1
|
Bi X. Hmo1: A versatile member of the high mobility group box family of chromosomal architecture proteins. World J Biol Chem 2024; 15:97938. [PMID: 39156122 PMCID: PMC11325855 DOI: 10.4331/wjbc.v15.i1.97938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/08/2024] Open
Abstract
Eukaryotic chromatin consisting of nucleosomes connected by linker DNA is organized into higher order structures, which is facilitated by linker histone H1. Formation of chromatin compacts and protects the genome, but also hinders DNA transactions. Cells have evolved mechanisms to modify/remodel chromatin resulting in chromatin states suitable for genome functions. The high mobility group box (HMGB) proteins are non-histone chromatin architectural factors characterized by one or more HMGB motifs that bind DNA in a sequence nonspecific fashion. They play a major role in chromatin dynamics. The Saccharomyces cerevisiae (yeast hereafter) HMGB protein Hmo1 contains two HMGB motifs. However, unlike a canonical HMGB protein that has an acidic C-terminus, Hmo1 ends with a lysine rich, basic, C-terminus, resembling linker histone H1. Hmo1 exhibits characteristics of both HMGB proteins and linker histones in its multiple functions. For instance, Hmo1 promotes transcription by RNA polymerases I and II like canonical HMGB proteins but makes chromatin more compact/stable like linker histones. Recent studies have demonstrated that Hmo1 destabilizes/disrupts nucleosome similarly as other HMGB proteins in vitro and acts to maintain a common topological architecture of genes in yeast genome. This minireview reviews the functions of Hmo1 and the underlying mechanisms, highlighting recent discoveries.
Collapse
Affiliation(s)
- Xin Bi
- Department of Biology, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
2
|
Kumar S, Mashkoor M, Balamurugan P, Grove A. Yeast Crf1p is an activator with different roles in regulation of target genes. Yeast 2024; 41:379-400. [PMID: 38639144 DOI: 10.1002/yea.3939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Under stress conditions, ribosome biogenesis is downregulated. This process requires that expression of ribosomal RNA, ribosomal protein, and ribosome biogenesis genes be controlled in a coordinated fashion. The mechanistic Target of Rapamycin Complex 1 (mTORC1) participates in sensing unfavorable conditions to effect the requisite change in gene expression. In Saccharomyces cerevisiae, downregulation of ribosomal protein genes involves dissociation of the activator Ifh1p in a process that depends on Utp22p, a protein that also functions in pre-rRNA processing. Ifh1p has a paralog, Crf1p, which was implicated in communicating mTORC1 inhibition and hence was perceived as a repressor. We focus here on two ribosomal biogenesis genes, encoding Utp22p and the high mobility group protein Hmo1p, both of which are required for communication of mTORC1 inhibition to target genes. Crf1p functions as an activator on these genes as evidenced by reduced mRNA abundance and RNA polymerase II occupancy in a crf1Δ strain. Inhibition of mTORC1 has distinct effects on expression of HMO1 and UTP22; for example, on UTP22, but not on HMO1, the presence of Crf1p promotes the stable depletion of Ifh1p. Our data suggest that Crf1p functions as a weak activator, and that it may be required to prevent re-binding of Ifh1p to some gene promoters after mTORC1 inhibition in situations when Ifh1p is available. We propose that the inclusion of genes encoding proteins required for mTORC1-mediated downregulation of ribosomal protein genes in the same regulatory circuit as the ribosomal protein genes serves to optimize transcriptional responses during mTORC1 inhibition.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Muneera Mashkoor
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Priya Balamurugan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
3
|
Gutiérrez-Santiago F, Navarro F. Transcription by the Three RNA Polymerases under the Control of the TOR Signaling Pathway in Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13040642. [PMID: 37189389 DOI: 10.3390/biom13040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ribosomes are the basis for protein production, whose biogenesis is essential for cells to drive growth and proliferation. Ribosome biogenesis is highly regulated in accordance with cellular energy status and stress signals. In eukaryotic cells, response to stress signals and the production of newly-synthesized ribosomes require elements to be transcribed by the three RNA polymerases (RNA pols). Thus, cells need the tight coordination of RNA pols to adjust adequate components production for ribosome biogenesis which depends on environmental cues. This complex coordination probably occurs through a signaling pathway that links nutrient availability with transcription. Several pieces of evidence strongly support that the Target of Rapamycin (TOR) pathway, conserved among eukaryotes, influences the transcription of RNA pols through different mechanisms to ensure proper ribosome components production. This review summarizes the connection between TOR and regulatory elements for the transcription of each RNA pol in the budding yeast Saccharomyces cerevisiae. It also focuses on how TOR regulates transcription depending on external cues. Finally, it discusses the simultaneous coordination of the three RNA pols through common factors regulated by TOR and summarizes the most important similarities and differences between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
4
|
Gutiérrez-Santiago F, Cintas-Galán M, Martín-Expósito M, del Carmen Mota-Trujillo M, Cobo-Huesa C, Perez-Fernandez J, Navarro Gómez F. A High-Copy Suppressor Screen Reveals a Broad Role of Prefoldin-like Bud27 in the TOR Signaling Pathway in Saccharomyces cerevisiae. Genes (Basel) 2022; 13:genes13050748. [PMID: 35627133 PMCID: PMC9141189 DOI: 10.3390/genes13050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Bud27 is a prefoldin-like, a member of the family of ATP-independent molecular chaperones that associates with RNA polymerases I, II, and III in Saccharomyces cerevisiae. Bud27 and its human ortholog URI perform several functions in the cytoplasm and the nucleus. Both proteins participate in the TOR signaling cascade by coordinating nutrient availability with gene expression, and lack of Bud27 partially mimics TOR pathway inactivation. Bud27 regulates the transcription of the three RNA polymerases to mediate the synthesis of ribosomal components for ribosome biogenesis through the TOR cascade. This work presents a high-copy suppression screening of the temperature sensitivity of the bud27Δ mutant. It shows that Bud27 influences different TOR-dependent processes. Our data also suggest that Bud27 can impact some of these TOR-dependent processes: cell wall integrity and autophagy induction.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - María Cintas-Galán
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Manuel Martín-Expósito
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Maria del Carmen Mota-Trujillo
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Cristina Cobo-Huesa
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Jorge Perez-Fernandez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Francisco Navarro Gómez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Correspondence: ; Tel.: +34-953-212771; Fax: +34-953-211875
| |
Collapse
|
5
|
ADRB3 induces mobilization and inhibits differentiation of both breast cancer cells and myeloid-derived suppressor cells. Cell Death Dis 2022; 13:141. [PMID: 35145073 PMCID: PMC8831559 DOI: 10.1038/s41419-022-04603-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Metastatic tumors are mainly composed of neoplastic cells escaping from the primary tumor and inflammatory cells egressing from bone marrow. Cancer cell and inflammatory cell are remained in the state of immaturity during migration to distant organs. Here, we show that ADRB3 is crucial in cell mobilization and differentiation. Immunohistochemistry revealed ADRB3 expression is significantly more frequent in breast cancer tissues than in adjacent noncancerous tissues (92.1% vs. 31.5%). Expression of ADRB3 correlated with malignant degree, TNM stage and poor prognosis. Moreover, ADRB3 expression was markedly high in activated disseminated tumor cells, myeloid-derived suppressor cells (MDSCs), lymphocytes and neutrophil extracellular traps of patients. Importantly, ADRB3 promoted the expansion of MDSC through stimulation of bone marrow mobilization and inhibiting of the differentiation of immature myeloid cells. Furthermore, ADRB3 promoted MCF-7 cells proliferation and inhibited transdifferentiation into adipocyte-like cell by activating mTOR pathway. Ultimately, the MDSC-deficient phenotype of ADRB3 -/- PyMT mice was associated with impairment of mammary tumorigenesis and reduction in pulmonary metastasis. Collectively, ADRB3 promotes metastasis by inducing mobilization and inhibiting differentiation of both breast cancer cells and MDSCs.
Collapse
|
6
|
Kumar S, Mashkoor M, Grove A. Yeast Crf1p: An activator in need is an activator indeed. Comput Struct Biotechnol J 2022; 20:107-116. [PMID: 34976315 PMCID: PMC8688861 DOI: 10.1016/j.csbj.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Ribosome biogenesis is an energetically costly process, and tight regulation is required for stoichiometric balance between components. This requires coordination of RNA polymerases I, II, and III. Lack of nutrients or the presence of stress leads to downregulation of ribosome biogenesis, a process for which mechanistic target of rapamycin complex I (mTORC1) is key. mTORC1 activity is communicated by means of specific transcription factors, and in yeast, which is a primary model system in which transcriptional coordination has been delineated, transcription factors involved in regulation of ribosomal protein genes include Fhl1p and its cofactors, Ifh1p and Crf1p. Ifh1p is an activator, whereas Crf1p has been implicated in maintaining the repressed state upon mTORC1 inhibition. Computational analyses of evolutionary relationships have indicated that Ifh1p and Crf1p descend from a common ancestor. Here, we discuss recent evidence, which suggests that Crf1p also functions as an activator. We propose a model that consolidates available experimental evidence, which posits that Crf1p functions as an alternate activator to prevent the stronger activator Ifh1p from re-binding gene promoters upon mTORC1 inhibition. The correlation between retention of Crf1p in related yeast strains and duplication of ribosomal protein genes suggests that this backup activation may be important to ensure gene expression when Ifh1p is limiting. With ribosome biogenesis as a hallmark of cell growth, failure to control assembly of ribosomal components leads to several human pathologies. A comprehensive understanding of mechanisms underlying this process is therefore of the essence.
