1
|
Peterson J, Balogh Sivars K, Bianco A, Röper K. Toll-like receptor signalling via IRAK4 affects epithelial integrity and tightness through regulation of junctional tension. Development 2023; 150:dev201893. [PMID: 37997696 PMCID: PMC10753582 DOI: 10.1242/dev.201893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Toll-like receptors (TLRs) in mammalian systems are well known for their role in innate immunity. In addition, TLRs also fulfil crucial functions outside immunity, including the dorsoventral patterning function of the original Toll receptor in Drosophila and neurogenesis in mice. Recent discoveries in flies suggested key roles for TLRs in epithelial cells in patterning of junctional cytoskeletal activity. Here, we address the function of TLRs and the downstream key signal transduction component IRAK4 in human epithelial cells. Using differentiated human Caco-2 cells as a model for the intestinal epithelium, we show that these cells exhibit baseline TLR signalling, as revealed by p-IRAK4, and that blocking IRAK4 function leads to a loss of epithelial tightness involving key changes at tight and adherens junctions, such as a loss of epithelial tension and changes in junctional actomyosin. Changes upon IRAK-4 inhibition are conserved in human bronchial epithelial cells. Knockdown of IRAK4 and certain TLRs phenocopies the inhibitor treatment. These data suggest a model whereby TLR receptors near epithelial junctions might be involved in a continuous sensing of the epithelial state to promote epithelial tightness and integrity.
Collapse
Affiliation(s)
- Jesse Peterson
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Kinga Balogh Sivars
- Oncology R&D, Precision Medicine and Biosamples, R&D, AstraZeneca, Pepparedsleden 1, Nova, Mölndal, SE-431 83, Sweden
| | - Ambra Bianco
- Clinical Pharmacology and Safety Sciences CPSS Oncology Safety, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Katja Röper
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
2
|
Caddeo A, Spagnuolo R, Maurotti S. MBOAT7 in liver and extrahepatic diseases. Liver Int 2023; 43:2351-2364. [PMID: 37605540 DOI: 10.1111/liv.15706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
MBOAT7 is a protein anchored to endomembranes by several transmembrane domains. It has a catalytic dyad involved in remodelling of phosphatidylinositol with polyunsaturated fatty acids. Genetic variants in the MBOAT7 gene have been associated with the entire spectrum of non-alcoholic fatty liver (NAFLD), recently redefined as metabolic dysfunction-associated fatty liver disease (MAFLD) and, lately, steatotic liver disease (SLD), and to an increasing number of extrahepatic conditions. In this review, we will (a) elucidate the molecular mechanisms by which MBOAT7 loss-of-function predisposes to MAFLD and neurodevelopmental disorders and (b) discuss the growing number of genetic studies linking MBOAT7 to hepatic and extrahepatic diseases. MBOAT7 complete loss of function causes severe changes in brain development resulting in several neurological manifestations. Lower MBOAT7 hepatic expression at both the mRNA and protein levels, due to missense nucleotide polymorphisms (SNPs) in the locus containing the MBOAT7 gene, affects specifically metabolic and viral diseases in the liver from simple steatosis to hepatocellular carcinoma, and potentially COVID-19 disease. This body of evidence shows that phosphatidylinositol remodelling is a key factor for human health.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Rocco Spagnuolo
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
3
|
Patlola SR, Donohoe G, McKernan DP. Counting the Toll of Inflammation on Schizophrenia-A Potential Role for Toll-like Receptors. Biomolecules 2023; 13:1188. [PMID: 37627253 PMCID: PMC10452856 DOI: 10.3390/biom13081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that are ubiquitously expressed in the human body. They protect the brain and central nervous system from self and foreign antigens/pathogens. The immune response elicited by these receptors culminates in the release of cytokines, chemokines, and interferons causing an inflammatory response, which can be both beneficial and harmful to neurodevelopment. In addition, the detrimental effects of TLR activation have been implicated in multiple neurodegenerative diseases such as Alzheimer's, multiple sclerosis, etc. Many studies also support the theory that cytokine imbalance may be involved in schizophrenia, and a vast amount of literature showcases the deleterious effects of this imbalance on cognitive performance in the human population. In this review, we examine the current literature on TLRs, their potential role in the pathogenesis of schizophrenia, factors affecting TLR activity that contribute towards the risk of schizophrenia, and lastly, the role of TLRs and their impact on cognitive performance in schizophrenia.
Collapse
Affiliation(s)
- Saahithh Redddi Patlola
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| | - Gary Donohoe
- School of Psychology, University of Galway, H91 TK33 Galway, Ireland;
| | - Declan P. McKernan
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| |
Collapse
|
4
|
Firoz A, Malik A, Ali HM, Akhter Y, Manavalan B, Kim CB. PRR-HyPred: A two-layer hybrid framework to predict pattern recognition receptors and their families by employing sequence encoded optimal features. Int J Biol Macromol 2023; 234:123622. [PMID: 36773859 DOI: 10.1016/j.ijbiomac.2023.123622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Pattern recognition receptors (PRRs) recognize distinct features on the surface of pathogens or damaged cells and play key roles in the innate immune system. PRRs are divided into various families, including Toll-like receptors, retinoic acid-inducible gene-I-like receptors, nucleotide oligomerization domain-like receptors, and C-type lectin receptors. As these are implicated in host health and several diseases, their accurate identification is indispensable for their functional characterization and targeted therapeutic approaches. Here, we construct PRR-HyPred, a novel two-layer hybrid framework in which the first layer predicts whether a given sequence is PRR or non-PRR using a support vector machine, and in the second, the predicted PRR sequence is assigned to a specific family using a random forest-based classifier. Based on a 10-fold cross-validation test, PRR-HyPred achieved 83.4 % accuracy in the first layer and 95 % in the second, with Matthew's correlation coefficient values of 0.639 and 0.816, respectively. This is the first study that can simultaneously predict and classify PRRs into specific families. PRR-HyPred is available as a web portal at https://procarb.org/PRRHyPred/. We hope that it could be a valuable tool for the large-scale prediction and classification of PRRs and subsequently facilitate future studies.
Collapse
Affiliation(s)
- Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul, 03016, Republic of Korea.
| | - Hani Mohammed Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea.
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
5
|
TIRAP, TRAM, and Toll-Like Receptors: The Untold Story. Mediators Inflamm 2023; 2023:2899271. [PMID: 36926280 PMCID: PMC10014160 DOI: 10.1155/2023/2899271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
Toll-like receptors (TLRs) are the most studied receptors among the pattern recognition receptors (PRRs). They act as microbial sensors, playing major roles in the regulation of the innate immune system. TLRs mediate their cellular functions through the activation of MyD88-dependent or MyD88-independent signaling pathways. Myd88, or myeloid differentiation primary response 88, is a cytosolic adaptor protein essential for the induction of proinflammatory cytokines by all TLRs except TLR3. While the crucial role of Myd88 is well described, the contribution of other adaptors in mediating TLR signaling and function has been underestimated. In this review, we highlight important results demonstrating that TIRAP and TRAM adaptors are also required for full signaling activity and responses induced by most TLRs.
Collapse
|
6
|
A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. Nat Commun 2022; 13:7430. [PMID: 36473860 PMCID: PMC9726889 DOI: 10.1038/s41467-022-35158-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The breakdown of toll-like receptor (TLR) tolerance results in tissue damage, and hyperactivation of the TLRs and subsequent inflammatory consequences have been implicated as risk factors for more severe forms of disease and poor outcomes from various diseases including COVID-19 and metabolic (dysfunction) associated fatty liver disease (MAFLD). Here we provide evidence that membrane bound O-acyltransferase domain containing 7 (MBOAT7) is a negative regulator of TLR signalling. MBOAT7 deficiency in macrophages as observed in patients with MAFLD and in COVID-19, alters membrane phospholipid composition. We demonstrate that this is associated with a redistribution of arachidonic acid toward proinflammatory eicosanoids, induction of endoplasmic reticulum stress, mitochondrial dysfunction, and remodelling of the accessible inflammatory-related chromatin landscape culminating in macrophage inflammatory responses to TLRs. Activation of MBOAT7 reverses these effects. These outcomes are further modulated by the MBOAT7 rs8736 (T) MAFLD risk variant. Our findings suggest that MBOAT7 can potentially be explored as a therapeutic target for diseases associated with dysregulation of the TLR signalling cascade.
