1
|
Schleinhege R, Neumann I, Oeckinghaus A, Schwab A, Pethő Z. A CNA-35-based high-throughput fibrosis assay reveals ORAI1 as a regulator of collagen release from pancreatic stellate cells. Matrix Biol 2025; 135:70-86. [PMID: 39662708 DOI: 10.1016/j.matbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
RATIONALE Pancreatic stellate cells (PSCs) produce a collagen-rich connective tissue in chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Ca2+-permeable ion channels such as ORAI1 are known to affect PSC proliferation and myofibroblastic phenotype. However, it is unknown whether these channels play a role in collagen secretion. METHODS Using the PSC cell line PS-1, we characterized their cell-derived matrices using staining, mass spectroscopy, and cell migration assays. We developed and validated a high-throughput in vitro fibrosis assay to rapidly determine collagen quantity either with Sirius Red or, in the optimized version, with the collagen-binding peptide CNA-35-tdTomato. We assessed collagen deposition upon stimulating cells with transforming growth factor β1 (TGF-β1) and/or vitamin C without or with ORAI1 modulation. Orai1 expression was assessed by immunohistochemistry in the fibrotic tumor tissue of a murine PDAC model (KPfC). RESULTS We found that TGF-β1 and vitamin C promote collagen deposition from PSCs. We used small interfering RNA (siRNA) and the inhibitor Synta-66 to demonstrate that ORAI1 regulates collagen secretion of PSCs but not NIH-3T3 fibroblasts. Physiological levels of vitamin C induce a drastic increase of the intracellular [Ca2+] in PSCs, with Synta-66 inhibiting Ca2+ influx. Lastly, we revealed Orai1 expression in cancer-associated fibroblasts (CAFs) in murine PDAC (KPfC) samples. CONCLUSION In conclusion, our study introduces a robust in vitro assay for fibrosis and identifies ORAI1 as being engaged in PSC-driven fibrosis.
Collapse
Affiliation(s)
- Rieke Schleinhege
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Ilka Neumann
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, University of Münster, 48149, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany.
| |
Collapse
|
2
|
Deng Y, Huang S, Jiang G, Zhou L, Nezamzadeh-Ejhieh A, Liu J, Zhou Z. Current status and prospects of MOFs loaded with H 2O 2-related substances for ferroptosis therapy. RSC Med Chem 2024; 15:2996-3016. [PMID: 39309362 PMCID: PMC11411616 DOI: 10.1039/d4md00261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a programmed cell death mechanism characterized by the accumulation of iron (Fe)-dependent lipid peroxides within cells. Ferroptosis holds excellent promise in tumor therapy. Metal-organic frameworks (MOFs) offer unique advantages in tumor ferroptosis treatment due to their high porosity, excellent stability, high biocompatibility, and targeting capabilities. Inducing ferroptosis in tumor cells primarily involves the production of reactive oxygen species (ROS), like hydroxyl radicals (˙OH), through iron-mediated Fenton reactions. However, the intrinsic H2O2 levels in tumor cells are often insufficient to sustain prolonged consumption, limiting therapeutic efficacy if ˙OH production is inadequate. Therefore, catalyzing or supplementing the intracellular H2O2 levels in tumor cells is essential for inducing ferroptosis by nanoscale metal-organic frameworks. This article reviews the biological characteristics and molecular mechanisms of ferroptosis, introduces H2O2-related substances, and reviews MOF-based nanoscale strategies for enhancing intracellular H2O2 levels in tumor cells. Finally, the challenges and prospects of this approach are discussed, aiming to provide insights into improving the effectiveness of ferroptosis induced by MOFs.
Collapse
Affiliation(s)
- Yu Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Guanming Jiang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital) 78 Wandao Road South Dongguan 523059 Guangdong China
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | | | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Zhikun Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| |
Collapse
|
3
|
Xie Q, Liu H, Wen S, Wang X, Bing W, Ji W, Zhao B, Ozaki Y, Song W. SERS Tracking Oxidative Stress on a Metalloporphyrin Framework by Vitamin C. Anal Chem 2023; 95:15333-15341. [PMID: 37793058 DOI: 10.1021/acs.analchem.3c02935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Accurate control of charge transfer is crucial to investigate the catalytic reaction mechanism of the biological oxidation process that biomedicine participates in. Herein, we have established an assembly model of metalloporphyrin framework (MPF) nanosheets as the active centers of biological enzymes. The introduction of Vitamin C (VC) into the MPF system can precisely modulate its content of charges. The surface-enhanced Raman scattering activity and peroxidase-like catalytic performance are enhanced simultaneously for the first time by manipulating the optimal molar ratio of an MPF to VC and the reaction sequence with target model molecules. We have confirmed that the formation of the intermediate of Fe(2+)-OOH species is specifically enhanced after VC modulation, which indicates that VC can regulate the oxidative stress of the active center of biological enzymes. This discovery not only accurately resolves the mechanism of VC-selective anticancer therapy but also has important significance for the precise treatment of VC synergistic targeting medicines.
Collapse
Affiliation(s)
- Qinhui Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Sisi Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaojun Wang
- School of Construction Machinery, Shandong Jiaotong University, Changqing University Science Park, Jinan 250357, P. R. China
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yukihiro Ozaki
- School of Biological and Environmatal Sciences, Kwansei Gakuin University, 1-Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
4
|
Zhang Y, Zeng M, Zhang X, Yu Q, Zeng W, Yu B, Gan J, Zhang S, Jiang X. Does an apple a day keep away diseases? Evidence and mechanism of action. Food Sci Nutr 2023; 11:4926-4947. [PMID: 37701204 PMCID: PMC10494637 DOI: 10.1002/fsn3.3487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.
Collapse
Affiliation(s)
- Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Miao Zeng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiaolu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qun Yu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wenyun Zeng
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Bin Yu
- School of International EducationTianjin University of Chinese MedicineTianjinChina
| | - Jiali Gan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Xijuan Jiang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
5
|
Obrador E, Montoro A. Ionizing Radiation, Antioxidant Response and Oxidative Damage: Radiomodulators. Antioxidants (Basel) 2023; 12:1219. [PMID: 37371949 DOI: 10.3390/antiox12061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Ionizing radiation (IR) is the energy released by atoms in the form of electromagnetic waves (e [...].
Collapse
Affiliation(s)
- Elena Obrador
- Elena Obrador Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Alegría Montoro
- Alegría Montoro, Radiation Protection Service, University and Polytechnic Hospital La Fe, 46021 Valencia, Spain
| |
Collapse
|
6
|
Zhe Y, Wang J, Zhao Z, Ren G, Du J, Li K, Lin Y. Ascorbate oxidase-like nanozyme with high specificity for inhibition of cancer cell proliferation and online electrochemical DOPAC monitoring. Biosens Bioelectron 2022; 220:114893. [DOI: 10.1016/j.bios.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
7
|
Ma Z, Yang M, Foda MF, Zhang K, Li S, Liang H, Zhao Y, Han H. Polarization of Tumor-Associated Macrophages Promoted by Vitamin C-Loaded Liposomes for Cancer Immunotherapy. ACS NANO 2022; 16:17389-17401. [PMID: 36166666 DOI: 10.1021/acsnano.2c08446] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While checkpoint blockade immunotherapy as a promising clinical modality has revolutionized cancer treatment, it is of benefit to only a subset of patients because of the tumor immunosuppressive microenvironment. Herein, we report that the specified delivery of vitamin C at the tumor site by responsive lipid nanoparticles can efficiently induce oxidative toxicity and the polarization of M1 macrophages, promoting the infiltration of activating cytotoxic T lymphocytes in the tumor microenvironment for intensive immune checkpoint blocking therapy. Both in vitro and in vivo assays demonstrate successful vitamin C-induced polarization of M2 macrophages to M1 macrophages. In vivo transcriptome analysis also reveals the activation mechanism of vitamin C immunity. More importantly, the combination approach displays much better immune response and immune process within the tumor microenvironment than clinical programmed cell death ligand 1 (Anti-PD-L1) alone. This work provides a powerful therapeutic application of vitamin C to amplify Anti-PD-L1 immunotherapy in cancer treatment, which brings hope to patients with clinically insensitive immunity.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Mohamed Frahat Foda
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Kai Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shuting Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
8
|
Szarka A, Lőrincz T, Hajdinák P. Friend or Foe: The Relativity of (Anti)oxidative Agents and Pathways. Int J Mol Sci 2022; 23:ijms23095188. [PMID: 35563576 PMCID: PMC9099968 DOI: 10.3390/ijms23095188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
An element, iron, a process, the generation of reactive oxygen species (ROS), and a molecule, ascorbate, were chosen in our study to show their dual functions and their role in cell fate decision. Iron is a critical component of numerous proteins involved in metabolism and detoxification. On the other hand, excessive amounts of free iron in the presence of oxygen can promote the production of potentially toxic ROS. They can result in persistent oxidative stress, which in turn can lead to damage and cell death. At the same time, ROS—at strictly regulated levels—are essential to maintaining the redox homeostasis, and they are engaged in many cellular signaling pathways, so their total elimination is not expedient. Ascorbate establishes a special link between ROS generation/elimination and cell death. At low concentrations, it behaves as an excellent antioxidant and has an important role in ROS elimination. However, at high concentrations, in the presence of transition metals such as iron, it drives the generation of ROS. In the term of the dual function of these molecules and oxidative stress, ascorbate/ROS-driven cell deaths are not necessarily harmful processes—they can be live-savers too.