Collapse
Key Words
- CK2, casein kinase 2
- Crf1, corepressor with forkhead like
- Crf1p
- FHA, forkhead-associated
- FHB, forkhead-binding
- FKBP, FK506 binding protein
- Fhl1, forkhead like
- Fpr1, FK506-sensitive proline rotamase
- Gene regulation
- Hmo1, high mobility group
- Ifh1, interacts with forkhead like
- Ifh1p
- RASTR, ribosome assembly stress response
- RP, ribosomal protein
- Rap1, repressor/activator protein
- RiBi, ribosome biogenesis
- Ribosomal protein
- Ribosome biogenesis
- Sfp1, split finger protein
- WGD, whole genome duplication
- mTORC1
- mTORC1, mechanistic target of rapamycin complex 1
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Muneera Mashkoor
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
8
|
Srinivasan R, Walvekar AS, Rashida Z, Seshasayee A, Laxman S. Genome-scale reconstruction of Gcn4/ATF4 networks driving a growth program. PLoS Genet 2020; 16:e1009252. [PMID: 33378328 PMCID: PMC7773203 DOI: 10.1371/journal.pgen.1009252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Growth and starvation are considered opposite ends of a spectrum. To sustain growth, cells use coordinated gene expression programs and manage biomolecule supply in order to match the demands of metabolism and translation. Global growth programs complement increased ribosomal biogenesis with sufficient carbon metabolism, amino acid and nucleotide biosynthesis. How these resources are collectively managed is a fundamental question. The role of the Gcn4/ATF4 transcription factor has been best studied in contexts where cells encounter amino acid starvation. However, high Gcn4 activity has been observed in contexts of rapid cell proliferation, and the roles of Gcn4 in such growth contexts are unclear. Here, using a methionine-induced growth program in yeast, we show that Gcn4/ATF4 is the fulcrum that maintains metabolic supply in order to sustain translation outputs. By integrating matched transcriptome and ChIP-Seq analysis, we decipher genome-wide direct and indirect roles for Gcn4 in this growth program. Genes that enable metabolic precursor biosynthesis indispensably require Gcn4; contrastingly ribosomal genes are partly repressed by Gcn4. Gcn4 directly binds promoter-regions and transcribes a subset of metabolic genes, particularly driving lysine and arginine biosynthesis. Gcn4 also globally represses lysine and arginine enriched transcripts, which include genes encoding the translation machinery. The Gcn4 dependent lysine and arginine supply thereby maintains the synthesis of the translation machinery. This is required to maintain translation capacity. Gcn4 consequently enables metabolic-precursor supply to bolster protein synthesis, and drive a growth program. Thus, we illustrate how growth and starvation outcomes are both controlled using the same Gcn4 transcriptional outputs that function in distinct contexts.
Collapse
Affiliation(s)
- Rajalakshmi Srinivasan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK post, Bangalore, India
| | - Adhish S. Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK post, Bangalore, India
| | - Zeenat Rashida
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK post, Bangalore, India
| | - Aswin Seshasayee
- National Centre for Biological Sciences–TIFR, GKVK post, Bellary Road, Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK post, Bangalore, India
| |
Collapse
|
9
|
Petibon C, Malik Ghulam M, Catala M, Abou Elela S. Regulation of ribosomal protein genes: An ordered anarchy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1632. [PMID: 33038057 PMCID: PMC8047918 DOI: 10.1002/wrna.1632] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Ribosomal protein genes are among the most highly expressed genes in most cell types. Their products are generally essential for ribosome synthesis, which is the cornerstone for cell growth and proliferation. Many cellular resources are dedicated to producing ribosomal proteins and thus this process needs to be regulated in ways that carefully balance the supply of nascent ribosomal proteins with the demand for new ribosomes. Ribosomal protein genes have classically been viewed as a uniform interconnected regulon regulated in eukaryotic cells by target of rapamycin and protein kinase A pathway in response to changes in growth conditions and/or cellular status. However, recent literature depicts a more complex picture in which the amount of ribosomal proteins produced varies between genes in response to two overlapping regulatory circuits. The first includes the classical general ribosome‐producing program and the second is a gene‐specific feature responsible for fine‐tuning the amount of ribosomal proteins produced from each individual ribosomal gene. Unlike the general pathway that is mainly controlled at the level of transcription and translation, this specific regulation of ribosomal protein genes is largely achieved through changes in pre‐mRNA splicing efficiency and mRNA stability. By combining general and specific regulation, the cell can coordinate ribosome production, while allowing functional specialization and diversity. Here we review the many ways ribosomal protein genes are regulated, with special focus on the emerging role of posttranscriptional regulatory events in fine‐tuning the expression of ribosomal protein genes and its role in controlling the potential variation in ribosome functions. This article is categorized under:Translation > Ribosome Biogenesis Translation > Ribosome Structure/Function Translation > Translation Regulation
Collapse
Affiliation(s)
- Cyrielle Petibon
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mustafa Malik Ghulam
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mathieu Catala
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| |
Collapse
|
10
|
Martínez-Fernández V, Cuevas-Bermúdez A, Gutiérrez-Santiago F, Garrido-Godino AI, Rodríguez-Galán O, Jordán-Pla A, Lois S, Triviño JC, de la Cruz J, Navarro F. Prefoldin-like Bud27 influences the transcription of ribosomal components and ribosome biogenesis in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2020; 26:1360-1379. [PMID: 32503921 PMCID: PMC7491330 DOI: 10.1261/rna.075507.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 05/08/2023]
Abstract
Understanding the functional connection that occurs for the three nuclear RNA polymerases to synthesize ribosome components during the ribosome biogenesis process has been the focal point of extensive research. To preserve correct homeostasis on the production of ribosomal components, cells might require the existence of proteins that target a common subunit of these RNA polymerases to impact their respective activities. This work describes how the yeast prefoldin-like Bud27 protein, which physically interacts with the Rpb5 common subunit of the three RNA polymerases, is able to modulate the transcription mediated by the RNA polymerase I, likely by influencing transcription elongation, the transcription of the RNA polymerase III, and the processing of ribosomal RNA. Bud27 also regulates both RNA polymerase II-dependent transcription of ribosomal proteins and ribosome biogenesis regulon genes, likely by occupying their DNA ORFs, and the processing of the corresponding mRNAs. With RNA polymerase II, this association occurs in a transcription rate-dependent manner. Our data also indicate that Bud27 inactivation alters the phosphorylation kinetics of ribosomal protein S6, a readout of TORC1 activity. We conclude that Bud27 impacts the homeostasis of the ribosome biogenesis process by regulating the activity of the three RNA polymerases and, in this way, the synthesis of ribosomal components. This quite likely occurs through a functional connection of Bud27 with the TOR signaling pathway.
Collapse
Affiliation(s)
- Verónica Martínez-Fernández
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Abel Cuevas-Bermúdez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Ana I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain
- Departamento de Genética, Universidad de Sevilla, E-41012 Seville, Spain
| | - Antonio Jordán-Pla
- ERI Biotecmed, Facultad de Biológicas, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | - Sergio Lois
- Sistemas Genómicos. Ronda de Guglielmo Marconi, 6, 46980 Paterna, Valencia, Spain
| | - Juan C Triviño
- Sistemas Genómicos. Ronda de Guglielmo Marconi, 6, 46980 Paterna, Valencia, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain
- Departamento de Genética, Universidad de Sevilla, E-41012 Seville, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| |
Collapse
|
11
|
Nakagawa T, Hattori S, Nobuta R, Kimura R, Nakagawa M, Matsumoto M, Nagasawa Y, Funayama R, Miyakawa T, Inada T, Osumi N, Nakayama KI, Nakayama K. The Autism-Related Protein SETD5 Controls Neural Cell Proliferation through Epigenetic Regulation of rDNA Expression. iScience 2020; 23:101030. [PMID: 32299058 PMCID: PMC7160574 DOI: 10.1016/j.isci.2020.101030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/29/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Haploinsufficiency of SETD5 is implicated in syndromic autism spectrum disorder (ASD), but the molecular mechanism underlying the pathological role of this protein has remained unclear. We have now shown that Setd5+/– mice manifest ASD-related behavioral phenotypes and that the expression of ribosomal protein genes and rDNA is disturbed in the brain of these mice. SETD5 recruited the HDAC3 complex to the rDNA promoter, resulting in removal of the histone mark H4K16ac and its reader protein TIP5, a repressor of rDNA expression. Depletion of SETD5 attenuated rDNA expression, translational activity, and neural cell proliferation, whereas ablation of TIP5 in SETD5-deficient cells rescued these effects. Translation of cyclin D1 mRNA was specifically down-regulated in SETD5-insufficient cells. Our results thus suggest that SETD5 positively regulates rDNA expression via an HDAC3-mediated epigenetic mechanism and that such regulation is essential for translation of cyclin D1 mRNA and neural cell proliferation. Setd5+/– mice manifest syndromic autism-related phenotypes SETD5 recruits the HDAC3 complex to the rDNA promoter SETD5 deficiency reduces rRNA abundance and attenuates translational activity SETD5 deficiency inhibits cyclin D1 mRNA translation and neural cell proliferation
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Risa Nobuta
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Ryuichi Kimura
- Division of Developmental Neuroscience, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Makiko Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuko Nagasawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Noriko Osumi
- Division of Developmental Neuroscience, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
12
|
Ghulam MM, Catala M, Abou Elela S. Differential expression of duplicated ribosomal protein genes modifies ribosome composition in response to stress. Nucleic Acids Res 2020; 48:1954-1968. [PMID: 31863578 PMCID: PMC7038994 DOI: 10.1093/nar/gkz1183] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
In Saccharomyces cerevisiae, most ribosomal proteins are synthesized from duplicated genes, increasing the potential for ribosome heterogeneity. However, the contribution of these duplicated genes to ribosome production and the mechanism determining their relative expression remain unclear. Here we demonstrate that in most cases, one of the two gene copies generate the bulk of the active ribosomes under normal growth conditions, while the other copy is favored only under stress. To understand the origin of these differences in paralog expression and their contribution to ribosome heterogeneity we used RNA polymerase II ChIP-Seq, RNA-seq, polyribosome association and peptide-based mass-spectrometry to compare their transcription potential, splicing, mRNA abundance, translation potential, protein abundance and incorporation into ribosomes. In normal conditions a post-transcriptional expression hierarchy of the duplicated ribosomal protein genes is the product of the efficient splicing, high stability and efficient translation of the major paralog mRNA. Exposure of the cell to stress modifies the expression ratio of the paralogs by repressing the expression of the major paralog and thus increasing the number of ribosomes carrying the minor paralog. Together the data indicate that duplicated ribosomal protein genes underlie a modular network permitting the modification of ribosome composition in response to changing growth conditions.