Collapse
|
7
|
Singh H, Samani D. TLR3 polymorphisms in HIV infected individuals naïve to ART. Curr HIV Res 2022; 20:CHR-EPUB-126223. [PMID: 36089778 DOI: 10.2174/1570162x20666220908105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/08/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND TLR3 polymorphisms affect the risk of HIV infection and modify the disease course. Consequently, we analyzed the association of TLR3 polymorphism (rs5743312, rs3775296, and rs3775291) with susceptilbity to HIV-1 acquisition and disease progression. METHOD This is a cross-sectional study. Genotyping of TLR3 polymorphisms were completed by the utilization of the PCR-RFLP technique in 153 HIV naive subjects and 158 healthy controls. RESULT A haplotype is a physical grouping of genomic variants that tend to be inherited together. The TCC haplotype was increased in HIV infected individuals compared with healthy controls (0.05% versus 0.03%). TLR3 rs3775291CT genotype was associated to the early stage of HIV infection (OR=2.19, P=0.04), with a higher occurrence in advance stage of HIV infection when contrasted with healthy controls (41.2% versus 32.3%). TLR3 rs3775296 CA genotype was likely to be associated with intermediate stage of HIV infection (19.5% versus 31.6%, OR=0.42, P=0.06). TLR3 rs5743312TT genotype was used to be greater prevalence in advanced stage of HIV infection compared with healthy controls (2.9% versus 1.9%). TLR3 rs3775296CA genotype was less prevalent in HIV subjects devouring tobacco when contrasted with non-users (9.1% versus 34.9%, OR=0.25, P=0.09). TLR3 rs3775296AA and rs3775291CT and TT genotypes have been overrepresented in HIV subjects using alcohol when contrasted with non-users (5.6% versus 1.1%, OR=1.83, P=0.67; 50.0% versus 42.2%, OR=1.84, P=0.31; 5.6% versus 3.3%, OR=2.70, P=0.50). In multivariate examination, rs5743312TT genotype showed a greater risk for HIV infection (OR=1.86, P=0.50). CONCLUSION TLR3 rs3775291 C/T polymorphism may assist the risk of disease progression in alcohol consumers. TLR3 rs3775291 CT genotype may enhance the disease progression whereas the TLR3 rs3775296 CA genotype may protect for disease progression.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| | - Dharmesh Samani
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| |
Collapse
|
8
|
Moura ELD, Santos IFD, Freitas PPD, Silva DMD, Santos ACMD, Lira Neto AB, Silva ACPE, Barbosa NR, Nascimento CA, Balliano TL, Fraga CADC, Farias KFD, Figueiredo EVMDS. Polymorphisms in Toll-like receptors genes changes the host’s immune response and is associated with cervical cancer. Immunobiology 2022; 227:152187. [DOI: 10.1016/j.imbio.2022.152187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/03/2022] [Accepted: 02/03/2022] [Indexed: 11/05/2022]
|
9
|
Martínez-Espinoza I, Guerrero-Plata A. The Relevance of TLR8 in Viral Infections. Pathogens 2022; 11:134. [PMID: 35215078 PMCID: PMC8877508 DOI: 10.3390/pathogens11020134] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Toll-like receptors (TLRs) are the largest pattern recognition receptors responsible for activating the innate and adaptive immune response against viruses through the release of inflammatory cytokines and antiviral mediators. Viruses are recognized by several TLRs, including TLR8, which is known to bind ssRNA structures. However, the similarities between TLR8 and TLR7 have obscured the distinctive characteristics of TLR8 activation and its importance in the immune system. Here we discuss the activation and regulation of TLR8 by viruses and its importance in therapeutical options such as vaccine adjuvants and antiviral stimulators.
Collapse
|
10
|
Abstract
Toll-like receptors were discovered as proteins playing a crucial role in the dorsoventral patterning during embryonic development in the Drosophila melanogaster (D. melanogaster) almost 40 years ago. Subsequently, further research also showed a role of the Toll protein or Toll receptor in the recognition of Gram-positive bacterial and fungal pathogens infecting D. melanogaster. In 1997, the human homolog was reported and the receptor was named the Toll-like receptor 4 (TLR4) that recognizes lipopolysaccharide (LPS) of the Gram-negative bacteria as a pathogen-associated molecular pattern (PAMP). Identification of TLR4 in humans filled the long existing gap in the field of infection and immunity, addressing the mystery surrounding the recognition of foreign pathogens/microbes by the immune system. It is now known that mammals (mice and humans) express 13 different TLRs that are expressed on the outer cell membrane or intracellularly, and which recognize different PAMPs or microbe-associated molecular patterns (MAMPs) and death/damage-associated molecular patterns (DAMPs) to initiate the protective immune response. However, their dysregulation generates profound and prolonged pro-inflammatory immune responses responsible for different inflammatory and immune-mediated diseases. This chapter provides an overview of TLRs in the control of the immune response, their association with different diseases, including TLR single nucleotide polymorphisms (SNPs), interactions with microRNAs (miRs), use in drug development and vaccine design, and expansion in neurosciences to include pain, addiction, metabolism, reproduction, and wound healing.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - James E Barrett
- Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Neural Sciences, Centre for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Gosu V, Sasidharan S, Saudagar P, Lee HK, Shin D. Computational Insights into the Structural Dynamics of MDA5 Variants Associated with Aicardi-Goutières Syndrome and Singleton-Merten Syndrome. Biomolecules 2021; 11:biom11081251. [PMID: 34439917 PMCID: PMC8393256 DOI: 10.3390/biom11081251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Melanoma differentiation-associated protein 5 (MDA5) is a crucial RIG-I-like receptor RNA helicase enzyme encoded by IFIH1 in humans. Single nucleotide polymorphisms in the IFIH1 results in fatal genetic disorders such as Aicardi–Goutières syndrome and Singleton–Merten syndrome, and in increased risk of type I diabetes in humans. In this study, we chose four different amino acid substitutions of the MDA5 protein responsible for genetic disorders: MDA5L372F, MDA5A452T, MDA5R779H, and MDA5R822Q and analyzed their structural and functional relationships using molecular dynamic simulations. Our results suggest that the mutated complexes are relatively more stable than the wild-type MDA5. The radius of gyration, interaction energies, and intra-hydrogen bond analysis indicated the stability of mutated complexes over the wild type, especially MDA5L372F and MDA5R822Q. The dominant motions exhibited by the wild-type and mutant complexes varied significantly. Moreover, the betweenness centrality of the wild-type and mutant complexes showed shared residues for intra-signal propagation. The observed results indicate that the mutations lead to a gain of function, as reported in previous studies, due to increased interaction energies and stability between RNA and MDA5 in mutated complexes. These findings are expected to deepen our understanding of MDA5 variants and may assist in the development of relevant therapeutics against the disorders.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Korea;
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India; (S.S.); (P.S.)
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India; (S.S.); (P.S.)
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Korea;
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.L.); (D.S.)
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.L.); (D.S.)
| |
Collapse
|
12
|
Perrelli A, Retta SF. Polymorphisms in genes related to oxidative stress and inflammation: Emerging links with the pathogenesis and severity of Cerebral Cavernous Malformation disease. Free Radic Biol Med 2021; 172:403-417. [PMID: 34175437 DOI: 10.1016/j.freeradbiomed.2021.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity. Three disease genes have been identified: KRIT1 (CCM1), CCM2 and CCM3. Previous results demonstrated that loss-of-function mutations of CCM genes cause pleiotropic effects, including defective autophagy, altered reactive oxygen species (ROS) homeostasis, and enhanced sensitivity to oxidative stress and inflammatory events, suggesting a novel unifying pathogenetic mechanism, and raising the possibility that CCM disease onset and severity are influenced by the presence of susceptibility and modifier genes. Consistently, genome-wide association studies (GWAS) in large and homogeneous cohorts of patients sharing the familial form of CCM disease and identical mutations in CCM genes have led to the discovery of distinct genetic modifiers of major disease severity phenotypes, such as development of numerous and large CCM lesions, and susceptibility to ICH. This review deals with the identification of genetic modifiers with a significant impact on inter-individual variability in CCM disease onset and severity, including highly polymorphic genes involved in oxidative stress, inflammatory and immune responses, such as cytochrome P450 monooxygenases (CYP), matrix metalloproteinases (MMP), and Toll-like receptors (TLR), pointing to their emerging prognostic value, and opening up new perspectives for risk stratification and personalized medicine strategies.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
13
|
Association of TLR4 gene polymorphisms with sepsis after a burn injury: findings of the functional role of rs2737190 SNP. Genes Immun 2021; 22:24-34. [PMID: 33531683 DOI: 10.1038/s41435-021-00121-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/11/2020] [Accepted: 01/13/2021] [Indexed: 02/01/2023]
Abstract
Sepsis is a life-threatening organ dysfunction condition caused by a dysregulated response to an infection that is common among patients with moderate to severe burn injury. Previously, genomic variants in Toll-like receptor 4 (TLR4), a key innate immunity receptor, have been associated with sepsis and infection susceptibility. In this study, the association of six TLR4 SNPs with sepsis after burn injury was tested in the Mexican mestizo population. We found that the rs2737190 polymorphism is associated with sepsis after burn trauma. Interestingly, the G allele and GG genotype were associated with a lower risk of developing sepsis. Since the rs2737190 SNP is in the promoter region of the TLR4 gene, we analyzed the possibility that this polymorphism regulates the TLR4 pathway. We cultured peripheral blood mononuclear cells from different genotype carriers and found, after stimulation with LPS, that carriers of the GG genotype showed a higher expression of TLR4, IL6, and TNFα than AA genotype carriers. The results suggest that the GG genotype produces an increase in the TLR4 expression, and therefore an improvement in the immune response. We conclude that the rs2737190 polymorphism may become a useful marker for genetic studies of sepsis in patients after a burn injury.
Collapse
|
14
|
Lannoy V, Côté-Biron A, Asselin C, Rivard N. Phosphatases in toll-like receptors signaling: the unfairly-forgotten. Cell Commun Signal 2021; 19:10. [PMID: 33494775 PMCID: PMC7829650 DOI: 10.1186/s12964-020-00693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past 2 decades, pattern recognition receptors (PRRs) have been shown to be on the front line of many illnesses such as autoimmune, inflammatory, and neurodegenerative diseases as well as allergies and cancer. Among PRRs, toll-like receptors (TLRs) are the most studied family. Dissecting TLRs signaling turned out to be advantageous to elaborate efficient treatments to cure autoimmune and chronic inflammatory disorders. However, a broad understanding of TLR effectors is required to propose a better range of cures. In addition to kinases and E3 ubiquitin ligases, phosphatases emerge as important regulators of TLRs signaling mediated by NF-κB, type I interferons (IFN I) and Mitogen-Activated Protein Kinases signaling pathways. Here, we review recent knowledge on TLRs signaling modulation by different classes and subclasses of phosphatases. Thus, it becomes more and more evident that phosphatases could represent novel therapeutic targets to control pathogenic TLRs signaling. Video Abstract.
