1
|
Rana M, Terpstra K, Gutierrez C, Xu K, Arya H, Bhatt TK, Mirica LM, Sharma AK. Evaluation of Anti-Alzheimer's Potential of Azo-Stilbene-Thioflavin-T derived Multifunctional Molecules: Synthesis, Metal and Aβ Species Binding and Cholinesterase Activity. Chemistry 2025; 31:e202402748. [PMID: 39476334 DOI: 10.1002/chem.202402748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Inhibition of amyloid β (Aβ) aggregation and cholinesterase activity are two major therapeutic targets for Alzheimer's disease (AD). Multifunctional Molecules (MFMs) specifically designed to address other contributing factors, such as metal ion induced abnormalities, oxidative stress, toxic Aβ aggregates etc. are very much required. Several multifunctional molecules have been developed using different molecular scaffolds. Reported herein is a new series of four MFMs based on ThT, Azo-stilbene and metal ion chelating pockets. The synthesis, characterization, and metal chelation ability for [Cu2+ and Zn2+] are presented herein. Furthermore, we explored their multifunctionality w.r.t. to their (i) recognition of Aβ aggregates and monomeric form, (ii) utility in modulating the aggregation pathways of both metal-free and metal-bound amyloid-β, (iii) ex-vivo staining of amyloid plaques in 5xFAD mice brain sections, (iv) ability to scavenge free radicals and (v) ability to inhibit cholinesterase activity. Molecular docking studies were also performed with Aβ peptides and acetylcholinesterase enzyme to understand the observed inhibitory effect on activity. Overall, the studies presented here establish the multifunctional nature of these molecules and qualify them as promising candidates for furthermore investigation in the quest for finding Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Karna Terpstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Citlali Gutierrez
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Kerui Xu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Tarun K Bhatt
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Anuj K Sharma
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| |
Collapse
|
2
|
Rodrigues Jr. MT, de Oliveira ASB, Gomes RC, Hirata AS, Zeoly LA, Santos H, Arantes J, Reis-Silva CSM, Machado-Neto JA, Costa-Lotufo LV, Coelho F. Bismuth(III) triflate: an economical and environmentally friendly catalyst for the Nazarov reaction. Beilstein J Org Chem 2024; 20:1167-1178. [PMID: 38887581 PMCID: PMC11181232 DOI: 10.3762/bjoc.20.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
We describe the use of bismuth(III) triflate as an efficient and environmentally friendly catalyst for the Nazarov reaction of aryl vinyl ketones, leading to the synthesis of 3-aryl-2-ethoxycarbonyl-1-indanones and 3-aryl-1-indanones. By changing the temperature and reaction time, it was possible to modulate the reactivity, allowing the synthesis of two distinct product classes (3-aryl-2-ethoxycarbonyl-1-indanones and 3-aryl-1-indanones) in good to excellent yield. The reaction did not require additives and was insensitive to both air and moisture. Preliminary biological evaluation of some indanones showed a promising profile against some human cancer line cells.
Collapse
Affiliation(s)
| | | | - Ralph C Gomes
- Institute of Chemistry, Universidade Estadual de Campinas, PO Box 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Amanda Soares Hirata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Lucas A Zeoly
- Institute of Chemistry, Universidade Estadual de Campinas, PO Box 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Hugo Santos
- Institute of Chemistry, Universidade Estadual de Campinas, PO Box 6154, 13083-970 Campinas, São Paulo, Brazil
| | - João Arantes
- Institute of Chemistry, Universidade Estadual de Campinas, PO Box 6154, 13083-970 Campinas, São Paulo, Brazil
| | | | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Fernando Coelho
- Institute of Chemistry, Universidade Estadual de Campinas, PO Box 6154, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Mu X, Yuan S, Zhang D, Lai R, Liao C, Li G. Selective modulation of alkali metal ions on acetylcholinesterase. Phys Chem Chem Phys 2023; 25:30308-30318. [PMID: 37934509 DOI: 10.1039/d3cp02887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Acetylcholinesterase (AChE) is an important hydrolase in cholinergic synapses and a candidate target in the treatment of Alzheimer's disease. The lithium treatment widely used in neurological disorders can alter the AChE activity, yet the underlying mechanism of how the ion species regulate the enzymatic activity remains unclear. In this work, we performed combined quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations and well-tempered metadynamics to understand the modulation of human AChE (hAChE) activity using three alkali metal ions (Li+, Na+, and K+) in different concentrations. Our simulations show that the binding affinity and catalytic activity are affected by different ion species through allosteric ion coordination geometries on the hAChE complex and distant electrostatic screening effect. A Li+ cluster involving D330, E393, and D397 residues and three Li+ ions was found to be highly conserved and can be critical to the enzyme activity. Binding energy calculations indicate that the electrostatic screening from allosterically bound cations can affect the key residues at the catalytic site and active-site gorge, including E199. Furthermore, an increase in ion concentration can lead to lower reactivity, especially for Li+ ions, which exhibit more cation-hAChE contacts than Na+ and K+. The selective ion binding and their preferred modulation on hAChE are highly related to ion species. This work provides a molecular perspective on selective modulation by different ion species of the enzyme catalytic processes.