Collapse
Affiliation(s)
- Mustafa Malik Ghulam
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mathieu Catala
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
13
|
von Walden F. Ribosome biogenesis in skeletal muscle: coordination of transcription and translation. J Appl Physiol (1985) 2019; 127:591-598. [PMID: 31219775 DOI: 10.1152/japplphysiol.00963.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle mass responds in a remarkable manner to alterations in loading and use. It has long been clear that skeletal muscle hypertrophy can be prevented by inhibiting RNA synthesis. Since 80% of the cell's total RNA has been estimated to be rRNA, this finding indicates that de novo production of rRNA via transcription of the corresponding genes is important for such hypertrophy to occur. Transcription of rDNA by RNA Pol I is the rate-limiting step in ribosome biogenesis, indicating in turn that this biogenesis strongly influences the hypertrophic response. The present minireview focuses on 1) a brief description of the key steps in ribosome biogenesis and the relationship of this process to skeletal muscle mass and 2) the coordination of ribosome biogenesis and protein synthesis for growth or atrophy, as exemplified by the intracellular AMPK and mTOR pathways.
Collapse
Affiliation(s)
- Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
14
|
Cheng Z, Brar GA. Global translation inhibition yields condition-dependent de-repression of ribosome biogenesis mRNAs. Nucleic Acids Res 2019; 47:5061-5073. [PMID: 30937450 PMCID: PMC6547411 DOI: 10.1093/nar/gkz231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 11/15/2022] Open
Abstract
Ribosome biogenesis (RiBi) is an extremely energy intensive process that is critical for gene expression. It is thus highly regulated, including through the tightly coordinated expression of over 200 RiBi genes by positive and negative transcriptional regulators. We investigated RiBi regulation as cells initiated meiosis in budding yeast and noted early transcriptional activation of RiBi genes, followed by their apparent translational repression 1 hour (h) after stimulation to enter meiosis. Surprisingly, in the representative genes examined, measured translational repression depended on their promoters rather than mRNA regions. Further investigation revealed that the signature of this regulation in our data depended on pre-treating cells with the translation inhibitor, cycloheximide (CHX). This treatment, at 1 h in meiosis, but not earlier, rapidly resulted in accumulation of RiBi mRNAs that were not translated. This effect was also seen in with CHX pre-treatment of cells grown in media lacking amino acids. For NSR1, this effect depended on the -150 to -101 region of the promoter, as well as the RiBi transcriptional repressors Dot6 and Tod6. Condition-specific RiBi mRNA accumulation was also seen with translation inhibitors that are dissimilar from CHX, suggesting that this phenomenon might represent a feedback response to global translation inhibition.
Collapse
Affiliation(s)
- Ze Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Bakshi A, Moin M, Madhav MS, Kirti PB. Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:190-205. [PMID: 30411830 DOI: 10.1111/plb.12935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
The target of rapamycin (TOR) protein regulates growth and development in photosynthetic and non-photosynthetic eukaryotes. Although the TOR regulatory networks are involved in nutrient and energy signalling, and transcriptional and translational control of multiple signalling pathways, the molecular mechanism of TOR regulation of plant abiotic stress responses is still unclear. The TOR-mediated transcriptional regulation of genes encoding ribosomal proteins (RP) is a necessity under stress conditions for balanced growth and productivity in plants. The activation of SnRKs (sucrose non-fermenting-related kinases) and the inactivation of TOR signalling in abiotic stresses is in line with the accumulation of ABA and transcriptional activation of stress responsive genes. Autophagy is induced under abiotic stress conditions, which results in degradation of proteins and the release of amino acids, which might possibly induce phosphorylation of TOR and, hence, its activation. TOR signalling also has a role in regulating ABA biosynthesis for transcriptional regulation of stress-related genes. The switch between activation and inactivation of TOR by its phosphorylation and de-phosphorylation maintains balanced growth in response to stresses. In the present review, we discuss the important signalling pathways that are regulated by TOR and try to assess the relationship between TOR signalling and tolerance to abiotic stresses in plants. The review also discusses possible cross-talk between TOR and RP genes in response to abiotic stresses.
Collapse
Affiliation(s)
- A Bakshi
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - M Moin
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - M S Madhav
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
16
|
Sphingolipid/Pkh1/2-TORC1/Sch9 Signaling Regulates Ribosome Biogenesis in Tunicamycin-Induced Stress Response in Yeast. Genetics 2019; 212:175-186. [PMID: 30824472 DOI: 10.1534/genetics.118.301874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/26/2019] [Indexed: 12/26/2022] Open
Abstract
Reduced ribosome biogenesis in response to environmental conditions is a key feature of cell adaptation to stress. For example, ribosomal genes are transcriptionally repressed when cells are exposed to tunicamycin, a protein glycosylation inhibitor that induces endoplasmic reticulum stress and blocks vesicular trafficking in the secretory pathway. Here, we describe a novel regulatory model, in which tunicamycin-mediated stress induces the accumulation of long-chain sphingoid bases and subsequent activation of Pkh1/2 signaling, which leads to decreased expression of ribosomal protein genes via the downstream effectors Pkc1 and Sch9. Target of rapamycin complex 1 (TORC1), an upstream activator of Sch9, is also required. This pathway links ribosome biogenesis to alterations in membrane lipid composition under tunicamycin-induced stress conditions. Our results suggest that sphingolipid/Pkh1/2-TORC1/Sch9 signaling is an important determinant for adaptation to tunicamycin-induced stress.
Collapse
|
17
|
Kumar SS, Tandberg JI, Penesyan A, Elbourne LDH, Suarez-Bosche N, Don E, Skadberg E, Fenaroli F, Cole N, Winther-Larsen HC, Paulsen IT. Dual Transcriptomics of Host-Pathogen Interaction of Cystic Fibrosis Isolate Pseudomonas aeruginosa PASS1 With Zebrafish. Front Cell Infect Microbiol 2018; 8:406. [PMID: 30524971 PMCID: PMC6262203 DOI: 10.3389/fcimb.2018.00406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is a significant cause of mortality in patients with cystic fibrosis (CF). To explore the interaction of the CF isolate P. aeruginosa PASS1 with the innate immune response, we have used Danio rerio (zebrafish) as an infection model. Confocal laser scanning microscopy (CLSM) enabled visualization of direct interactions between zebrafish macrophages and P. aeruginosa PASS1. Dual RNA-sequencing of host-pathogen was undertaken to profile RNA expression simultaneously in the pathogen and the host during P. aeruginosa infection. Following establishment of infection in zebrafish embryos with PASS1, 3 days post infection (dpi), there were 6739 genes found to be significantly differentially expressed in zebrafish and 176 genes in PASS1. A range of virulence genes were upregulated in PASS1, including genes encoding pyoverdine biosynthesis, flagellin, non-hemolytic phospholipase C, proteases, superoxide dismutase and fimbrial subunits. Additionally, iron and phosphate acquisition genes were upregulated in PASS1 cells in the zebrafish. Transcriptional changes in the host immune response genes highlighted phagocytosis as a key response mechanism to PASS1 infection. Transcriptional regulators of neutrophil and macrophage phagocytosis were upregulated alongside transcriptional regulators governing response to tissue injury, infection, and inflammation. The zebrafish host showed significant downregulation of the ribosomal RNAs and other genes involved in translation, suggesting that protein translation in the host is affected by PASS1 infection.
Collapse
Affiliation(s)
- Sheemal S Kumar
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Julia I Tandberg
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Anahit Penesyan
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Liam D H Elbourne
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Nadia Suarez-Bosche
- Microscopy Unit, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Emily Don
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Eline Skadberg
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Federico Fenaroli
- Department of Biosciences, The Faculty of Mathematic and Natural Sciences, University of Oslo, Oslo, Norway
| | - Nicholas Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Hanne Cecilie Winther-Larsen
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ian T Paulsen
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
18
|
Li F, Liao J, Duan X, He Y, Liao Y. Upregulation of LINC00319 indicates a poor prognosis and promotes cell proliferation and invasion in cutaneous squamous cell carcinoma. J Cell Biochem 2018; 119:10393-10405. [PMID: 30145798 DOI: 10.1002/jcb.27388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Fumin Li
- Department of Dermatology Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital Chengdu China
| | - Jinfeng Liao
- Department of Dermatology Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital Chengdu China
| | - Xiling Duan
- Department of Dermatology Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital Chengdu China
| | - Yuanmin He
- Department of Dermatology Affiliated Hospital of Southwest Medical University Luzhou China
| | - Yongmei Liao
- Department of Dermatology Affiliated Hospital of Southwest Medical University Luzhou China
| |
Collapse
|
19
|
TOR Facilitates the Targeting of the 19S Proteasome Subcomplex To Enhance Transcription Complex Assembly at the Promoters of the Ribosomal Protein Genes. Mol Cell Biol 2018; 38:MCB.00469-17. [PMID: 29712756 DOI: 10.1128/mcb.00469-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
TOR (target of rapamycin) has been previously implicated in transcriptional stimulation of the ribosomal protein (RP) genes via enhanced recruitment of NuA4 (nucleosome acetyltransferase of H4) to the promoters. However, it is not clearly understood how TOR enhances NuA4 recruitment to the promoters of the RP genes. Here we show that TOR facilitates the recruitment of the 19S proteasome subcomplex to the activator to enhance the targeting of NuA4 to the promoters of the RP genes. NuA4, in turn, promotes the recruitment of TFIID (transcription factor IID, composed of TATA box-binding protein [TBP] and a set of TBP-associated factors [TAFs]) and RNA polymerase II to the promoters of the RP genes to enhance transcriptional initiation. Therefore, our results demonstrate that TOR facilitates the recruitment of the 19S proteasome subcomplex to the promoters of the RP genes to promote the targeting of NuA4 for enhanced preinitiation complex (PIC) formation and consequently transcriptional initiation, hence illuminating TOR regulation of RP gene activation. Further, our results reveal that TOR differentially regulates PIC formation (and hence transcription) at the non-RP genes, thus demonstrating a complex regulation of gene activation by TOR.