Collapse
Affiliation(s)
- András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Correspondence:
| | - Tamás Lőrincz
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Péter Hajdinák
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
9
|
Abstract
Significance: Vitamin C (ascorbate), in regard to its effectiveness against malignancies, has had a controversial history in cancer treatment. It has been shown that in vitro and in vivo anticancer efficacy of ascorbate relies on its pro-oxidant effect mainly from an increased generation of reactive oxygen species (ROS). A growing understanding of its anticancer activities and pharmacokinetic properties has prompted scientists to re-evaluate the significance of ascorbate in cancer treatment. Recent Advances: A recent resurge in ascorbate research emerged after discovering that, at high doses, ascorbate preferentially kills Kirsten-Ras (K-ras)- and B-raf oncogene (BRAF)-mutant cancer cells. In addition, some of the main hallmarks of cancer cells, such as redox homeostasis and oxygen-sensing regulation (through inhibition of hypoxia-inducible factor-1 alpha [HIF-1α] activity), are affected by vitamin C. Critical Issues: Currently, there is no clear consensus from the literature in regard to the beneficial effects of antioxidants. Results from both human and animal studies provide no clear evidence about the benefit of antioxidant treatment in preventing or suppressing cancer development. Since pro-oxidants may affect both normal and tumor cells, the extremely low toxicity of ascorbate represents a main advantage. This guarantees the safe inclusion of ascorbate in clinical protocols to treat cancer patients. Future Directions: Current research could focus on elucidating the wide array of reactions between ascorbate and reactive species, namely ROS, reactive nitrogen species as well as reactive sulfide species, and their intracellular molecular targets. Unraveling these mechanisms could allow researchers to assess what could be the optimal combination of ascorbate with standard treatments.
Collapse
Affiliation(s)
- Christophe Glorieux
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile.,Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
10
|
Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer. Biomolecules 2021; 11:biom11081130. [PMID: 34439796 PMCID: PMC8392841 DOI: 10.3390/biom11081130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, a fatal disease, is also one of the main causes of death worldwide. Despite various developments to prevent and treat cancer, the side effects of anticancer drugs remain a major concern. Ascorbic acid is an essential vitamin required by our bodies for normal physiological function and also has antioxidant and anticancer activity. Although the body cannot synthesize ascorbic acid, it is abundant in nature through foods and other natural sources and also exists as a nutritional food supplement. In anticancer drug development, ascorbic acid has played an important role by inhibiting the development of cancer through various mechanisms, including scavenging reactive oxygen species (ROS), selectively producing ROS and encouraging their cytotoxicity against tumour cells, preventing glucose metabolism, serving as an epigenetic regulator, and regulating the expression of HIF in tumour cells. Several ascorbic acid analogues have been produced to date for their anticancer and antioxidant activity. The current review summarizes the mechanisms behind ascorbic acid's antitumor activity, presents a compilation of its derivatives and their biological activity as anticancer agents, and discusses delivery systems such as liposomes, nanoparticles against cancer, and patents on ascorbic acid as anticancer agents.
Collapse
|
11
|
Fujikura K, Alruwaii ZI, Haffner MC, Trujillo MA, Roberts NJ, Hong SM, Macgregor-Das A, Goggins MG, Roy S, Meeker AK, Ding D, Wright M, He J, Hruban RH, Wood LD. Downregulation of 5-hydroxymethylcytosine is an early event in pancreatic tumorigenesis. J Pathol 2021; 254:279-288. [PMID: 33870509 DOI: 10.1002/path.5682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022]
Abstract
Epigenetic alterations are increasingly recognized as important contributors to the development and progression of pancreatic ductal adenocarcinoma. 5-hydroxymethylcytosine (5hmC) is an epigenetic DNA mark generated through the ten-eleven translocation (TET) enzyme-mediated pathway and is closely linked to gene activation. However, the timing of alterations in epigenetic regulation in the progression of pancreatic neoplasia is not well understood. In this study, we hypothesized that aberrant expression of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and subsequent global 5hmC alteration are linked to early tumorigenesis in the pancreas. Therefore, we evaluated alterations of 5hmC and TET1 levels using immunohistochemistry in pancreatic neoplasms (n = 380) and normal ducts (n = 118). The study cohort included representation of the full spectrum of precancerous lesions from low- and high-grade pancreatic intraepithelial neoplasia (n = 95), intraductal papillary mucinous neoplasms (all subtypes, n = 129), intraductal oncocytic papillary neoplasms (n = 12), and mucinous cystic neoplasms (n = 144). 5hmC and TET1 were significantly downregulated in all types of precancerous lesion and associated invasive pancreatic ductal adenocarcinomas compared with normal ductal epithelium (all p < 0.001), and expression of 5hmC positively correlated with expression of TET1. Importantly, downregulation of both 5hmC and TET1 was observed in most low-grade precancerous lesions. There were no clear associations between 5hmC levels and clinicopathological factors, thereby suggesting a common epigenetic abnormality across precancerous lesions. We conclude that downregulation of 5hmC and TET1 is an early event in pancreatic tumorigenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kohei Fujikura
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zainab I Alruwaii
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael C Haffner
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Anne Macgregor-Das
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sujayita Roy
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ding Ding
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Wright
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Ying JF, Lu ZB, Fu LQ, Tong Y, Wang Z, Li WF, Mou XZ. The role of iron homeostasis and iron-mediated ROS in cancer. Am J Cancer Res 2021; 11:1895-1912. [PMID: 34094660 PMCID: PMC8167679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023] Open
Abstract
As an important trace element, iron plays an essential role in many biology processes like cell proliferation, metabolism, and mitochondrial function. However, the disruption of iron homeostasis tends to cells death and human diseases due to it servers as mediator to promote the production of reactive oxygen species (ROS). In this review, first we introduced the mechanism of complex iron-mediated ROS involved in apoptosis, necroptosis, ferroptosis and pyroptosis. Next, we discussed the controversial role of excess iron and iron deficiency in tumor. Finally, we discussed the anti-cancer effects of iron on both sides, and novel iron-related strategies. This review outlined the mechanisms and regulation of iron homeostasis and iron-mediated ROS in tumors, and discussed the iron-related treatments.
