodegenerative pathologies exist.
Collapse
Affiliation(s)
- Ana Aragón-González
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Correspondence: ; Tel.: +44-(0)114-222-2257; Fax: +44-(0)114-222-2290
| |
Collapse
|
28
|
Jayan J, Roshi H, Ashraf FFP, Nair PG, Vijayakumar A, Nair AS, Pappachen LK, Abdelgawad MA, Parambi DGT, Aleya L, Mathew B. Effects of radiation exposure on brain health: a state of the art and new challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87068-87081. [PMID: 36308656 DOI: 10.1007/s11356-022-23703-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Good brain health refers to a condition in which a person may fully realize their talents and improve their psychological, emotional, cognitive, and behavioral functioning to cope with life's challenges. Various causes of CNS diseases are now being investigated. Radiation is one of the factors that affects the brain and causes a variety of problems. The emission or transmission of energy in the form of waves or particles via space or a material medium is known as radiation. Particle beams and electromagnetic waves are two types of ionizing radiation that have the potential to ionize atoms in a material (separating them into positively charged ions and negatively charged electrons). Radiation to the CNS can induce delayed puberty, which can lead to hyperprolactinemia, and the hypothalamic-pituitary axis can lead to gonadotropin deficit if the hypothalamic-pituitary axis is involved in the radiation field. Ionizing radiation is the most common kind of radiation. Here, we focus on the different effects of radiation on brain health. In this article, we will look at a variety of CNS diseases and how radiation affects each one, as well as how it affects the brain's numerous processes.
Collapse
Affiliation(s)
- Jayalakshmi Jayan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Harsha Roshi
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Fathima Farzana Perumbilly Ashraf
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Parvathy G Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Aparna Vijayakumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India.
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 2014, Al Jouf, Saudi Arabia
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 2014, Al Jouf, Saudi Arabia
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, Universite de Bourgogne Franche-Comte, CNRS6249, Besancon, France
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India.
| |
Collapse
|
29
|
Schröder S, Wang M, Sima D, Schröder J, Zhu X, Zheng X, Liu L, Li T, Wang Q, Friedemann T, Liu T, Pan W. Slower progression of amyotrophic lateral sclerosis with external application of a Chinese herbal plaster–The randomized, placebo-controlled triple-blinded ALS-CHEPLA trial. Front Neurol 2022; 13:990802. [PMID: 36324375 PMCID: PMC9620479 DOI: 10.3389/fneur.2022.990802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by gradually increasing damage to the upper and lower motor neurons. However, definitive and efficacious treatment for ALS is not available, and oral intake in ALS patients with bulbar involvement is complicated due to swallowing difficulties. Hypothesis/purpose This study investigated whether the external plaster application of the herbal composition Ji-Wu-Li efficiently slows ALS progression because prior studies obtained promising evidence with oral herbal applications. Study design The randomized, triple-blinded study compared the efficacy, safety, and tolerability of the application of Ji-Wu-Li plaster (JWLP) with placebo plaster (PLAP). Methods In total, 120 patients with definite ALS, clinically probable ALS, or clinically probable laboratory-supported ALS were randomized in a 1:1 ratio to receive JWLP or PLAP. Patients were treated and observed for 20 weeks. The primary outcome was the ALSFRS-R score, while the secondary outcomes were the ALS-SSIT score and weight loss. Results The mean±SD decrease in the ALSFRS-R over 20 weeks differed by 0.84 points in a group comparison (JWLP, −4.44 ± 1.15; PLAP, −5.28 ± 1.98; p = 0.005). The mean increase in the ALS-SSIT over 20 weeks differed by 2.7 points in a group comparison (JWLP, 5.361.15; PLAP, 8.06 ± 1.72; p < 0.001). The mean weight loss over 20 weeks differed by 1.65 kg in a group comparison (JWLP, −3.98 ± 2.61; PLAP, −5.63 ± 3.17; p = 0.002). Local allergic dermatitis suspected as causal to the intervention occurred in 10 of 60 participants in the JWLP group and 9 of 60 participants in the PLAP group. Systemic adverse events were mild, temporary, and considered unrelated to the intervention. Conclusion The JWLP showed clinical efficacy in the progression of ALS, as measured by the ALSFRS-R, ALS-SSIT, and weight loss in a randomized, placebo-controlled trial. Because skin reactions occurred in both groups, the covering material needs improvement. All of the Ji Wu Li herbal ingredients regulate multiple mechanisms of neurodegeneration in ALS. Hence, JWLP may offer a promising and safe add-on therapy for ALS, particularly in patients with bulbar involvement, but a confirmative long-term multicentre study is required.
