1
|
Rodríguez Pozo FR, Ianev D, Martínez Rodríguez T, Arias JL, Linares F, Gutiérrez Ariza CM, Valentino C, Arrebola Vargas F, Hernández Benavides P, Paredes JM, Medina Pérez MDM, Rossi S, Sandri G, Aguzzi C. Development of Halloysite Nanohybrids-Based Films: Enhancing Mechanical and Hydrophilic Properties for Wound Healing. Pharmaceutics 2024; 16:1258. [PMID: 39458589 PMCID: PMC11509966 DOI: 10.3390/pharmaceutics16101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Most of the therapeutic systems developed for managing chronic skin wounds lack adequate mechanical and hydration properties, primarily because they rely on a single component. This study addresses this issue by combining organic and inorganic materials to obtain hybrid films with enhanced mechanical behavior, adhesion, and fluid absorption properties. To that aim, chitosan/hydrolyzed collagen blends were mixed with halloysite/antimicrobial nanohybrids at 10% and 20% (w/w) using glycerin or glycerin/polyethylene glycol-1500 as plasticizers. The films were characterized through the use of Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and electron microscopy. The mechanical properties were evaluated macroscopically using tensile tests, and at a nanoscale through atomic force microscopy (AFM) and nanoindentation. Thermodynamic studies were conducted to assess their hydrophilic or hydrophobic character. Additionally, in vitro cytocompatibility tests were performed on human keratinocytes. Results from FTIR, TGA, AFM and electron microscopy confirmed the hybrid nature of the films. Both tensile tests and nanomechanical measurements postulated that the nanohybrids improved the films' toughness and adhesion and optimized the nanoindentation properties. All nanohybrid-loaded films were hydrophilic and non-cytotoxic, showcasing their potential for skin wound applications given their enhanced performance at the macro- and nanoscale.
Collapse
Affiliation(s)
- Francisco Ramón Rodríguez Pozo
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - Daiana Ianev
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Tomás Martínez Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. Granada), Andalusian Health Service (SAS), University of Granada, 18012 Granada, Spain
| | - Fátima Linares
- Unit of Force Atomic Microscopy, Scientific Instrumentation Center, University of Granada, 18003 Granada, Spain; (F.L.); (C.M.G.A.)
| | - Carlos Miguel Gutiérrez Ariza
- Unit of Force Atomic Microscopy, Scientific Instrumentation Center, University of Granada, 18003 Granada, Spain; (F.L.); (C.M.G.A.)
| | - Caterina Valentino
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Francisco Arrebola Vargas
- Department of Histology, Institute of Neurosciences, Centre for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain;
| | - Pablo Hernández Benavides
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - José Manuel Paredes
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente UEQ, University of Granada, Cartuja Campus, 18071 Granada, Spain;
| | - María del Mar Medina Pérez
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - Silvia Rossi
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Giuseppina Sandri
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| |
Collapse
|
2
|
Yang Y, Wang X, Li Y, Yang F, Liu X, Wang A. Dencichine/palygorskite nanocomposite incorporated chitosan/polyvinylpyrrolidone film for accelerating wound hemostasis. Int J Biol Macromol 2024; 275:133399. [PMID: 38945323 DOI: 10.1016/j.ijbiomac.2024.133399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
The development of efficient, safe, environmentally friendly, and user-friendly hemostatic dressings remains a great challenge for researchers. A variety of clay minerals and plant extracts have garnered considerable attention due to their outstanding hemostatic efficacy and favorable biosafety. In this study, a facile solution casting strategy was employed to prepare nanocomposite films by incorporating natural nanorod-like palygorskite (Pal) and herb-derived hemostat dencichine (DC) based on chitosan and polyvinylpyrrolidone. The dynamic blood clotting index demonstrated that the nanocomposite film with a DC addition of 1.0 wt% exhibited significantly superior hemostatic properties compared to both pure DC powder or commercial hemostatic agent Yunnan Baiyao. This improvement was primarily attributed to proper blood affinity, increased porosity, enhanced adhesion of platelets and erythrocytes, as well as the accelerated activation of coagulation factors and platelets. Under the synergistic effect of Pal and DC, the nanocomposite film displayed suitable tensile strength (20.58 MPa) and elongation at break (47.29 %), which may be due to the strong intermolecular hydrogen bonding and electrostatic interaction between Pal/DC and macropolymers. Notably, the nanocomposite film exhibited remarkable antibacterial effectiveness and desirable cytocompatibility, as well as the capability of promoting wound healing in vitro. Taken together, the nanocomposite film synergized with Pal and DC is expected to be an efficacious and suitable wound dressing.