Collapse
Affiliation(s)
- Jia-Fu Ying
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
- Key Laboratory of Molecular Animal Nutrition of The Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang UniversityHangzhou 310058, Zhejiang Province, P. R. China
| | - Ze-Bei Lu
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, P. R. China
| | - Luo-Qin Fu
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
| | - Yu Tong
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
| | - Zhen Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
| | - Wei-Fen Li
- Key Laboratory of Molecular Animal Nutrition of The Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang UniversityHangzhou 310058, Zhejiang Province, P. R. China
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
| |
Collapse
|
13
|
Tian C, Huang Y, Clauser KR, Rickelt S, Lau AN, Carr SA, Vander Heiden MG, Hynes RO. Suppression of pancreatic ductal adenocarcinoma growth and metastasis by fibrillar collagens produced selectively by tumor cells. Nat Commun 2021; 12:2328. [PMID: 33879793 PMCID: PMC8058088 DOI: 10.1038/s41467-021-22490-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a collagen-rich dense extracellular matrix (ECM) that promotes malignancy of cancer cells and presents a barrier for drug delivery. Data analysis of our published mass spectrometry (MS)-based studies on enriched ECM from samples of progressive PDAC stages reveal that the C-terminal prodomains of fibrillar collagens are partially uncleaved in PDAC ECM, suggesting reduced procollagen C-proteinase activity. We further show that the enzyme responsible for procollagen C-proteinase activity, bone morphogenetic protein1 (BMP1), selectively suppresses tumor growth and metastasis in cells expressing high levels of COL1A1. Although BMP1, as a secreted proteinase, promotes fibrillar collagen deposition from both cancer cells and stromal cells, only cancer-cell-derived procollagen cleavage and deposition suppresses tumor malignancy. These studies reveal a role for cancer-cell-derived fibrillar collagen in selectively restraining tumor growth and suggest stratification of patients based on their tumor epithelial collagen I expression when considering treatments related to perturbation of fibrillar collagens.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein 1/metabolism
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/secondary
- Cell Line, Tumor
- Collagen Type I/chemistry
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Disease Progression
- Extracellular Matrix/metabolism
- Extracellular Matrix Proteins/metabolism
- Fibrillar Collagens/chemistry
- Fibrillar Collagens/genetics
- Fibrillar Collagens/metabolism
- Humans
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mutagenesis
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Procollagen/chemistry
- Procollagen/genetics
- Procollagen/metabolism
- Protein Domains
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Chenxi Tian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ying Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Steffen Rickelt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison N Lau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
14
|
Abstract
Significance: Persistent oxidative stress is a common feature of cancer cells, giving a specific weapon to selectively eliminate them. Ascorbate in pharmacological concentration can contribute to the suspended formation of hydroxyl radical via the Fenton reaction; thus, it can be an important element of the oxidative stress therapy against cancer cells. Recent Advances: The main components of ascorbate-induced cell death are DNA double-strand breaks via the production of hydroxyl radical and ATP depletion due to the activation of poly (ADP-ribose) polymerase 1. Presumably, DNA damage can be the primary contributor to the anticancer activity of pharmacological ascorbate, as opposed to the rupture of bioenergetics. The caspase independency of high-dose ascorbate-induced cell death proposed the possible involvement of several types of cell death, such as ferroptosis, necroptosis, and autophagy. Critical Issues: Ascorbate can target at least two key molecular features of cancer cells as a part of the anticancer therapy: the intrinsic or acquired resistance to cell death and the dysregulated metabolism of cancer cells. It seems probable that different concentrations of ascorbate alter the nature of induced cell death. Autophagy and necroptosis may play a role at intermediate concentrations, but caspase-independent apoptosis may dominate at higher concentrations. However, ascorbate behaves as an effective inhibitor of ferroptosis that may have crucial importance in its possible clinical application. Future Directions: The elucidation of the details and the links between high-dose ascorbate-induced cancer selective cell death mechanisms may give us a tool to form and apply synergistic cancer therapies. Antioxid. Redox Signal. 34, 831-844.
Collapse
Affiliation(s)
- András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Orsolya Kapuy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Tamás Lőrincz
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Jentzsch V, Davis JAA, Djamgoz MBA. Pancreatic Cancer (PDAC): Introduction of Evidence-Based Complementary Measures into Integrative Clinical Management. Cancers (Basel) 2020; 12:E3096. [PMID: 33114159 PMCID: PMC7690843 DOI: 10.3390/cancers12113096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
The most common form of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which comprises some 85% of all cases. Currently, this is the fourth highest cause of cancer mortality worldwide and its incidence is rising steeply. Commonly applied clinical therapies offer limited chance of a lasting cure and the five-year survival rate is one of the lowest of the commonly occurring cancers. This review cultivates the hypothesis that the best management of PDAC would be possible by integrating 'western' clinical medicine with evidence-based complementary measures. Protecting the liver, where PDAC frequently first spreads, is also given some consideration. Overall, the complementary measures are divided into three groups: dietary factors, nutraceutical agents and lifestyle. In turn, dietary factors are considered as general conditioners, multi-factorial foodstuffs and specific compounds. The general conditioners are alkalinity, low-glycemic index and low-cholesterol. The multi-factorial foodstuffs comprise red meat, fish, fruit/vegetables, dairy, honey and coffee. The available evidence for the beneficial effects of the specific dietary and nutraceutical agents was considered at four levels (in order of prominence): clinical trials, meta-analyses, in vivo tests and in vitro studies. Thus, 9 specific agents were identified (6 dietary and 3 nutraceutical) as acceptable for integration with gemcitabine chemotherapy, the first-line treatment for pancreatic cancer. The specific dietary agents were the following: Vitamins A, C, D and E, genistein and curcumin. As nutraceutical compounds, propolis, triptolide and cannabidiol were accepted. The 9 complementary agents were sub-grouped into two with reference to the main 'hallmarks of cancer'. Lifestyle factors covered obesity, diabetes, smoking, alcohol and exercise. An integrative treatment regimen was devised for the management of PDAC patients. This involved combining first-line gemcitabine chemotherapy with the two sub-groups of complementary agents alternately in weekly cycles. The review concludes that integrated management currently offers the best patient outcome. Opportunities to be investigated in the future include emerging modalities, precision medicine, the nerve input to tumors and, importantly, clinical trials.
Collapse
Affiliation(s)
- Valerie Jentzsch
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
- Business School, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - James A. A. Davis
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
| | - Mustafa B. A. Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
16
|
The Phytochemical Indicaxanthin Synergistically Enhances Cisplatin-Induced Apoptosis in HeLa Cells via Oxidative Stress-Dependent p53/p21 waf1 Axis. Biomolecules 2020; 10:biom10070994. [PMID: 32630700 PMCID: PMC7407573 DOI: 10.3390/biom10070994] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 01/01/2023] Open
Abstract
Combining phytochemicals with chemotherapics is an emerging strategy to treat cancer to overcome drug toxicity and resistance with natural compounds. We assessed the effects of indicaxanthin (Ind), a pigment obtained from Opuntia ficus-indica (L. Mill) fruit, combined with cisplatin (CDDP) against cervical cancer cells (HeLa). Measured cell viability via Trypan blue assay; cell morphology via fluorescence microscopy; apoptosis, cell cycle, mitochondrial membrane potential (MMP) and cell redox balance via flow-cytometry; expression levels of apoptosis-related proteins via western blot. Cell viability assays and Chou-Talalay plot demonstrated that the combination of CDDP and Ind had synergistic cytotoxic effects. Combined treatment had significant effects (p < 0.05) on phosphatidylserine externalization, cell morphological changes, cell cycle arrest, fall in MMP, ROS production and GSH decay compared with the individual treatment groups. Bax, cytochrome c, p53 and p21waf1 were over-expressed, while Bcl-2 was downregulated. Pre-treatment with N-acetyl-l-cysteine abolished the observed synergistic effects. We also demonstrated potentiation of CDDP anticancer activity by nutritionally relevant concentrations of Ind. Oxidative stress-dependent mitochondrial cell death is the basis of the chemosensitizing effect of Ind combined with CDDP against HeLa cancer cells. ROS act as upstream signaling molecules to initiate apoptosis via p53/p21waf1 axis. Ind can be a phytochemical of interest in combo-therapy.