Collapse
Affiliation(s)
- Sven Schröder
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mingzhe Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dandan Sima
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Joana Schröder
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuying Zhu
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuanlu Zheng
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Liu
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Neurology, Qinghai Hospital of Traditional Chinese Medicine, Xining, Qinghai, China
| | - Tingying Li
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiudong Wang
- Department of Integrative Neurology, Pudong Traditional Chinese Medicine Hospital, Shanghai, China
| | - Thomas Friedemann
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Thomas Friedemann
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Te Liu
| | - Weidong Pan
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Weidong Pan
| |
Collapse
|
30
|
Marino C, Grimaldi M, Sommella EM, Ciaglia T, Santoro A, Buonocore M, Salviati E, Trojsi F, Polverino A, Sorrentino P, Sorrentino G, Campiglia P, D’Ursi AM. The Metabolomic Profile in Amyotrophic Lateral Sclerosis Changes According to the Progression of the Disease: An Exploratory Study. Metabolites 2022; 12:metabo12090837. [PMID: 36144241 PMCID: PMC9504184 DOI: 10.3390/metabo12090837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative pathology of the upper or lower motor neuron. Evaluation of ALS progression is based on clinical outcomes considering the impairment of body sites. ALS has been extensively investigated in the pathogenetic mechanisms and the clinical profile; however, no molecular biomarkers are used as diagnostic criteria to establish the ALS pathological staging. Using the source-reconstructed magnetoencephalography (MEG) approach, we demonstrated that global brain hyperconnectivity is associated with early and advanced clinical ALS stages. Using nuclear magnetic resonance (1H-NMR) and high resolution mass spectrometry (HRMS) spectroscopy, here we studied the metabolomic profile of ALS patients' sera characterized by different stages of disease progression-namely early and advanced. Multivariate statistical analysis of the data integrated with the network analysis indicates that metabolites related to energy deficit, abnormal concentrations of neurotoxic metabolites and metabolites related to neurotransmitter production are pathognomonic of ALS in the advanced stage. Furthermore, analysis of the lipidomic profile indicates that advanced ALS patients report significant alteration of phosphocholine (PCs), lysophosphatidylcholine (LPCs), and sphingomyelin (SMs) metabolism, consistent with the exigency of lipid remodeling to repair advanced neuronal degeneration and inflammation.
Collapse
Affiliation(s)
- Carmen Marino
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Eduardo Maria Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Via Maggiore Salvatore Arena, Contrada San Benedetto, 81100 Caserta, Italy
| | - Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Cupa delle Tozzole, 2, 80131 Naples, Italy
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems of National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, 13284 Marseille, France
| | - Giuseppe Sorrentino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Cupa delle Tozzole, 2, 80131 Naples, Italy
- Institute of Applied Sciences and Intelligent Systems of National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Motor and Wellness Sciences, University of Naples “Parthenope”, Via Ammiraglio Ferdinando Acton, 38, 80133 Naples, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
- Correspondence: ; Tel.: +39-089969748
| |
Collapse
|
31
|
Logan A, Belli A, Di Pietro V, Tavazzi B, Lazzarino G, Mangione R, Lazzarino G, Morano I, Qureshi O, Bruce L, Barnes NM, Nagy Z. The mechanism of action of a novel neuroprotective low molecular weight dextran sulphate: New platform therapy for neurodegenerative diseases like Amyotrophic Lateral Sclerosis. Front Pharmacol 2022; 13:983853. [PMID: 36110516 PMCID: PMC9468270 DOI: 10.3389/fphar.2022.983853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Acute and chronic neurodegenerative diseases represent an immense socioeconomic burden that drives the need for new disease modifying drugs. Common pathogenic mechanisms in these diseases are evident, suggesting that a platform neuroprotective therapy may offer effective treatments. Here we present evidence for the mode of pharmacological action of a novel neuroprotective low molecular weight dextran sulphate drug called ILB®. The working hypothesis was that ILB® acts via the activation of heparin-binding growth factors (HBGF). Methods: Pre-clinical and clinical (healthy people and patients with ALS) in vitro and in vivo studies evaluated the mode of action of ILB®. In vitro binding studies, functional assays and gene expression analyses were followed by the assessment of the drug effects in an animal model of severe traumatic brain injury (sTBI) using gene expression studies followed by functional analysis. Clinical data, to assess the hypothesized mode of action, are also presented from early phase clinical trials. Results: ILB® lengthened APTT time, acted as a competitive inhibitor for HGF-Glypican-3 binding, effected pulse release of heparin-binding growth factors (HBGF) into the circulation and modulated growth factor signaling pathways. Gene expression analysis demonstrated substantial similarities in the functional dysregulation induced by sTBI and various human neurodegenerative conditions and supported a cascading effect of ILB® on growth factor activation, followed by gene expression changes with profound beneficial effect on molecular and cellular functions affected by these diseases. The transcriptional signature of ILB® relevant to cell survival, inflammation, glutamate signaling, metabolism and synaptogenesis, are consistent with the activation of neuroprotective growth factors as was the ability of ILB® to elevate circulating levels of HGF in animal models and humans. Conclusion: ILB® releases, redistributes and modulates the bioactivity of HBGF that target disease compromised nervous tissues to initiate a cascade of transcriptional, metabolic and immunological effects that control glutamate toxicity, normalize tissue bioenergetics, and resolve inflammation to improve tissue function. This unique mechanism of action mobilizes and modulates naturally occurring tissue repair mechanisms to restore cellular homeostasis and function. The identified pharmacological impact of ILB® supports the potential to treat various acute and chronic neurodegenerative disease, including sTBI and ALS.