Collapse
|
20
|
Yaguchi M, Kozaki A. Plant S6 kinases do not require hydrophobic motif phosphorylation for activity in yeast lacking Ypk3. FEBS Lett 2018; 592:610-620. [PMID: 29355926 DOI: 10.1002/1873-3468.12980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/25/2017] [Accepted: 01/15/2018] [Indexed: 11/09/2022]
Abstract
The ribosomal protein S6 kinases (S6K) are among the major substrates and crucial effectors of the target of rapamycin (TOR) kinase, which is an evolutionarily conserved regulator of cell growth and proliferation. Recent research indicates that yeast Ypk3 is an ortholog of mammalian S6Ks. Here, we find that plant S6Ks restore ribosomal protein S6 phosphorylation in a rapamycin-sensitive manner in yeast cells lacking Ypk3. However, phosphorylation of a hydrophobic motif, which is mediated through TOR signaling and essential for mammalian S6K activity, is not detected in plant S6Ks. Furthermore, deletion of the N-terminal region of rice S6Ks shows phosphorylation of the hydrophobic motif and reduced rapamycin sensitivity. Our findings suggest a mechanism of plant S6K activation distinct from that of mammalian S6Ks.
Collapse
Affiliation(s)
| | - Akiko Kozaki
- Department of Biology, Shizuoka University, Japan
| |
Collapse
|
21
|
Grove A. Control of RNA polymerase II-transcribed genes by direct binding of TOR kinase. Curr Genet 2017; 64:131-135. [DOI: 10.1007/s00294-017-0738-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
|
22
|
Edvardson S, Nicolae CM, Agrawal PB, Mignot C, Payne K, Prasad AN, Prasad C, Sadler L, Nava C, Mullen TE, Begtrup A, Baskin B, Powis Z, Shaag A, Keren B, Moldovan GL, Elpeleg O. Heterozygous De Novo UBTF Gain-of-Function Variant Is Associated with Neurodegeneration in Childhood. Am J Hum Genet 2017; 101:267-273. [PMID: 28777933 DOI: 10.1016/j.ajhg.2017.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/22/2017] [Indexed: 11/30/2022] Open
Abstract
Ribosomal RNA (rRNA) is transcribed from rDNA by RNA polymerase I (Pol I) to produce the 45S precursor of the 28S, 5.8S, and 18S rRNA components of the ribosome. Two transcription factors have been defined for Pol I in mammals, the selectivity factor SL1, and the upstream binding transcription factor (UBF), which interacts with the upstream control element to facilitate the assembly of the transcription initiation complex including SL1 and Pol I. In seven unrelated affected individuals, all suffering from developmental regression starting at 2.5-7 years, we identified a heterozygous variant, c.628G>A in UBTF, encoding p.Glu210Lys in UBF, which occurred de novo in all cases. While the levels of UBF, Ser388 phosphorylated UBF, and other Pol I-related components (POLR1E, TAF1A, and TAF1C) remained unchanged in cells of an affected individual, the variant conferred gain of function to UBF, manifesting by markedly increased UBF binding to the rDNA promoter and to the 5'- external transcribed spacer. This was associated with significantly increased 18S expression, and enlarged nucleoli which were reduced in number per cell. The data link neurodegeneration in childhood with altered rDNA chromatin status and rRNA metabolism.
Collapse
Affiliation(s)
- Simon Edvardson
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Pediatric Neurology Unit, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Pankaj B Agrawal
- Divisions of Newborn Medicine and Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Cyril Mignot
- Département de Génétique, APHP, GH Pitié-Salpêtrière, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Paris 75013, France
| | - Katelyn Payne
- Riley Hospital for Children, Indianapolis, Indiana, IN, 46202, USA
| | - Asuri Narayan Prasad
- Section of Paediatric Neurology, Department of Paediatrics, and the Division of Clinical Neurological Sciences, Faculty of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada
| | - Chitra Prasad
- Department of Paediatrics, Section of Genetics, Western University London Ontario N6A 3K7, Canada
| | - Laurie Sadler
- Division of Genetics, Department of Pediatrics, Women and Children's Hospital of Buffalo, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Caroline Nava
- Département de Génétique, APHP, GH Pitié-Salpêtrière, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Paris 75013, France; INSERM, U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, 75013, Paris, France
| | - Thomas E Mullen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 53377, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | | | | | - Zöe Powis
- Department of Emerging Genetic Medicine, Ambry Genetics, Aliso Viejo, California, USA 92656
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Boris Keren
- Département de Génétique, APHP, GH Pitié-Salpêtrière, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Paris 75013, France
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.
| |
Collapse
|
23
|
Mason AG, Garza RM, McCormick MA, Patel B, Kennedy BK, Pillus L, La Spada AR. The replicative lifespan-extending deletion of SGF73 results in altered ribosomal gene expression in yeast. Aging Cell 2017; 16:785-796. [PMID: 28568901 PMCID: PMC5506417 DOI: 10.1111/acel.12611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 12/29/2022] Open
Abstract
Sgf73, a core component of SAGA, is the yeast orthologue of ataxin‐7, which undergoes CAG–polyglutamine repeat expansion leading to the human neurodegenerative disease spinocerebellar ataxia type 7 (SCA7). Deletion of SGF73 dramatically extends replicative lifespan (RLS) in yeast. To further define the basis for Sgf73‐mediated RLS extension, we performed ChIP‐Seq, identified 388 unique genomic regions occupied by Sgf73, and noted enrichment in promoters of ribosomal protein (RP)‐encoding genes. Of 388 Sgf73 binding sites, 33 correspond to 5′ regions of genes implicated in RLS extension, including 20 genes encoding RPs. Furthermore, half of Sgf73‐occupied, RLS‐linked RP genes displayed significantly reduced expression in sgf73Δ mutants, and double null strains lacking SGF73 and a Sgf73‐regulated, RLS‐linked RP gene exhibited no further increase in replicative lifespan. We also found that sgf73Δ mutants display altered acetylation of Ifh1, an important regulator of RP gene transcription. These findings implicate altered ribosomal protein expression in sgf73Δ yeast RLS and highlight altered acetylation as a pathway of relevance for SCA7 neurodegeneration.
Collapse
Affiliation(s)
- Amanda G. Mason
- Department of Pediatrics; University of California, San Diego; La Jolla CA USA
- Division of Biological Sciences; University of California, San Diego; La Jolla CA USA
| | - Renee M. Garza
- Division of Biological Sciences; University of California, San Diego; La Jolla CA USA
- Moores Cancer Center; University of California, San Diego; La Jolla CA USA
| | - Mark A. McCormick
- Buck Institute for Research on Aging; Novato CA USA
- Department of Biochemistry; University of Washington; Seattle WA USA
| | - Bhumil Patel
- Buck Institute for Research on Aging; Novato CA USA
| | - Brian K. Kennedy
- Buck Institute for Research on Aging; Novato CA USA
- Department of Biochemistry; University of Washington; Seattle WA USA
| | - Lorraine Pillus
- Division of Biological Sciences; University of California, San Diego; La Jolla CA USA
- Moores Cancer Center; University of California, San Diego; La Jolla CA USA
| | - Albert R. La Spada
- Department of Pediatrics; University of California, San Diego; La Jolla CA USA
- Division of Biological Sciences; University of California, San Diego; La Jolla CA USA
- Departments of Cellular & Molecular Medicine and Neurosciences; University of California, San Diego; La Jolla CA USA
- Institute for Genomic Medicine; University of California, San Diego; La Jolla CA USA
- Sanford Consortium for Regenerative Medicine; University of California, San Diego; La Jolla CA USA. Rady Children's Hospital; San Diego CA USA
| |
Collapse
|
24
|
Panday A, Gupta A, Srinivasa K, Xiao L, Smith MD, Grove A. DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed HMO1 gene. Mol Biol Cell 2017; 28:2449-2459. [PMID: 28701348 PMCID: PMC5576907 DOI: 10.1091/mbc.e17-01-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/05/2017] [Accepted: 07/07/2017] [Indexed: 01/29/2023] Open
Abstract
In yeast, Hmo1p is important for communicating target of rapamycin (TOR) kinase activity to downstream targets. Results show that TOR kinase controls expression of the HMO1 gene and that an important component of this regulation is its direct association with the HMO1 gene. The implications are that TOR kinase may have more elaborate nuclear functions. The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient sufficiency and cellular stress. When mTORC1 is inhibited, protein synthesis is reduced in an intricate process that includes a concerted down-regulation of genes encoding rRNA and ribosomal proteins. The Saccharomyces cerevisiae high-mobility group protein Hmo1p has been implicated in coordinating this response to mTORC1 inhibition. We show here that Tor1p binds directly to the HMO1 gene (but not to genes that are not linked to ribosome biogenesis) and that the presence of Tor1p is associated with activation of gene activity. Persistent induction of DNA double-strand breaks or mTORC1 inhibition by rapamycin results in reduced levels of HMO1 mRNA, but only in the presence of Tor1p. This down-regulation is accompanied by eviction of Ifh1p and recruitment of Crf1p, followed by concerted dissociation of Hmo1p and Tor1p. These findings uncover a novel role for TOR kinase in control of gene activity by direct association with an RNA polymerase II–transcribed gene.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Ashish Gupta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Kavitha Srinivasa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Lijuan Xiao
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Mathew D Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
25
|
Nguyen-McCarty M, Klein PS. Autophagy is a signature of a signaling network that maintains hematopoietic stem cells. PLoS One 2017; 12:e0177054. [PMID: 28486555 PMCID: PMC5423627 DOI: 10.1371/journal.pone.0177054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/23/2017] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are able to self-renew and to differentiate into all blood cells. HSCs reside in a low-perfusion niche and depend on local signals to survive and to maintain the capacity for self-renewal. HSCs removed from the niche are unable to survive without addition of hematopoietic cytokines and rapidly lose their ability to self-renew. We reported previously that inhibition of both GSK-3 and mTORC1 is essential to maintain long-term HSCs ex vivo. Although Wnt/β-catenin signaling downstream of GSK-3 is required for this response, the downstream effectors of mTORC1 remain undefined. We now report that HSCs express a pro-autophagic gene signature and accumulate LC3 puncta only when both mTORC1 and GSK-3 are inhibited, identifying autophagy as a signature for a signaling network that maintains HSCs ex vivo. In addition, these conditions sustain HSC repopulating function despite an increased rate of global translation. Together, these findings provide new insight into the relative contributions of various mTORC1 outputs toward the maintenance of HSC function and build upon the growing body of literature implicating autophagy and tightly controlled protein synthesis as important modulators of diverse stem cell populations.