Collapse
|
17
|
Abstract
Nearly 100 years ago, Otto Warburg undertook a study of tumor metabolism, and discovered increased lactate caused by increased glycolysis in cancer cells. His experiments were conducted in the presence of excess oxygen, but today tumor tissue is known to be a hypoxic environment. However, an increase of glycolysis and lactate production is still a valid observation. Numerous abnormalities and mutations of metabolic enzymes have been found in many cancers. For example, pyruvate kinase M2 has been associated with many cancers and is a major contributor to directing glycolysis into fermentation, forming lactate. Increases in several enzymes, including glucose 6-phosphate dehydrogenase, pyruvate kinase M2, Rad6, or deficiency of other enzymes such as succinate dehydrogenase, all may contribute directly or indirectly to increases in lactate associated with the Warburg effect. In addition, the increased lactate and acid-base changes are modified further by monocarboxylate transporters and carbonic anhydrase, which contribute to alkalinizing tumor cells while acidifying the tumor extracellular environment. This acidification leads to cancer spread. Fully understanding the mechanisms underlying the Warburg effect should provide new approaches to cancer treatment.
Collapse
Affiliation(s)
- Netanya Y Spencer
- Research Division, Joslin Diabetes Center, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA.
| | - Robert C Stanton
- Research Division, Joslin Diabetes Center, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA; Nephrology Division, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
18
|
Klener P, Scott Alexander M, Cullen JJ, Stejskal V, Sliva J, Kotlarova L, Kostiuk P, Prochazka Z, Kucerova M. The benefits of ascorbate to protect healthy cells in the prevention and treatment of oncological diseases. J Appl Biomed 2020; 18:1-7. [PMID: 34907706 DOI: 10.32725/jab.2020.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/07/2020] [Indexed: 11/05/2022] Open
Abstract
Health status is determined by the balance of oxidants and antioxidants which protects healthy cells against the threat of internal and external risk factors. Antioxidants such as ascorbate (vitamin C, ascorbic acid) are of fundamental importance in this respect. Ascorbate neutralizes potential damage caused by cellular oxidative stress which may be the greatest risk of damage to healthy tissue. Cellular oxidative stress is mediated by external factors (e.g. psychological stress, physical exertion, drugs, various diseases, environmental pollution, preservatives, smoking, and alcohol) and internal factors (products of cellular metabolism including reactive oxygen species). When the products of oxidative stress are not sufficiently neutralized, healthy cells are at risk for both mitochondrial and DNA damage. In the short term, cell function may deteriorate, while an increased production of proinflammatory cytokines over time may lead to the development of chronic inflammatory changes and diseases, including cancer. Although pharmaceutical research continues to bring effective chemotherapeutic agents to the market, a limiting factor is often the normal tissue and organ toxicity of these substances, which leads to oxidative stress on healthy tissue. There is increasing interest and imperative to protect healthy tissues from the negative effects of radio-chemotherapeutic treatment. The action of ascorbate against the development of oxidative stress may justify its use not only in the prevention of carcinogenesis, but as a part of supportive or complementary therapy during treatment. Ascorbate (particularly when administered parentally at high doses) may have antioxidant effects that work to protect healthy cells and improve patient tolerability to some toxic radio-chemotherapy regimens. Additionally, ascorbate has demonstrated an immunomodulatory effect by supporting mechanisms essential to anti-tumor immunity. Intravenous administration of gram doses of vitamin C produce high plasma levels immediately, but the levels drop rapidly. Following oral vitamin C administration, plasma levels increase slowly to relatively low values, and then gradually decay. With an oral liposomal formulation, significantly higher levels are attainable than with standard oral formulations. Therefore, oral administration of liposomal vitamin C appears to be an optimal adjunct to intravenous administration. In this review, the basic mechanisms and clinical benefits of ascorbate as an antioxidant that may be useful as complementary therapy to chemotherapeutic regimens will be discussed.
Collapse
Affiliation(s)
| | | | - Joseph John Cullen
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Vera Stejskal
- University of Stockholm, Dept of Immunology, Wenner Gren Center, Stockholm, Sweden; Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| | - Jiri Sliva
- Charles University, Department of Pharmacology, 3rd Faculty of Medicine, Prague, Czech Republic
| | - Lucie Kotlarova
- InPharmClinic, Department of Pharmacology, Prague, Czech Republic
| | - Pavel Kostiuk
- Edukafarm, Department of Pharmacology, Prague, Czech Republic
| | | | - Marta Kucerova
- Hospital Jablonec nad Nisou, Department of Oncology, Jablonec nad Nisou, Czech Republic
| |
Collapse
|
19
|
Gregoraszczuk EL, Zajda K, Tekla J, Respekta N, Zdybał P, Such A. Vitamin C supplementation had no side effect in non-cancer, but had anticancer properties in ovarian cancer cells. INT J VITAM NUTR RES 2020; 91:293-303. [PMID: 32008465 DOI: 10.1024/0300-9831/a000634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vitamin C (Vit C) has been widely used in the treatment and prevention of cancer. Nevertheless, the clinical results are still inconclusive. Using non-cancer (HOSEpiC) and cancer OVCAR-3 cells cultured in basal medium or in ovarian cancer-associated fibroblast (CAF)-supplemented medium, we estimated the dose-dependent effect of Vit C on sodium-ascorbate co-transporters (SVCT1, SVCT2) and glucose transporter (GLUT1) protein expression. Additionally, the action of Vit C on cell proliferation (alamarBlue), membrane permeability (LDH assay), caspase3 activity, the selected cell cycle and apoptosis pathway, poly(ADP-ribose) polymerase-1 (PARP) protein expression, and reactive oxygen species (ROS) activity was determined. We showed different effects of Vit C on the expression of the co-transporter in non-cancer and cancer cells. In non-cancer cells, Vit C, at a pharmacological concentration, increased SVCT2 and decreased GLUT1, while the opposite effect was noted in cancer cells. In cancer cells, Vit C, in a pharmacological dose, decreased cell proliferation through an inhibitory effect on cyclin-dependent kinase 2 (CDK2) (4.4-fold; p < 0.01), mainly due to the stimulatory effect on the expression of cyclin-dependent kinase (CDK) inhibitors, such as p21 and p53 (3.2- and 2.8-fold, respectively; p < 0.001), but not caspase pathway. The tumour microenvironment caused inefficiency of the lower doses of Vit C in ovarian cancer cells. At a pharmacological dose of 1 mM, Vit C decreased PARP expression (1.5-fold; p < 0.05). We suggest that it's nontoxic effects on non-cancer cells may be an indicator of its prophylactic use, while in a pharmacological dose Vit C should be considered a possible adjunctive drug in ovarian cancer. However, it is necessary to consider the effect of the CAF.
Collapse
Affiliation(s)
- Ewa Lucja Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - Karolina Zajda
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - Joanna Tekla
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - Natalia Respekta
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - Paweł Zdybał
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - Aleksandra Such
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| |
Collapse
|
20
|
Therapeutic Perspective of Vitamin C and Its Derivatives. Antioxidants (Basel) 2019; 8:antiox8080247. [PMID: 31357509 PMCID: PMC6721080 DOI: 10.3390/antiox8080247] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/03/2023] Open
Abstract
l-Ascorbic acid (ASA), vitamin C, is a ubiquitous carbohydrate-like compound that has an essential role in a number of cellular processes, such as collagen synthesis, cellular oxidation, and various hydroxylation reactions. ASA is a biomolecule of critical importance for protection of cellular components against oxidative damage caused by toxic free radicals and other reactive oxygen species (ROS) that are involved in the development of various types of chronic diseases. Vitamin C has a switchover role from being an antioxidant in physiological conditions to a prooxidant under pathologic conditions. Moreover, some l-ascorbic acid derivatives exhibit strong and selective antitumor and antiviral activity. This review emphasizes the advances on diverse and potent biological profiles of l-ascorbic acid and its derivatives, and their perspective in the development of new bioactive chemical entities in the future. The work is primarily addressed at antioxidant, anticancer, and antiviral potencies of l-ascorbic acid and compounds containing its butenolide structural motif.