Collapse
Affiliation(s)
- Ann Logan
- Department of Biomedical Sciences, University of Warwick, Coventry, United Kingdom
- Axolotl Consulting Ltd., Droitwich, United Kingdom
- *Correspondence: Ann Logan,
| | - Antonio Belli
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Barbara Tavazzi
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Rome, Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | | | | | | | - Nicholas M. Barnes
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zsuzsanna Nagy
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
32
|
Shi G, Zhou J, Huang K, Bi FF. Trends in global amyotrophic lateral sclerosis research from 2000 to 2022: A bibliometric analysis. Front Neurosci 2022; 16:965230. [PMID: 36033620 PMCID: PMC9399758 DOI: 10.3389/fnins.2022.965230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disease affecting the motor neurons. Although much research has been conducted in this field, few bibliometric studies have been conducted. This study aimed to provide an overview of publishing characteristics and trends in ALS research since 2000 using a bibliometric analysis. Methods We conducted a comprehensive literature search in the Web of Science (WOS) Core Collection database for scientific output related to ALS from 2000 to 2022. The retrieved dataset was refined using Google OpenRefine and analyzed using bibliometrix. Results A total of 29,391 articles published since 2000 were retrieved, with an average annual growth rate of 6.35%. Ninety-six countries and regions contributed to ALS research, among which the United States had the dominant position with the highest number of publications (n = 8,202) and citations (n = 558,561). An association analysis was performed to form networks of country collaboration and keyword co-occurrence. The evolution of topic trends was demonstrated in terms of both frequency and proportion. Conclusion The output of ALS research has increased steadily over the years, and the United States and Western Europe are leaders in this field. There is an upgradation in the pathomechanism and clinical research on ALS.
Collapse
Affiliation(s)
- Guanzhong Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Lanznaster D, Bruno C, Bourgeais J, Emond P, Zemmoura I, Lefèvre A, Reynier P, Eymieux S, Blanchard E, Vourc’h P, Andres CR, Bakkouche SE, Herault O, Favard L, Corcia P, Blasco H. Metabolic Profile and Pathological Alterations in the Muscle of Patients with Early-Stage Amyotrophic Lateral Sclerosis. Biomedicines 2022; 10:biomedicines10061307. [PMID: 35740329 PMCID: PMC9220134 DOI: 10.3390/biomedicines10061307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Diverse biomarkers and pathological alterations have been found in muscle of patients with Amyotrophic lateral sclerosis (ALS), but the relation between such alterations and dysfunction in energetic metabolism remains to be investigated. We established the metabolome of muscle and serum of ALS patients and correlated these findings with the clinical status and pathological alterations observed in the muscle. We obtained data from 20 controls and 17 ALS patients (disease duration: 9.4 ± 6.8 months). Multivariate metabolomics analysis identified a distinct serum metabolome for ALS compared to controls (p-CV-ANOVA < 0.035) and revealed an excellent discriminant profile for muscle metabolome (p-CV-ANOVA < 0.0012). Citramalate was discriminant for both muscle and serum. High lauroylcarnitine levels in muscle were associated with low Forced Vital Capacity. Transcriptomics analysis of key antioxidant enzymes showed an upregulation of SOD3 (p = 0.0017) and GLRX2(1) (p = 0.0022) in ALS muscle. Analysis of mitochondrial enzymatic activity in muscle revealed higher complex II/CS (p = 0.04) and lower LDH (p = 0.03) activity in ALS than in controls. Our study showed, for the first time, a global dysfunction in the muscle of early-stage ALS patients. Furthermore, we identified novel metabolites to be employed as biomarkers for diagnosis and prognosis of ALS patients.
Collapse
Affiliation(s)
- Débora Lanznaster
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Correspondence:
| | - Clément Bruno
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37000 Tours, France
| | - Jérôme Bourgeais
- CNRS ERL7001, EA 7501 GICC, Université de Tours, 37000 Tours, France; (J.B.); (O.H.)
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Médecine Nucléaire In Vitro, CHU de Tours, 37000 Tours, France
| | - Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Neurochirurgie, CHU de Tours, 37000 Tours, France
| | - Antoine Lefèvre
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
| | - Pascal Reynier
- Service de Biochimie et Biologie Moléculaire, CHU d’Angers, 49000 Angers, France;
- Mitovasc-Mitolab, UMR CNRS6015-INSERM1083, 49000 Angers, France
| | - Sébastien Eymieux
- Plateforme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, 37000 Tours, France; (S.E.); (E.B.)
- INSERM U1259, Université de Tours, 37000 Tours, France
| | - Emmanuelle Blanchard
- Plateforme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, 37000 Tours, France; (S.E.); (E.B.)