Collapse
Affiliation(s)
- Valérie Lannoy
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Anthony Côté-Biron
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Claude Asselin
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Nathalie Rivard
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada.
| |
Collapse
|
15
|
The Role of TLR-4 and Galectin-3 Interaction in Acute Pancreatitis. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2019-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Toll-like receptor-4 (TLR-4) is a member of evolutionarily conserved type I transmembrane proteins that can initiate sterile inflammatory cascade in the pancreas. Expression of TLR-4 is up-regulated in pancreatic tissue, as well as, on peripheral blood innate immune cells in human and experimental models of acute pancreatitis. TLR-4 plays important pro-inflammatory roles during development of acute pancreatitis: it recognize alarmins released from injured acinar cells and promotes activation and infiltration of innate immune cells after the premature and intraacinar activation of tripsinogen. Galectin-3 is β-galactoside-binding lectin that plays pro-inflammatory roles in a variety autoimmune diseases, acute bacterial infections and during tumorigenesis. It is reported that Galectin-3 is alarmin in experimental models of neuroinflammation and binds to TLR-4 promoting the pro-inflammatory phenotype of microglia. Also, in experimental model of acute pancreatitis Galectin-3 is colocalized with TLR-4 on innate inflammatory cells resulted in enhanced production of inflammatory cytokines, TNF-α and IL-1β, increased infiltration of pro-inflammatory N1 neutrophils, macrophages and dendritic cells and increased damage of pancreatic tissue. This review paper discusses the role of TLR-4/Gal-3 axis in the pathogenesis of acute pancreatitis.
Collapse
|
16
|
Gopallawa I, Lee RJ. Targeting the phosphoinositide-3-kinase/protein kinase B pathway in airway innate immunity. World J Biol Chem 2020; 11:30-51. [PMID: 33024516 PMCID: PMC7520643 DOI: 10.4331/wjbc.v11.i2.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The airway innate immune system maintains the first line of defense against respiratory infections. The airway epithelium and associated immune cells protect the respiratory system from inhaled foreign organisms. These cells sense pathogens via activation of receptors like toll-like receptors and taste family 2 receptors (T2Rs) and respond by producing antimicrobials, inflammatory cytokines, and chemokines. Coordinated regulation of fluid secretion and ciliary beating facilitates clearance of pathogens via mucociliary transport. Airway cells also secrete antimicrobial peptides and radicals to directly kill microorganisms and inactivate viruses. The phosphoinositide-3-kinase/protein kinase B (Akt) kinase pathway regulates multiple cellular targets that modulate cell survival and proliferation. Akt also regulates proteins involved in innate immune pathways. Akt phosphorylates endothelial nitric oxide synthase (eNOS) enzymes expressed in airway epithelial cells. Activation of eNOS can have anti-inflammatory, anti-bacterial, and anti-viral roles. Moreover, Akt can increase the activity of the transcription factor nuclear factor erythroid 2 related factor-2 that protects cells from oxidative stress and may limit inflammation. In this review, we summarize the recent findings of non-cancerous functions of Akt signaling in airway innate host defense mechanisms, including an overview of several known downstream targets of Akt involved in innate immunity.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert J Lee
- Department of Otorhinolaryngology and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
17
|
Torosin NS, Argibay H, Webster TH, Corneli PS, Knapp LA. Comparing the selective landscape of TLR7 and TLR8 across primates reveals unique sites under positive selection in Alouatta. Mol Phylogenet Evol 2020; 152:106920. [PMID: 32768453 DOI: 10.1016/j.ympev.2020.106920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 03/06/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022]
Abstract
Among primates, susceptibility to yellow fever (YFV), a single-stranded (ss) RNA virus, ranges from complete resistance to high susceptibility. Howler monkeys (genus Alouatta) are the most susceptible to YFV. In order to identify Alouatta-specific genetic factors that may be responsible for their susceptibility, we collected skin samples from howler monkey museum specimens of the species A. caraya and A. guariba clamitans. We compared the rate of nonsynonymous to synonymous (dN/dS) changes of Toll-like receptor (TLR) 7 and TLR8, the two genes responsible for detecting all ssRNA viruses, across the Primate order. Overall, we found that the TLR7 gene is under stronger purifying selection in howler monkeys compared to other New World and Old World primates, but TLR8 is under the same selective pressure. When we evaluated dN/dS at each codon, we found six codons under positive selection in Alouatta TLR8 and two codons under positive selection in TLR7. The changes in TLR7 are unique to A. guariba clamitans and are found in functionally important regions likely to affect detection of ssRNA viruses by TLR7/TLR8, as well as downstream signaling. These amino acid differences in A. guariba clamitans may play a role in YFV susceptibility. These results have implications for identifying genetic factors affecting YFV susceptibility in primates.
Collapse
Affiliation(s)
- Nicole S Torosin
- Department of Anthropology, University of Utah, 260 S. Central Campus Dr., Salt Lake City, UT 84112, United States.
| | - Hernan Argibay
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET), Intendente Güiraldes 2160 - Ciudad Universitaria (C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina
| | - Timothy H Webster
- Department of Anthropology, University of Utah, 260 S. Central Campus Dr., Salt Lake City, UT 84112, United States
| | - Patrice Showers Corneli
- Department of Biology, University of Utah, 257 S. 1400 E., Salt Lake City, UT 84112, United States
| | - Leslie A Knapp
- Department of Anthropology, University of Utah, 260 S. Central Campus Dr., Salt Lake City, UT 84112, United States
| |
Collapse
|
18
|
Kaur D, Arora C, Raghava GPS. A Hybrid Model for Predicting Pattern Recognition Receptors Using Evolutionary Information. Front Immunol 2020; 11:71. [PMID: 32082326 PMCID: PMC7002473 DOI: 10.3389/fimmu.2020.00071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
This study describes a method developed for predicting pattern recognition receptors (PRRs), which are an integral part of the immune system. The models developed here were trained and evaluated on the largest possible non-redundant PRRs, obtained from PRRDB 2.0, and non-pattern recognition receptors (Non-PRRs), obtained from Swiss-Prot. Firstly, a similarity-based approach using BLAST was used to predict PRRs and got limited success due to a large number of no-hits. Secondly, machine learning-based models were developed using sequence composition and achieved a maximum MCC of 0.63. In addition to this, models were developed using evolutionary information in the form of PSSM composition and achieved maximum MCC value of 0.66. Finally, we developed hybrid models that combined a similarity-based approach using BLAST and machine learning-based models. Our best model, which combined BLAST and PSSM based model, achieved a maximum MCC value of 0.82 with an AUROC value of 0.95, utilizing the potential of both similarity-based search and machine learning techniques. In order to facilitate the scientific community, we also developed a web server "PRRpred" based on the best model developed in this study (http://webs.iiitd.edu.in/raghava/prrpred/).
Collapse
Affiliation(s)
- Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Chakit Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
19
|
Toll-Like Receptors and Relevant Emerging Therapeutics with Reference to Delivery Methods. Pharmaceutics 2019; 11:pharmaceutics11090441. [PMID: 31480568 PMCID: PMC6781272 DOI: 10.3390/pharmaceutics11090441] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
The built-in innate immunity in the human body combats various diseases and their causative agents. One of the components of this system is Toll-like receptors (TLRs), which recognize structurally conserved molecules derived from microbes and/or endogenous molecules. Nonetheless, under certain conditions, these TLRs become hypofunctional or hyperfunctional, thus leading to a disease-like condition because their normal activity is compromised. In this regard, various small-molecule drugs and recombinant therapeutic proteins have been developed to treat the relevant diseases, such as rheumatoid arthritis, psoriatic arthritis, Crohn’s disease, systemic lupus erythematosus, and allergy. Some drugs for these diseases have been clinically approved; however, their efficacy can be enhanced by conventional or targeted drug delivery systems. Certain delivery vehicles such as liposomes, hydrogels, nanoparticles, dendrimers, or cyclodextrins can be employed to enhance the targeted drug delivery. This review summarizes the TLR signaling pathway, associated diseases and their treatments, and the ways to efficiently deliver the drugs to a target site.