Collapse
|
21
|
Bhattacharya S, Gong X, Wang E, Dutta SK, Caplette JR, Son M, Nguyen FT, Strano MS, Mukhopadhyay D. DNA-SWCNT Biosensors Allow Real-Time Monitoring of Therapeutic Responses in Pancreatic Ductal Adenocarcinoma. Cancer Res 2019; 79:4515-4523. [PMID: 31292162 DOI: 10.1158/0008-5472.can-18-3337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 01/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic cancer with limited treatment options. There is an urgent need for tools that monitor therapeutic responses in real time. Drugs such as gemcitabine and irinotecan elicit their therapeutic effect in cancer cells by producing hydrogen peroxide (H2O2). In this study, specific DNA-wrapped single-walled carbon nanotubes (SWCNT), which precisely monitor H2O2, were used to determine the therapeutic response of PDAC cells in vitro and tumors in vivo. Drug therapeutic efficacy was evaluated in vitro by monitoring H2O2 differences in situ using reversible alteration of Raman G-bands from the nanotubes. Implantation of the DNA-SWCNT probe inside the PDAC tumor resulted in approximately 50% reduction of Raman G-band intensity when treated with gemcitabine versus the pretreated tumor; the Raman G-band intensity reversed to its pretreatment level upon treatment withdrawal. In summary, using highly specific and sensitive DNA-SWCNT nanosensors, which can determine dynamic alteration of hydrogen peroxide in tumor, can evaluate the effectiveness of chemotherapeutics. SIGNIFICANCE: A novel biosensor is used to detect intratumoral hydrogen peroxide, allowing real-time monitoring of responses to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| | - Shamit K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| | - Joseph R Caplette
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| | - Manki Son
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida. .,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| |
Collapse
|
22
|
Marik PE, Rivera R, Hooper MH, Khangoora V, Catravas J. Response. Chest 2019; 152:677. [PMID: 28889882 DOI: 10.1016/j.chest.2017.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 10/18/2022] Open
Affiliation(s)
- Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA.
| | - Racquel Rivera
- Department of Pharmacy, Sentara Norfolk General Hospital; and the School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA
| | - Michael H Hooper
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA
| | - Vikramjit Khangoora
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA
| | - John Catravas
- Departments of Medicine and Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
23
|
Peroxiporins in Cancer. Int J Mol Sci 2019; 20:ijms20061371. [PMID: 30893772 PMCID: PMC6471688 DOI: 10.3390/ijms20061371] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
The transport of H2O2 across membranes by specific aquaporins (AQPs) has been considered the last milestone in the timeline of hydrogen peroxide discoveries in biochemistry. According to its concentration and localization, H2O2 can be dangerous or acts as a signaling molecule in various cellular processes as either a paracrine (intercellular) and/or an autocrine (intracellular) signal. In this review, we investigate and critically examine the available information on AQP isoforms able to facilitate H2O2 across biological membranes (“peroxiporins”), focusing in particular on their role in cancer. Moreover, the ability of natural compounds to modulate expression and/or activity of peroxiporins is schematically reported and discussed.
Collapse
|
24
|
Valachová K, Juránek I, Rapta P, Valent I, Šoltés L. On infusion of high-dose ascorbate in treating cancer: Is it time for N-acetylcysteine pretreatment to enhance susceptibility and to lower side effects? Med Hypotheses 2018; 122:8-9. [PMID: 30593429 DOI: 10.1016/j.mehy.2018.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
Ascorbate administered intravenously gives a high plasma concentration of this drug. Clinical trials with pancreatic carcinoma patients revealed their prolonged survival if treated with intravenous ascorbate. On the other hand, high plasma ascorbate concentration leads to severe side effects, such as nephrotoxicity. In the present paper, we advocate to lower intravenous ascorbate dosage along with monothiol N-acetylcysteine pretreatment due to anticipation of the same therapeutic effect but less or none of side effects. We describe in detail molecular mechanism of ascorbate action to be potentiated by N-acetylcysteine, as observed under in vitro conditions. Providing further arguments, we believe that the same mechanism may be employed in vivo.
Collapse
Affiliation(s)
- K Valachová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, SK-84104 Bratislava, Slovakia.
| | - I Juránek
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, SK-84104 Bratislava, Slovakia
| | - P Rapta
- Institute of Physical Chemistry and Chemical Physics, SK-81237 Bratislava, Slovakia
| | - I Valent
- Comenius University, Department of Physical and Theoretical Chemistry, SK-84215 Bratislava, Slovakia
| | - L Šoltés
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, SK-84104 Bratislava, Slovakia
| |
Collapse
|
25
|
Saitoh Y. Comments to the article “Artefacts with ascorbate and other redox-active compounds in cell culture: epigenetic modifications, and cell killing due to hydrogen peroxide generation in cell culture media”. Free Radic Res 2018; 52:910-912. [DOI: 10.1080/10715762.2018.1524891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yasukazu Saitoh
- Laboratory of Bioscience and Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| |
Collapse
|
26
|
Chaiswing L, St. Clair WH, St. Clair DK. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer. Antioxid Redox Signal 2018; 29:1237-1272. [PMID: 29325444 PMCID: PMC6157438 DOI: 10.1089/ars.2017.7485] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cancer cells that are resistant to radiation and chemotherapy are a major problem limiting the success of cancer therapy. Aggressive cancer cells depend on elevated intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and metastasize. As a result, these aggressive cancers maintain high basal levels of ROS compared with normal cells. The prominence of the redox state in cancer cells led us to consider whether increasing the redox state to the condition of oxidative stress could be used as a successful adjuvant therapy for aggressive cancers. Recent Advances: Past attempts using antioxidant compounds to inhibit ROS levels in cancers as redox-based therapy have met with very limited success. However, recent clinical trials using pro-oxidant compounds reveal noteworthy results, which could have a significant impact on the development of strategies for redox-based therapies. CRITICAL ISSUES The major objective of this review is to discuss the role of the redox state in aggressive cancers and how to utilize the shift in redox state to improve cancer therapy. We also discuss the paradox of redox state parameters; that is, hydrogen peroxide (H2O2) as the driver molecule for cancer progression as well as a target for cancer treatment. FUTURE DIRECTIONS Based on the biological significance of the redox state, we postulate that this system could potentially be used to create a new avenue for targeted therapy, including the potential to incorporate personalized redox therapy for cancer treatment.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| | - William H. St. Clair
- Department of Radiation Medicine, University of Kentucky-Lexington, Lexington, Kentucky
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| |
Collapse
|
27
|
Puente V, Demaria A, Frank FM, Batlle A, Lombardo ME. Anti-parasitic effect of vitamin C alone and in combination with benznidazole against Trypanosoma cruzi. PLoS Negl Trop Dis 2018; 12:e0006764. [PMID: 30240395 PMCID: PMC6169970 DOI: 10.1371/journal.pntd.0006764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 10/03/2018] [Accepted: 08/17/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Drugs currently used for the treatment of Chagas' disease, nifurtimox and benznidazole, have a limited effectiveness and toxic side effects. With the aim of finding new therapeutic approaches, in vitro and in vivo anti-Trypanosoma cruzi activity of vitamin C alone and combined with benznidazole were investigated. METHODOLOGY/PRINCIPAL FINDINGS The trypanocidal activity on epimastigote and trypomastigote forms was evaluated by counting parasites in a Neubauer chamber after treatment with the compounds. For the amastigote stage, transgenic parasites expressing β-galactosidase were used and quantified by measuring the β-galactosidase activity. The cytotoxicity of compounds was tested on Vero cells. The redox state of the parasite was evaluated by determining the reduced thiol levels (spectrophotometric assay) and the intracellular oxidative state (by flow cytometry). The in vivo trypanocidal activity was evaluated on a murine model of Chagas' disease. The trypanocidal activity of vitamin C and benznidazole was similar for the three parasite forms. When combining both drugs, vitamin C did not induce any change in the antiparasitic activity of benznidazole on trypomastigotes; however, on mammal cells, vitamin C diminished the cytotoxicity degree of benznidazole. Two mechanisms of action may be postulated for vitamin C: a lethal pro-oxidant effect on the parasite when used alone, and an antioxidant effect, when combined with benznidazole. A similar behavior was observed on infected mice; i.e., parasite counts in infected mice treated with vitamin C were lower than that of the control group. Animals treated with benznidazole presented lower parasitemia levels, as compared with those treated with vitamin C alone. Again, vitamin C did not cause any effect on the antiparasitic profile of benznidazole. Even though a combined treatment was employed, the antioxidant effect of vitamin C on the host was evidenced; a 100% survival was observed and the weight loss occurring during the acute phase of the infection was reduced. CONCLUSIONS/SIGNIFICANCE Based on these results, the combination of vitamin C with benznidazole could be considered as an alternative treatment for Chagas' disease. These preliminary results encourage further research to improve the treatment of Chagas' disease.
