1
|
Lu Q, Wang Z, Bai S, Wang Y, Liao C, Sun Y, Zhang Y, Li W, Mei Q. Hydrophobicity Regulation of Energy Acceptors Confined in Mesoporous Silica Enabled Reversible Activation of Optogenetics for Closed-Loop Glycemic Control. J Am Chem Soc 2023; 145:5941-5951. [PMID: 36867047 DOI: 10.1021/jacs.2c13762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Optogenetics-based synthetic biology holds great promise as a cell-based therapy strategy for many clinical incurable diseases; however, precise control over genetic expression strength and timing through disease state-related closed-loop regulation remains a challenge due to the lack of reversible probes to indicate real-time metabolite fluctuations. Here, based on a novel mechanism of analyte-induced hydrophobicity regulation of energy acceptors confined in mesoporous silica, we developed a smart hydrogel platform comprising glucose reversible responsive upconversion nanoprobes and optogenetic engineered cells, in which the upconverted blue light strength was adaptively tuned through blood glucose levels to control optogenetic expressions for insulin secretion. The intelligent hydrogel system enabled convenient maintenance of glycemic homeostasis through simple near-infrared illuminations without any additional glucose concentration monitoring, which efficiently avoided genetic overexpression-induced hypoglycemia. This proof-of-concept strategy efficiently combines diagnostics with optogenetics-based synthetic biology for mellitus therapy, opening up a new avenue for nano-optogenetics.
Collapse
Affiliation(s)
- Qi Lu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zihe Wang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shumin Bai
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ying Wang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Cheng Liao
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wei Li
- Department of Neurosurgery, The Sixth Affiliated Hospital, Jinan University, Dongguan, Guangdong 523560, China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.,Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
2
|
Mezzasalma SA, Grassi L, Grassi M. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112480. [PMID: 34857266 DOI: 10.1016/j.msec.2021.112480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
The open border between non-living and living matter, suggested by increasingly emerging fields of nanoscience interfaced to biological systems, requires a detailed knowledge of nanomaterials properties. An account of the wide spectrum of phenomena, belonging to physical chemistry of interfaces, materials science, solid state physics at the nanoscale and bioelectrochemistry, thus is acquainted for a comprehensive application of carbon nanotubes interphased with neuron cells. This review points out a number of conceptual tools to further address the ongoing advances in coupling neuronal networks with (carbon) nanotube meshworks, and to deepen the basic issues that govern a biological cell or tissue interacting with a nanomaterial. Emphasis is given here to the properties and roles of carbon nanotube systems at relevant spatiotemporal scales of individual molecules, junctions and molecular layers, as well as to the point of view of a condensed matter or materials scientist. Carbon nanotube interactions with blood-brain barrier, drug delivery, biocompatibility and functionalization issues are also regarded.
Collapse
Affiliation(s)
- Stefano A Mezzasalma
- Ruder Bošković Institute, Materials Physics Division, Bijeniška cesta 54, 10000 Zagreb, Croatia; Lund Institute for advanced Neutron and X-ray Science (LINXS), Lund University, IDEON Building, Delta 5, Scheelevägen 19, 223 70 Lund, Sweden.
| | - Lucia Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| |
Collapse
|
3
|
Eleftheriadou D, Kesidou D, Moura F, Felli E, Song W. Redox-Responsive Nanobiomaterials-Based Therapeutics for Neurodegenerative Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907308. [PMID: 32940007 DOI: 10.1002/smll.201907308] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Redox regulation has recently been proposed as a critical intracellular mechanism affecting cell survival, proliferation, and differentiation. Redox homeostasis has also been implicated in a variety of degenerative neurological disorders such as Parkinson's and Alzheimer's disease. In fact, it is hypothesized that markers of oxidative stress precede pathologic lesions in Alzheimer's disease and other neurodegenerative diseases. Several therapeutic approaches have been suggested so far to improve the endogenous defense against oxidative stress and its harmful effects. Among such approaches, the use of artificial antioxidant systems has gained increased popularity as an effective strategy. Nanoscale drug delivery systems loaded with enzymes, bioinspired catalytic nanoparticles and other nanomaterials have emerged as promising candidates. The development of degradable hydrogels scaffolds with antioxidant effects could also enable scientists to positively influence cell fate. This current review summarizes nanobiomaterial-based approaches for redox regulation and their potential applications as central nervous system neurodegenerative disease treatments.