Collapse
Affiliation(s)
- Michelle Nguyen-McCarty
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Peter S. Klein
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine (Hematology/Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Bae NS, Seberg AP, Carroll LP, Swanson MJ. Identification of Genes in Saccharomyces cerevisiae that Are Haploinsufficient for Overcoming Amino Acid Starvation. G3 (BETHESDA, MD.) 2017; 7:1061-1084. [PMID: 28209762 PMCID: PMC5386856 DOI: 10.1534/g3.116.037416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/11/2017] [Indexed: 12/17/2022]
Abstract
The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins.
Collapse
Affiliation(s)
- Nancy S Bae
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
| | - Andrew P Seberg
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | - Leslie P Carroll
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| | - Mark J Swanson
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| |
Collapse
|
27
|
Guan P. Dancing with Hormones: A Current Perspective of Nitrate Signaling and Regulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1697. [PMID: 29033968 PMCID: PMC5625010 DOI: 10.3389/fpls.2017.01697] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/15/2017] [Indexed: 05/18/2023]
Abstract
In nature and agriculture, nitrate availability is a main environmental cue for plant growth, development and stress responses. Nitrate signaling and regulation are hence at the center of communications between plant intrinsic programs and the environment. It is also well known that endogenous phytohormones play numerous critical roles in integrating extrinsic cues and intrinsic responses, regulating and refining almost all aspects of plant growth, development and stress responses. Therefore, interaction between nitrate and phytohormones, such as auxins, cytokinins, abscisic acid, gibberellins, and ethylene, is prevalent. The growing evidence indicates that biosynthesis, de-conjugation, transport, and signaling of hormones are partly controlled by nitrate signaling. Recent advances with nitrate signaling and transcriptional regulation in Arabidopsis give rise to new paradigms. Given the comprehensive nitrate transport, sensing, signaling and regulations at the level of the cell and organism, nitrate itself is a local and long-distance signal molecule, conveying N status at the whole-plant level. A direct molecular link between nitrate signaling and cell cycle progression was revealed with TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) - NIN-LIKE PROTEIN 6/7 (NLP6/7) regulatory nexus. NLPs are key regulators of nitrogen responses in plants. TCPs function as the main regulators of plant morphology and architecture, with the emerging role as integrators of plant developmental responses to the environment. By analogy with auxin being proposed as a plant morphogen, nitrate may be an environmental morphogen. The morphogen-gradient-dependent and cell-autonomous mechanisms of nitrate signaling and regulation are an integral part of cell growth and cell identification. This is especially true in root meristem growth that is regulated by intertwined nitrate, phytohormones, and glucose-TOR signaling pathways. Furthermore, the nitrate transcriptional hierarchy is emerging. Nitrate regulators in primary nitrate signaling can individually and combinatorially control downstream transcriptional networks and hormonal pathways for signal propagation and amplification. Under the new paradigms, nitrate-induced hormone metabolism and signaling deserve fresh examination. The close interplay and convergent regulation of nitrate and hormonal signaling at morphological, physiological, and molecular levels have significant effects on important agronomic traits, especially nutrient-dependent adaptive root system growth and architecture.
Collapse
|
28
|
Abstract
Eukaryotic genomes are packaged in chromatin. The higher-order organization of nucleosome core particles is controlled by the association of the intervening linker DNA with either the linker histone H1 or high mobility group box (HMGB) proteins. While H1 is thought to stabilize the nucleosome by preventing DNA unwrapping, the DNA bending imposed by HMGB may propagate to the nucleosome to destabilize chromatin. For metazoan H1, chromatin compaction requires its lysine-rich C-terminal domain, a domain that is buried between globular domains in the previously characterized yeast Saccharomyces cerevisiae linker histone Hho1p. Here, we discuss the functions of S. cerevisiae HMO1, an HMGB family protein unique in containing a terminal lysine-rich domain and in stabilizing genomic DNA. On ribosomal DNA (rDNA) and genes encoding ribosomal proteins, HMO1 appears to exert its role primarily by stabilizing nucleosome-free regions or "fragile" nucleosomes. During replication, HMO1 likewise appears to ensure low nucleosome density at DNA junctions associated with the DNA damage response or the need for topoisomerases to resolve catenanes. Notably, HMO1 shares with the mammalian linker histone H1 the ability to stabilize chromatin, as evidenced by the absence of HMO1 creating a more dynamic chromatin environment that is more sensitive to nuclease digestion and in which chromatin-remodeling events associated with DNA double-strand break repair occur faster; such chromatin stabilization requires the lysine-rich extension of HMO1. Thus, HMO1 appears to have evolved a unique linker histone-like function involving the ability to stabilize both conventional nucleosome arrays as well as DNA regions characterized by low nucleosome density or the presence of noncanonical nucleosomes.
Collapse
|
29
|
Lauschke VM, Vorrink SU, Moro SML, Rezayee F, Nordling Å, Hendriks DFG, Bell CC, Sison-Young R, Park BK, Goldring CE, Ellis E, Johansson I, Mkrtchian S, Andersson TB, Ingelman-Sundberg M. Massive rearrangements of cellular MicroRNA signatures are key drivers of hepatocyte dedifferentiation. Hepatology 2016; 64:1743-1756. [PMID: 27532775 DOI: 10.1002/hep.28780] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED Hepatocytes are dynamic cells that, upon injury, can alternate between nondividing differentiated and dedifferentiated proliferating states in vivo. However, in two-dimensional cultures, primary human hepatocytes (PHHs) rapidly dedifferentiate, resulting in loss of hepatic functions that significantly limits their usefulness as an in vitro model of liver biology, liver diseases, as well as drug metabolism and toxicity. Thus, understanding the underlying mechanisms and stalling of the dedifferentiation process would be highly beneficial to establish more-accurate and relevant long-term in vitro hepatocyte models. Here, we present comprehensive analyses of whole proteome and transcriptome dynamics during the initiation of dedifferentiation during the first 24 hours of culture. We report that early major rearrangements of the noncoding transcriptome, hallmarked by increased expression of small nucleolar RNAs, long noncoding RNAs, microRNAs (miRNAs), and ribosomal genes, precede most changes in coding genes during dedifferentiation of PHHs, and we speculated that these modulations could drive the hepatic dedifferentiation process. To functionally test this hypothesis, we globally inhibited the miRNA machinery using two established chemically distinct compounds, acriflavine and poly-l-lysine. These inhibition experiments resulted in a significantly impaired miRNA response and, most important, in a pronounced reduction in the down-regulation of hepatic genes with importance for liver function. Thus, we provide strong evidence for the importance of noncoding RNAs, in particular, miRNAs, in hepatic dedifferentiation, which can aid the development of more-efficient differentiation protocols for stem-cell-derived hepatocytes and broaden our understanding of the dynamic properties of hepatocytes with respect to liver regeneration. CONCLUSION miRNAs are important drivers of hepatic dedifferentiation, and our results provide valuable information regarding the mechanisms behind liver regeneration and possibilities to inhibit dedifferentiation in vitro. (Hepatology 2016;64:1743-1756).