Collapse
Affiliation(s)
- Xia Mu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Shengwei Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Dinglin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Rui Lai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chenyi Liao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
4
|
Kassa J, Zdarova Karasova J. Combination of acetylcholinesterase inhibitors and NMDA receptor antagonists increases survival rate in soman-poisoned mice. Toxicol Mech Methods 2023; 33:590-595. [PMID: 37051629 DOI: 10.1080/15376516.2023.2202730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/19/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Organophosphorus nerve agents pose a global threat to both military personnel and civilian population, because of their high acute toxicity and insufficient medical countermeasures. Commonly used drugs could ameliorate the intoxication and overall medical outcomes. In this study, we tested the drugs able to alleviate the symptoms of Alzheimer's disease (donepezil, huperzine A, memantine) or Parkinson's disease (procyclidine). They were administered to mice before soman intoxication in terms of their: i) protection potential against soman toxicity and ii) influence on post-exposure therapy consisting of atropine and asoxime (also known as oxime HI-6). Their pretreatment effect was not significant, when administered alone, but in combination (acetylcholinesterase inhibitor such as denepezil or huperzine A with NMDA antagonist such as memantine or procyclidine) they lowered the soman toxicity more than twice. These combinations also positively influenced the efficacy of post-exposure treatment in a similar fashion; the combinations increased the therapeutic effectiveness of antidotal treatment. In conclusion, the most effective combination - huperzine A and procyclidine - lowered the toxicity three times and improved the post-exposure therapy efficacy more than six times. These results are unprecedented in the published literature.
Collapse
Affiliation(s)
- Jiri Kassa
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Gao J, Li L. Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review). Exp Ther Med 2023; 26:444. [PMID: 37614437 PMCID: PMC10443056 DOI: 10.3892/etm.2023.12143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia worldwide, has gradually become a global health concern for society and individuals with the process of global ageing. Although extensive research has been carried out on AD, the etiology and pathological mechanism of the disease are still unclear, and there is no specific drug to cure or delay AD progression. The exploration of enhancing nerve regeneration in AD has gradually attracted increasing attention. In the current review, the existing therapeutic strategies were summarized to induce nerve regeneration which can increase the number of neurons, and improve the survival of neurons, the plasticity of synapses and synaptic activity. The strategies include increasing neurotrophic expression (such as brain-derived neurotrophic factor and nerve growth factor), inhibiting acetylcholinesterase (such as donepezil, tacrine, rivastigmine and galanthamine), elevating histone deacetylase levels (such as RGFP-966, Tasquinimod, CM-414 and 44B), stimulating the brain by physiotherapy (such as near-infrared light, repetitive transcranial magnetic stimulation, and transcranial direct current stimulation) and transplanting exogenous neural stem cells. However, further evaluations need to be performed to determine the optimal treatment. The present study reviews recent interventions for enhancing adult neurogenesis and attempts to elucidate their mechanisms of action, which may provide a theoretical basis for inducing nerve regeneration to fight against AD.