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- UCL Centre for Nerve Engineering, University College London, London, WC1E 6BT, UK
| | - Despoina Kesidou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Francisco Moura
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Eric Felli
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| |
Collapse
|
4
|
Yang Z, Li L, Jin AJ, Huang W, Chen X. Rational design of semiconducting polymer brushes as cancer theranostics. MATERIALS HORIZONS 2020; 7:1474-1494. [PMID: 33777400 PMCID: PMC7990392 DOI: 10.1039/d0mh00012d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photonic theranostics (PTs) generally contain optical agents for the optical sensing of biomolecules and therapeutic components for converting light into heat or chemical energy. Semiconducting polymer nanoparticles (SPNs) as advanced PTs possessing good biocompatibility, stable photophysical properties, and sensitive and tunable optical responses from the ultraviolet to near-infrared (NIR) II window (300-1700 nm) have recently aroused great interest. Although semiconducting polymers (SPs) with various building blocks have been synthesized and developed to meet the demands of biophotonic applications, most of the SPNs were made by a nanoprecipitation method that used amphiphilic surfactants to encapsulate SPs. Such binary SP micelles usually exhibit weakened photophysical properties of SPs and undergo dissociation in vivo. SP brushes (SPBs) are products of functional post-modification of SP backbones, which endows unique features to SPNs (e.g. enhanced optical properties and multiple chemical reaction sites for the conjunction of organic/inorganic imaging agents and therapeutics). Furthermore, the SPB-based SPNs can be highly stable due to supramolecular self-assembly and/or chemical crosslinking. In this review, we highlight the recent progress in the development of SPBs for advanced theranostics.
Collapse
Affiliation(s)
- Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ling Li
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Albert J. Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Xiong H, Li X, Kang P, Perish J, Neuhaus F, Ploski JE, Kroener S, Ogunyankin MO, Shin JE, Zasadzinski JA, Wang H, Slesinger PA, Zumbuehl A, Qin Z. Near‐Infrared Light Triggered‐Release in Deep Brain Regions Using Ultra‐photosensitive Nanovesicles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hejian Xiong
- Department of Mechanical Engineering The University of Texas at Dallas Richardson TX 75080 USA
| | - Xiuying Li
- Department of Mechanical Engineering The University of Texas at Dallas Richardson TX 75080 USA
| | - Peiyuan Kang
- Department of Mechanical Engineering The University of Texas at Dallas Richardson TX 75080 USA
| | - John Perish
- School of Behavioral and Brain Sciences The University of Texas at Dallas Richardson TX 75080 USA
| | - Frederik Neuhaus
- National Centre of Competence in Research in Chemical Biology 30 quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Jonathan E. Ploski
- School of Behavioral and Brain Sciences The University of Texas at Dallas Richardson TX 75080 USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences The University of Texas at Dallas Richardson TX 75080 USA
| | - Maria O. Ogunyankin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis MN 55455 USA
| | - Jeong Eun Shin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis MN 55455 USA
| | - Joseph A. Zasadzinski
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis MN 55455 USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School Charlestown MA 02129 USA
| | - Paul A. Slesinger
- Nash Family Department of Neuroscience Icahn School of Medicine at Mount Sinai New York NY 10029-5674 USA
| | - Andreas Zumbuehl
- Acthera Therapeutics Ltd. Peter Merian-Str. 45 4052 Basel Switzerland
| | - Zhenpeng Qin
- Department of Mechanical Engineering The University of Texas at Dallas Richardson TX 75080 USA
- Department of Bioengineering The University of Texas at Dallas Richardson TX 75080 USA