Collapse
Affiliation(s)
- Yinfeng Yang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China
| | - Xiaomei Wang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yalong Li
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China
| | - Fangfang Yang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xinyue Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China.
| | - Aiqin Wang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
3
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
4
|
Tan Y, Yang Q, Zheng M, Sarwar MT, Yang H. Multifunctional Nanoclay-Based Hemostatic Materials for Wound Healing: A Review. Adv Healthc Mater 2024; 13:e2302700. [PMID: 37816310 DOI: 10.1002/adhm.202302700] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/01/2023] [Indexed: 10/12/2023]
Abstract
Bleeding to death accounts for around 30-40% of all trauma-related fatalities. Current hemostatic materials are mainly mono-functional or have insufficient hemostatic capacity. Nanoclay has been recently shown to accelerate hemostasis, improve wound healing, and provide the resulting multifunctional hemostatic materials antibacterial, anti-inflammatory, and healing-promoting due to its distinctive morphological structure and physicochemical properties. Herein, the chemical design and action mechanism of nanoclay-based hemostatic, antibacterial, and pro-wound healing materials in the context of wound healing are discussed. The physiological processes of hemostasis and wound healing to elucidate the significance of nanoclay for functional wound hemostatic dressing design are outlined. A summary of the features of various nanoclay and product types used in wound hemostatic dressings is provided. Nanoclay can be antimicrobial due to the slow release of metal ions and has an abundant surface charge allowing for high affinity for proteins and cells, which can activate the coagulation reaction or facilitate tissue repair. Nanoclay with a microporous structure can be used as drug carriers to create composites critical for inhibiting bacterial growth on wounds or promoting the regeneration of vascular, muscle, and skin tissues. Directions for further research and innovation of nanoclay-based multifunctional materials for hemostasis and tissue regeneration are explored.
Collapse
Affiliation(s)
- Ya Tan
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Qian Yang
- Centre for Immune-Oncology, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7BN, UK
| | - Meng Zheng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
5
|
Huang X, Hu B, Zhang X, Fan P, Chen Z, Wang S. Recent advances in the application of clay-containing hydrogels for hemostasis and wound healing. Expert Opin Drug Deliv 2024; 21:457-477. [PMID: 38467560 DOI: 10.1080/17425247.2024.2329641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Immediate control of bleeding and anti-infection play important roles in wound management. Multiple organ dysfunction syndrome and death may occur if persistent bleeding, hemodynamic instability, and hypoxemia are not addressed. The combination of clay and hydrogel provides a new outlet for wound hemostasis. In this review, the current research progress of hydrogel/clay composite hemostatic agents was reviewed. AREAS COVERED This paper summarizes the characteristics of several kinds of clay including kaolinite, montmorillonite, laponite, sepiolite, and palygorskite. The advantages and disadvantages of its application in hemostasis were also summarized. Future directions for the application of hydrogel/clay composite hemostatic agents are presented. EXPERT OPINION Clay can activate the endogenous hemostatic pathway by increasing blood cell concentration and promoting plasma absorption to accelerate the hemostasis. Clay is antimicrobial due to the slow release of metal ions and has a rich surface charge with a high affinity for proteins and cells to promote tissue repair. Hydrogels have some properties such as good biocompatibility, strong adhesion, high stretchability, and good self-healing. Despite promising advances, hydrogel/clay composite hemostasis remains a limitation. Therefore, more evidence is needed to further elucidate the risk factors and therapeutic effects of hydrogel/clay in hemostasis and wound healing.