Collapse
|
20
|
Morris G, Berk M, Maes M, Carvalho AF, Puri BK. Socioeconomic Deprivation, Adverse Childhood Experiences and Medical Disorders in Adulthood: Mechanisms and Associations. Mol Neurobiol 2019; 56:5866-5890. [PMID: 30685844 PMCID: PMC6614134 DOI: 10.1007/s12035-019-1498-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
Severe socioeconomic deprivation (SED) and adverse childhood experiences (ACE) are significantly associated with the development in adulthood of (i) enhanced inflammatory status and/or hypothalamic-pituitary-adrenal (HPA) axis dysfunction and (ii) neurological, neuroprogressive, inflammatory and autoimmune diseases. The mechanisms by which these associations take place are detailed. The two sets of consequences are themselves strongly associated, with the first set likely contributing to the second. Mechanisms enabling bidirectional communication between the immune system and the brain are described, including complex signalling pathways facilitated by factors at the level of immune cells. Also detailed are mechanisms underpinning the association between SED, ACE and the genesis of peripheral inflammation, including epigenetic changes to immune system-related gene expression. The duration and magnitude of inflammatory responses can be influenced by genetic factors, including single nucleotide polymorphisms, and by epigenetic factors, whereby pro-inflammatory cytokines, reactive oxygen species, reactive nitrogen species and nuclear factor-κB affect gene DNA methylation and histone acetylation and also induce several microRNAs including miR-155, miR-181b-1 and miR-146a. Adult HPA axis activity is regulated by (i) genetic factors, such as glucocorticoid receptor polymorphisms; (ii) epigenetic factors affecting glucocorticoid receptor function or expression, including the methylation status of alternative promoter regions of NR3C1 and the methylation of FKBP5 and HSD11β2; (iii) chronic inflammation and chronic nitrosative and oxidative stress. Finally, it is shown how severe psychological stress adversely affects mitochondrial structure and functioning and is associated with changes in brain mitochondrial DNA copy number and transcription; mitochondria can act as couriers of childhood stress into adulthood.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, P.O. Box 291, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Rd, Parkville, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
21
|
Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand J Immunol 2019; 90:e12771. [PMID: 31054156 DOI: 10.1111/sji.12771] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Immunopolymorphism is considered as an important aspect behind the resistance or susceptibility of the host to an infectious disease. Over the years, researchers have explored many genetic factors for their role in immune surveillance against infectious diseases. Polymorphic characters in the gene encoding Toll-like receptors (TLRs) play profound roles in inducing differential immune responses by the host against parasitic infections. Protein(s) encoded by TLR gene(s) are immensely important due to their ability of recognizing different types of pathogen associated molecular patterns (PAMPs). This study reviews the polymorphic residues present in the nucleotide or in the amino acid sequence of TLRs and their influence on alteration of inflammatory signalling pathways promoting either susceptibility or resistance to major infectious diseases, including tuberculosis, leishmaniasis, malaria and filariasis. Population-based studies exploring TLR polymorphisms in humans are primarily emphasized to discuss the association of the polymorphic residues with the occurrence and epidemiology of the mentioned infectious diseases. Principal polymorphic residues in TLRs influencing immunity to infection are mostly single nucleotide polymorphisms (SNPs). I602S (TLR1), R677W (TLR2), P554S (TLR3), D299G (TLR4), F616L (TLR5), S249P (TLR6), Q11L (TLR7), M1V (TLR8), G1174A (TLR9) and G1031T (TLR10) are presented as the major influential SNPs in shaping immunity to pathogenic infections. The contribution of these SNPs in the structure-function relationship of TLRs is yet not clear. Therefore, molecular studies on such polymorphisms can improve our understanding on the genetic basis of the immune response and pave the way for therapeutic intervention in a more feasible way.
Collapse
Affiliation(s)
| | - Sahel Huda
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| | - Santi P Sinha Babu
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| |
Collapse
|
22
|
Gosu V, Son S, Shin D, Song KD. Insights into the dynamic nature of the dsRNA-bound TLR3 complex. Sci Rep 2019; 9:3652. [PMID: 30842554 PMCID: PMC6403236 DOI: 10.1038/s41598-019-39984-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 02/01/2019] [Indexed: 01/26/2023] Open
Abstract
Toll-like receptor 3 (TLR3), an endosomal receptor crucial for immune responses upon viral invasion. The TLR3 ectodomain (ECD) is responsible for double-stranded RNA (dsRNA) recognition and mutational analysis suggested that TLR3 ECD C-terminal dimerization is essential for dsRNA binding. Moreover, the L412F polymorphism of TLR3 is associated with human diseases. Although the mouse structure of the TLR3-dsRNA complex provides valuable insights, the structural dynamic behavior of the TLR3-dsRNA complex in humans is not completely understood. Hence, in this study, we performed molecular dynamic simulations of human wild-type and mutant TLR3 complexes. Our results suggested that apoTLR3 ECD dimers are unlikely to be stable due to the distance between the monomers are largely varied during simulations. The observed interaction energies and hydrogen bonds in dsRNA-bound TLR3 wild-type and mutant complexes indicate the presence of a weak dimer interface at the TLR3 ECD C-terminal site, which is required for effective dsRNA binding. The L412F mutant exhibited similar dominant motion compared to wild-type. Additionally, we identified the distribution of crucial residues for signal propagation in TLR3-dsRNA complex through the evaluation of residue betweenness centrality (CB). The results of this study extend our understanding of TLR3-dsRNA complex, which may assist in TLR3 therapeutics.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Seungwoo Son
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Donghyun Shin
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea. .,The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
23
|
Cunha DDO, Leão-Cordeiro JAB, Paula HDSCD, Ataides FS, Saddi VA, Vilanova-Costa CAST, Silva AMTC. Association between polymorphisms in the genes encoding toll-like receptors and dectin-1 and susceptibility to invasive aspergillosis: a systematic review. Rev Soc Bras Med Trop 2019; 51:725-730. [PMID: 30517524 DOI: 10.1590/0037-8682-0314-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/07/2018] [Indexed: 11/21/2022] Open
Abstract
Invasive aspergillosis is a common fungal infection in immunocompromised individuals. Some studies have shown that toll-like receptor and dectin-1 genetic polymorphisms may alter signaling pathways, thus increasing an individual's susceptibility to invasive aspergillosis. We investigated the pertinent literature to determine whether polymorphisms in the genes encoding toll-like receptors and dectin-1 increase the susceptibility to invasive aspergillosis. This study systematically reviewed the literature using the databases PubMed/PMC, Scopus, and Web of Science using the keywords invasive aspergillosis, polymorphism, Toll-like, and Dectin-1. From the initial search, 415 studies were found and according to our inclusion and exclusion criteria, eight studies were selected. Several studies described single-nucleotide polymorphisms (SNPs) that are associated with a greater susceptibility to invasive aspergillosis. These SNPs were found in the genes that encode toll-like receptors 1, 3, 4, and 5 and the gene that encodes dectin-1; upon activation, both cellular receptors initiate a signaling cascade that can result in the production of cytokines and chemokines. Thus, our literature review uncovered a significant association between polymorphisms in the genes that encode toll-like receptors and dectin-1 and invasive aspergillosis. More studies should be performed to better understand the relationship between toll-like receptor and dectin-1 genetic polymorphisms and invasive aspergillosis susceptibility.
Collapse
Affiliation(s)
- Daiane de Oliveira Cunha
- Programa Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brasil
| | | | | | - Fábio Silvestre Ataides
- Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brasil
| | - Vera Aparecida Saddi
- Programa Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brasil.,Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brasil
| | | | - Antonio Márcio Teodoro Cordeiro Silva
- Programa Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brasil.,Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brasil
| |
Collapse
|
24
|
Alí A, Boutjdir M, Aromolaran AS. Cardiolipotoxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Front Physiol 2019; 9:1866. [PMID: 30666212 PMCID: PMC6330352 DOI: 10.3389/fphys.2018.01866] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Fatty acid infiltration of the myocardium, acquired in metabolic disorders (obesity, type-2 diabetes, insulin resistance, and hyperglycemia) is critically associated with the development of lipotoxic cardiomyopathy. According to a recent Presidential Advisory from the American Heart Association published in 2017, the current average dietary intake of saturated free-fatty acid (SFFA) in the US is 11–12%, which is significantly above the recommended <10%. Increased levels of circulating SFFAs (or lipotoxicity) may represent an unappreciated link that underlies increased vulnerability to cardiac dysfunction. Thus, an important objective is to identify novel targets that will inform pharmacological and genetic interventions for cardiomyopathies acquired through excessive consumption of diets rich in SFFAs. However, the molecular mechanisms involved are poorly understood. The increasing epidemic of metabolic disorders strongly implies an undeniable and critical need to further investigate SFFA mechanisms. A rapidly emerging and promising target for modulation by lipotoxicity is cytokine secretion and activation of pro-inflammatory signaling pathways. This objective can be advanced through fundamental mechanisms of cardiac electrical remodeling. In this review, we discuss cardiac ion channel modulation by SFFAs. We further highlight the contribution of downstream signaling pathways involving toll-like receptors and pathological increases in pro-inflammatory cytokines. Our expectation is that if we understand pathological remodeling of major cardiac ion channels from a perspective of lipotoxicity and inflammation, we may be able to develop safer and more effective therapies that will be beneficial to patients.