- INSERM U1259, Université de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37000 Tours, France
| | | | - Olivier Herault
- CNRS ERL7001, EA 7501 GICC, Université de Tours, 37000 Tours, France; (J.B.); (O.H.)
| | - Luc Favard
- Service de Neurologie, CHU de Tours, 37000 Tours, France;
| | - Philippe Corcia
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Neurologie, CHU de Tours, 37000 Tours, France;
| | - Hélène Blasco
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37000 Tours, France
| |
Collapse
|
34
|
Bello-Medina PC, Rodríguez-Martínez E, Prado-Alcalá RA, Rivas-Arancibia S. Ozone pollution, oxidative stress, synaptic plasticity, and neurodegeneration. Neurologia 2022; 37:277-286. [PMID: 30857788 DOI: 10.1016/j.nrl.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Overpopulation and industrial growth result in an increase in air pollution, mainly due to suspended particulate matter and the formation of ozone. Repeated exposure to low doses of ozone, such as on a day with high air pollution levels, results in a state of chronic oxidative stress, causing the loss of dendritic spines, alterations in cerebral plasticity and in learning and memory mechanisms, and neuronal death and a loss of brain repair capacity. This has a direct impact on human health, increasing the incidence of chronic and degenerative diseases. DEVELOPMENT We performed a search of the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2000 and 2018 and addressing the main consequences of ozone exposure on synaptic plasticity, information processing in cognitive processes, and the alterations that may lead to the development of neurodegenerative diseases. CONCLUSIONS This review describes one of the pathophysiological mechanisms of the effect of repeated exposure to low doses of ozone, which causes loss of synaptic plasticity by producing a state of chronic oxidative stress. This brain function is key to both information processing and the generation of structural changes in neuronal populations. We also address the effect of chronic ozone exposure on brain tissue and the close relationship between ozone pollution and the appearance and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E Rodríguez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - R A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - S Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
35
|
Abstract
Amyloids are organized suprastructural polypeptide arrangements. The prevalence of amyloid-related processes of pathophysiological relevance has been linked to aging-related degenerative diseases. Besides the role of genetic polymorphisms on the relative risk of amyloid diseases, the contributions of nongenetic ontogenic cluster of factors remain elusive. In recent decades, mounting evidences have been suggesting the role of essential micronutrients, in particular transition metals, in the regulation of amyloidogenic processes, both directly (such as binding to amyloid proteins) or indirectly (such as regulating regulatory partners, processing enzymes, and membrane transporters). The features of transition metals as regulatory cofactors of amyloid proteins and the consequences of metal dyshomeostasis in triggering amyloidogenic processes, as well as the evidences showing amelioration of symptoms by dietary supplementation, suggest an exaptative role of metals in regulating amyloid pathways. The self- and cross-talk replicative nature of these amyloid processes along with their systemic distribution support the concept of their metastatic nature. The role of amyloidosis as nutrient sensors would act as intra- and transgenerational epigenetic metabolic programming factors determining health span and life span, viability, which could participate as an evolutive selective pressure.
Collapse
Affiliation(s)
- Luís Maurício T R Lima
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory for Macromolecules (LAMAC-DIMAV), National Institute of Metrology, Quality and Technology - INMETRO, Duque de Caxias, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Xu Z, Jiang J, Xu S, Xie Z, He P, Jiang S, Xu R. Nerve Growth Factor is a Potential Treated Target in Tg(SOD1*G93A)1Gur Mice. Cell Mol Neurobiol 2022; 42:1035-1046. [PMID: 33236288 PMCID: PMC11441269 DOI: 10.1007/s10571-020-00993-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Nerve growth factor (NGF) is a protective factor of neural cells; the possible relationship between the NGF and the pathogenesis of amyotrophic lateral sclerosis (ALS) hasn't been completely known. In this study, we observed and analyzed the expression and distribution of NGF, as well as the possible relationship between the NGF expression and distribution and the neural cell death in both SOD1 wild-type (WT) and Tg(SOD1*G93A)1Gur (TG) mice applying the fluorescence immunohistochemistry method. The results showed that the expression and distribution of NGF in the anterior horn (AH), the lateral horn (LH), and the surrounding central canal (CC) significantly increased at the supper early stage of ALS (Pre-onset stage) and the early stage (Onset stage), but the NGF expression and distribution in the AH, the LH, and the surrounding CC significantly reduced at the progression stage. The astrocyte, neuron, and oligodendrocyte produced the NGF and the neural precursor cells (NPCs) produced the NGF. The neural cell death gradually increased accompanying with the reduction of NGF expression and distribution. Our data suggested that the NGF was a protective factor of neural cells, because the neural cells in the AH, the LH, and the surrounding CC produced more NGF at the supper early and early stage of ALS; moreover, the NPCs produced the NGF. It implied that the NGF exerted the protective effect of neural cells, prevented from the neural cell death and aroused the potential of self-repair in the development of ALS.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianxiang Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengyuan Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zunchun Xie
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Pei He
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
37
|
Sahu R, Mehan S, Kumar S, Prajapati A, Alshammari A, Alharbi M, Assiri MA, Narula AS. Effect of alpha-mangostin in the prevention of behavioural and neurochemical defects in methylmercury-induced neurotoxicity in experimental rats. Toxicol Rep 2022; 9:977-998. [PMID: 35783250 PMCID: PMC9247835 DOI: 10.1016/j.toxrep.2022.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Methylmercury (MeHg+) is a known neurotoxin that causes progressive motor neuron degeneration in the central nervous system. Axonal degeneration, oligodendrocyte degeneration, and myelin basic protein (MBP) deficits are among the neuropathological abnormalities caused by MeHg+ in amyotrophic lateral sclerosis (ALS). This results in demyelination and motor neuron death in both humans and animals. Previous experimental studies have confirmed that overexpression of the extracellular signalling regulated kinase (ERK1/2) signalling contributes to glutamate excitotoxicity, inflammatory response of microglial cells, and oligodendrocyte (OL) dysfunction that promotes myelin loss. Alpha-mangostin (AMG), an active ingredient obtained from the tree "Garcinia mangostana Linn," has been used in experimental animals to treat a variety of brain disorders, including Parkinson's and Huntington's disease memory impairment, Alzheimer's disease, and schizophrenia, including Parkinson's disease and Huntington's disease memory impairment, Alzheimer's disease, and schizophrenia. AMG has traditionally been used as an antioxidant, anti-inflammatory, and neuroprotective agent.Accordingly, we investigated the therapeutic potential of AMG (100 and 200 mg/kg) in experimental rats with methylmercury (MeHg+)-induced neurotoxicity. The neuroprotective effect of AMG on behavioural, cellular, molecular, and other gross pathological changes, such as histopathological alterations in MeHg+ -treated rat brains, is presented. The neurological behaviour of experimental rats was evaluated using a Morris water maze (MWM), open field test (OFT), grip strength test (GST), and force swim test (FST). In addition, we investigate AMG's neuroprotective effect by restoring MBP levels in cerebral spinal fluid and whole rat brain homogenate. The apoptotic, pro-inflammatory, and oxidative stress markers were measured in rat blood plasma samples and brain homogenate. According to the findings of this study, AMG decreases ERK-1/2 levels and modulates neurochemical alterations in rat brains, minimising MeHg+ -induced neurotoxicity.