Collapse
Affiliation(s)
- Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Sabine U Vorrink
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina M L Moro
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fatemah Rezayee
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Nordling
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Delilah F G Hendriks
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Catherine C Bell
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rowena Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Christopher E Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Inger Johansson
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tommy B Andersson
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular and Metabolic Diseases Innovative Medicines, DMPK, AstraZeneca R&D, Mölndal, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Panday A, Grove A. The high mobility group protein HMO1 functions as a linker histone in yeast. Epigenetics Chromatin 2016; 9:13. [PMID: 27030801 PMCID: PMC4812653 DOI: 10.1186/s13072-016-0062-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
Background Eukaryotic chromatin consists of nucleosome core particles connected by linker DNA of variable length. Histone H1 associates with the linker DNA to stabilize the higher-order chromatin structure and to modulate the ability of regulatory factors to access their nucleosomal targets. In Saccharomyces cerevisiae, the protein with greatest sequence similarity to H1 is Hho1p. However, during vegetative growth, hho1∆ cells do not show any discernible cell growth defects or the changes in bulk chromatin structure that are characteristic of chromatin from multicellular eukaryotes in which H1 is depleted. In contrast, the yeast high mobility group (HMGB) protein HMO1 has been reported to compact chromatin, as evidenced by increased nuclease sensitivity in hmo1∆ cells. HMO1 has an unusual domain architecture compared to vertebrate HMGB proteins in that the HMG domains are followed by a lysine-rich extension instead of an acidic domain. We address here the hypothesis that HMO1 serves the role of H1 in terms of chromatin compaction and that this function requires the lysine-rich extension. Results We show here that HMO1 fulfills this function of a linker histone. For histone H1, chromatin compaction requires its basic C-terminal domain, and we find that the same pertains to HMO1, as deletion of its C-terminal lysine-rich extension renders chromatin nuclease sensitive. On rDNA, deletion of both HMO1 and Hho1p is required for significantly increased nuclease sensitivity. Expression of human histone H1 completely reverses the nuclease sensitivity characteristic of chromatin isolated from hmo1∆ cells. While chromatin remodeling events associated with repair of DNA double-strand breaks occur faster in the more dynamic chromatin environment created by the hmo1 deletion, expression of human histone H1 results in chromatin remodeling and double-strand break repair similar to that observed in wild-type cells. Conclusion Our data suggest that S. cerevisiae HMO1 protects linker DNA from nuclease digestion, a property also characteristic of mammalian linker histone H1. Notably, association with HMO1 creates a less dynamic chromatin environment that depends on its lysine-rich domain. That HMO1 has linker histone function has implications for investigations of chromatin structure and function as well as for evolution of proteins with roles in chromatin compaction.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
31
|
Petibon C, Parenteau J, Catala M, Elela SA. Introns regulate the production of ribosomal proteins by modulating splicing of duplicated ribosomal protein genes. Nucleic Acids Res 2016; 44:3878-91. [PMID: 26945043 PMCID: PMC4856989 DOI: 10.1093/nar/gkw140] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/25/2016] [Indexed: 01/30/2023] Open
Abstract
Most budding yeast introns exist in the many duplicated ribosomal protein genes (RPGs) and it has been posited that they remain there to modulate the expression of RPGs and cell growth in response to stress. However, the mechanism by which introns regulate the expression of RPGs and their impact on the synthesis of ribosomal proteins remain unclear. In this study, we show that introns determine the ratio of ribosomal protein isoforms through asymmetric paralog-specific regulation of splicing. Exchanging the introns and 3′ untranslated regions of the duplicated RPS9 genes altered the splicing efficiency and changed the ratio of the ribosomal protein isoforms. Mutational analysis of the RPS9 genes indicated that splicing is regulated by variations in the intron structure and the 3′ untranslated region. Together these data suggest that preferential splicing of duplicated RPGs provides a means for adjusting the ratio of different ribosomal protein isoforms, while maintaining the overall expression level of each ribosomal protein.
Collapse
Affiliation(s)
- Cyrielle Petibon
- Université de Sherbrooke Centre of Excellence in RNA Biology, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Julie Parenteau
- Université de Sherbrooke Centre of Excellence in RNA Biology, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Mathieu Catala
- Université de Sherbrooke Centre of Excellence in RNA Biology, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Sherif Abou Elela
- Université de Sherbrooke Centre of Excellence in RNA Biology, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
32
|
Wang D, Mansisidor A, Prabhakar G, Hochwagen A. Condensin and Hmo1 Mediate a Starvation-Induced Transcriptional Position Effect within the Ribosomal DNA Array. Cell Rep 2016; 14:1010-1017. [PMID: 26832415 DOI: 10.1016/j.celrep.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/30/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023] Open
Abstract
Repetitive DNA arrays are important structural features of eukaryotic genomes that are often heterochromatinized to suppress repeat instability. It is unclear, however, whether all repeats within an array are equally subject to heterochromatin formation and gene silencing. Here, we show that in starving Saccharomyces cerevisiae, silencing of reporter genes within the ribosomal DNA (rDNA) array is less pronounced in outer repeats compared with inner repeats. This position effect is linked to the starvation-induced contraction of the nucleolus. We show that the chromatin regulators condensin and Hmo1 redistribute within the rDNA upon starvation; that Hmo1, like condensin, is required for nucleolar contraction; and that the position effect partially depends on both proteins. Starvation-induced nucleolar contraction and differential desilencing of the outer rDNA repeats may provide a mechanism to activate rDNA-encoded RNAPII transcription units without causing general rDNA instability.
Collapse
Affiliation(s)
- Danni Wang
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
33
|
Dahlquist KD, Fitzpatrick BG, Camacho ET, Entzminger SD, Wanner NC. Parameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock Response in Saccharomyces cerevisiae. Bull Math Biol 2015; 77:1457-92. [PMID: 26420504 PMCID: PMC4636536 DOI: 10.1007/s11538-015-0092-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/16/2015] [Indexed: 11/10/2022]
Abstract
We investigated the dynamics of a gene regulatory network controlling the cold shock response in budding yeast, Saccharomyces cerevisiae. The medium-scale network, derived from published genome-wide location data, consists of 21 transcription factors that regulate one another through 31 directed edges. The expression levels of the individual transcription factors were modeled using mass balance ordinary differential equations with a sigmoidal production function. Each equation includes a production rate, a degradation rate, weights that denote the magnitude and type of influence of the connected transcription factors (activation or repression), and a threshold of expression. The inverse problem of determining model parameters from observed data is our primary interest. We fit the differential equation model to published microarray data using a penalized nonlinear least squares approach. Model predictions fit the experimental data well, within the 95 % confidence interval. Tests of the model using randomized initial guesses and model-generated data also lend confidence to the fit. The results have revealed activation and repression relationships between the transcription factors. Sensitivity analysis indicates that the model is most sensitive to changes in the production rate parameters, weights, and thresholds of Yap1, Rox1, and Yap6, which form a densely connected core in the network. The modeling results newly suggest that Rap1, Fhl1, Msn4, Rph1, and Hsf1 play an important role in regulating the early response to cold shock in yeast. Our results demonstrate that estimation for a large number of parameters can be successfully performed for nonlinear dynamic gene regulatory networks using sparse, noisy microarray data.
Collapse
Affiliation(s)
- Kam D Dahlquist
- Department of Biology, Loyola Marymount University, 1 LMU Drive, MS 8888, Los Angeles, CA, 90045, USA.
| | - Ben G Fitzpatrick
- Department of Mathematics, Loyola Marymount University, 1 LMU Drive, UH 2700, Los Angeles, CA, 90045, USA
| | - Erika T Camacho
- School of Mathematical and Natural Sciences, Arizona State University, Mail Code 2352, P.O. Box 37100, Phoenix, AZ, 85069-7100, USA
| | - Stephanie D Entzminger
- Department of Mathematics, Loyola Marymount University, 1 LMU Drive, UH 2700, Los Angeles, CA, 90045, USA
| | - Nathan C Wanner
- Department of Mathematics, Loyola Marymount University, 1 LMU Drive, UH 2700, Los Angeles, CA, 90045, USA
| |
Collapse
|
34
|
Abstract
A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53?
Collapse
Affiliation(s)
- Allison James
- a Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA
| | | | | | | | | |
Collapse
|
35
|
Ahamad J, Ojha S, Srivastava A, Bhattacharya A, Bhattacharya S. Post-transcriptional regulation of ribosomal protein genes during serum starvation in Entamoeba histolytica. Mol Biochem Parasitol 2015; 201:146-52. [PMID: 26247142 DOI: 10.1016/j.molbiopara.2015.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022]
Abstract
Ribosome synthesis involves all three RNA polymerases which are co-ordinately regulated to produce equimolar amounts of rRNAs and ribosomal proteins (RPs). Unlike model organisms where transcription of rRNA and RP genes slows down during stress, in E. histolytica rDNA transcription continues but pre-rRNA processing slows down and unprocessed pre-rRNA accumulates during serum starvation. To investigate the regulation of RP genes under stress we measured transcription of six selected RP genes from the small- and large-ribosomal subunits (RPS6, RPS3, RPS19, RPL5, RPL26, RPL30) representing the early-, mid-, and late-stages of ribosomal assembly. Transcripts of these genes persisted in growth-stressed cells. Expression of luciferase reporter under the control of two RP genes (RPS19 and RPL30) was studied during serum starvation and upon serum replenishment. Although luciferase transcript levels remained unchanged during starvation, luciferase activity steadily declined to 7.8% and 15% of control cells, respectively. After serum replenishment the activity increased to normal levels, suggesting post-transcriptional regulation of these genes. Mutations in the sequence -2 to -9 upstream of AUG in the RPL30 gene resulted in the phenotype expected of post-transcriptional regulation. Transcription of luciferase reporter was unaffected in this mutant, and luciferase activity did not decline during serum starvation, showing that this sequence is required to repress translation of RPL30 mRNA, and mutations in this region relieve repression. Our data show that during serum starvation E. histolytica blocks ribosome biogenesis post-transcriptionally by inhibiting pre-rRNA processing on the one hand, and the translation of RP mRNAs on the other.
Collapse
Affiliation(s)
- Jamaluddin Ahamad
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sandeep Ojha
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ankita Srivastava
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
36
|
Ho YH, Gasch AP. Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 2015; 61:503-11. [PMID: 25957506 DOI: 10.1007/s00294-015-0491-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/24/2022]
Abstract
Healthy cells utilize intricate systems to monitor their environment and mount robust responses in the event of cellular stress. Whether stress arises from external insults or defects due to mutation and disease, cells must be able to respond precisely to mount the appropriate defenses. Multi-faceted stress responses are generally coupled with arrest of growth and cell-cycle progression, which both limits the transmission of damaged materials and serves to reallocate limited cellular resources toward defense. Therefore, stress defense versus rapid growth represent competing interests in the cell. How eukaryotic cells set the balance between defense versus proliferation, and in particular knowledge of the regulatory networks that control this decision, are poorly understood. In this perspective, we expand upon our recent work inferring the stress-activated signaling network in budding yeast, which captures pathways controlling stress defense and regulators of growth and cell-cycle progression. We highlight similarities between the yeast and mammalian stress responses and explore how stress-activated signaling networks in yeast can inform on signaling defects in human cancers.