Collapse
Affiliation(s)
- Alessandra Alí
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
25
|
Anwar MA, Shah M, Kim J, Choi S. Recent clinical trends in Toll-like receptor targeting therapeutics. Med Res Rev 2018; 39:1053-1090. [PMID: 30450666 PMCID: PMC6587958 DOI: 10.1002/med.21553] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022]
Abstract
Toll‐like receptors (TLRs) are germline‐encoded receptors that are central to innate and adaptive immune responses. Owing to their vital role in inflammation, TLRs are rational targets in clinics; thus, many ligands and biologics have been reported to overcome the progression of various inflammatory and malignant conditions and support the immune system. For each TLR, at least one, and often many, drug formulations are being evaluated. Ligands reported as stand‐alone drugs may also be reported based on their use in combinatorial therapeutics as adjuvants. Despite their profound efficacy in TLR‐modulation in preclinical studies, multiple drugs have been terminated at different stages of clinical trials. Here, TLR modulating drugs that have been evaluated in clinical trials are discussed, along with their mode of action, suggestive failure reasons, and ways to improve the clinical outcomes. This review presents recent advances in TLR‐targeting drugs and provides directions for more successful immune system manipulation.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
26
|
Glucosylceramide modifies the LPS-induced inflammatory response in macrophages and the orientation of the LPS/TLR4 complex in silico. Sci Rep 2018; 8:13600. [PMID: 30206272 PMCID: PMC6134110 DOI: 10.1038/s41598-018-31926-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is activated by bacterial lipopolysaccharide (LPS), which drives the production of proinflammatory cytokines. Earlier studies have indicated that cholesterol- and glycosphingolipid-rich subregions of the plasma membrane (lipid domains) are important for TLR4-mediated signaling. We report that inhibition of glucosylceramide (GluCer) synthase, which resulted in decreased concentrations of the glycosphingolipid GluCer in lipid domains, reduced the LPS-induced inflammatory response in both mouse and human macrophages. Atomistic molecular dynamics simulations of the TLR4 dimer complex (with and without LPS in its MD-2 binding pockets) in membranes (in the presence and absence of GluCer) showed that: (1) LPS induced a tilted orientation of TLR4 and increased dimer integrity; (2) GluCer did not affect the integrity of the LPS/TLR4 dimer but reduced the LPS-induced tilt; and (3) GluCer increased electrostatic interactions between the membrane and the TLR4 extracellular domain, which could potentially modulate the tilt. We also showed that GCS inhibition reduced the interaction between TLR4 and the intracellular adaptor protein Mal. We conclude that the GluCer-induced effects on LPS/TLR4 orientation may influence the signaling capabilities of the LPS/TLR4 complex by affecting its interaction with downstream signaling proteins.
Collapse
|
27
|
Effects of Single-Nucleotide Polymorphisms in Cytokine, Toll-Like Receptor, and Progesterone Receptor Genes on Risk of Miscarriage. Obstet Gynecol Int 2018; 2018:9272749. [PMID: 30116270 PMCID: PMC6079348 DOI: 10.1155/2018/9272749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022] Open
Abstract
Spontaneous abortion is a complex, multifactorial pathology, where various genetic, neural, endocrine, and immunological factors are involved. Cytokines, Toll-like receptors, and progesterone receptors play critical roles in embryonic implantation and development. A delicate, stage-specific equilibrium of these proteins is required for successful pregnancy outcome. However, genetic variation from one individual to another results in variation in levels of Th1/Th2 cytokines, strength of identification of infectious agents by Toll-like receptors, and quality of progesterone recognition. Thus, a complex study encompassing effects of major SNPs of cytokine, TLR, and PGR genes on the risk of miscarriage is needed. In this study, we investigated SNPs of 9 genes (TLR2 G753A, TLR4 C399T, TLR9 G2848A, TGF-β1 C509T, PGR PROGINS, IL-6 G174C, IL-8 C781T, IL-10 C592A, and TNFα G308A) in 106 women, whose pregnancy ended in miscarriage, and 74 women, who delivered in term without any pregnancy complication. All participants are from Ukrainian population. As a result, TLR9 and IL-10 SNPs have been found to play critical roles in the development of spontaneous abortion. TLR2, TLR4, IL-6, IL-8, and PGR SNPs were identified as secondary factors that can also affect the risk of miscarriage. There was no association found between TGF-β1 and TNFα polymorphisms and miscarriage.
Collapse
|
28
|
Törmänen S, Teräsjärvi J, Lauhkonen E, Helminen M, Koponen P, Korppi M, Nuolivirta K, He Q. TLR5 rs5744174 gene polymorphism is associated with the virus etiology of infant bronchiolitis but not with post-bronchiolitis asthma. Health Sci Rep 2018; 1:e38. [PMID: 30623075 PMCID: PMC6266536 DOI: 10.1002/hsr2.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/09/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND AIM Bronchiolitis is a leading cause of hospitalization in infants and is associated with a risk of subsequent asthma. The innate immunity genes, such as those encoding toll-like receptors (TLRs), are likely to play a role in bronchiolitis and post-bronchiolitis outcome. Thus far, only one study has considered TLR5 genes in respiratory syncytial virus (RSV) bronchiolitis. The aim of this study was to investigate the association of TLR5 gene polymorphism with virus etiology and severity of bronchiolitis, and with post-bronchiolitis asthma. METHODS We recruited 164 infants (age < 6 months) hospitalized for bronchiolitis in this study and determined TLR5 rs5744174 (C > T) single nucleotide polymorphism, virus etiology and severity markers of bronchiolitis, and presence of post-bronchiolitis asthma until age 11 to 13 years. RESULTS RSV was detected in 113 (68.9%), rhinovirus in 19 (11.6%), and some other virus in 20 (12.2%) cases. Non-RSV etiology was more common among infants with the variant CT or TT genotype in the TLR5 rs5744174 gene than in those with the CC genotype (89.7% vs 71.7%, P = 0.03). TLR5 rs5744174 polymorphism was not associated with the need of supplementary oxygen or feeding support, with the length of hospital stay, or with post-bronchiolitis asthma at any age. CONCLUSION The TLR5 rs5744174 variant genotype may increase the susceptibility to bronchiolitis not caused by RSV.
Collapse
Affiliation(s)
- Sari Törmänen
- Center for Child Health ResearchTampere University and University HospitalTampereFinland
| | - Johanna Teräsjärvi
- Department of Medical Microbiology and ImmunologyTurku UniversityTurkuFinland
| | - Eero Lauhkonen
- Center for Child Health ResearchTampere University and University HospitalTampereFinland
| | - Merja Helminen
- Center for Child Health ResearchTampere University and University HospitalTampereFinland
| | - Petri Koponen
- Center for Child Health ResearchTampere University and University HospitalTampereFinland
| | - Matti Korppi
- Center for Child Health ResearchTampere University and University HospitalTampereFinland
| | - Kirsi Nuolivirta
- Department of PediatricsSeinäjoki Central HospitalSeinäjokiFinland
| | - Qiushui He
- Department of Medical Microbiology and ImmunologyTurku UniversityTurkuFinland
- Department of Medical MicrobiologyCapital Medical UniversityBeijingChina
| |
Collapse
|
29
|
The IL-33-PIN1-IRAK-M axis is critical for type 2 immunity in IL-33-induced allergic airway inflammation. Nat Commun 2018; 9:1603. [PMID: 29686383 PMCID: PMC5913134 DOI: 10.1038/s41467-018-03886-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/21/2018] [Indexed: 11/24/2022] Open
Abstract
Interleukin 33 (IL-33) is among the earliest-released cytokines in response to allergens that orchestrate type 2 immunity. The prolyl cis-trans isomerase PIN1 is known to induce cytokines for eosinophil survival and activation by stabilizing cytokines mRNAs, but the function of PIN1 in upstream signaling pathways in asthma is unknown. Here we show that interleukin receptor associated kinase M (IRAK-M) is a PIN1 target critical for IL-33 signaling in allergic asthma. NMR analysis and docking simulations suggest that PIN1 might regulate IRAK-M conformation and function in IL-33 signaling. Upon IL-33-induced airway inflammation, PIN1 is activated for binding with and isomerization of IRAK-M, resulting in IRAK-M nuclear translocation and induction of selected proinflammatory genes in dendritic cells. Thus, the IL-33-PIN1-IRAK-M is an axis critical for dendritic cell activation, type 2 immunity and IL-33 induced airway inflammation. IL-33 orchestrates type 2 immunity in allergic asthma. Here the authors show, using biochemical, structural and patient data, that upon IL-33 or allergic challenge, the isomerase Pin1 modifies IRAK-M to control the production of pro-inflammatory cytokines in the setting of airway inflammation.
Collapse
|
30
|
Hodgkinson CP, Pratt RE, Kirste I, Dal-Pra S, Cooke JP, Dzau VJ. Cardiomyocyte Maturation Requires TLR3 Activated Nuclear Factor Kappa B. Stem Cells 2018; 36:1198-1209. [PMID: 29676038 DOI: 10.1002/stem.2833] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/15/2018] [Accepted: 03/30/2018] [Indexed: 12/18/2022]
Abstract
The process by which committed precursors mature into cardiomyocytes is poorly understood. We found that TLR3 inhibition blocked cardiomyocyte maturation; precursor cells committed to the cardiomyocyte lineage failed to express maturation genes and sarcomeres did not develop. Using various approaches, we found that the effects of TLR3 upon cardiomyocyte maturation were dependent upon the RelA subunit of nuclear factor kappa B (NFκB). Importantly, under conditions that promote the development of mature cardiomyocytes NFκB became significantly enriched at the promoters of cardiomyocyte maturation genes. Furthermore, activation of the TLR3-NFκB pathway enhanced cardiomyocyte maturation. This study, therefore, demonstrates that the TLR3-NFκB pathway is necessary for the maturation of committed precursors into mature cardiomyocytes. Stem Cells 2018;36:1198-1209.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Richard E Pratt
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Imke Kirste
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Sophie Dal-Pra
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - John P Cooke
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, Texas, USA
| | - Victor J Dzau
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| |
Collapse
|
31
|
Qrafli M, Najimi M, Elaouad R, Sadki K. Current immunogenetic predisposition to tuberculosis in the Moroccan population. Int J Immunogenet 2017; 44:286-304. [PMID: 29057608 DOI: 10.1111/iji.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/06/2017] [Accepted: 08/27/2017] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) is a serious infectious disease that kills approximately two million people per year, particularly in low- and middle-income countries. Numerous genetic epidemiology studies have been conducted of many ethnic groups worldwide and have highlighted the critical impact of the genetic environment on TB distribution. Many candidate genes associated with resistance or susceptibility to TB have been identified. In Morocco, where TB is still a major public health problem, various observations of clinical, microbiological and incidence distribution are heavily affected by genetic background and external environment. Morocco has almost the same clinical profile as do other North African countries, mainly the increase in more extrapulmonary than pulmonary forms of the diseases, when compared to European, Asian or American populations. In addition, a linkage analysis study that examined Moroccan TB patients identified a unique chromosome region that had a strong association with the risk of contracting TB. Other genes in the Moroccan population that were found to be associated seem to be involved predominantly in modulating the innate immunity. In this review, we appraise the major candidate genes that have been reported in Moroccan immunogenetic studies and discuss their updated role in TB, particularly during the first phase of the immune response to Mycobacterium tuberculosis (Mtb) infection.