Collapse
Affiliation(s)
- Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sumit Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aradhana Prajapati
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
38
|
Issa SS, Shaimardanova AA, Valiullin VV, Rizvanov AA, Solovyeva VV. Mesenchymal Stem Cell-Based Therapy for Lysosomal Storage Diseases and Other Neurodegenerative Disorders. Front Pharmacol 2022; 13:859516. [PMID: 35308211 PMCID: PMC8924473 DOI: 10.3389/fphar.2022.859516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of approximately 50 genetic disorders caused by mutations in genes coding enzymes that are involved in cell degradation and transferring lipids and other macromolecules. Accumulation of lipids and other macromolecules in lysosomes leads to the destruction of affected cells. Although the clinical manifestations of different LSDs vary greatly, more than half of LSDs have symptoms of central nervous system neurodegeneration, and within each disorder there is a considerable variation, ranging from severe, infantile-onset forms to attenuated adult-onset disease, sometimes with distinct clinical features. To date, treatment options for this group of diseases remain limited, which highlights the need for further development of innovative therapeutic approaches, that can not only improve the patients' quality of life, but also provide full recovery for them. In many LSDs stem cell-based therapy showed promising results in preclinical researches. This review discusses using mesenchymal stem cells for different LSDs therapy and other neurodegenerative diseases and their possible limitations.
Collapse
Affiliation(s)
- Shaza S Issa
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Victor V Valiullin
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
39
|
Combined Treatment with Bojungikgi-Tang and Riluzole Regulates Muscle Metabolism and Dysfunction in the hSOD1 G93A Mouse Model. Antioxidants (Basel) 2022; 11:antiox11030579. [PMID: 35326229 PMCID: PMC8944858 DOI: 10.3390/antiox11030579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
The progressive neurodegenerative disease, amyotrophic lateral sclerosis (ALS), is characterized by muscle weakness and atrophy owing to selective motoneuron degeneration. The anti-glutamatergic drug, riluzole (RZ), is the standard-of-care treatment for ALS. Bojungikgi-tang (BJIGT), a traditional herbal formula, improves motor function and prolongs the survival of mice with ALS. As ALS is a multicomplex disease, effective therapies must target multiple mechanisms. Here, we evaluated the efficacy of a BJIGT/RZ combination (5-week treatment) in 2-month-old hSOD1G93A mice with ALS. We performed quantitative polymerase chain reaction, Western blotting, immunohistochemistry, and enzyme activity assays. BJIGT/RZ significantly attenuated inflammation, autophagy, and metabolic and mitochondrial dysfunctions in the gastrocnemius (GC) compared with the control. It reduced the mRNA and protein levels of muscle denervation-related proteins and creatine kinase levels. The total creatine level was significantly higher in the BJIGT/RZ-treated GC. Moreover, after BJIGT/RZ treatment, the number of Nissl-stained motoneurons and choline acetyl transferase-positive neurons in the spinal cord significantly increased via the regulation of proinflammatory cytokines. Collectively, the BJIGT/RZ treatment was superior to single-drug treatments in alleviating multiple ALS-related pathological mechanisms in the ALS mouse model. Overall, BJIGT can serve as a dietary supplement and be combined with RZ to achieve superior therapeutic effects against ALS.