Collapse
Affiliation(s)
- Xiaojuan Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Xinyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
6
|
Ryu U, Chien PN, Jang S, Trinh XT, Lee HS, Van Anh LT, Zhang XR, Giang NN, Van Long N, Nam SY, Heo CY, Choi KM. Zirconium-Based Metal-Organic Framework Capable of Binding Proinflammatory Mediators in Hydrogel Form Promotes Wound Healing Process through a Multiscale Adsorption Mechanism. Adv Healthc Mater 2024; 13:e2301679. [PMID: 37931928 DOI: 10.1002/adhm.202301679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/30/2023] [Indexed: 11/08/2023]
Abstract
The regulation of proinflammatory mediators has been explored to promote natural healing without abnormal inflammation or autoimmune response induced by their overproduction. However, most efforts to control these mediators have relied on pharmacological substances that are directly engaged in biological cycles. It is believed that functional porous materials removing target mediators provide a new way to promote the healing process using their adsorption mechanisms. In this study, the Zr-based metal-organic frameworks (MOF)-808 (Zr6 O4 (OH)4 (BTC)2 (HCOO)6 ) crystals are found to be effective at removing proinflammatory mediators, such as nitric oxide (NO), cytokines, and reactive oxygen species (ROS) in vitro and in vivo, because of their porous structure and surface affinity. The MOF-808 crystals are applied to an in vivo skin wound model as a hydrogel dispersion. Hydrogel containing 0.2 wt% MOF-808 crystals shows significant improvement in terms of wound healing efficacy and quality over the corresponding control. It is also proven that the mode of action is to remove the proinflammatory mediators in vivo. Moreover, the application of MOF-808-containing hydrogels promotes cell activation, proliferation and inhibits chronic inflammation, leading to increased wound healing quality. These findings suggest that Zr-based MOFs may be a promising drug-free solution for skin problems related to proinflammatory mediators.
Collapse
Affiliation(s)
- UnJin Ryu
- Industry Collaboration Center, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Suin Jang
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Xuan-Tung Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyeon Shin Lee
- R&D Center, LabInCube Co. Ltd., Cheongju, 28116, Republic of Korea
| | - Le Thi Van Anh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Nguyen Van Long
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| |
Collapse
|
7
|
Miele D, Ruggeri M, Vigani B, Viseras C, Natali F, Del Favero E, Rossi S, Sandri G. Nanoclay-Doped Electrospun Nanofibers for Tissue Engineering: Investigation on the Structural Modifications in Physiological Environment. Int J Nanomedicine 2023; 18:7695-7710. [PMID: 38111847 PMCID: PMC10726802 DOI: 10.2147/ijn.s431862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/19/2023] [Indexed: 12/20/2023] Open
Abstract
Background Clay minerals are nanomaterials that have recently been recognized as enabling excipients that can promote cell adhesion, proliferation, and differentiation. When nanoclays are loaded in a 3D polymeric nanostructure, the cell-substrate interaction is enhanced, and other bioactive properties are optimized. Purpose In this study, hectorite (HEC)- and montmorillonite (MMT)-doped polymeric scaffolds were explored for the treatment of deep and chronic skin lesions. Methods Scaffolds were manufactured by means of electrospinning and then crosslinked by heating. Physicochemical analyses were correlated with in vitro biopharmaceutical characterization to predict the in vivo fate of the clay-doped scaffolds. Results and Discussion The addition of MMT or HEC to the polymeric scaffold framework modifies the surface arrangement and, consequently, the potential of the scaffolds to interact with biological proteins. The presence of nanoclays alters the nanofiber morphology and size, and MMT doping increases wettability and protein adhesion. This has an impact on fibroblast behavior in a shorter time since scaffold stiffness facilitates cell adhesion and cell proliferation. Conclusion MMT proved to perform better than HEC, and this could be related to its higher hydrophilicity and protein adhesion.