Collapse
Affiliation(s)
- Junyan Gao
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Liping Li
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
6
|
Xu Lou I, Chen J, Ali K, Shaikh AL, Chen Q. Mapping new pharmacological interventions for cognitive function in Alzheimer's disease: a systematic review of randomized clinical trials. Front Pharmacol 2023; 14:1190604. [PMID: 37332343 PMCID: PMC10270324 DOI: 10.3389/fphar.2023.1190604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Background and Objective: Alzheimer's disease (AD) is a progressive neurodegenerative disorder, that is, characterized by cognitive decline. To date, there are no effective treatments for AD. Therefore, the objective of this study was to map new perspectives on the effects of pharmacological treatment on cognitive function and the overall psychological state in patients with AD. Methods: Two independent researchers searched for randomized clinical trials (RCTs) exploring new pharmacological approaches related to cognition in Alzheimer's disease in adults from 2018 to 2023 in PubMed, Web of Science, Scopus, and Cochrane Library databases. A total of 17 RCTs were included in this review. Results: The results show that in recent years, new drugs have been tested in patients with Alzheimer's disease, including masitinib, methylphenidate, levetiracetam, Jiannao Yizhi, and Huannao Yicong formulas. Most studies have been conducted in populations with mild to moderate Alzheimer's disease. Conclusion: Although some of the drugs found suggested improvement in cognitive function, the scarcity of available studies highlights the need for further research in this area. Systematic review registration: [www.crd.york.ac.uk/prospero], identifier [CRD42023409986].
Collapse
Affiliation(s)
- Inmaculada Xu Lou
- International Education College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Jiayue Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
- Hangzhou Clinical Medical College Internal Medicine of Traditional Chinese Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kamran Ali
- Department of Oncology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Abdul Lateef Shaikh
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
7
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
8
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
9
|
Elkina NA, Grishchenko MV, Shchegolkov EV, Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Radchenko EV, Palyulin VA, Zhilina EF, Perminova AN, Lapshin LS, Burgart YV, Saloutin VI, Richardson RJ. New Multifunctional Agents for Potential Alzheimer's Disease Treatment Based on Tacrine Conjugates with 2-Arylhydrazinylidene-1,3-Diketones. Biomolecules 2022; 12:1551. [PMID: 36358901 PMCID: PMC9687805 DOI: 10.3390/biom12111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2023] Open
Abstract
Alzheimer's disease (AD) is considered a modern epidemic because of its increasing prevalence worldwide and serious medico-social consequences, including the economic burden of treatment and patient care. The development of new effective therapeutic agents for AD is one of the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential for AD treatment. Lead compounds of the new conjugates effectively inhibited acetylcholinesterase (AChE, IC50 0.24-0.34 µM) and butyrylcholinesterase (BChE, IC50 0.036-0.0745 µM), with weak inhibition of off-target carboxylesterase. Anti-AChE activity increased with elongation of the alkylene spacer, in agreement with molecular docking, which showed compounds binding to both the catalytic active site and peripheral anionic site (PAS) of AChE, consistent with mixed type reversible inhibition. PAS binding along with effective propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. All of the conjugates demonstrated metal chelating ability for Cu2+, Fe2+, and Zn2+, as well as high antiradical activity in the ABTS test. Non-fluorinated hybrid compounds 6 and 7 also showed Fe3+ reducing activity in the FRAP test. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters acceptable for potential lead compounds at the early stages of anti-AD drug development.
Collapse
Affiliation(s)
- Natalia A. Elkina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Maria V. Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Evgeny V. Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina F. Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Anastasiya N. Perminova
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Luka S. Lapshin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Effects of Linkers and Substitutions on Multitarget Directed Ligands for Alzheimer’s Diseases: Emerging Paradigms and Strategies. Int J Mol Sci 2022; 23:ijms23116085. [PMID: 35682763 PMCID: PMC9181730 DOI: 10.3390/ijms23116085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is multifactorial, progressive and the most predominant cause of cognitive impairment and dementia worldwide. The current “one-drug, one-target” approach provides only symptomatic relief to the condition but is unable to cure the disease completely. The conventional single-target therapeutic approach might not always induce the desired effect due to the multifactorial nature of AD. Hence, multitarget strategies have been proposed to simultaneously knock out multiple targets involved in the development of AD. Herein, we provide an overview of the various strategies, followed by the multitarget-directed ligand (MTDL) development, rationale designs and efficient examples. Furthermore, the effects of the linkers and substitutional functional groups on MTDLs against various targets of AD and their modes of action are also discussed.