Collapse
|
40
|
Sidibé H, Vande Velde C. Collective Learnings of Studies of Stress Granule Assembly and Composition. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2428:199-228. [PMID: 35171482 DOI: 10.1007/978-1-0716-1975-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stress granules have gained considerable exposure and interest in recent years. These micron-sized entities, composed of RNA and protein, form following a stress exposure and have been linked to several pathologies. Understanding stress granule function is paramount but has been arduous due to the membraneless nature of these organelles. Several new methodologies have recently been developed to catalogue the protein and RNA composition of stress granules. Collectively, this work has provided important insights to potential stress granule functions as well as molecular mechanisms for their assembly and disassembly. This chapter reviews the latest advancements in the understanding of stress granule dynamics and discusses the various protocols developed to study their composition.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of Neurosciences, Université de Montréal and CHUM Research Center, Montreal, QC, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal and CHUM Research Center, Montreal, QC, Canada.
| |
Collapse
|
41
|
Whole and fractionated human platelet lysate biomaterials-based biotherapy induces strong neuroprotection in experimental models of amyotrophic lateral sclerosis. Biomaterials 2021; 280:121311. [PMID: 34952382 DOI: 10.1016/j.biomaterials.2021.121311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/26/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease of motor neurons leading to death within 3 years and without a curative treatment. Neurotrophic growth factors (NTFs) are pivotal for cell survival. A reason for the lack of patient efficacy with single recombinant NTF brain infusion is likely to be due to the synergistic neuroprotective action of multiple NTFs on a diverse set of signaling pathways. Fractionated (protein size <50, <30, <10, <3 kDa) heat-treated human platelet lysate (HHPL) preparations were adapted for use in brain tissue with the aim of demonstrating therapeutic value in ALS models and further elucidation of the mechanisms of action. In neuronal culture all fractions induced Akt-dependent neuroprotection as well as a strong anti-apoptotic and anti-ferroptotic action. In the <3 kDa fraction anti-ferroptotic properties were shown to be GPX4 dependent highlighting a role for other platelet elements associated with NTFs. In the SOD1G86R mouse model, lifespan was strongly increased by intracerebroventricular delivery of HHPL or by intranasal administration of <3 kDa fraction. Our results suggest that the platelet lysate biomaterials are neuroprotective in ALS. Further studies would now validate theragnostic biomarker on its antiferroptotic action, for further clinical development.
Collapse
|
42
|
|
43
|
Increased ROS-Dependent Fission of Mitochondria Causes Abnormal Morphology of the Cell Powerhouses in a Murine Model of Amyotrophic Lateral Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6924251. [PMID: 34691359 PMCID: PMC8531774 DOI: 10.1155/2021/6924251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in humans and remains to have a fatal prognosis. Recent studies in animal models and human ALS patients indicate that increased reactive oxygen species (ROS) play an important role in the pathogenesis. Considering previous studies revealing the influence of ROS on mitochondrial physiology, our attention was focused on mitochondria in the murine ALS model, wobbler mouse. The aim of this study was to investigate morphological differences between wild-type and wobbler mitochondria with aid of superresolution structured illumination fluorescence microscopy, TEM, and TEM tomography. To get an insight into mitochondrial dynamics, expression studies of corresponding proteins were performed. Here, we found significantly smaller and degenerated mitochondria in wobbler motor neurons at a stable stage of the disease. Our data suggest a ROS-regulated, Ox-CaMKII-dependent Drp1 activation leading to disrupted fission-fusion balance, resulting in fragmented mitochondria. These changes are associated with numerous impairments, resulting in an overall self-reinforcing decline of motor neurons. In summary, our study provides common pathomechanisms with other ALS models and human ALS cases confirming mitochondria and related dysfunctions as a therapeutic target for the treatment of ALS.
Collapse
|
44
|
Jia R, Chen Q, Zhou Q, Zhang R, Jin J, Hu F, Liu X, Qin X, Kang L, Zhao S, Dang Y, Dang J. Characteristics of serum metabolites in sporadic amyotrophic lateral sclerosis patients based on gas chromatography-mass spectrometry. Sci Rep 2021; 11:20786. [PMID: 34675267 PMCID: PMC8531355 DOI: 10.1038/s41598-021-00312-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023] Open
Abstract
To identify differential metabolites and metabolic pathways and provide guidance for the novel biomarkers for diagnosis and prognosis of amyotrophic lateral sclerosis (ALS). ALS patients and people without nervous diseases were recruited. Metabolomic analysis was performed using gas chromatography-mass spectrometry (GC/MS). The orthogonal projections to latent structures discriminant analysis (OPLS-DA) were used to identify differential metabolites. Kyoto Encyclopedia of Genes and Genomes and MetaboAnalyst were used to identify metabolic pathways. 75 metabolites were detected and aligned. The OPLS-DA showed the metabolomic profile of ALS patients and those in the fast-progression and slow-progression ALS groups differed from that of CTRL (p < 0.05). The levels of maltose, glyceric acid, lactic acid, beta-alanine, phosphoric acid, glutamic acid, ethanolamine and glycine in ALS were significantly higher, while 2,4,6-tri-tert-butylbenzenethiol was lower. Glycine, serine and threonine metabolism, D-glutamine and D-glutamate metabolism, alanine, aspartate, and glutamate metabolism, beta-alanine metabolism, and pyruvate metabolism were significantly altered metabolic pathways in ALS. ROC was used to discriminate ALS from CTRL with an AUC of 0.898 (p < 0.001) using 2,4,6-tri-tert-butylbenzenethiol, beta-alanine, glycine, and ethanolamine. The serum metabolites and metabolic pathways in ALS patients are significantly altered compared with CTRL. These findings may contribute to the early diagnosis of ALS.