Collapse
Affiliation(s)
- M Qrafli
- Physiopathology Team, Immunogenomic and Bioinformatic Unit, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
| | - M Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - R Elaouad
- School of Medicine and Pharmacy Sciences, Mohammed V University of Rabat, Rabat, Morocco
| | - K Sadki
- Physiopathology Team, Immunogenomic and Bioinformatic Unit, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
| |
Collapse
|
32
|
Bai C, Ren Y, Huang J, Zhang Y, LI L, Du G. High-mobility group Box-1 regulates acute myocardial ischemia-induced injury through the toll-like receptor 4-related pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8344-8352. [PMID: 31966685 PMCID: PMC6965424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 06/10/2023]
Abstract
High-mobility group box-1 (HMGB1) is a nuclear protein released by necrotic cells as a result of its interactions with several receptors, including the receptor for advanced glycation end-products (RAGE) and members of the toll-like receptor family. HMGB1 has been implicated in autoimmune diseases and hepatic and intestinal ischemia/reperfusion (I/R) injury; however, its role in myocardial ischemia-induced injury remains unclear. In this study, isoproterenol (ISO) was used to establish a myocardial ischemia mouse model. Treating mice with recombinant HMGB1 (rHMGB1) worsened myocardial injury, whereas treating mice with antibodies that neutralized HMGB1 significantly reduced tissue damage. Interestingly, myocardial ischemia severity was not affected by rHMGB1 or HMGB1 antibody administration in toll-like receptor 4 (TLR4)-deficient mice (TLR4-/-), which demonstrated significantly reduced ischemia-induced cardiac tissue damage compared with wild-type (WT) mice. HMGB1 plays an important role in myocardial ischemia-induced injury by binding to TLR4, which results in proinflammatory pathway activation and enhanced myocardial injury. Therefore, blocking HMGB1 or TLR4 may represent a novel therapeutic strategy for treating myocardial ischemia-induced injury.
Collapse
Affiliation(s)
- Chaochao Bai
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Yun Ren
- The Fifth People’s Hospital of FoshanFoshan, China
| | - Jin Huang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Yuan Zhang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Lingyi LI
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Guangsheng Du
- The Fifth People’s Hospital of FoshanFoshan, China
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| |
Collapse
|
33
|
David S, Aguiar P, Antunes L, Dias A, Morais A, Sakuntabhai A, Lavinha J. Variants in the non-coding region of the TLR2 gene associated with infectious subphenotypes in pediatric sickle cell anemia. Immunogenetics 2017; 70:37-51. [DOI: 10.1007/s00251-017-1013-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022]
|
34
|
Polymorphism in the gene encoding toll-like receptor 10 may be associated with asthma after bronchiolitis. Sci Rep 2017; 7:2956. [PMID: 28592890 PMCID: PMC5462783 DOI: 10.1038/s41598-017-03429-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/28/2017] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) recognise microbes that contribute to the severity of bronchiolitis and the subsequent risk of asthma. We evaluated whether post-bronchiolitis asthma was associated with polymorphisms in the TLR3 rs3775291, TLR4 rs4986790, TLR7 rs179008, TLR8 rs2407992, TLR9 rs187084, and TLR10 rs4129009 genes. The gene polymorphisms were studied at the age of 6.4 years (mean) in 135 children hospitalised for bronchiolitis in infancy. The outcome measure was current or previous asthma. Current asthma was more common (30%) in children with the variant AG or GG genotype in the TLR10 rs4129009 gene versus those who were homozygous for the major allele A (11%) (p = 0.03). The adjusted odds ratio (aOR) was 4.30 (95% CI 1.30–14.29). Asthma ever was more common (34.6%) in girls with the TLR7 variant AT or TT genotype versus those who were homozygous for the major allele A (12.5%) (p = 0.03). The adjusted OR was 3.93 (95% CI 1.06–14.58). Corresponding associations were not seen in boys. There were no significant associations between TLR3, TLR4, TLR8, or TLR9 polymorphisms and post-bronchiolitis asthma. Polymorphism in the TLR10 gene increases and in the TLR7 gene may increase the risk of asthma in preschool-aged children after infant bronchiolitis.
Collapse
|
35
|
Rapid detection of functional gene polymorphisms of TLRs and IL-17 using high resolution melting analysis. Sci Rep 2017; 7:41522. [PMID: 28148965 PMCID: PMC5288650 DOI: 10.1038/srep41522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Genetic variations in toll-like receptors (TLRs) and IL-17A have been widely connected to different diseases. Associations between susceptibility and resistance to different infections and single nucleotide polymorphisms (SNPs) in TLR1 to TLR4 and IL17A have been found. In this study, we aimed to develop a rapid and high throughput method to detect functional SNPs of above mentioned proteins. The following most studied and clinically important SNPs: TLR1 (rs5743618), TLR2 (rs5743708), TLR3 (rs3775291), TLR4 (rs4986790) and IL17 (rs2275913) were tested. High resolution melting analysis (HRMA) based on real-time PCR combined with melting analysis of a saturating double stranded-DNA binding dye was developed and used. The obtained results were compared to the "standard" sequencing method. A total of 113 DNA samples with known genotypes were included. The HRMA method correctly identified all genotypes of these five SNPs. Co-efficient values of variation of intra- and inter-run precision repeatability ranged from 0.04 to 0.23%. The determined limit of qualification for testing samples was from 0.5 to 8.0 ng/μl. The identical genotyping result was obtained from the same sample with these concentrations. Compared to "standard" sequencing methods HRMA is cost-effective, rapid and simple. All the five SNPs can be analyzed separately or in combination.
Collapse
|
36
|
Fc Gamma Receptor IIA (CD32A) R131 Polymorphism as a Marker of Genetic Susceptibility to Sepsis. Inflammation 2017; 39:518-25. [PMID: 26490967 DOI: 10.1007/s10753-015-0275-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sepsis is a devastating disease that can affect humans at any time between neonates and the elderly and is associated with mortality rates that range from 30 to 80%. Despite intensive efforts, its treatment has remained the same over the last few decades. Fc receptors regulate multiple immune responses and have been investigated in diverse complex diseases. FcγRIIA (CD32A) is an immunoreceptor, tyrosine-based activation motif-bearing receptor that binds immunoglobulin G and C-reactive protein, important opsonins in host defense. We conducted a study of 702 patients (184 healthy individuals, 171 non-infected critically ill patients, and 347 sepsis patients) to investigate if genetic polymorphisms in the CD32A coding region affect the risk of septic shock. All individuals were genotyped for a variant at position 131 of the FcγRIIA gene. We found that allele G, associated with the R131 genotype, was significantly more frequent in septic patients than in the other groups (p = 0.05). Our data indicate that FcγRIIA genotyping can be used as a marker of genetic susceptibility to sepsis.
Collapse
|
37
|
Association of Toll-Like Receptor 3 Single-Nucleotide Polymorphisms and Hepatitis C Virus Infection. J Immunol Res 2017; 2017:1590653. [PMID: 28127569 PMCID: PMC5239973 DOI: 10.1155/2017/1590653] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/20/2016] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptor 3 (TLR3) plays a key role in innate immunity by recognizing pathogenic, double-stranded RNAs. Thus, activation of TLR3 is a major factor in antiviral defense and tumor eradication. Although downregulation of TLR3 gene expression has been mainly reported in patients infected with hepatitis C virus (HCV), the influence of TLR3 genotype on the risk of HCV infection, HCV-related cirrhosis, and/or hepatocellular carcinoma (HCC) remains to be determined. Single-nucleotide polymorphisms (SNPs) within the TLR3 gene and their associations with HCV-related disease risk were investigated in a Saudi Arabian population in this study. Eight TLR3 SNPs were analyzed in 563 patients with HCV, which consisted of 437 patients with chronic HCV infections, 88 with HCV-induced liver cirrhosis, and 38 with HCC. A total of 599 healthy control subjects were recruited to the study. Among the eight TLR3 SNPs studied, the rs78726532 SNP was strongly associated with HCV infection when compared to that in healthy control subjects. The rs5743314 was also strongly associated with HCV-related liver disease progression (cirrhosis and HCC). In summary, these results indicate that distinct genetic variants of TLR3 SNPs are associated with HCV infection and HCV-mediated liver disease progression in the Saudi Arabian population.
