1
|
Wan S, Yu L, Yang Y, Liu W, Shi D, Cui X, Song J, Zhang Y, Liang R, Chen W, Wang B. Exposure to acrylamide and increased risk of depression mediated by inflammation, oxidative stress, and alkaline phosphatase: Evidence from a nationally representative population-based study. J Affect Disord 2024; 367:434-441. [PMID: 39236889 DOI: 10.1016/j.jad.2024.08.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND The health risk associated with acrylamide exposure has emerged as a significant issue of public health, attracting global attention. However, epidemiologic evidence on whether and how daily acrylamide exposure increases depression risk of the general population is unclear. METHODS The study included 3991 adults from the National Health and Nutrition Examination Survey. The urinary metabolites of acrylamide (N-Acetyl-S-(2-carbamoylethyl)-L-cysteine [AAMA] and N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine [GAMA]) identified as reliable indicators of acrylamide exposure were examined to determine their relationships with depressive symptoms that were evaluated using the 9-item Patient Health Questionnaire. Besides, the measurements of alkaline phosphatase (ALP) and biomarkers of inflammation (white blood cell [WBC] count) and anti-oxidative stress (albumin [ALB]) were conducted to investigate their mediation roles in above relationships. RESULT AAMA, GAMA, and ΣUAAM (AAMA+GAMA) were linearly associated with increased risk of depressive symptoms. Each 2.7-fold increase in AAMA, GAMA, or ΣUAAM was associated with a 30 % (odds ratio: 1.30; 95 % confidence interval: 1.09, 1.55), 47 % (1.47; 1.16, 1.87), or 36 % (1.36; 1.13, 1.63) increment in risk of depressive symptoms, respectively. Increased WBC count (mediated proportion: 4.48-8.00 %), decreased ALB (4.88-7.78 %), and increased ALP (4.93-5.23 %) significantly mediated the associations between acrylamide metabolites and depressive symptoms. CONCLUSIONS Acrylamide exposure of the general adult population was related to increased risk of depressive symptoms, which was mediated in part by inflammation, oxidative stress, and increased ALP. Our findings provided pivotal epidemiologic evidence for depression risk increment from exposure to acrylamide.
Collapse
Affiliation(s)
- Shuhui Wan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueru Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Xiuqing Cui
- Institute of Health Surveillance Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongfang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Bale R, Doshi G. Deciphering the role of siRNA in anxiety and depression. Eur J Pharmacol 2024; 981:176868. [PMID: 39128805 DOI: 10.1016/j.ejphar.2024.176868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Anxiety and depression are central nervous system illnesses that are among the most prevalent medical concerns of the twenty-first century. Patients with this condition and their families bear psychological, financial, and societal hardship. There are currently restrictions when utilizing the conventional course of treatment. RNA interference is expected to become an essential approach in anxiety and depression due to its potent and targeted gene silencing. Silencing of genes by post-transcriptional modification is the mechanism of action of small interfering RNA (siRNA). The suppression of genes linked to disease is typically accomplished by siRNA molecules in an efficient and targeted manner. Unfavourable immune responses, off-target effects, naked siRNA instability, nuclease vulnerability, and the requirement to create an appropriate delivery method are some of the challenges facing the clinical application of siRNA. This review focuses on the use of siRNA in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
3
|
Villafranco J, Martínez-Ramírez G, Magaña-Maldonado R, González-Ruvalcaba AP, López-Ornelas A, Velasco I, Becerril-Villanueva E, Pavón L, Estudillo E, Pérez-Sánchez G. The use of induced pluripotent stem cells as a platform for the study of depression. Front Psychiatry 2024; 15:1470642. [PMID: 39444629 PMCID: PMC11496182 DOI: 10.3389/fpsyt.2024.1470642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
The neurobiological mechanisms underlying major depressive disorder (MDD) remain largely unexplored due to the limited availability of study models in humans. Induced pluripotent stem cells (iPSCs) have overcome multiple limitations of retrospective clinical studies, contributing to a more detailed understanding of the molecular pathways that presumably contribute to the manifestation of depression. Despite the significant progress made by these study models, there are still more formidable challenges that will eventually be addressed by these platforms, as further studies may eventually emerge. This review will examine the most recent advances in the comprehension of depression by using human neurons and non-neuronal cells derived from induced pluripotent stem cells of patients with depression. This study highlights the importance of using these platforms to increase our knowledge of depression and address this psychiatric disorder more efficiently.