Collapse
Affiliation(s)
- Vanesa Puente
- Centro de Investigaciones sobre Porfirinas y Porfirias, CIPYP (UBA-CONICET), Hospital de Clínicas José de San Martín, UBA, Buenos Aires, Argentina
| | - Agostina Demaria
- Centro de Investigaciones sobre Porfirinas y Porfirias, CIPYP (UBA-CONICET), Hospital de Clínicas José de San Martín, UBA, Buenos Aires, Argentina
| | - Fernanda M. Frank
- Instituto de Microbiología y Parasitología Médica, IMPAM (Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Medicina, UBA, Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires, Argentina
| | - Alcira Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias, CIPYP (UBA-CONICET), Hospital de Clínicas José de San Martín, UBA, Buenos Aires, Argentina
| | - Maria Elisa Lombardo
- Centro de Investigaciones sobre Porfirinas y Porfirias, CIPYP (UBA-CONICET), Hospital de Clínicas José de San Martín, UBA, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| |
Collapse
|
28
|
Carr AC, Cook J. Intravenous Vitamin C for Cancer Therapy - Identifying the Current Gaps in Our Knowledge. Front Physiol 2018; 9:1182. [PMID: 30190680 PMCID: PMC6115501 DOI: 10.3389/fphys.2018.01182] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023] Open
Abstract
The use of intravenous vitamin C (IVC) for cancer therapy has long been an area of intense controversy. Despite this, high dose IVC has been administered for decades by complementary health care practitioners and physicians, with little evidence base resulting in inconsistent clinical practice. In this review we pose a series of questions of relevance to both researchers and clinicians, and also patients themselves, in order to identify current gaps in our knowledge. These questions include: Do oncology patients have compromised vitamin C status? Is intravenous the optimal route of vitamin C administration? Is IVC safe? Does IVC interfere with chemotherapy or radiotherapy? Does IVC decrease the toxic side effects of chemotherapy and improve quality of life? What are the relevant mechanisms of action of IVC? What are the optimal doses, frequency, and duration of IVC therapy? Researchers have made massive strides over the last 20 years and have addressed many of these important aspects, such as the best route for administration, safety, interactions with chemotherapy, quality of life, and potential mechanisms of action. However, we still do not know the answers to a number of fundamental questions around best clinical practice, such as how much, how often and for how long to administer IVC to oncology patients. These questions point the way forward for both basic research and future clinical trials.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - John Cook
- New Brighton Health Care, Christchurch, New Zealand
| |
Collapse
|
29
|
Vissers MCM, Das AB. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Front Physiol 2018; 9:809. [PMID: 30018566 PMCID: PMC6037948 DOI: 10.3389/fphys.2018.00809] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Whether vitamin C (ascorbate) has a role to play as an anti-cancer agent has been debated for decades. Ascorbate has been used by cancer patients in an unregulated environment, either as a dietary supplement or in pharmacological doses administered by infusion, with numerous reports of clinical benefit, but in the absence of rigorous clinical trial data. The design of appropriate clinical trials has been hindered by a lack of understanding of the mechanism(s) of action that would inform the choice of effective dose, timing of administration and likely responsive cancer models. More recently, expanded understanding of the biological activities of ascorbate has led to a number of plausible hypotheses for mechanisms of anti-cancer activity. Prominent among these are the generation of significant quantities of hydrogen peroxide by the autoxidation of supra-physiological concentrations of ascorbate and stimulation of the 2-oxoglutarate-dependent dioxygenase family of enzymes (2-OGDDs) that have a cofactor requirement for ascorbate. Hydrogen peroxide generation is postulated to generate oxidative stress that preferentially targets cancer cells. The 2-OGDDs include the hydroxylases that regulate the hypoxic response, a major driver of tumor survival, angiogenesis, stem cell phenotype and metastasis, and the epigenetic histone and DNA demethylases. The latter are of particular interest, with recent studies suggesting a promising role for ascorbate in the regulation of the ten-eleven translocase (TET) DNA demethylases in hematological cancers. Support for these proposed mechanisms has come from many in vitro studies, and xenograft animal models have consistently shown an anti-cancer effect of ascorbate administration. However, decisive evidence for any particular mechanism(s) of action is not yet available from an in vivo setting. With a number of early phase clinical trials currently underway, evidence for potential mechanism(s) of action is required to inform the most appropriate study design and choice of cancer model. Hopefully such information will result in sound clinical data that will avert adding any further controversy to this already contentious debate.
Collapse
Affiliation(s)
- Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| |
Collapse
|
30
|
Erudaitius D, Mantooth J, Huang A, Soliman J, Doskey CM, Buettner GR, Rodgers VGJ. Calculated cell-specific intracellular hydrogen peroxide concentration: Relevance in cancer cell susceptibility during ascorbate therapy. Free Radic Biol Med 2018; 120:356-367. [PMID: 29601946 PMCID: PMC6160292 DOI: 10.1016/j.freeradbiomed.2018.03.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/13/2018] [Accepted: 03/25/2018] [Indexed: 01/24/2023]
Abstract
The high extracellular hydrogen peroxide (H2O2) concentrations generated during pharmacological ascorbate (P-AscH-) therapy has been shown to exhibit a high flux into susceptible cancer cells leading to a decrease in clonogenic survival. It is hypothesized that the intracellular H2O2 concentration for susceptibility is independent of cell type and that the variation observed in dosing is associated with differences in the cell-specific overall steady-state intracellular H2O2 concentration values. The steady-state variation in intracellular H2O2 concentration is coupled to a number of cellular specific transport and reaction factors including catalase activity and membrane permeability. Here a lumped-parameter mathematical modeling approach, assuming a catalase-dominant peroxide removal mechanism, is used to calculate intracellular H2O2 concentration for several cell lines. Experimental measurements of critical parameters pertaining to the model are obtained. The cell lines investigated are normal pancreatic cells, H6c7, the pancreatic cancer cell line, MIA PaCa-2 and the glioblastoma cell lines, LN-229, T98G, and U-87; all which vary in susceptibility. The intracellular H2O2 concentration estimates are correlated with the clonogenic surviving fraction for each cell line, in-vitro. The results showed that, despite the fact that the experimental parameters including catalase concentration and plasma membrane permeability demonstrated significant variability across cell lines, the calculated steady-state intracellular to extracellular H2O2 concentration ratio did not vary significantly across cell lines. Thus, the calculated intracellular H2O2 concentration is not unique in characterizing susceptibility. These results imply that, although intracellular H2O2 concentration plays a key role in cellular susceptibility to P-AscH- adjuvant therapy, its overall contribution in a unifying mechanism across cell types is complex.