Collapse
Affiliation(s)
- Dalila Miele
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain
| | | | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate Milano, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
8
|
Liu C, Liu C, Shi Z, Li Z, Wang X, Huang F. Trojan-horse mineralization of trigger factor to impregnate non-woven alginate fabrics for enhanced hemostatic efficacy. Carbohydr Polym 2023; 320:121213. [PMID: 37659813 DOI: 10.1016/j.carbpol.2023.121213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/24/2023] [Accepted: 07/16/2023] [Indexed: 09/04/2023]
Abstract
Uncontrolled hemorrhage remains a leading cause of mortality after trauma. This work describes a facile mineralization strategy for enhancing hemostatic efficacy of alginate non-woven fabrics, involving the precipitation of amorphous CaCO3 induced by alginate fibers, along with Trojan-horse-like tissue factor (TF) encapsulation. The amorphous CaCO3 served as a transient carrier, capable of releasing Ca2+ and TF upon contact with blood. Coagulation test and rat tail cut and hemorrhaging liver models all revealed superior hemostatic capability of mineralized TF-in-alginate fabrics compared to bare fabrics, solely mineralized form, or commercial zeolite-modified gauze, benefiting from the combined hemostatic properties of alginate matrix and released Ca2+ and TF. Meanwhile, comprehensive biocompatibility and mechanical stability evaluations demonstrate the ternary composite's good biosafety. These results along with the extension study with chitosan- and cellulose-based dressings underline the great potential and versatility of polysaccharide-hemostat-mediated CaCO3 mineralization with TF integration for achieving rapid hemorrhage control.
Collapse
Affiliation(s)
- Chengkun Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Chang Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zi Li
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| |
Collapse
|
9
|
Functionally modified halloysite nanotubes for personalized bioapplications. Adv Colloid Interface Sci 2023; 311:102812. [PMID: 36427464 DOI: 10.1016/j.cis.2022.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Halloysite nanotubes (HNTs) are naturally aluminosilicate clay minerals that have the benefits of large surface areas, high mechanical properties, easy functionalization, and high biocompatibility, HNTs have been developed as multifunctional nanoplatforms for various bioapplications. Although some reviews have summarized the properties and bioapplications of HNTs, it remains unclear how to functionalize the modifications of HNTs for their personalized bioapplications. In this review, based on the physicochemical properties of HNTs, we summarized the methods of functionalized modifications (surface modification and structure modification) on HNTs. Also, we highlighted their personalized bioapplications (anti-bacterial, anti-inflammatory, wound healing, cancer theranostics, bone regenerative, and biosensing) by stressing on the main roles of HNTs. Finally, we provide perspectives on the future of functionalized modifications of HNTs for docking specific biological applications.
Collapse
|
10
|
Cutaneous/Mucocutaneous Leishmaniasis Treatment for Wound Healing: Classical versus New Treatment Approaches. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (ML) show clinical spectra that can range from a localized lesion (with a spontaneous healing process) to cases that progress to a generalized systemic disease with a risk of death. The treatment of leishmaniasis is complex since most of the available drugs show high toxicity. The development of an effective topical drug formulation for CL and ML treatment offers advantages as it will improve patient’s compliance to the therapy given the possibility for self-administration, as well as overcoming the first pass metabolism and the high costs of currently available alternatives. The most common dosage forms include solid formulations, such as membranes and semi-solid formulations (e.g., ointments, creams, gels, and pastes). Topical treatment has been used as a new route of administration for conventional drugs against leishmaniasis and its combinations, as well as to exploit new substances. In this review, we discuss the advantages and limitations of using topical drug delivery for the treatment of these two forms of leishmaniasis and the relevance of combining this approach with other pharmaceutical dosage forms. Emphasis will also be given to the use of nanomaterials for site-specific delivery.