Collapse
Affiliation(s)
- Javier Villafranco
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - Gabriela Martínez-Ramírez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - Roxana Magaña-Maldonado
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Anna Paola González-Ruvalcaba
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City, Mexico
| | - Iván Velasco
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
| |
Collapse
|
4
|
He P, Lu X, Zhong M, Weng H, Wang J, Zhang X, Jiang C, Geng F, Shi Y, Zhang G. Plasma alpha-trypsin inhibitor heavy chain 4 as an age-specific biomarker in the diagnosis and treatment of major depressive disorder. Front Psychiatry 2024; 15:1449202. [PMID: 39323962 PMCID: PMC11422199 DOI: 10.3389/fpsyt.2024.1449202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background The diagnosis of major depressive disorder (MDD) mainly depends on subjective clinical symptoms, without an acceptable objective biomarker for the clinical application of MDD. Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) showed a high specificity as biomarker for the diagnosis and treatment of MDD. The present study aimed to investigate differences in plasma ITIH4 in two different aged MDD patients and underlying pathological mechanisms of plasma ITIH4 in the occurrence and development of MDD. Methods Sixty-five adult MDD patients, 51 adolescent MDD patients, and 64 healthy controls (HCs) were included in the present study. A 14-days' antidepressive treatment was conducted in all MDD patients. Psychological assessments were performed and plasma ITIH4 and astrocyte-related markers were detected for all participants. Results (1) Plasma levels of ITIH4 in adult MDD patients were significantly higher than adolescent MDD patients and HCs, and significantly increased plasma ITIH4 levels was observed in adolescent MDD patients compared with HCs (2). There were positive correlations between plasma ITIH4 levels and 24-item Hamilton Depression Scale (HAMD-24) scores and plasma glial fibrillary acidic protein (GFAP) levels in MDD patients, however, plasma ITIH4 levels were significantly correlated with age just in adult MDD patients (3). Plasma ITIH4 showed area under the curve values of 0.824 and 0.729 to differentiate adult MDD patients and adolescent MDD patients from HCs, respectively (4). There was significant decrease in plasma levels of ITIH4 between before and after antidepressive treatment in adult MDD patients, but not in adolescent MDD patients (5). Changed value of ITIH4 levels were correlated with the changed value of GFAP levels and changed rate of HAMD-24 scores in adult MDD patients following antidepressive treatment. Conclusion Plasma ITIH4 may be potential plasma biomarkers of MDD with age-related specificity, which was associated with depressive symptoms astrocyte-related pathologic changes, and antidepressive treatment efficacy.