Collapse
Affiliation(s)
- Dieanira Erudaitius
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Jacqueline Mantooth
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Andrew Huang
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | - Jesse Soliman
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Claire M Doskey
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, USA
| | - Garry R Buettner
- Free Radical & Radiation Biology, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Victor G J Rodgers
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
31
|
Bezerra Salomão K, Cruzeiro GAV, Bonfim-Silva R, Geron L, Ramalho F, Pinto Saggioro F, Serafini LN, Antunes Moreno D, de Paula Queiroz RG, Dos Santos Aguiar S, Cardinalli I, Yunes JA, Brandalise SR, Brassesco MS, Scrideli CA, Gonzaga Tone L. Reduced hydroxymethylation characterizes medulloblastoma while TET and IDH genes are differentially expressed within molecular subgroups. J Neurooncol 2018; 139:33-42. [PMID: 29582271 DOI: 10.1007/s11060-018-2845-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/17/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Medulloblastoma (MB) is an embryonal tumour that originates from genetic deregulation of cerebellar developmental pathways and is classified into 4 molecular subgroups: SHH, WNT, group 3, and group 4. Hydroxymethylation levels progressively increases during cerebellum development suggesting a possibility of deregulation in MB pathogenesis. The aim of this study was to investigate global hydroxymethylation levels and changes in TET and IDH gene expression in MB samples compared to control cerebellum samples. METHODS The methods utilized were qRT-PCR for gene expression, dot-blot and immunohistochemistry for global hydroxymethylation levels and sequencing for the investigation of IDH mutations. RESULTS Our results show that global hydroxymethylation level was decreased in MB, and low 5hmC level was associated with the presence of metastasis. TET1 expression levels were decreased in the WNT subgroup, while TET3 expression levels were decreased in the SHH subgroup. Reduced TET3 expression levels were associated with the presence of events such as relapse and death. Higher expression of IDH1 was observed in MB group 3 samples, whereas no mutations were detected in exon 4 of IDH1 and IDH2. CONCLUSION These findings suggest that reduction of global hydroxymethylation levels, an epigenetic event, may be important for MB development and/or maintenance, representing a possible target in this tumour and indicating a possible interaction of TET and IDH genes with the developmental pathways specifically activated in the MB subgroups. These genes could be specific targets and markers for each subgroup.
Collapse
Affiliation(s)
- Karina Bezerra Salomão
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil. .,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil. .,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Ricardo Bonfim-Silva
- Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Lenisa Geron
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Fernando Ramalho
- Department of Pathology, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Fabiano Pinto Saggioro
- Department of Pathology, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luciano Neder Serafini
- Department of Pathology, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Daniel Antunes Moreno
- Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Rosane Gomes de Paula Queiroz
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Izilda Cardinalli
- Boldrini Centre of Children, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - José Andres Yunes
- Boldrini Centre of Children, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | - Maria Sol Brassesco
- Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Carlos Alberto Scrideli
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luiz Gonzaga Tone
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
32
|
Sun Y, Pham AN, Waite TD. The effect of vitamin C and iron on dopamine-mediated free radical generation: implications to Parkinson's disease. Dalton Trans 2018; 47:4059-4069. [DOI: 10.1039/c7dt04373b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While the application of Asc alone may aggravate the progression of PD in view of the possible peroxidation of Asc bound Fe(ii), a combination therapy of Asc and strong clinically appropriate iron chelator would appear to be a promising direction for the treatment of PD as a result of the enhanced iron chelation and attenuation in oxidative stress and toxicity induced by DA derived quinones.
Collapse
Affiliation(s)
- Yingying Sun
- School of Civil and Environmental Engineering
- The University of New South Wales
- Sydney
- Australia
| | - An Ninh Pham
- School of Civil and Environmental Engineering
- The University of New South Wales
- Sydney
- Australia
| | - T. David Waite
- School of Civil and Environmental Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
33
|
Sinha BK, van 't Erve TJ, Kumar A, Bortner CD, Motten AG, Mason RP. Synergistic enhancement of topotecan-induced cell death by ascorbic acid in human breast MCF-7 tumor cells. Free Radic Biol Med 2017; 113:406-412. [PMID: 29079526 PMCID: PMC5699936 DOI: 10.1016/j.freeradbiomed.2017.10.377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/18/2022]
Abstract
Topotecan, a derivative of camptothecin, is an important anticancer drug for the treatment of various human cancers in the clinic. While the principal mechanism of tumor cell killing by topotecan is due to its interactions with topoisomerase I, other mechanisms, e.g., oxidative stress induced by reactive free radicals, have also been proposed. However, very little is known about how topotecan induces free radical-dependent oxidative stress in tumor cells. In this report we describe the formation of a topotecan radical, catalyzed by a peroxidase-hydrogen peroxide system. While this topotecan radical did not undergo oxidation-reduction with molecular O2, it rapidly reacted with reduced glutathione and cysteine, regenerating topotecan and forming the corresponding glutathiyl and cysteinyl radicals. Ascorbic acid, which produces hydrogen peroxide in tumor cells, significantly increased topotecan cytotoxicity in MCF-7 tumor cells. The presence of ascorbic acid also increased both topoisomerase I-dependent topotecan-induced DNA cleavage complex formation and topotecan-induced DNA double-strand breaks, suggesting that ascorbic acid participated in enhancing DNA damage induced by topotecan and that the enhanced DNA damage is responsible for the synergistic interactions of topotecan and ascorbic acid. Cell death by topotecan and the combination of topotecan and ascorbic acid was predominantly due to necrosis of MCF-7 breast tumor cells.
Collapse
Affiliation(s)
- Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | - Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ashutosh Kumar
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Carl D Bortner
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ann G Motten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
34
|
Mastrangelo D, Pelosi E, Castelli G, Lo-Coco F, Testa U. Mechanisms of anti-cancer effects of ascorbate: Cytotoxic activity and epigenetic modulation. Blood Cells Mol Dis 2017; 69:57-64. [PMID: 28954710 DOI: 10.1016/j.bcmd.2017.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022]
Abstract
Vitamin C (Vit C or Ascorbate) is essential for many fundamental biochemical processes. Vit C is an essential nutrient with redox functions at normal physiologic concentrations. The main physiologic function of this vitamin is related to its capacity to act as a co-factor for a large family of enzymes, collectively known as Fe and 2-oxoglutarate-dependent dioxygenases. It also modulates epigenetic gene expression through the control of TET enzymes activity. Vit C also has several biological properties allowing to restore the deregulated epigenetic response observed in many tumors. High-dose Vit C has been investigated as a treatment for cancer patients since the 1969. Pharmacologic ascorbate acts as a pro-drug for hydrogen peroxide formation (H2O2) and, through this mechanism, kills cancer cells. To achieve high in vivo concentrations, Ascorbate must be injected by i.v. route. Initial clinical studies of Ascorbate cancer treatment have provided encouraging results, not confirmed in subsequent studies. Recent clinical studies using i.v. injection of high-dose Ascorbate have renewed the interest in the field, showing that significant anti-tumor activity. Pre-clinical studies have led to identify tumors sensitive to Ascorbate that could potentially benefit from this treatment either through an epigenetic modulator effect or through tumor killing by oxidative stress.
Collapse
Affiliation(s)
- Domenico Mastrangelo
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Polo Scientifico San Miniato, Siena, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano, Rome, Italy
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
35
|
Lee KE, Hahm E, Bae S, Kang JS, Lee WJ. The enhanced tumor inhibitory effects of gefitinib and L-ascorbic acid combination therapy in non-small cell lung cancer cells. Oncol Lett 2017; 14:276-282. [PMID: 28693165 DOI: 10.3892/ol.2017.6109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/03/2017] [Indexed: 12/28/2022] Open
Abstract
Despite documentation of successful therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in patients with lung cancer, the response rate of patients treated with this therapy remains low. The present study investigated whether L-ascorbic acid serves an adjuvant role in vitro when combined with the EGFR tyrosine kinase inhibitor gefitinib (Iressa®) in lung cancer cell lines. A total of three human lung cancer cell lines were used. The antiproliferative effects and changes in the cell cycle and expression of intracellular signaling molecules, including extracellular signal-regulated kinases (Erk), signal transducer and activator of transcription 3 (Stat3) and protein kinase B (Akt), were measured in cells treated with gefitinib and/or L-ascorbic acid at various concentrations. When combined with gefitinib, L-ascorbic acid exhibited an additive effect on cell proliferation in all gefitinib-sensitive and gefitinib-resistant cell lines. A decrement of ~40% was observed with a low dose 0.5 mM L-ascorbic acid and gefitinib in the relatively gefitinib-resistant A549 cell line (85.6±5.4% with gefitinib alone vs. 52.7±7.3% with combination therapy; P=0.046). The downregulation of intracellular signaling cascades, including EGFR, Akt, Erk and Stat3, was also observed. L-Ascorbic acid serves an adjuvant role when administered in combination with gefitinib; however, the degree of inhibition of cell proliferation differs between lung cancer cell lines.