Collapse
|
11
|
Liu Y, Uras G, Onuwaje I, Li W, Yao H, Xu S, Li X, Li X, Phillips J, Allen S, Gong Q, Zhang H, Zhu Z, Liu J, Xu J. Novel inhibitors of AChE and Aβ aggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 235:114305. [DOI: 10.1016/j.ejmech.2022.114305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023]
|
12
|
Wichur T, Pasieka A, Godyń J, Panek D, Góral I, Latacz G, Honkisz-Orzechowska E, Bucki A, Siwek A, Głuch-Lutwin M, Knez D, Brazzolotto X, Gobec S, Kołaczkowski M, Sabate R, Malawska B, Więckowska A. Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT 6 receptor with anti-aggregation properties against amyloid-beta and tau. Eur J Med Chem 2021; 225:113783. [PMID: 34461507 DOI: 10.1016/j.ejmech.2021.113783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022]
Abstract
Multifunctional ligands as an essential variant of polypharmacology are promising candidates for the treatment of multi-factorial diseases like Alzheimer's disease. Based on clinical evidence and following the paradigm of multifunctional ligands we have rationally designed and synthesized a series of compounds targeting processes involved in the development of the disease. The biological evaluation led to the discovery of two compounds with favorable pharmacological characteristics and ADMET profile. Compounds 17 and 35 are 5-HT6R antagonists (Ki = 13 nM and Ki = 15 nM respectively) and cholinesterase inhibitors with distinct mechanisms of enzyme inhibition. Compound 17, a tacrine derivative is a reversible inhibitor of acetyl- and butyrylcholinesterase (IC50 = 8 nM and IC50 = 24 nM respectively), while compound 35 with rivastigmine-derived phenyl N-ethyl-N-methylcarbamate fragment is a selective, pseudo-irreversible inhibitor of butyrylcholinesterase (IC50 = 455 nM). Both compounds inhibit aggregation of amyloid β in vitro (75% for compound 17 and 68% for 35 at 10 μM) moreover, compound 35 is a potent tau aggregation inhibitor in cellulo (79%). In ADMET in vitro studies both compounds showed acceptable metabolic stability on mouse liver microsomes (28% and 60% for compound 17 and 35 respectively), no or little effect on CYP3A4 and 2D6 up to a concentration of 10 μM and lack of toxicity on HepG2 cell line (IC50 values of 80 and 21 μM, for 17 and 35 respectively). Based on the pharmacological characteristics and favorable pharmacokinetic properties, we propose compounds 17 and 35 as an excellent starting point for further optimization and in-depth biological studies.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Izabella Góral
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | | | - Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
13
|
Gulcan HO, Kosar M. The hybrid compounds as multi-target ligands for the treatment of Alzheimer's Disease: Considerations on Donepezil. Curr Top Med Chem 2021; 22:395-407. [PMID: 34766890 DOI: 10.2174/1568026621666211111153626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/31/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
The strategies to combat Alzheimer's Disease (AD) have been changing with respect to the failures of many drug candidates assessed in clinical studies, the complex pathophysiology of AD, and the limitations of the current drugs employed. So far, none of the targets, either validated or nonvalidated, have been shown to be purely causative in the generation and development of AD. Considering the progressive and the neurodegenerative characteristics of the disease, the main strategy has been based on the design of molecules capable of showing activity on more than one receptor, and it is defined as multi-target ligand design strategy. The hybrid molecule concept is an outcome of this approach. Donepezil, as one of the currently employed drugs for AD therapy, has also been utilized in hybrid drug design studies. This review has aimed to present the promising donepezil-like hybrid molecules introduced in the recent period. Particularly, multi-target ligands with additional activities concomitant to cholinesterase inhibition are preferred.