Collapse
Affiliation(s)
- Yi-Hsuan Ho
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
37
|
Spiesser TW, Kühn C, Krantz M, Klipp E. Bud-Localization of CLB2 mRNA Can Constitute a Growth Rate Dependent Daughter Sizer. PLoS Comput Biol 2015; 11:e1004223. [PMID: 25910075 PMCID: PMC4429581 DOI: 10.1371/journal.pcbi.1004223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Maintenance of cellular size is a fundamental systems level process that requires balancing of cell growth with proliferation. This is achieved via the cell division cycle, which is driven by the sequential accumulation and destruction of cyclins. The regulatory network around these cyclins, particularly in G1, has been interpreted as a size control network in budding yeast, and cell size as being decisive for the START transition. However, it is not clear why disruptions in the G1 network may lead to altered size rather than loss of size control, or why the S-G2-M duration also depends on nutrients. With a mathematical population model comprised of individually growing cells, we show that cyclin translation would suffice to explain the observed growth rate dependence of cell volume at START. Moreover, we assess the impact of the observed bud-localisation of the G2 cyclin CLB2 mRNA, and find that localised cyclin translation could provide an efficient mechanism for measuring the biosynthetic capacity in specific compartments: The mother in G1, and the growing bud in G2. Hence, iteration of the same principle can ensure that the mother cell is strong enough to grow a bud, and that the bud is strong enough for independent life. Cell sizes emerge in the model, which predicts that a single CDK-cyclin pair per growth phase suffices for size control in budding yeast, despite the necessity of the cell cycle network around the cyclins to integrate other cues. Size control seems to be exerted twice, where the G2/M control affects bud size through bud-localized translation of CLB2 mRNA, explaining the dependence of the S-G2-M duration on nutrients. Taken together, our findings suggest that cell size is an emergent rather than a regulatory property of the network linking growth and proliferation.
Collapse
Affiliation(s)
- Thomas W. Spiesser
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (TWS); (EK)
| | - Clemens Kühn
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Krantz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (TWS); (EK)
| |
Collapse
|
38
|
Translational arrest due to cytoplasmic redox stress delays adaptation to growth on methanol and heterologous protein expression in a typical fed-batch culture of Pichia pastoris. PLoS One 2015; 10:e0119637. [PMID: 25785713 PMCID: PMC4364781 DOI: 10.1371/journal.pone.0119637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 02/01/2015] [Indexed: 11/30/2022] Open
Abstract
Results We have followed a typical fed-batch induction regime for heterologous protein production under the control of the AOX1 promoter using both microarray and metabolomic analysis. The genetic constructs involved 1 and 3 copies of the TRY1 gene, encoding human trypsinogen. In small-scale laboratory cultures, expression of the 3 copy-number construct induced the unfolded protein response (UPR) sufficiently that titres of extracellular trypsinogen were lower in the 3-copy construct than with the 1-copy construct. In the fed-batch-culture, a similar pattern was observed, with higher expression from the 1-copy construct, but in this case there was no significant induction of UPR with the 3-copy strain. Analysis of the microarray and metabolomic information indicates that the 3-copy strain was undergoing cytoplasmic redox stress at the point of induction with methanol. In this Crabtree-negative yeast, this redox stress appeared to delay the adaptation to growth on methanol and supressed heterologous protein production, probably due to a block in translation. Conclusion Although redox imbalance as a result of artificially imposed hypoxia has previously been described, this is the first time that it has been characterised as a result of a transient metabolic imbalance and shown to involve a stress response which can lead to translational arrest. Without detailed analysis of the underlying processes it could easily have been mis-interpreted as secretion stress, transmitted through the UPR.
Collapse
|
39
|
|
40
|
Kennedy-Darling J, Guillen-Ahlers H, Shortreed MR, Scalf M, Frey BL, Kendziorski C, Olivier M, Gasch AP, Smith LM. Discovery of Chromatin-Associated Proteins via Sequence-Specific Capture and Mass Spectrometric Protein Identification in Saccharomyces cerevisiae. J Proteome Res 2014; 13:3810-25. [PMID: 24999558 PMCID: PMC4123949 DOI: 10.1021/pr5004938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
DNA–protein
interactions play critical roles in the control
of genome expression and other fundamental processes. An essential
element in understanding how these systems function is to identify
their molecular components. We present here a novel strategy, Hybridization
Capture of Chromatin Associated Proteins for Proteomics (HyCCAPP),
to identify proteins that are interacting with any given region of
the genome. This technology identifies and quantifies the proteins
that are specifically interacting with a genomic region of interest
by sequence-specific hybridization capture of the target region from in vivo cross-linked chromatin, followed by mass spectrometric
identification and quantification of associated proteins. We demonstrate
the utility of HyCCAPP by identifying proteins associated with three
multicopy and one single-copy loci in yeast. In each case, a locus-specific
pattern of target-associated proteins was revealed. The binding of
previously unknown proteins was confirmed by ChIP in 11 of 17 cases.
The identification of many previously known proteins at each locus
provides strong support for the ability of HyCCAPP to correctly identify
DNA-associated proteins in a sequence-specific manner, while the discovery
of previously unknown proteins provides new biological insights into
transcriptional and regulatory processes at the target locus.
Collapse
Affiliation(s)
| | - Hector Guillen-Ahlers
- ‡Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | | | | | | | | | - Michael Olivier
- ‡Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | | | | |
Collapse
|
41
|
Maoz N, Gabay O, Waldman Ben-Asher H, Cohen HY. The yeast forkhead HCM1 controls life span independent of calorie restriction. J Gerontol A Biol Sci Med Sci 2014; 70:444-53. [PMID: 24835838 DOI: 10.1093/gerona/glu059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Regulation of life span by members of the forkhead transcription factor family of proteins is one of the most highly investigated pathways in the field of aging. Nevertheless, despite the existence of forkhead family homologues in yeast, our knowledge of these proteins' role in yeast longevity is limited. Here, we show that yeast Hcm1p forkhead is the closest homologue of the worm PHA-4 forkhead, which regulates Caenorhabditis elegans life span. Overexpressing the yeast forkhead HCM1 or its deficiency resulted in a significant extension or reduction in yeast replicative life span, respectively. HCM1 regulates stress resistance, significantly increases the mRNA levels of several stress response genes including the catalase enzymes CTA1 and CTT1, and positively regulates life span independently of calorie restriction. Thus, HCM1 is a key regulator of life span, through a mechanism independent of calorie restriction.
Collapse
Affiliation(s)
- Noam Maoz
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Orshay Gabay
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hiba Waldman Ben-Asher
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Haim Y Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
42
|
Dissecting the transcriptional phenotype of ribosomal protein deficiency: implications for Diamond-Blackfan Anemia. Gene 2014; 545:282-9. [PMID: 24835311 PMCID: PMC4058751 DOI: 10.1016/j.gene.2014.04.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/04/2014] [Accepted: 04/29/2014] [Indexed: 11/26/2022]
Abstract
Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined. Several lines of evidence suggest that defects in ribosome synthesis lead to “ribosomal stress” with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis. We took an unbiased approach to identify p53-independent pathways activated by defects in ribosome synthesis by analyzing global gene expression in various cellular models of DBA. Ranking-Principal Component Analysis (Ranking-PCA) was applied to the identified datasets to determine whether there are common sets of genes whose expression is altered in these different cellular models. We observed consistent changes in the expression of genes involved in cellular amino acid metabolic process, negative regulation of cell proliferation and cell redox homeostasis. These data indicate that cells respond to defects in ribosome synthesis by changing the level of expression of a limited subset of genes involved in critical cellular processes. Moreover, our data support a role for p53-independent pathways in the pathophysiology of DBA. Ribosomopathies such as DBA are caused by ribosome dysfunction that activates p53. p53-independent pathways may suggest possible treatments for DBA. Expression analysis was performed in three p53-null models of DBA. Genes involved in apoptosis and cell redox homeostasis were especially affected. DBA is due to cumulative effects of p53-dependent and independent pathways.
Collapse
|
43
|
Liu R, Iadevaia V, Averous J, Taylor PM, Zhang Z, Proud CG. Impairing the production of ribosomal RNA activates mammalian target of rapamycin complex 1 signalling and downstream translation factors. Nucleic Acids Res 2014; 42:5083-96. [PMID: 24526220 PMCID: PMC4005692 DOI: 10.1093/nar/gku130] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ribosome biogenesis is a key process for maintaining protein synthetic capacity in dividing or growing cells, and requires coordinated production of ribosomal proteins and ribosomal RNA (rRNA), including the processing of the latter. Signalling through mammalian target of rapamycin complex 1 (mTORC1) activates all these processes. Here, we show that, in human cells, impaired rRNA processing, caused by expressing an interfering mutant of BOP1 or by knocking down components of the PeBoW complex elicits activation of mTORC1 signalling. This leads to enhanced phosphorylation of its substrates S6K1 and 4E-BP1, and stimulation of proteins involved in translation initiation and elongation. In particular, we observe both inactivation and downregulation of the eukaryotic elongation factor 2 kinase, which normally inhibits translation elongation. The latter effect involves decreased expression of the eEF2K mRNA. The mRNAs for ribosomal proteins, whose translation is positively regulated by mTORC1 signalling, also remain associated with ribosomes. Therefore, our data demonstrate that disrupting rRNA production activates mTORC1 signalling to enhance the efficiency of the translational machinery, likely to help compensate for impaired ribosome production.