Collapse
|
38
|
Expression of maspin in invasive fungal rhinosinusitis. The Journal of Laryngology & Otology 2016; 131:150-154. [PMID: 28031066 DOI: 10.1017/s0022215116009890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to test the expression of maspin in invasive fungal rhinosinusitis and explore its value in diagnosing invasive fungal rhinosinusitis. METHODS Forty-two fungal rhinosinusitis cases (12 invasive and 30 non-invasive) were selected as the experimental group, and 30 chronic rhinosinusitis cases comprised the control group. Maspin expression was assessed in nasal mucous membrane specimens by immunohistochemical staining. RESULTS Compared with the control group, maspin expression was down-regulated in the fungal rhinosinusitis group (p < 0.05). Furthermore, the staining score for maspin was lowest in the invasive fungal rhinosinusitis group, as compared with both the non-invasive fungal rhinosinusitis group and the control group (p < 0.05). A maspin staining score of 5.70 was the critical value for diagnosis of invasive fungal rhinosinusitis, with sensitivity and specificity of 91.7 per cent and 88.3 per cent, respectively. CONCLUSION The results of this study suggest that the maspin staining score may be a biomarker for effective and rapid diagnosis of invasive fungal rhinosinusitis.
Collapse
|
39
|
Badawi A. The Potential of Omics Technologies in Lyme Disease Biomarker Discovery and Early Detection. Infect Dis Ther 2016; 6:85-102. [PMID: 27900646 PMCID: PMC5336413 DOI: 10.1007/s40121-016-0138-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Lyme borreliosis (LB) is the most prevalent arthropod-borne infectious disease in North America and many countries of the temperate Northern Hemisphere. It is associated with local and systemic manifestations and has persistent post-treatment health complications in some individuals. Innate and acquired immunity-related inflammation is likely to play a critical role in both host defense against Borrelia burgdorferi and disease severity. Large-scale analytical approaches to quantify gene expression (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in LB have recently emerged with a potential to advance the development of disease biomarkers in early, disseminated and posttreatment disease stages. These technologies may permit defining the disease stage and facilitate its early detection to improve diagnosis. They will also likely allow elucidating the underlying molecular pathways to aid in identifying molecular targets for therapy. This article reviews the findings within the field of omics relevant to LB and its prospective utility in developing an array of biomarkers that can be employed in LB diagnosis and detection particularly at the early disease stages.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, 180 Queen Street West, Toronto, ON, Canada. .,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, Canada.
| |
Collapse
|
40
|
de Stoppelaar SF, Claushuis TAM, Schaap MCL, Hou B, van der Poll T, Nieuwland R, van ‘t Veer C. Toll-Like Receptor Signalling Is Not Involved in Platelet Response to Streptococcus pneumoniae In Vitro or In Vivo. PLoS One 2016; 11:e0156977. [PMID: 27253707 PMCID: PMC4890788 DOI: 10.1371/journal.pone.0156977] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
Streptococcus (S.) pneumoniae strains vary considerably in their ability to cause invasive disease in humans, which is at least in part determined by the capsular serotype. Platelets have been implicated as sentinel cells in the circulation for host defence. One of their utensils for this function is the expression of Toll-like receptors (TLRs). We here aimed to investigate platelet response to S. pneumoniae and a role for TLRs herein. Platelets were stimulated using four serotypes of S. pneumonia including an unencapsulated mutant strain. In vitro aggregation and flow cytometry assays were performed using blood of healthy volunteers, or blood of TLR knock out and WT mice. For in vivo pneumonia experiments, platelet specific Myd88 knockout (Plt-Myd88-/-) mice were used. We found that platelet aggregation was induced by unencapsulated S. pneumoniae only. Whole blood incubation with all S. pneumoniae serotypes tested resulted in platelet degranulation and platelet-leukocyte complex formation. Platelet activation was TLR independent, as responses were not inhibited by TLR blocking antibodies, not induced by TLR agonists and were equally induced in wild-type and Tlr2-/-, Tlr4-/-, Tlr2/4-/-, Tlr9-/- and Myd88-/- blood. Plt-Myd88-/- and control mice displayed no differences in bacterial clearance or immune response to pneumonia by unencapsulated S. pneumoniae. In conclusion, S. pneumoniae activates platelets through a TLR-independent mechanism that is impeded by the bacterial capsule. Additionally, platelet MyD88-dependent TLR signalling is not involved in host defence to unencapsulated S. pneumoniae in vivo.
Collapse
Affiliation(s)
- Sacha F. de Stoppelaar
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| | - Theodora A. M. Claushuis
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
| | - Marianne C. L. Schaap
- Laboratory for Experimental and Clinical Chemistry (LEKC), University of Amsterdam, Amsterdam, the Netherlands
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chaoyang District, Beijing, China
| | - Tom van der Poll
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, University of Amsterdam, Amsterdam, the Netherlands
| | - Rienk Nieuwland
- Laboratory for Experimental and Clinical Chemistry (LEKC), University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis van ‘t Veer
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Rahman S, Shering M, Ogden NH, Lindsay R, Badawi A. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease. J Inflamm Res 2016; 9:91-102. [PMID: 27330321 PMCID: PMC4898433 DOI: 10.2147/jir.s104790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages.
Collapse
Affiliation(s)
- Shusmita Rahman
- National Microbiology Laboratory, Public Health Agency of Canada, Toronto, ON, Canada
| | - Maria Shering
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Ogden
- National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Alaa Badawi
- National Microbiology Laboratory, Public Health Agency of Canada, Toronto, ON, Canada
| |
Collapse
|
42
|
Geng PL, Song LX, An H, Huang JY, Li S, Zeng XT. Toll-Like Receptor 3 is Associated With the Risk of HCV Infection and HBV-Related Diseases. Medicine (Baltimore) 2016; 95:e2302. [PMID: 27227908 PMCID: PMC4902332 DOI: 10.1097/md.0000000000002302] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There are inconsistent data on the association of risk of hepatitis virus infection and hepatitis virus-related diseases with the toll-like receptor 3 (TLR3) gene.Several common polymorphism sites were targeted to assess the risk of HBV infection, HCV infection, and HBV-related diseases.Meta-analysis combining data for 3547 cases and 2797 controls from 8 studies was performed in this study. Pooled ORs were calculated to measure the risk of hepatitis virus infection and hepatitis virus-related diseases. Fixed-effects pooled ORs were calculated using the Mantel-Haenszel method.The TLR3 gene was associated with a significantly increased risk of HBV-related diseases among 1355 patients and 1130 controls ([pooled OR, [95%CI]: 1.30, [1.15-1.48] for dominant; 1.77, [1.35-2.31] for recessive; 1.28 [1.16-1.41] for allele frequency). Subgroup analyses by a polymorphism site indicated an increased risk of HCV infection in relation to the TT/CT genotypes of rs3775291 (1.50 [1.11-2.01]), and a decreased risk ascribed to the T allele (0.20 [0.16-0.25]). We also noted an association between rs3775291 and significantly increased risk of HBV-related diseases (2.23 [1.55-3.21]). No significant inter-study heterogeneity or publication bias was detected in the analyses.These data suggest a likely effect on the risk to infect HCV and develop HBV-related diseases for the TLR3 gene. Large-scale studies with racially diverse populations are required to validate these findings.
Collapse
Affiliation(s)
- Pei-Liang Geng
- From the Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China (PLG, JYH, SL, XTZ); Department of Pharmacology, General Hospital of Beijing Military Region, Beijing, China (LXS); Center of Basic Medical Sciences, Navy General Hospital of PLA Beijing, China (HA); and Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China (JYH, SL)
| | | | | | | | | | | |
Collapse
|
43
|
Thakur R, Shankar J. In silico Analysis Revealed High-risk Single Nucleotide Polymorphisms in Human Pentraxin-3 Gene and their Impact on Innate Immune Response against Microbial Pathogens. Front Microbiol 2016; 7:192. [PMID: 26941719 PMCID: PMC4763014 DOI: 10.3389/fmicb.2016.00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/04/2016] [Indexed: 01/13/2023] Open
Abstract
Pentraxin-3 (PTX-3) protein is an evolutionary conserved protein that acts as a soluble pattern-recognition receptor for pathogens and plays important role in innate immune response. It recognizes various pathogens by interacting with extracellular moieties such as glactomannan of conidia (Aspergillus fumigatus), lipopolysaccharide of Pseudomonas aeruginosa, Streptococcus pneumonia and Salmonella typhimurium. Thus, PTX-3 protein helps to clear these pathogens by activating downstream innate immune process. In this study, computational methods were used to analyze various non-synonymous single nucleotide polymorphisms (nsSNPs) in PTX-3 gene. Three different databases were used to retrieve SNP data sets followed by seven different in silico algorithms to screen nsSNPs in PTX-3 gene. Sequence homology based approach was used to identify nsSNPs. Conservation profile of PTX-3 protein amino acid residues were predicted by ConSurf web server. In total, 10 high-risk nsSNPs were identified in pentraxin-domain of PTX-3 gene. Out of these 10 high-risk nsSNPs, 4 were present in the conserved structural and functional residues of the pentraxin-domain, hence, selected for structural analyses. The results showed alteration in the putative structure of pentraxin-domain. Prediction of protein–protein interactions analysis showed association of PTX-3 protein with C1q component of complement pathway. Different functional and structural residues along with various putative phosphorylation sites and evolutionary relationship were also predicted for PTX-3 protein. This is the first extensive computational analyses of pentraxin protein family with nsSNPs and will serve as a valuable resource for future population based studies.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Solan, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Solan, India
| |
Collapse
|
44
|
Alipoor B, Ghaedi H, Omrani MD, Bastami M, Meshkani R, Golmohammadi T. A Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2016; 5:65-79. [PMID: 27478803 PMCID: PMC4947211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/31/2016] [Indexed: 12/04/2022]
Abstract
It has been suggested that single nucleotide polymorphisms (SNPs) in genes involved in Toll-like receptors (TLRs) pathway may exhibit broad effects on function of this network and might contribute to a range of human diseases. However, the extent to which these variations affect TLR signaling is not well understood. In this study, we adopted a bioinformatics approach to predict the consequences of SNPs in TLRs network. The consequences of non-synonymous coding SNPs (nsSNPs) were predicted by SIFT, PolyPhen, PANTHER, SNPs&GO, I-Mutant, ConSurf and NetSurf tools. Structural visualization of wild type and mutant protein was performed using the project HOPE and Swiss PDB viewer. The influence of 5'-UTR and 3'- UTR SNPs were analyzed by appropriate computational approaches. Nineteen nsSNPs in TLRs pathway genes were found to have deleterious consequences as predicted by the combination of different algorithms. Moreover, our results suggested that SNPs located at UTRs of TLRs pathway genes may potentially influence binding of transcription factors or microRNAs. By applying a pathway-based bioinformatics analysis of genetic variations, we provided a prioritized list of potentially deleterious variants. These findings may facilitate the selection of proper variants for future functional and/or association studies.