Collapse
Affiliation(s)
- Ping He
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xuefang Lu
- Department of Rehabilitation Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Mengmeng Zhong
- Department of Functional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Hui Weng
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jialu Wang
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoxuan Zhang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Chen Jiang
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Geng
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Gaojia Zhang
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Kwon D, Kim Y, Cho SH. Antidepressant Effects of Ginsenoside Rc on L-Alpha-Aminoadipic Acid-Induced Astrocytic Ablation and Neuroinflammation in Mice. Int J Mol Sci 2024; 25:9673. [PMID: 39273621 PMCID: PMC11396248 DOI: 10.3390/ijms25179673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Depression is a prevalent and debilitating mental disorder that affects millions worldwide. Current treatments, such as antidepressants targeting the serotonergic system, have limitations, including delayed onset of action and high rates of treatment resistance, necessitating novel therapeutic strategies. Ginsenoside Rc (G-Rc) has shown potential anti-inflammatory and neuroprotective effects, but its antidepressant properties remain unexplored. This study investigated the antidepressant effects of G-Rc in an L-alpha-aminoadipic acid (L-AAA)-induced mouse model of depression, which mimics the astrocytic pathology and neuroinflammation observed in major depressive disorder. Mice were administered G-Rc, vehicle, or imipramine orally after L-AAA injection into the prefrontal cortex. G-Rc significantly reduced the immobility time in forced swimming and tail suspension tests compared to vehicle treatment, with more pronounced effects than imipramine. It also attenuated the expression of pro-inflammatory cytokines (TNF-α, IL-6, TGF-β, lipocalin-2) and alleviated astrocytic degeneration, as indicated by increased GFAP and decreased IBA-1 levels. Additionally, G-Rc modulated apoptosis-related proteins, decreasing caspase-3 and increasing Bcl-2 levels compared to the L-AAA-treated group. These findings suggest that G-Rc exerts antidepressant effects by regulating neuroinflammation, astrocyte-microglia crosstalk, and apoptotic pathways in the prefrontal cortex, highlighting its potential as a novel therapeutic agent for depression.
Collapse
Affiliation(s)
- Dohyung Kwon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunna Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Neuropsychiatry of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Hun Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Neuropsychiatry of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Li K, Wang K, Xu SX, Xie XH, Tang Y, Zhang L, Liu Z. Investigating Neuroplasticity Changes Reflected by BDNF Levels in Astrocyte-Derived Extracellular Vesicles in Patients with Depression. Int J Nanomedicine 2024; 19:8971-8985. [PMID: 39246428 PMCID: PMC11379030 DOI: 10.2147/ijn.s477482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose To investigate the neuroplasticity hypothesis of depression by measuring brain-derived neurotrophic factor (BDNF) levels in plasma astrocyte-derived extracellular vesicles (ADEVs) and to evaluate their potential as biomarkers for depression compared with plasma BDNF levels. Patients and Methods Thirty-five patients with major depressive disorder (MDD) and 35 matched healthy controls (HCs) were enrolled. Plasma ADEVs were isolated using a combination of ultracentrifugation and immunoaffinity capture. Isolated ADEVs were validated using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. BDNF levels were quantified in both ADEVs and plasma. ALG-2-interacting protein X (Alix) and cluster of differentiation 81 (CD81) levels, two established extracellular vesicle markers, were measured in ADEVs. Results After false discovery rate correction, patients with MDD exhibited higher CD81 levels (P FDR = 0.040) and lower BDNF levels (P FDR = 0.043) in ADEVs than HCs at baseline. BDNF levels in ADEVs normalized to CD81 (P FDR = 0.002) and Alix (P FDR = 0.040) remained consistent with this finding. Following four weeks of selective serotonin reuptake inhibitor treatment (n=10), CD81 levels in ADEVs decreased (P FDR = 0.046), while BDNF levels normalized to CD81 increased (P FDR = 0.022). BDNF levels in ADEVs were more stable than in plasma. Exploratory analysis revealed no correlation between BDNF levels in ADEVs and plasma (ρ=0.117, P = 0.334). Conclusion This study provides human in vivo evidence supporting the neuroplasticity hypothesis of depression by demonstrating altered BDNF levels in ADEVs. ADEVs may be more suitable for developing biomarkers of depression than plasma-derived biomarkers.