Collapse
Affiliation(s)
- Hayrettin Ozan Gulcan
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, T.R. North Cyprus, via Mersin 10, Turkey
| | - Muberra Kosar
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, T.R. North Cyprus, via Mersin 10, Turkey
| |
Collapse
|
14
|
Kassa J, Karasova JZ. Memantine and Its Combination with Acetylcholinesterase Inhibitors in Pharmacological Pretreatment of Soman Poisoning in Mice. Neurotox Res 2021; 39:1487-1494. [PMID: 34292503 DOI: 10.1007/s12640-021-00394-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Nerve agents pose a real threat to both the military and civil populations, but the current treatment of the poisoning is unsatisfactory. Thus, we studied the efficacy of prophylactic use of memantine alone or in combination with clinically used reversible acetylcholinesterase inhibitors (pyridostigmine, donepezil, rivastigmine) against soman. In addition, we tested their influence on post-exposure therapy consisting of atropine and asoxime. Pyridostigmine alone failed to decrease the acute toxicity of soman. But all clinically used acetylcholinesterase inhibitors administered alone reduced the acute toxicity, with donepezil showing the best efficacy. The combination of memantine with reversible acetylcholinesterase inhibitors attenuated soman acute toxicity significantly. The pretreatment administered alone or in combinations influenced the efficacy of post-exposure treatment in a similar fashion: (i) pyridostigmine or memantine alone did not affect the antidotal treatment, (ii) centrally acting reversible acetylcholinesterase inhibitors alone increased the antidotal treatment slightly, (iii) combination of memantine with reversible acetylcholinesterase inhibitors increased the antidotal treatment more markedly. In conclusion, memantine alone failed to decrease the acute toxicity of soman or increase post-exposure antidotal treatment efficacy. The combination of memantine with donepezil significantly increased post-exposure effectiveness (together 5.12, pretreatment alone 1.72). Both drugs, when applied together, mitigate soman toxicity and boost post-exposure treatment.
Collapse
Affiliation(s)
- Jiri Kassa
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Jana Zdarova Karasova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.
| |
Collapse
|
15
|
Tetrahydroxy Stilbene Glucoside Ameliorates Cognitive Impairments and Pathology in APP/PS1 Transgenic Mice. Curr Med Sci 2021; 41:279-286. [PMID: 33877543 DOI: 10.1007/s11596-021-2344-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/26/2020] [Indexed: 10/21/2022]
Abstract
Cognitive impairment is the main clinical manifestation of Alzheimer's disease (AD), and amyloid-β (Aβ) deposition and senile plaques are the characteristic neuropathological hallmarks in AD brains. This study aimed to explore the effect and mechanism of tetrahydroxy stilbene glucoside (TSG) on cognitive function in APP/PS1 mice during long-term administration. Here, we treated APP/PS1 model mice of AD with different doses of TSG (50 mg/kg and 100 mg/kg) for 5 to 17 months by gavage, and we further observed whether TSG could ameliorate the cognitive decline in APP/PS1 mice using behavioral tests, and investigated the possible mechanisms by immunohistochemistry and Western blotting. Our results showed that TSG treatment rescued the spatial and non-spatial learning and memory impairments of APP/PS1 mice at Morris water maze test and novel object recognition test. Furthermore, Aβ40/42 deposition in the cortex and hippocampus of APP/PS1 mice treated with TSG was significantly reduced compared to the wild type mice using the immunohistochemical technique. Finally, Western blotting showed that TSG primarily decreased the APP expression to avoid the Aβ plaque deposition in the cortex and hippocampus of mice. These results reveal the beneficial effects of TSG in APP/PS1-AD mice, which may be associated with the reduction of Aβ deposits in the brain.
Collapse
|
16
|
López AFF, Martínez OMM, Hernández HFC. Evaluation of Amaryllidaceae alkaloids as inhibitors of human acetylcholinesterase by QSAR analysis and molecular docking. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Nematullah M, Hoda MN, Nimker S, Khan F. Restoration of PP2A levels in inflamed microglial cells: Important for neuroprotective M2 microglial viability. Toxicol Appl Pharmacol 2020; 409:115294. [PMID: 33069748 DOI: 10.1016/j.taap.2020.115294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
PP2A, a trimeric Serine/Threonine Protein Phosphatase 2A highly expressed in brain, is a master regulator of cellular functions. Reduction in PP2A activity has been linked to progression of microglial mediated neuroinflammatory diseases. Inflammatory conditions are characterized by increased population of CD86+ve M1 cells and a therapeutic strategy to polarize microglial cells towards CD206+ve M2 cells is the need of hour. In this paper we analyzed A: whether the level of PP2A is altered in CD86+ve cells, B: whether FTY720, a known modulator of PP2A, is able to restore the level of PP2A in inflamed CD86+ve cells. Results revealed that PP2A activity was significantly diminished in inflamed cells but the surprising observation was the cell viability of only 35.99% upon FTY720 treatment in inflamed cells lacking basal PP2A activity. A sharp increase at mRNA level of CD95 and ASK-1 indicated that apoptosis occurred in these cells through CD95/ASK-1/JNK pathway. Importantly, flow cytometric analysis revealed apoptosis of not only CD86+ve cells but also CD206+ve cells. Previous studies have reported that FTY720 polarizes microglial cells towards M2 states; however apoptosis of M2 cells was not studied. As western blot analysis revealed that FTY720 failed to completely restore PP2A, another PP2A modulator, Memantine, was used for co-treatment. Upon co-treatment, the level of PP2A was completely restored and also viability of microglial cells was significantly improved with a significant reduction in apoptosis of M2 cells. These findings suggest that co-treatment strategy may prove beneficial to balance M1/M2 microglial population, thereby improving neuronal functions.