Collapse
Affiliation(s)
- Rui Jia
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Qiaoyi Chen
- Department of Cell Biology and Genetics, Xian Jiaotong University Health Science Center, Xi'an, China
| | - Qingqing Zhou
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Ronghua Zhang
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Jiaoting Jin
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Fangfang Hu
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Xiao Liu
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Xing Qin
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Li Kang
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Songzhen Zhao
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Yonghui Dang
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Key Laboratory of the Health Ministry for Forensic Medicine, College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Jingxia Dang
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China.
| |
Collapse
|
45
|
Hámor PU, Schwendt M. Metabotropic Glutamate Receptor Trafficking and its Role in Drug-Induced Neurobehavioral Plasticity. Brain Plast 2021; 7:61-76. [PMID: 34868874 PMCID: PMC8609495 DOI: 10.3233/bpl-210120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 12/18/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system that guides developmental and experience-dependent changes in many cellular substrates and brain circuits, through the process collectively referred to as neurobehavioral plasticity. Regulation of cell surface expression and membrane trafficking of glutamate receptors represents an important mechanism that assures optimal excitatory transmission, and at the same time, also allows for fine-tuning neuronal responses to glutamate. On the other hand, there is growing evidence implicating dysregulated glutamate receptor trafficking in the pathophysiology of several neuropsychiatric disorders. This review provides up-to-date information on the molecular determinants regulating trafficking and surface expression of metabotropic glutamate (mGlu) receptors in the rodent and human brain and discusses the role of mGluR trafficking in maladaptive synaptic plasticity produced by addictive drugs. As substantial evidence links glutamatergic dysfunction to the progression and the severity of drug addiction, advances in our understanding of mGluR trafficking may provide opportunities for the development of novel pharmacotherapies of addiction and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Peter U. Hámor
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
46
|
Sahu R, Upadhayay S, Mehan S. Inhibition of extracellular regulated kinase (ERK)-1/2 signaling pathway in the prevention of ALS: Target inhibitors and influences on neurological dysfunctions. Eur J Cell Biol 2021; 100:151179. [PMID: 34560374 DOI: 10.1016/j.ejcb.2021.151179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Cell signal transduction pathways are essential modulators of several physiological and pathological processes in the brain. During overactivation, these signaling processes may lead to disease progression. Abnormal protein kinase activation is associated with several biological dysfunctions that facilitate neurodegeneration under different biological conditions. As a result, these signaling pathways are essential in understanding brain disorders' development or progression. Recent research findings indicate the crucial role of extracellular signal-regulated kinase-1/2 (ERK-1/2) signaling during the neuronal development process. ERK-1/2 is a key component of its mitogen-activated protein kinase (MAPK) group, controlling certain neurological activities by regulating metabolic pathways, cell proliferation, differentiation, and apoptosis. ERK-1/2 also influences neuronal elastic properties, nerve growth, and neurological and cognitive processing during brain injuries. The primary goal of this review is to elucidate the activation of ERK1/2 signaling, which is involved in the development of several ALS-related neuropathological dysfunctions. ALS is a rare neurological disorder category that mainly affects the nerve cells responsible for regulating voluntary muscle activity. ALS is progressive, which means that the symptoms are getting worse over time, and there is no cure for ALS and no effective treatment to avoid or reverse. Genetic abnormalities, oligodendrocyte degradation, glial overactivation, and immune deregulation are associated with ALS progression. Furthermore, the current review also identifies ERK-1/2 signaling inhibitors that can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of ALS. As a result, in the future, the potential ERK-1/2 signaling inhibitors could be used in the treatment of ALS and related neurocomplications.
Collapse
Affiliation(s)
- Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
47
|
Caldwell S, Rothman DL. 1H Magnetic Resonance Spectroscopy to Understand the Biological Basis of ALS, Diagnose Patients Earlier, and Monitor Disease Progression. Front Neurol 2021; 12:701170. [PMID: 34512519 PMCID: PMC8429815 DOI: 10.3389/fneur.2021.701170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
At present, limited biomarkers exist to reliably understand, diagnose, and monitor the progression of amyotrophic lateral sclerosis (ALS), a fatal neurological disease characterized by motor neuron death. Standard MRI technology can only be used to exclude a diagnosis of ALS, but 1H-MRS technology, which measures neurochemical composition, may provide the unique ability to reveal biomarkers that are specific to ALS and sensitive enough to diagnose patients at early stages in disease progression. In this review, we present a summary of current theories of how mitochondrial energetics and an altered glutamate/GABA neurotransmitter flux balance play a role in the pathogenesis of ALS. The theories are synthesized into a model that predicts how pathogenesis impacts glutamate and GABA concentrations. When compared with the results of all MRS studies published to date that measure the absolute concentrations of these neurochemicals in ALS patients, results were variable. However, when normalized for neuronal volume using the MRS biomarker N-acetyl aspartate (NAA), there is clear evidence for an elevation of neuronal glutamate in nine out of thirteen studies reviewed, an observation consistent with the predictions of the model of increased activity of glutamatergic neurons and excitotoxicity. We propose that this increase in neuronal glutamate concentration, in combination with decreased neuronal volume, is specific to the pathology of ALS. In addition, when normalized to glutamate levels, there is clear evidence for a decrease in neuronal GABA in three out of four possible studies reviewed, a finding consistent with a loss of inhibitory regulation contributing to excessive neuronal excitability. The combination of a decreased GABA/Glx ratio with an elevated Glx/NAA ratio may enhance the specificity for 1H-MRS detection of ALS and ability to monitor glutamatergic and GABAergic targeted therapeutics. Additional longitudinal studies calculating the exact value of these ratios are needed to test these hypotheses and understand how ratios may change over the course of disease progression. Proposed modifications to the experimental design of the reviewed 1H MRS studies may also increase the sensitivity of the technology to changes in these neurochemicals, particularly in early stages of disease progression.