Collapse
Affiliation(s)
- Rui Liu
- Centre for Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK, Centre de Recherche en Nutrition Humaine, INRA Clermont-Theix, Unité de Nutrition Humaine, 63122 Ceyrat, France and Division of Molecular Physiology, James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
44
|
Guo Z, Zhang S, Zhang H, Jin L, Zhao S, Yang W, Tang J, Wang D. Cloning, purification, crystallization and preliminary X-ray studies of HMO2 from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2014; 70:57-9. [PMID: 24419618 PMCID: PMC3943102 DOI: 10.1107/s2053230x13031580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/19/2013] [Indexed: 11/10/2022] Open
Abstract
The high-mobility group protein (HMO2) of Saccharomyces cerevisiae is a component of the chromatin-remodelling complex INO80, which is involved in double-strand break (DSB) repair. HMO2 can also bind DNA to protect it from exonucleolytic cleavage. Nevertheless, little structural information is available regarding these functions of HMO2. Since determination of three-dimensional structure is a powerful means to facilitate functional characterization, X-ray crystallography has been used to accomplish this task. Here, the expression, purification, crystallization and preliminary crystallographic analysis of HMO2 from S. cerevisiae are reported. The crystal belonged to space group P222, with unit-cell parameters a = 39.35, b = 75.69, c = 108.03 Å, and diffracted to a resolution of 3.0 Å. The crystals are most likely to contain one molecule in the asymmetric unit, with a VM value of 3.19 Å(3) Da(-1).
Collapse
Affiliation(s)
- Zhen Guo
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Shaocheng Zhang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Hongpeng Zhang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Li Jin
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Shasha Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Wei Yang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Jian Tang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Deqiang Wang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| |
Collapse
|
45
|
Villa-Hernández JM, Dinkova TD, Aguilar-Caballero R, Rivera-Cabrera F, Sánchez de Jiménez E, Pérez-Flores LJ. Regulation of ribosome biogenesis in maize embryonic axes during germination. Biochimie 2013; 95:1871-9. [PMID: 23806421 DOI: 10.1016/j.biochi.2013.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
Ribosome biogenesis is a pre-requisite for cell growth and proliferation; it is however, a highly regulated process that consumes a great quantity of energy. It requires the coordinated production of rRNA, ribosomal proteins and non-ribosomal factors which participate in the processing and mobilization of the new ribosomes. Ribosome biogenesis has been studied in yeast and animals; however, there is little information about this process in plants. The objective of the present work was to study ribosome biogenesis in maize seeds during germination, a stage characterized for its fast growth, and the effect of insulin in this process. Insulin has been reported to accelerate germination and to induce seedling growth. It was observed that among the first events reactivated just after 3 h of imbibition are the rDNA transcription and the pre-rRNA processing and that insulin stimulates both of them (40-230%). The transcript of nucleolin, a protein which regulates rDNA transcription and pre-rRNA processing, is among the messages stored in quiescent dry seeds and it is mobilized into the polysomal fraction during the first hours of imbibition (6 h). In contrast, de novo ribosomal protein synthesis was low during the first hours of imbibition (3 and 6 h) increasing by 60 times in later stages (24 h). Insulin increased this synthesis (75%) at 24 h of imbibition; however, not all ribosomal proteins were similarly regulated. In this regard, an increase in RPS6 and RPL7 protein levels was observed, whereas RPL3 protein levels did not change even though its transcription was induced. Results show that ribosome biogenesis in the first stages of imbibition is carried out with newly synthesized rRNA and ribosomal proteins translated from stored mRNA.
Collapse
Affiliation(s)
- J M Villa-Hernández
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340 D. F. México, Mexico
| | | | | | | | | | | |
Collapse
|
46
|
Zörgö E, Chwialkowska K, Gjuvsland AB, Garré E, Sunnerhagen P, Liti G, Blomberg A, Omholt SW, Warringer J. Ancient evolutionary trade-offs between yeast ploidy states. PLoS Genet 2013; 9:e1003388. [PMID: 23555297 PMCID: PMC3605057 DOI: 10.1371/journal.pgen.1003388] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/31/2013] [Indexed: 11/18/2022] Open
Abstract
The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy–environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%–17% of ploidy–environment interactions. The mechanism of the cell size–based superior reproductive efficiency of haploids during Li+ exposure was traced to the Li+ exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li+ tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots. Organisms vary in the number of chromosome sets contained within the nucleus of each cell, but neither the reasons nor the consequences of this variation are well understood. We designed yeasts that differed in the number of chromosome sets but were otherwise identical and mapped the consequences of such ploidy variations during exposure to a large palette of environments. Contrary to commonly held assumptions, we found ploidy effects on the mitotic reproductive capacity of yeast to be the rule rather than the exception and to be highly evolutionarily conserved. Furthermore, our data rejected previously contemplated hypotheses of generalizable advantages of haploidy or diploidy when cells face nutrient starvation or are exposed to toxins or increased mutation rates. We also mapped the molecular processes mediating ploidy–environment interactions, showing that cell size and mating type locus composition had equal explanatory power. Finally we show that ploidy effects can be mechanistically very subtle, as a designed shift from one plasma membrane Li+ transporter to another completely altered the relative merits of having one or two chromosome sets when exposed to high Li+ concentrations. This complex and dynamic interplay between the number of chromosomes sets and the fluctuating environment must be taken into account when considering organismal form and behavior.
Collapse
Affiliation(s)
- Enikö Zörgö
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (UMB), Ås, Norway
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Karolina Chwialkowska
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Arne B. Gjuvsland
- Centre for Integrative Genetics (CIGENE), Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences (UMB), Ås, Norway
| | - Elena Garré
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gianni Liti
- IRCAN, CNRS UMR 6267, INSERM U998, University of Nice, Nice, France
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Stig W. Omholt
- NTNU Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, Department of Biotechnology, Trondheim, Norway
| | - Jonas Warringer
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (UMB), Ås, Norway
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
47
|
Spiesser TW, Müller C, Schreiber G, Krantz M, Klipp E. Size homeostasis can be intrinsic to growing cell populations and explained without size sensing or signalling. FEBS J 2012; 279:4213-30. [PMID: 23013467 DOI: 10.1111/febs.12014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/12/2012] [Accepted: 09/20/2012] [Indexed: 12/19/2022]
Abstract
The cell division cycle orchestrates cellular growth and division. The machinery underpinning the cell division cycle is well characterized, but the actual cue(s) driving the cell division cycle remains unknown. In rapidly growing and dividing yeast cells, this cue has been proposed to be cell size. Presumably, a mechanism communicating cell size acts as gatekeeper for the cell division cycle via the G(1) network, which triggers G(1) exit only when a critical size has been reached. Here, we evaluate this hypothesis with a minimal core model linking metabolism, growth and the cell division cycle. Using this model, we (a) present support for coordinated regulation of G(1)/S and G(2)/M transition in Saccharomyces cerevisiae in response to altered growth conditions, (b) illustrate the intrinsic antagonism between G(1) progression and cell size and (c) provide evidence that the coupling of growth and division is sufficient to allow for size homeostasis without directly communicating or measuring cell size. We show that even with a rudimentary version of the G(1) network consisting of a single unregulated cyclin, size homeostasis is maintained in populations during autocatalytic growth when the geometric constraint on nutrient supply is considered. Taken together, our results support the notion that cell size is a consequence rather than a regulator of growth and division.
Collapse
|
48
|
Chen J, Young SM, Allen C, Seeber A, Péli-Gulli MP, Panchaud N, Waller A, Ursu O, Yao T, Golden JE, Strouse JJ, Carter MB, Kang H, Bologa CG, Foutz TD, Edwards BS, Peterson BR, Aubé J, Werner-Washburne M, Loewith RJ, De Virgilio C, Sklar LA. Identification of a small molecule yeast TORC1 inhibitor with a multiplex screen based on flow cytometry. ACS Chem Biol 2012; 7:715-22. [PMID: 22260433 DOI: 10.1021/cb200452r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high-throughput flow cytometry multiplexed screen using five GFP-tagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded, and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high-throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in a manner analogous to that of rapamycin. We have shown that CID 3528206 inhibited yeast cell growth and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC(50)'s of 150 nM and 3.9 μM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Marie-Pierre Péli-Gulli
- Department of Biology, Division
of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Nicolas Panchaud
- Department of Biology, Division
of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | | - Tuanli Yao
- University of Kansas Specialized
Chemistry Center, University of Kansas,
Lawrence, Kansas 66047, United States
| | - Jennifer E. Golden
- University of Kansas Specialized
Chemistry Center, University of Kansas,
Lawrence, Kansas 66047, United States
| | | | | | | | | | | | | | - Blake R. Peterson
- University of Kansas Specialized
Chemistry Center, University of Kansas,
Lawrence, Kansas 66047, United States
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United
States
| | - Jeffrey Aubé
- University of Kansas Specialized
Chemistry Center, University of Kansas,
Lawrence, Kansas 66047, United States
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United
States
| | | | | | - Claudio De Virgilio
- Department of Biology, Division
of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
49
|
Ray S, Grove A. Interaction of Saccharomyces cerevisiae HMO2 Domains with Distorted DNA. Biochemistry 2012; 51:1825-35. [DOI: 10.1021/bi201700h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sreerupa Ray
- Department of Biological
Sciences, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Anne Grove
- Department of Biological
Sciences, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
50
|
Xiao L, Kamau E, Donze D, Grove A. Expression of yeast high mobility group protein HMO1 is regulated by TOR signaling. Gene 2011; 489:55-62. [DOI: 10.1016/j.gene.2011.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 07/19/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|