Collapse
Affiliation(s)
- Kun Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, People's Republic of China
| | - Kun Wang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, People's Republic of China
| | - Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yan Tang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, People's Republic of China
| | - Lihong Zhang
- Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, People's Republic of China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Sales ISL, de Souza AG, Chaves Filho AJM, Sampaio TL, da Silva DMA, Valentim JT, Chaves RDC, Soares MVR, Costa Júnior DC, Barbosa Filho JM, Macêdo DS, de Sousa FCF. Antidepressant-like effect of riparin I and riparin II against CUMS-induced neuroinflammation via astrocytes and microglia modulation in mice. Behav Pharmacol 2024; 35:314-326. [PMID: 39094014 DOI: 10.1097/fbp.0000000000000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Depression is a common mood disorder and many patients do not respond to conventional pharmacotherapy or experience a variety of adverse effects. This work proposed that riparin I (RIP I) and riparin II (RIP II) present neuroprotective effects through modulation of astrocytes and microglia, resulting in the reversal of depressive-like behaviors. To verify our hypothesis and clarify the pathways underlying the effect of RIP I and RIP II on neuroinflammation, we used the chronic unpredictable mild stress (CUMS) depression model in mice. Male Swiss mice were exposed to stressors for 28 days. From 15 th to the 22 nd day, the animals received RIP I or RIP II (50 mg/kg) or fluoxetine (FLU, 10 mg/kg) or vehicle, by gavage. On the 29 th day, behavioral tests were performed. Expressions of microglia (ionized calcium-binding adaptor molecule-1 - Iba-1) and astrocyte (glial fibrillary acidic protein - GFAP) markers and levels of cytokines tumor necrosis factor alfa (TNF-α) and interleukin 1 beta (IL-1β) were measured in the hippocampus. CUMS induced depressive-like behaviors and cognitive impairment, high TNF-α and IL-1β levels, decreased GFAP, and increased Iba-1 expressions. RIP I and RIP II reversed these alterations. These results contribute to the understanding the mechanisms underlying the antidepressant effect of RIP I and RIP II, which may be related to neuroinflammatory suppression.
Collapse
Affiliation(s)
- Iardja S L Sales
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Alana G de Souza
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
- Brazilian Hospital Services Company (EBSERH) - University Hospital, Federal University of Goias, Goiania
| | - Adriano J M Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Tiago L Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, Ceara
| | - Daniel M A da Silva
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - José T Valentim
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Raquell de C Chaves
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Michelle V R Soares
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Dilailson C Costa Júnior
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - José M Barbosa Filho
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Science, Federal University of Paraiba, João Pessoa, Brazil
| | - Danielle S Macêdo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Francisca Cléa Florenço de Sousa
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| |
Collapse
|
8
|
Fu YW, Jin SY, Li JT, Li XW, Gao TM, Yang JM. Mature astrocytes as source for astrocyte repopulation after deletion in the medial prefrontal cortex: Implications for depression. Glia 2024; 72:1646-1662. [PMID: 38801194 DOI: 10.1002/glia.24573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The adult brain retains a high repopulation capacity of astrocytes after deletion, and both mature astrocytes in the neocortex and neural stem cells in neurogenic regions possess the potential to generate astrocytes. However, the origin and the repopulation dynamics of the repopulating astrocytes after deletion remain largely unclear. The number of astrocytes is reduced in the medial prefrontal cortex (mPFC) of patients with depression, and selective elimination of mPFC astrocytes is sufficient to induce depression-like behaviors in rodents. However, whether astrocyte repopulation capacity is impaired in depression is unknown. In this study, we used different transgenic mouse lines to genetically label different cell types and demonstrated that in the mPFC of normal adult mice of both sexes, mature astrocytes were a major source of the repopulating astrocytes after acute deletion induced by an astrocyte-specific toxin, L-alpha-aminoadipic acid (L-AAA), and astrocyte regeneration was accomplished within two weeks accompanied by reversal of depression-like behaviors. Furthermore, re-ablation of mPFC astrocytes post repopulation led to reappearance of depression-like behaviors. In adult male mice subjected to 14-day chronic restraint stress, a well-validated mouse model of depression, the number of mPFC astrocytes was reduced; however, the ability of mPFC astrocytes to repopulate after L-AAA-induced deletion was largely unaltered. Our study highlights a potentially beneficial role for repopulating astrocytes in depression and provides novel therapeutic insights into enhancing local mature astrocyte generation in depression.