- Center for Advanced Pain Studies The University of Texas at Dallas Richardson TX 75080 USA
- Department of Surgery The University of Texas at Southwestern Medical Center Dallas TX 75390 USA
| |
Collapse
|
6
|
Xiong H, Li X, Kang P, Perish J, Neuhaus F, Ploski JE, Kroener S, Ogunyankin MO, Shin JE, Zasadzinski JA, Wang H, Slesinger PA, Zumbuehl A, Qin Z. Near-Infrared Light Triggered-Release in Deep Brain Regions Using Ultra-photosensitive Nanovesicles. Angew Chem Int Ed Engl 2020; 59:8608-8615. [PMID: 32124529 PMCID: PMC7362956 DOI: 10.1002/anie.201915296] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Remote and minimally-invasive modulation of biological systems with light has transformed modern biology and neuroscience. However, light absorption and scattering significantly prevents penetration to deep brain regions. Herein, we describe the use of gold-coated mechanoresponsive nanovesicles, which consist of liposomes made from the artificial phospholipid Rad-PC-Rad as a tool for the delivery of bioactive molecules into brain tissue. Near-infrared picosecond laser pulses activated the gold-coating on the surface of nanovesicles, creating nanomechanical stress and leading to near-complete vesicle cargo release in sub-seconds. Compared to natural phospholipid liposomes, the photo-release was possible at 40 times lower laser energy. This high photosensitivity enables photorelease of molecules down to a depth of 4 mm in mouse brain. This promising tool provides a versatile platform to optically release functional molecules to modulate brain circuits.
Collapse
Affiliation(s)
- Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at
Dallas, Richardson, Texas 75080 (United States)
| | - Xiuying Li
- Department of Mechanical Engineering, The University of Texas at
Dallas, Richardson, Texas 75080 (United States)
| | - Peiyuan Kang
- Department of Mechanical Engineering, The University of Texas at
Dallas, Richardson, Texas 75080 (United States)
| | - John Perish
- School of Behavioral and Brain Sciences, The University of Texas at
Dallas, Richardson, Texas 75080 (United States)
| | - Frederik Neuhaus
- National Centre of Competence in Research in Chemical Biology, 30
quai Ernest Ansermet, CH-1211 Geneva 4 (Switzerland)
| | - Jonathan E. Ploski
- School of Behavioral and Brain Sciences, The University of Texas at
Dallas, Richardson, Texas 75080 (United States)
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at
Dallas, Richardson, Texas 75080 (United States)
| | - Maria O. Ogunyankin
- Department of Chemical Engineering and Materials Science,
University of Minnesota, Minneapolis, Minnesota 55455 (United States)
| | - Jeong Eun Shin
- Department of Chemical Engineering and Materials Science,
University of Minnesota, Minneapolis, Minnesota 55455 (United States)
| | - Joseph A. Zasadzinski
- Department of Chemical Engineering and Materials Science,
University of Minnesota, Minneapolis, Minnesota 55455 (United States)
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital/Harvard Medical School,
Charlestown, MA 02129 (United States)
| | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine
at Mount Sinai, New York, New York 10029-5674 (United States)
| | - Andreas Zumbuehl
- Acthera Therapeutics Ltd., Peter Merian-Str. 45, 4052 Basel
(Switzerland)
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at
Dallas, Richardson, Texas 75080 (United States)
- Department of Bioengineering, The University of Texas at Dallas,
Richardson, Texas 75080 (United States)
- Center for Advanced Pain Studies, The University of Texas at
Dallas, Richardson, Texas 75080 (United States)
- Department of Surgery, The University of Texas at Southwestern
Medical Center, Dallas, Texas 75390 (United States)
| |
Collapse
|
7
|
Huang P. Activatable Theranostics. Curr Med Chem 2019; 26:1310. [DOI: 10.2174/092986732608190516092348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Peng Huang
- Director, Department of Molecular Imaging Chief, Laboratory of Evolutionary Theranostics (LET) Distinguished Professor, School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen, Guangdong 518060, China
| |
Collapse
|