Collapse
Affiliation(s)
- Behnam Alipoor
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding author: Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. E-mail:
| | - Taghi Golmohammadi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Gianchecchi E, Fierabracci A. Gene/environment interactions in the pathogenesis of autoimmunity: new insights on the role of Toll-like receptors. Autoimmun Rev 2015; 14:971-983. [PMID: 26184547 DOI: 10.1016/j.autrev.2015.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/08/2015] [Indexed: 12/17/2022]
Abstract
Autoimmune disorders are increasing worldwide. Although their pathogenesis has not been elucidated yet, a complex interaction of genetic and environmental factors is involved in their onset. Toll-like receptors (TLRs) represent a family of pattern recognition receptors involved in the recognition and in the defense of the host from invading microorganisms. They sense a wide range of pathogen associated molecular patterns (PAMPs) deriving from metabolic pathways selective of bacterial, viral, fungal and protozoan microorganisms. TLR activation plays a critical role in the activation of the downstream signaling pathway by interacting and recruiting several adaptor molecules. Although TLRs are involved in the protection of the host, several studies suggest that, in certain conditions, they play a critical role in the pathogenesis of autoimmune diseases. We review the most recent advances showing a correlation between some single nucleotide polymorphisms or copy number variations in TLR genes or in adaptor molecules involved in TLR signaling and the onset of several autoimmune conditions, such as Type I diabetes, autoimmune polyendocrinopathy candidiasis-ectodermal dystrophy, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. In light of the foregoing we finally propose that molecules involved in TLR pathway may represent the targets for novel therapeutic treatments in order to stop autoimmune processes.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Immunology and Pharmacotherapy Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Vismederi Srl, Siena, Italy
| | - Alessandra Fierabracci
- Immunology and Pharmacotherapy Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
46
|
Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 2015; 67:462-504. [PMID: 25829385 DOI: 10.1124/pr.114.009928] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.
Collapse
Affiliation(s)
- Clare E Bryant
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Selinda Orr
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Brian Ferguson
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Martyn F Symmons
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Joseph P Boyle
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Tom P Monie
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| |
Collapse
|
47
|
Li TT, Ogino S, Qian ZR. Toll-like receptor signaling in colorectal cancer: Carcinogenesis to cancer therapy. World J Gastroenterol 2014; 20:17699-17708. [PMID: 25548469 PMCID: PMC4273121 DOI: 10.3748/wjg.v20.i47.17699] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/27/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are germ line encoded innate immune sensors that recognize conserved microbial structures and host alarmins, and signal expression of major histocompatibility complex proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These protein receptors are characterized by their ability to respond to invading pathogens promptly by recognizing particular TLR ligands, including flagellin and lipopolysaccharide of bacteria, nucleic acids derived from viruses, and zymosan of fungi. There are 2 major TLR pathways; one is mediated by myeloid differentiation factor 88 (MYD88) adaptor proteins, and the other is independent of MYD88. The MYD88-dependent pathway involves early-phase activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1) and all the TLRs, except TLR3, have been shown to activate this pathway. TLR3 and TLR4 act via MYD88-independent pathways with delayed activation of NF-κB signaling. TLRs play a vital role in activating immune responses. TLRs have been shown to mediate inflammatory responses and maintain epithelial barrier homeostasis, and are highly likely to be involved in the activation of a number of pathways following cancer therapy. Colorectal cancer (CRC) is one of the most common cancers, and accounts for almost half a million deaths annually worldwide. Inflammation is considered a risk factor for many common malignancies including cancers of the colorectum. The key molecules involved in inflammation-driven carcinogenesis include TLRs. As sensors of cell death and tissue remodeling, TLRs may have a universal role in cancer; stimulation of TLRs to activate the innate immune system has been a legitimate therapeutic strategy for some years. TLRs 3/4/7/8/9 are all validated targets for cancer therapy, and a number of companies are developing agonists and vaccine adjuvants. On the other hand, antagonists may favor inhibition of signaling responsible for autoimmune responses. In this paper, we review TLR signaling in CRC from carcinogenesis to cancer therapy.
Collapse
|
48
|
Sanclemente G, Moreno A, Navasa M, Lozano F, Cervera C. Genetic variants of innate immune receptors and infections after liver transplantation. World J Gastroenterol 2014; 20:11116-11130. [PMID: 25170199 PMCID: PMC4145753 DOI: 10.3748/wjg.v20.i32.11116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/14/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Infection is the leading cause of complication after liver transplantation, causing morbidity and mortality in the first months after surgery. Allograft rejection is mediated through adaptive immunological responses, and thus immunosuppressive therapy is necessary after transplantation. In this setting, the presence of genetic variants of innate immunity receptors may increase the risk of post-transplant infection, in comparison with patients carrying wild-type alleles. Numerous studies have investigated the role of genetic variants of innate immune receptors and the risk of complication after liver transplantation, but their results are discordant. Toll-like receptors and mannose-binding lectin are arguably the most important studied molecules; however, many other receptors could increase the risk of infection after transplantation. In this article, we review the published studies analyzing the impact of genetic variants in the innate immune system on the development of infectious complications after liver transplantation.
Collapse
|
49
|
Cervantes JL, Hawley KL, Benjamin SJ, Weinerman B, Luu SM, Salazar JC. Phagosomal TLR signaling upon Borrelia burgdorferi infection. Front Cell Infect Microbiol 2014; 4:55. [PMID: 24904837 PMCID: PMC4033037 DOI: 10.3389/fcimb.2014.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022] Open
Abstract
Internalization and degradation of live Bb within phagosomal compartments of monocytes, macrophages and dendritic cells (DCs), allows for the release of lipoproteins, nucleic acids and other microbial products, triggering a broad and robust inflammatory response. Toll-like receptors (TLRs) are key players in the recognition of spirochetal ligands from whole viable organisms (i.e., vita-PAMPs). Herein we will review the role of endosomal TLRs in the response to the Lyme disease spirochete.
Collapse
Affiliation(s)
- Jorge L Cervantes
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA
| | - Kelly L Hawley
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA
| | - Sarah J Benjamin
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA
| | - Bennett Weinerman
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA
| | - Stephanie M Luu
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington, CT, USA
| | - Juan C Salazar
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA ; Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
50
|
Yang K, Zhang XJ, Cao LJ, Liu XH, Liu ZH, Wang XQ, Chen QJ, Lu L, Shen WF, Liu Y. Toll-like receptor 4 mediates inflammatory cytokine secretion in smooth muscle cells induced by oxidized low-density lipoprotein. PLoS One 2014; 9:e95935. [PMID: 24755612 PMCID: PMC3995878 DOI: 10.1371/journal.pone.0095935] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/01/2014] [Indexed: 12/15/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL)-regulated secretion of inflammatory cytokines in smooth muscle cells (SMCs) is regarded as an important step in the progression of atherosclerosis; however, its underlying mechanism remains unclear. This study investigated the role of toll-like receptor 4 (TLR4) in oxLDL-induced expression of inflammatory cytokines in SMCs both in vivo and in vitro. We found that the levels of TLR4, interleukin 1-β (IL1-β), tumor necrosis factor-α (TNFα), monocyte chemoattractant protein 1 (MCP-1) and matrix metalloproteinase-2 (MMP-2) expression were increased in the SMCs of atherosclerotic plaques in patients with femoral artery stenosis. In cultured primary arterial SMCs from wild type mice, oxLDL caused dose- and time-dependent increase in the expression levels of TLR4 and cytokines. These effects were significantly weakened in arterial SMCs derived from TLR4 knockout mice (TLR4-/-). Moreover, the secretion of inflammatory cytokines was blocked by TLR4-specific antibodies in primary SMCs. Ox-LDL induced activation of p38 and NFκB was also inhibited in TLR4-/- primary SMCs or when treated with TLR4-specific antibodies. These results demonstrated that TLR4 is a crucial mediator in oxLDL-induced inflammatory cytokine expression and secretion, and p38 and NFκB activation.
Collapse
MESH Headings
- Aged
- Animals
- Cells, Cultured
- Cytokines/metabolism
- Humans
- Inflammation Mediators/physiology
- Lipoproteins, LDL/physiology
- Male
- Matrix Metalloproteinase 2/metabolism
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Primary Cell Culture
- Toll-Like Receptor 4/physiology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Ke Yang
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Xiao Jie Zhang
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Li Juan Cao
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Xin He Liu
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Zhu Hui Liu
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Xiao Qun Wang
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Qiu Jin Chen
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Wei Feng Shen
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- * E-mail: (YL); (WFS)
| | - Yan Liu
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- * E-mail: (YL); (WFS)
| |
Collapse
|