Collapse
Affiliation(s)
- Yi-Wen Fu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Yang Jin
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jing-Ting Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Sun Y, Cai H, Yang D, Yu N, Sun L, Xu J, Yuan H, Yang R, Song L, Liu H, Ma C, Liu Z. β-arrestin2 is indispensable for the antidepressant effects of fluoxetine via inhibiting astrocytic pyroptosis in chronic mild stress mouse model for depression. Eur J Pharmacol 2024; 976:176693. [PMID: 38834095 DOI: 10.1016/j.ejphar.2024.176693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
β-arrestin2 is a versatile protein for signaling transduction in brain physiology and pathology. Herein, we investigated the involvement of β-arrestin2 in pharmacological effects of fluoxetine for depression. A chronic mild stress (CMS) model was established using wild-type (WT) and β-arrestin2-/- mice. Behavioral results demonstrated that CMS mice showed increased immobility time in the tail suspension test and forced swimming test, elevated concentrations of pro-inflammatory factors in peripheral blood, increased expression of pyroptosis-related proteins, and increased co-labeling of glial fibrillary acidic protein and Caspase1 p10 in the hippocampus compared to the CON group. Treatment with fluoxetine (FLX) ameliorated these conditions. However, compared with the β-arrestin2-/- CMS group, these results of the β-arrestin2-/- CMS + FLX group showed no significant changes. These results suggested that the above effects of FLX could be eliminated by knocking out β-arrestin2. Mass spectrometry implying that FLX promoted the binding of β-arrestin2 to the NLRP2 inflammasome of depressed mice. Subsequently, the results of the cellular experiments suggested that the 5HT2B receptor antagonist may attenuate L-kynurenine + ATP-induced cell pyroptosis by attenuating NLRP2 binding to β-arrestin2. We further found that the lack of β-arrestin2 eliminated the anti-pyroptosis effect of fluoxetine. In conclusion, β-arrestin2 is an essential protein for fluoxetine to alleviate pyroptosis in the hippocampal astrocytes of CMS mice. Mechanistically, we found that the 5-HT2BR-β-arrestin2-NLRP2 axis is vital for maintaining the antidepressant effects of fluoxetine.
Collapse
Affiliation(s)
- Yiming Sun
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China; School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Hui Cai
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Daofeng Yang
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Nengyi Yu
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Lejie Sun
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Jingxuan Xu
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Hongwei Yuan
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Rong Yang
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Lele Song
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Chengyao Ma
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Zhe Liu
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China; School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China.
| |
Collapse
|
10
|
Santos L, Behrens L, Barbosa C, Tiefensee-Ribeiro C, Rosa-Silva H, Somensi N, Brum PO, Silveira AK, Rodrigues MS, de Oliveira J, Gelain DP, Almeida RF, Moreira JCF. Histone 3 Trimethylation Patterns are Associated with Resilience or Stress Susceptibility in a Rat Model of Major Depression Disorder. Mol Neurobiol 2024; 61:5718-5737. [PMID: 38225513 DOI: 10.1007/s12035-024-03912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Major Depressive Disorder (MDD) is a severe and multifactorial psychiatric condition. Evidence has shown that environmental factors, such as stress, significantly explain MDD pathophysiology. Studies have hypothesized that changes in histone methylation patterns are involved in impaired glutamatergic signaling. Based on this scenario, this study aims to investigate histone 3 involvement in depression susceptibility or resilience in MDD pathophysiology by investigating cellular and molecular parameters related to i) glutamatergic neurotransmission, ii) astrocytic functioning, and iii) neurogenesis. For this, we subjected male Wistar rats to the Chronic Unpredictable Mild Stress (CUMS) model of depression. We propose that by evaluating the sucrose consumption, open field, and object recognition test performance from animals submitted to CUMS, it is possible to predict with high specificity rats with susceptibility to depressive-like phenotype and resilient to the depressive-like phenotype. We also demonstrated, for the first time, that patterns of H3K4me3, H3K9me3, H3K27me3, and H3K36me3 trimethylation are strictly associated with the resilient or susceptible to depressive-like phenotype in a brain-region-specific manner. Additionally, susceptible animals have reduced DCx and GFAP and resilient animals present increase of AQP-4 immunoreactivity. Together, these results provide evidence that H3 trimethylations are related to the development of the resilient or susceptible to depressive-like phenotype, contributing to further advances in the pathophysiology of MDD and the discovery of mechanisms behind resilience.