Collapse
Affiliation(s)
- Kyoung Eun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Eunsil Hahm
- Department of Anatomy and Tumor Immunity Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Seyeon Bae
- Department of Anatomy and Tumor Immunity Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jae Seung Kang
- Department of Anatomy and Tumor Immunity Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Wang Jae Lee
- Department of Anatomy and Tumor Immunity Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
36
|
Wu CW, Liu HC, Yu YL, Hung YT, Wei CW, Yiang GT. Combined treatment with vitamin C and methotrexate inhibits triple-negative breast cancer cell growth by increasing H2O2 accumulation and activating caspase-3 and p38 pathways. Oncol Rep 2017; 37:2177-2184. [PMID: 28259996 DOI: 10.3892/or.2017.5439] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Methotrexate (MTX) is widely used as both an anticancer and anti-rheumatoid arthritis drug. Although MTX has been used to inhibit the growth of many cancer cells, it cannot effectively inhibit growth of triple-negative breast cancer cells (TNBC cells). Vitamin C is an antioxidant that can prevent oxidative stress. In addition, vitamin C has been applied as adjunct treatment for growth inhibition of cancer cells. Recent studies indicated that combined treatment with vitamin C and MTX may inhibit MCF-7 and MDA-MB-231 breast cancer cell growth through G2/M elongation. However, the mechanisms remain unknown. The aim of the present study was to determine whether combined treatment with low-dose vitamin C and MTX inhibits TNBC cell growth and to investigate the mechanisms of vitamin C/MTX-induced cytotoxicity. Neither low-dose vitamin C alone nor MTX alone inhibited TNBC cell growth. However, combined low-dose vitamin C and MTX had synergistic anti-proliferative/cytotoxic effects on TNBC cells. In addition, co-treatment increased H2O2 levels and activated both caspase-3 and p38 cell death pathways.
Collapse
Affiliation(s)
- Ching-Wen Wu
- Department of Cardiac Surgery, Tungs' Taichung Metroharbor Hospital, Taichung 435, Taiwan, R.O.C
| | - Hsiao-Chun Liu
- Department of Nursing, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yu-Ting Hung
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| |
Collapse
|
37
|
Triethylenetetramine Synergizes with Pharmacologic Ascorbic Acid in Hydrogen Peroxide Mediated Selective Toxicity to Breast Cancer Cell. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3481710. [PMID: 28280522 PMCID: PMC5320382 DOI: 10.1155/2017/3481710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/05/2017] [Indexed: 12/29/2022]
Abstract
Breast cancer is characterized by overexpression of superoxide dismutase (SOD) and downregulation of catalase and more resistance to hydrogen peroxide (H2O2) than normal cells. Thus, relatively high H2O2 promotes breast cancer cell growth and proliferation. However, excessive intracellular H2O2 leads to death of breast cancer cells. In cancer cells, high level ascorbic acid (Asc) is able to be autoxidized and thus provides an electron to oxygen to generate H2O2. In the present study, we demonstrated that triethylenetetramine (TETA) enhances Asc autoxidation and thus elevates H2O2 production in MCF-7 cells. Furthermore, Asc/TETA combination significantly impaired cancer cell viability, while having much milder effects on normal cells, indicating Asc/TETA could be a promising therapy for breast cancer. Moreover, SOD1 and N-acetyl-L-cysteine failed to improve MCF-7 cells viability in the presence of Asc/TETA, while catalase significantly inhibited the cytotoxicity of Asc/TETA to breast cancer cells, strongly suggesting that the selective cytotoxicity of Asc/TETA to cancer cells is H2O2-dependent. In addition, Asc/TETA induces RAS/ERK downregulation in breast cancer cells. Animal studies confirmed that Asc/TETA effectively suppressed tumor growth in vivo. In conclusion, TETA synergizes pharmacologic Asc autoxidation and H2O2 overproduction in breast cancer cells, which suppresses RAS/ERK pathway and results in apoptosis.
Collapse
|
38
|
Erudaitius D, Huang A, Kazmi S, Buettner GR, Rodgers VGJ. Peroxiporin Expression Is an Important Factor for Cancer Cell Susceptibility to Therapeutic H2O2: Implications for Pharmacological Ascorbate Therapy. PLoS One 2017; 12:e0170442. [PMID: 28107421 PMCID: PMC5249139 DOI: 10.1371/journal.pone.0170442] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
Cancer cell toxicity to therapeutic H2O2 varies widely depending on cell type. Interestingly, it has been observed that different cancer cell types have varying peroxiporin expression. We hypothesize that variation in peroxiporin expression can alter cell susceptibility to therapeutic H2O2 concentrations. Here, we silence peroxiporin aquaporin-3 (AQP3) on the pancreatic cancer cell line MIA PaCa-2 and compare clonogenic survival response to the wild-type. The results showed a significantly higher surviving fraction in the clonogenic response for siAQP3 MIA PaCa-2 cells at therapeutic H2O2 doses (P < 0.05). These results suggest that peroxiporin expression is significant in modulating the susceptibility of cancer cells to ascorbate therapy.
Collapse
Affiliation(s)
- Dieanira Erudaitius
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
| | - Andrew Huang
- Department of Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Sarah Kazmi
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
| | - Garry R. Buettner
- Free Radical & Radiation Biology, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, United States of America
| | - Victor G. J. Rodgers
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
| |
Collapse
|
39
|
Gröber U, Holzhauer P, Kisters K, Holick MF, Adamietz IA. Micronutrients in Oncological Intervention. Nutrients 2016; 8:163. [PMID: 26985904 PMCID: PMC4808891 DOI: 10.3390/nu8030163] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/16/2016] [Accepted: 02/24/2016] [Indexed: 12/14/2022] Open
Abstract
Nutritional supplements are widely used among patients with cancer who perceive them to be anticancer and antitoxicity agents. Depending on the type of malignancy and the gender 30%-90% of the cancer patients supplement their diets with antioxidant and immuno-stabilizing micronutrients, such as selenium, vitamin C, and vitamin D, often without the knowledge of the treating physician. From the oncological viewpoint, there are justifiable concerns that dietary supplements decrease the effectiveness of chemotherapy and radiotherapy. Recent studies, however, have provided increasing evidence that treatment is tolerated better-with an increase in patient compliance and a lower rate of treatment discontinuations-when micronutrients, such as selenium, are added as appropriate to the patient's medication. Nutritional supplementation tailored to an individual's background diet, genetics, tumor histology, and treatments may yield benefits in subsets of patients. Clinicians should have an open dialogue with patients about nutritional supplements. Supplement advice needs to be individualized and come from a credible source, and it is best communicated by the physician.
Collapse
Affiliation(s)
- Uwe Gröber
- Akademie für Mikronährstoffmedizin, Essen, Zweigertstrasse 55, 45130 Essen, Germany.
| | - Peter Holzhauer
- Akademie für Mikronährstoffmedizin, Essen, Zweigertstrasse 55, 45130 Essen, Germany.
- Interdisziplinäres onkologisches Zentrum (IOZ), München, Nußbaumstrasse 12, München 80336, Germany.
- Klinik Bad Trissl, Innere Medizin II-Onkologie und Komplementärmedizin, Oberaudorf 83080, Germany.
| | - Klaus Kisters
- Akademie für Mikronährstoffmedizin, Essen, Zweigertstrasse 55, 45130 Essen, Germany.
- St. Anna Hospital, Medizinische Klinik I, Herne, Hospitalstrasse 19, Herne 44649, Germany.
| | - Michael F Holick
- Boston University Medical Center, 85 East Newton Street M-1033, Boston, MA 02118, USA.
| | - Irenäus A Adamietz
- Klinik für Strahlentherapie und Radio-Onkologie, Ruhr Universität Bochum (RUB), Hölkeskampring 40, Herne 44625, Germany.
| |
Collapse
|