Collapse
Affiliation(s)
- Sarah Caldwell
- Departments of Radiology and Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
| | - Douglas L Rothman
- Departments of Radiology and Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
48
|
Bello-Medina PC, Rodríguez-Martínez E, Prado-Alcalá RA, Rivas-Arancibia S. Ozone pollution, oxidative stress, synaptic plasticity, and neurodegeneration. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:277-286. [PMID: 34531154 DOI: 10.1016/j.nrleng.2018.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Overpopulation and industrial growth result in an increase in air pollution, mainly due to suspended particulate matter and the formation of ozone. Repeated exposure to low doses of ozone, such as on a day with high air pollution levels, results in a state of chronic oxidative stress, causing the loss of dendritic spines, alterations in cerebral plasticity and in learning and memory mechanisms, and neuronal death and a loss of brain repair capacity. This has a direct impact on human health, increasing the incidence of chronic and degenerative diseases. DEVELOPMENT We performed a search of the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2000 and 2018 and addressing the main consequences of ozone exposure on synaptic plasticity, information processing in cognitive processes, and the alterations that may lead to the development of neurodegenerative diseases. CONCLUSIONS This review describes one of the pathophysiological mechanisms of the effect of repeated exposure to low doses of ozone, which causes loss of synaptic plasticity by producing a state of chronic oxidative stress. This brain function is key to both information processing and the generation of structural changes in neuronal populations. We also address the effect of chronic ozone exposure on brain tissue and the close relationship between ozone pollution and the appearance and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - E Rodríguez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - R A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - S Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
49
|
Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021; 22:9290. [PMID: 34502198 PMCID: PMC8430571 DOI: 10.3390/ijms22179290] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in the pathogenesis of neurodegenerative diseases by influencing the inflammatory response, apoptosis, oxidative stress and aggregation of pathological proteins. There is a search for new compounds that can prevent the occurrence of neurodegenerative diseases and slow down their course. The aim of this review is to present the role of AChE in the pathomechanism of neurodegenerative diseases. In addition, this review aims to reveal the benefits of using AChE inhibitors to treat these diseases. The selected new AChE inhibitors were also assessed in terms of their potential use in the described disease entities. Designing and searching for new drugs targeting AChE may in the future allow the discovery of therapies that will be effective in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8bStreet, 20-090 Lublin, Poland;
| |
Collapse
|
50
|
Stella R, Bonadio RS, Cagnin S, Massimino ML, Bertoli A, Peggion C. Perturbations of the Proteome and of Secreted Metabolites in Primary Astrocytes from the hSOD1(G93A) ALS Mouse Model. Int J Mol Sci 2021; 22:ijms22137028. [PMID: 34209958 PMCID: PMC8268687 DOI: 10.3390/ijms22137028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease whose pathophysiology is largely unknown. Despite the fact that motor neuron (MN) death is recognized as the key event in ALS, astrocytes dysfunctionalities and neuroinflammation were demonstrated to accompany and probably even drive MN loss. Nevertheless, the mechanisms priming astrocyte failure and hyperactivation are still obscure. In this work, altered pathways and molecules in ALS astrocytes were unveiled by investigating the proteomic profile and the secreted metabolome of primary spinal cord astrocytes derived from transgenic ALS mouse model overexpressing the human (h)SOD1(G93A) protein in comparison with the transgenic counterpart expressing hSOD1(WT) protein. Here we show that ALS primary astrocytes are depleted of proteins-and of secreted metabolites-involved in glutathione metabolism and signaling. The observed increased activation of Nf-kB, Ebf1, and Plag1 transcription factors may account for the augmented expression of proteins involved in the proteolytic routes mediated by proteasome or endosome-lysosome systems. Moreover, hSOD1(G93A) primary astrocytes also display altered lipid metabolism. Our results provide novel insights into the altered molecular pathways that may underlie astrocyte dysfunctionalities and altered astrocyte-MN crosstalk in ALS, representing potential therapeutic targets to abrogate or slow down MN demise in disease pathogenesis.
Collapse
Affiliation(s)
- Roberto Stella
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Raphael Severino Bonadio
- Department of Biology and CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
| | - Stefano Cagnin
- Department of Biology and CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | | | - Alessandro Bertoli
- CNR—Neuroscience Institute, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (A.B.); (C.P.)
| | - Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (A.B.); (C.P.)
| |
Collapse
|