Collapse
Affiliation(s)
- Md Nematullah
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - M N Hoda
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Centre, Dignity Health, Phoenix, AZ 85013, USA
| | | | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
18
|
Wang C, Chen B, Feng Q, Nie C, Li T. Clinical perspectives and concerns of metformin as an anti-aging drug. Aging Med (Milton) 2020; 3:266-275. [PMID: 33392433 PMCID: PMC7771567 DOI: 10.1002/agm2.12135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
As percentages of elderly people rise in many societies, age-related diseases have become more prevalent than ever. Research interests have been shifting to delaying age-related diseases by delaying or reversing aging itself. We use metformin as an entry point to talk about the important molecular and genetic longevity-regulating mechanisms that have been extensively studied with it. Then we review a number of observational studies, animal studies, and clinical trials to reflect the clinical potentials of the mechanisms in lifespan extension, cardiovascular diseases, tumors, and neurodegeneration. Finally, we highlight remaining concerns that are related to metformin and future anti-aging research.
Collapse
Affiliation(s)
- Chuyao Wang
- BGI‐ShenzhenBeishan Industrial ZoneShenzhenChina
- Department of Biomedical EngineeringUniversity of RochesterRochesterNYUSA
| | - Bangwei Chen
- BGI‐ShenzhenBeishan Industrial ZoneShenzhenChina
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Qian Feng
- BGI‐ShenzhenBeishan Industrial ZoneShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Chao Nie
- BGI‐ShenzhenBeishan Industrial ZoneShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Tao Li
- BGI‐ShenzhenBeishan Industrial ZoneShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| |
Collapse
|
19
|
Kaniakova M, Nepovimova E, Kleteckova L, Skrenkova K, Holubova K, Chrienova Z, Hepnarova V, Kucera T, Kobrlova T, Vales K, Korabecny J, Soukup O, Horak M. Combination of Memantine and 6-Chlorotacrine as Novel Multi-Target Compound against Alzheimer's Disease. Curr Alzheimer Res 2020; 16:821-833. [PMID: 30819076 DOI: 10.2174/1567205016666190228122218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia in the elderly. It is characterized as a multi-factorial disorder with a prevalent genetic component. Due to the unknown etiology, current treatment based on acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate receptors (NMDAR) antagonist is effective only temporary. It seems that curative treatment will necessarily be complex due to the multifactorial nature of the disease. In this context, the so-called "multi-targeting" approach has been established. OBJECTIVES The aim of this study was to develop a multi-target-directed ligand (MTDL) combining the support for the cholinergic system by inhibition of AChE and at the same time ameliorating the burden caused by glutamate excitotoxicity mediated by the NMDAR receptors. METHODS We have applied common approaches of organic chemistry to prepare a hybrid of 6-chlorotacrine and memantine. Then, we investigated its blocking ability towards AChE and NMDRS in vitro, as well as its neuroprotective efficacy in vivo in the model of NMDA-induced lessions. We also studied cytotoxic potential of the compound and predicted the ability to cross the blood-brain barrier. RESULTS A novel molecule formed by combination of 6-chlorotacrine and memantine proved to be a promising multipotent hybrid capable of blocking the action of AChE as well as NMDARs. The presented hybrid surpassed the AChE inhibitory activity of the parent compound 6-Cl-THA twofold. According to results it has been revealed that our novel hybrid blocks NMDARs in the same manner as memantine, potently inhibits AChE and is predicted to cross the blood-brain barrier via passive diffusion. Finally, the MTDL design strategy was indicated by in vivo results which showed that the novel 6-Cl-THA-memantine hybrid displayed a quantitatively better neuroprotective effect than the parent compound memantine. CONCLUSION We conclude that the combination of two pharmacophores with a synergistic mechanism of action into a single molecule offers great potential for the treatment of CNS disorders associated with cognitive decline and/or excitotoxicity mediated by NMDARs.