Collapse
Affiliation(s)
- Lucas Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luiza Behrens
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Barbosa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Tiefensee-Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helen Rosa-Silva
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Ozorio Brum
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Alexandre Kleber Silveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus Scarpatto Rodrigues
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto F Almeida
- Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Wang JY, Ren P, Cui LY, Duan JY, Chen HL, Zeng ZR, Li YF. Astrocyte-specific activation of sigma-1 receptors in mPFC mediates the faster onset antidepressant effect by inhibiting NF-κB-induced neuroinflammation. Brain Behav Immun 2024; 120:256-274. [PMID: 38852761 DOI: 10.1016/j.bbi.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Major depressive disorder (MDD) is a global health burden characterized by persistent low mood, deprivation of pleasure, recurrent thoughts of death, and physical and cognitive deficits. The current understanding of the pathophysiology of MDD is lacking, resulting in few rapid and effective antidepressant therapies. Recent studies have pointed to the sigma-1 (σ-1) receptor as a potential rapid antidepressant target; σ-1 agonists have shown promise in a variety of preclinical depression models. Hypidone hydrochloride (YL-0919), an independently developed antidepressant by our institute with faster onset of action and low rate of side effects, has recently emerged as a highly selective σ-1 receptor agonist; however, its underlying astrocyte-specific mechanism is unknown. In this study, we investigated the effect of YL-0919 treatment on gene expression in the prefrontal cortex of depressive-like mice by single-cell RNA sequencing. Furthermore, we knocked down σ-1 receptors on astrocytes in the medial prefrontal cortex of mice to explore the effects of YL-0919 on depressive-like behavior and neuroinflammation in mice. Our results demonstrated that astrocyte-specific knockdown of σ-1 receptor resulted in depressive-like behavior in mice, which was reversed by YL-0919 administration. In addition, astrocytic σ-1 receptor deficiency led to activation of the NF-κB inflammatory pathway, and crosstalk between reactive astrocytes and activated microglia amplified neuroinflammation, exacerbating stress-induced neuronal apoptosis. Furthermore, the depressive-like behavior induced by astrocyte-specific knockdown of the σ-1 receptor was improved by a selective NF-κB inhibitor, JSH-23, in mice. Our study not only reaffirms the σ-1 receptor as a key target of the faster antidepressant effect of YL-0919, but also contributes to the development of astrocytic σ-1 receptor-based novel drugs.
Collapse
Affiliation(s)
- Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Lin-Yu Cui
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jing-Yao Duan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Hong-Lei Chen
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
12
|
Lu CL, Ren J, Cao X. An Astroglial Basis of Major Depressive Disorder: Molecular, Cellular, and Circuit Features. Biol Psychiatry 2024:S0006-3223(24)01484-7. [PMID: 39084500 DOI: 10.1016/j.biopsych.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Major depressive disorder is a common psychiatric disorder and a leading cause of disability worldwide. Astrocytes play a role in the maintenance of the function of the central nervous system, both physiologically and pathologically. Accumulated evidence indicates that the astrocyte is an important contributor to the pathophysiology of major depressive disorder including blood-brain barrier integrity, gap junctions, gliotransmission, glutamate homeostasis, and energy metabolism. Here, we comprehensively summarize an astroglial basis for major depressive disorder based on molecular, cellular, and circuit properties, suggesting that astrocytes appear to be highly sensitive to stress and are likely to be uniquely positioned to integrate peripheral and central stress responses.