Collapse
|
11
|
He Y, Xu M, Dong L, Chen J. Infrared spectroscopic identification of mineral drugs in herbal preparations with thermogravimetry-guided thermal separation–A case study of alum in a herbal powder for oral ulcer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Mesa M, Becerra NY. Silica/Protein and Silica/Polysaccharide Interactions and Their Contributions to the Functional Properties of Derived Hybrid Wound Dressing Hydrogels. Int J Biomater 2021; 2021:6857204. [PMID: 34777502 PMCID: PMC8580642 DOI: 10.1155/2021/6857204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Multifunctional and biocompatible hydrogels are on the focus of wound healing treatments. Protein and polysaccharides silica hybrids are interesting wound dressing alternatives. The objective of this review is to answer questions such as why silica for wound dressings reinforcement? What are the roles and contributions of silane precursors and silica on the functional properties of hydrogel wound dressings? The effects of tailoring the porous, morphological, and chemical characteristics of synthetic silicas on the bioactivity of hybrid wound dressings hydrogels are explored in the first part of the review. This is followed by a commented review of the mechanisms of silica/protein and silica/polysaccharide interactions and their impact on the barrier, scaffold, and delivery matrix functions of the derived hydrogels. Such information has important consequences for wound healing and paves the way to multidisciplinary researches on the production, processing, and biomedical application of this kind of hybrid materials.
Collapse
Affiliation(s)
- Monica Mesa
- Materials Science Group, Institute of Chemistry, University of Antioquia, Medellín 050010, Colombia
| | - Natalia Y. Becerra
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| |
Collapse
|
13
|
García-Villén F, Ruiz-Alonso S, Lafuente-Merchan M, Gallego I, Sainz-Ramos M, Saenz-del-Burgo L, Pedraz JL. Clay Minerals as Bioink Ingredients for 3D Printing and 3D Bioprinting: Application in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:1806. [PMID: 34834221 PMCID: PMC8623235 DOI: 10.3390/pharmaceutics13111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
The adaptation and progress of 3D printing technology toward 3D bioprinting (specifically adapted to biomedical purposes) has opened the door to a world of new opportunities and possibilities in tissue engineering and regenerative medicine. In this regard, 3D bioprinting allows for the production of tailor-made constructs and organs as well as the production of custom implants and medical devices. As it is a growing field of study, currently, the attention is heeded on the optimization and improvement of the mechanical and biological properties of the so-called bioinks/biomaterial inks. One of the strategies proposed is the use of inorganic ingredients (clays, hydroxyapatite, graphene, carbon nanotubes and other silicate nanoparticles). Clays have proven to be useful as rheological and mechanical reinforcement in a wide range of fields, from the building industry to pharmacy. Moreover, they are naturally occurring materials with recognized biocompatibility and bioactivity, revealing them as optimal candidates for this cutting-edge technology. This review deals with the use of clays (both natural and synthetic) for tissue engineering and regenerative medicine through 3D printing and bioprinting. Despite the limited number of studies, it is possible to conclude that clays play a fundamental role in the formulation and optimization of bioinks and biomaterial inks since they are able to improve their rheology and mechanical properties, thus improving printability and construct resistance. Additionally, they have also proven to be exceptionally functional ingredients (enhancing cellular proliferation, adhesion, differentiation and alignment), controlling biodegradation and carrying/releasing actives with tissue regeneration therapeutic activities.