Collapse
Affiliation(s)
- Martina Kaniakova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.,Institute of Physiology of the Czech Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lenka Kleteckova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Kristyna Skrenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Kristina Holubova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove 500 05, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove 500 05, Czech Republic
| | - Tereza Kobrlova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove 500 05, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.,Institute of Physiology of the Czech Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
20
|
Marotta G, Basagni F, Rosini M, Minarini A. Memantine Derivatives as Multitarget Agents in Alzheimer's Disease. Molecules 2020; 25:molecules25174005. [PMID: 32887400 PMCID: PMC7504780 DOI: 10.3390/molecules25174005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
Memantine (3,5-dimethyladamantan-1-amine) is an orally active, noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist approved for treatment of moderate-to-severe Alzheimer’s disease (AD), a neurodegenerative condition characterized by a progressive cognitive decline. Unfortunately, memantine as well as the other class of drugs licensed for AD treatment acting as acetylcholinesterase inhibitors (AChEIs), provide only symptomatic relief. Thus, the urgent need in AD drug development is for disease-modifying therapies that may require approaching targets from more than one path at once or multiple targets simultaneously. Indeed, increasing evidence suggests that the modulation of a single neurotransmitter system represents a reductive approach to face the complexity of AD. Memantine is viewed as a privileged NMDAR-directed structure, and therefore, represents the driving motif in the design of a variety of multi-target directed ligands (MTDLs). In this review, we present selected examples of small molecules recently designed as MTDLs to contrast AD, by combining in a single entity the amantadine core of memantine with the pharmacophoric features of known neuroprotectants, such as antioxidant agents, AChEIs and Aβ-aggregation inhibitors.
Collapse
|
21
|
Poeschl A, Mountford DM, Hider RC, Cilibrizzi A. Synthetic Approaches for Piperidone-Based Templates as Scaffolds to Access Chirally Enriched Donepezil Analogues. ACS OMEGA 2020; 5:2378-2396. [PMID: 32064399 PMCID: PMC7017409 DOI: 10.1021/acsomega.9b03808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
A concise and high-yielding double aza-Michael reaction is presented as an atom-efficient method to access chiral 2-substituted 4-piperidone building blocks from divinyl ketones. The piperidones were further converted into analogues of donepezil, an acetylcholinesterase inhibiting drug used in the treatment of Alzheimer's disease. The donepezil analogues were obtained as inseparable diastereomeric mixtures with resolved stereochemistry in position 2 of the piperidine ring. Biological evaluation of the acetylcholinesterase inhibition by these analogues provides a new insight into structure-activity relationship studies with regard to donepezil's piperidine moiety toward stereochemical enhancement.
Collapse
|
22
|
Jonnalagadda SVR, Gerace AJ, Thai K, Johnson J, Tsimenidis K, Jakubowski JM, Shen C, Henderson KJ, Tamamis P, Gkikas M. Amyloid Peptide Scaffolds Coordinate with Alzheimer’s Disease Drugs. J Phys Chem B 2019; 124:487-503. [DOI: 10.1021/acs.jpcb.9b10368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Andrew James Gerace
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kathleen Thai
- Department of Biology, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jonathan Johnson
- Department of Biology, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kostas Tsimenidis
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Joseph M. Jakubowski
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Christina Shen
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kendal J. Henderson
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Phanourios Tamamis
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Manos Gkikas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
23
|
Sharma S, Singh N, Nepovimova E, Korabecny J, Kuca K, Satnami ML, Ghosh KK. Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer’s drugs: spectroscopic insights. J Biomol Struct Dyn 2019; 38:1822-1837. [DOI: 10.1080/07391102.2019.1619625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Navi Mumbai, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|