Collapse
Affiliation(s)
- Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
14
|
Improving Fibrin Hydrogels' Mechanical Properties, through Addition of Silica or Chitosan-Silica Materials, for Potential Application as Wound Dressings. Int J Biomater 2021; 2021:9933331. [PMID: 34188685 PMCID: PMC8192204 DOI: 10.1155/2021/9933331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrin is a protein-based hydrogel formed during blood coagulation. It can also be produced in vitro from human blood plasma, and it is capable of resisting high deformations. However, after each deformation process, it loses high amounts of water, which subsequently makes it mechanically unstable and, finally, difficult to manipulate. The objective of this work was to overcome the in vitro fibrin mechanical instability. The strategy consists of adding silica or chitosan-silica materials and comparing how the different materials electrokinetic-surface properties affect the achieved improvement. The siliceous materials electrostatic and steric stabilization mechanisms, together with plasma protein adsorption on their surfaces, were corroborated by DLS and ζ-potential measurements before fibrin gelling. These properties avoid phase separation, favoring homogeneous incorporation of the solid into the forming fibrin network. Young's modulus of modified fibrin hydrogels was evaluated by AFM to quantitatively measure stiffness. It increased 2.5 times with the addition of 4 mg/mL silica. A similar improvement was achieved with only 0.7 mg/mL chitosan-silica, which highlighted the contribution of hydrophilic chitosan chains to fibrinogen crosslinking. Moreover, these chains avoided the fibroblast growth inhibition onto modified fibrin hydrogels 3D culture observed with silica. In conclusion, 0.7 mg/mL chitosan-silica improved the mechanical stability of fibrin hydrogels with low risks of cytotoxicity. This easy-to-manipulate modified fibrin hydrogel makes it suitable as a wound dressing biomaterial.
Collapse
|
15
|
Nanocomposite gels of poloxamine and Laponite for β-Lapachone release in anticancer therapy. Eur J Pharm Sci 2021; 163:105861. [PMID: 33930520 DOI: 10.1016/j.ejps.2021.105861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022]
Abstract
Nano-hybrid systems have been shown to be an attractive platform for drug delivery. Laponite® RD (LAP), a biocompatible synthetic clay, has been exploited for its ability to establish of strong secondary interactions with guest compounds and hybridization with polymers or small molecules that improves, for instance, cell adhesion, proliferation, and differentiation or facilitates drug attachment to their surfaces through charge interaction. In this work, LAP was combined with Tetronics, X-shaped amphiphilic PPO-PEO (poly (propylene oxide)-poly (ethylene oxide) block copolymers. β-Lapachone (BLPC) was selected for its anticancer activity and its limited bioavailability due to very low aqueous solubility, with the aim to improve this by using LAP/Tetronic nano-hybrid systems. The nanocarriers were prepared over a range of Tetronic 1304 concentrations (1 to 20% w/w) and LAP (0 to 3% w/w). A combination of physicochemical methods was employed to characterize the hybrid systems, including rheology, particle size and shape (DLS, TEM), thermal analysis (TG and DSC), FTIR, solubility studies and drug release experiments. In vitro cytotoxicity assays were performed with BALB/3T3 and MCF-7 cell lines. In hybrid systems, a sol-gel transition can occur below physiological temperature. BLPC exhibits the most significant increase in solubility in formulations with a high concentration of T1304 (over 10% w/w) and 1.5% w/w LAP, or systems with only LAP (1.5%), with a 50 and 100-fold increase in solubilisation, respectively. TEM images showed spherical micelles of T1304, which elongated into wormlike micelles with concentration (20%) and in the presence of LAP, a finding that has not been reported before. A sustained release of BLPC over 140 hours was achieved in one of the formulations (10% T1304 with 1.5% laponite), which also showed the best selectivity index towards cancer cells (MCF-7) over BALB/3T3 cell lines. In conclusion, BLPC-loaded T1304/LAP nano-hybrid systems proved safe and highly effective and are thus a promising formulation for anticancer therapy.
Collapse
|
16
|
García-Villén F, Sánchez-Espejo R, Borrego-Sánchez A, Cerezo P, Cucca L, Sandri G, Viseras C. Correlation between Elemental Composition/Mobility and Skin Cell Proliferation of Fibrous Nanoclay/Spring Water Hydrogels. Pharmaceutics 2020; 12:E891. [PMID: 32962099 PMCID: PMC7559572 DOI: 10.3390/pharmaceutics12090891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022] Open
Abstract
Inorganic hydrogels formulated with spring waters and clay minerals are used to treat musculoskeletal disorders and skin affections. Their underlying mechanism of action for skin disorders is not clear, although it is usually ascribed to the chemical composition of the formulation. The aim of this study was to assess the composition and in vitro release of elements with potential wound healing effects from hydrogels prepared with two nanoclays and natural spring water. In vitro Franz cell studies were used and the element concentration was measured by inductively coupled plasma techniques. Biocompatibility studies were used to evaluate the potential toxicity of the formulation against fibroblasts. The studied hydrogels released elements with known therapeutic interest in wound healing. The released ratios of some elements, such as Mg:Ca or Zn:Ca, played a significant role in the final therapeutic activity of the formulation. In particular, the proliferative activity of fibroblasts was ascribed to the release of Mn and the Zn:Ca ratio. Moreover, the importance of formulative studies is highlighted, since it is the optimal combination of the correct ingredients that makes a formulation effective.
Collapse
Affiliation(s)
- Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
| | - Rita Sánchez-Espejo
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Ana Borrego-Sánchez
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
| | - Lucia Cucca
- Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy;
| | - Giuseppina Sandri
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy;
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| |
Collapse
|
17
|
García-Villén F, Faccendini A, Miele D, Ruggeri M, Sánchez-Espejo R, Borrego-Sánchez A, Cerezo P, Rossi S, Viseras C, Sandri G. Wound Healing Activity of Nanoclay/Spring Water Hydrogels. Pharmaceutics 2020; 12:E467. [PMID: 32455541 PMCID: PMC7284335 DOI: 10.3390/pharmaceutics12050467] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND hydrogels prepared with natural inorganic excipients and spring waters are commonly used in medical hydrology. Design of these clay-based formulations continues to be a field scarcely addressed. Safety and wound healing properties of different fibrous nanoclay/spring water hydrogels were addressed. METHODS in vitro biocompatibility, by means of MTT assay, and wound healing properties were studied. Confocal Laser Scanning Microscopy was used to study the morphology of fibroblasts during the wound healing process. RESULTS all the ingredients demonstrated to be biocompatible towards fibroblasts. Particularly, the formulation of nanoclays as hydrogels improved biocompatibility with respect to powder samples at the same concentration. Spring waters and hydrogels were even able to promote in vitro fibroblasts motility and, therefore, accelerate wound healing with respect to the control. CONCLUSION fibrous nanoclay/spring water hydrogels proved to be skin-biocompatible and to possess a high potential as wound healing formulations. Moreover, these results open new prospects for these ingredients to be used in new therapeutic or cosmetic formulations.
Collapse
Affiliation(s)
- Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n Granada, Spain; (P.C.); (C.V.)
| | - Angela Faccendini
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Taramelli Street 12, 27100 Pavia, Italy; (A.F.); (D.M.); (M.R.); (S.R.); (G.S.)
| | - Dalila Miele
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Taramelli Street 12, 27100 Pavia, Italy; (A.F.); (D.M.); (M.R.); (S.R.); (G.S.)
| | - Marco Ruggeri
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Taramelli Street 12, 27100 Pavia, Italy; (A.F.); (D.M.); (M.R.); (S.R.); (G.S.)
| | - Rita Sánchez-Espejo
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Ana Borrego-Sánchez
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n Granada, Spain; (P.C.); (C.V.)
| | - Silvia Rossi
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Taramelli Street 12, 27100 Pavia, Italy; (A.F.); (D.M.); (M.R.); (S.R.); (G.S.)
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n Granada, Spain; (P.C.); (C.V.)
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Giuseppina Sandri
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Taramelli Street 12, 27100 Pavia, Italy; (A.F.); (D.M.); (M.R.); (S.R.); (G.S.)
| |
Collapse
|
18
|
Perioli L. Active Ingredients of Natural Sources and their Applications. Curr Pharm Des 2020; 26:517-518. [PMID: 32213155 DOI: 10.2174/138161282606200306105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1 - 06123, Perugia, Italy
| |
Collapse
|