Collapse
Affiliation(s)
- Cheng-Lin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Filipović D, Inderhees J, Korda A, Tadić P, Schwaninger M, Inta D, Borgwardt S. Serum Metabolites as Potential Markers and Predictors of Depression-like Behavior and Effective Fluoxetine Treatment in Chronically Socially Isolated Rats. Metabolites 2024; 14:405. [PMID: 39195501 DOI: 10.3390/metabo14080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic perturbation has been associated with depression. An untargeted metabolomics approach using liquid chromatography-high resolution mass spectrometry was employed to detect and measure the rat serum metabolic changes following chronic social isolation (CSIS), an animal model of depression, and effective antidepressant fluoxetine (Flx) treatment. Univariate and multivariate statistics were used for metabolic data analysis and differentially expressed metabolites (DEMs) determination. Potential markers and predictive metabolites of CSIS-induced depressive-like behavior and Flx efficacy in CSIS were evaluated by the receiver operating characteristic (ROC) curve, and machine learning (ML) algorithms, such as support vector machine with linear kernel (SVM-LK) and random forest (RF). Upregulated choline following CSIS may represent a potential marker of depressive-like behavior. Succinate, stachydrine, guanidinoacetate, kynurenic acid, and 7-methylguanine were revealed as potential markers of effective Flx treatment in CSIS rats. RF yielded better accuracy than SVM-LK (98.50% vs. 85.70%, respectively) in predicting Flx efficacy in CSIS vs. CSIS, however, it performed almost identically in classifying CSIS vs. control (75.83% and 75%, respectively). Obtained DEMs combined with ROC curve and ML algorithms provide a research strategy for assessing potential markers or predictive metabolites for the designation or classification of stress-induced depressive phenotype and mode of drug action.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Bioanalytic Core Facility, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Bioanalytic Core Facility, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Dragoš Inta
- Department for Community Health, Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
14
|
Su D, Li Q, Lai X, Song Y, Li H, Ai Z, Zhang Q, Shao W, Yang M, Zhu G. Sargassum pallidum reduces inflammation to exert antidepressant effect by regulating intestinal microbiome and ERK1/2/P38 signaling pathway. Front Pharmacol 2024; 15:1424834. [PMID: 39092228 PMCID: PMC11291328 DOI: 10.3389/fphar.2024.1424834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Immune inflammation is one of the main factors in the pathogenesis of depression. It is an effective and active way to find more safe and effective anti-inflammatory depressant drugs from plant drugs. The purpose of this study is to explore the potential of marine plant Sargassum pallidum (Turn).C.Ag. (Haihaozi, HHZ) in the prevention and treatment of depression and to explain the related mechanism. Phytochemical analysis showed that alkaloids, terpenes, and organic acids are the main constituents. In vitro and in vivo activity studies showed the anti-neuroinflammatory and antidepressant effect of Sargassum pallidum, furthermore, confirmed that 7-Hydroxycoumarin, Scoparone, and Kaurenoic Acid are important plant metabolites in Sargasum pallidum for anti-neuroinflammation. Mechanism exploration showed that inhibition of ERK1/2/p38 inflammatory signaling pathway contributing to the antidepressant effect of Sargassum pallidum in reducing intestinal inflammatory levels. This study confirmed the value of Sargassum pallidum and its rich plant metabolites in anti-inflammatory depression, providing a new choice for the follow-up research and development of antidepressant drugs.
Collapse
Affiliation(s)
- Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qianmin Li
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xin Lai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huizhen Li
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qi Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenxiang Shao
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ming Yang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co. Ltd., Nanchang, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
15
|
Tizabi Y, Bennani S, El Kouhen N, Getachew B, Aschner M. Heavy Metal Interactions with Neuroglia and Gut Microbiota: Implications for Huntington's Disease. Cells 2024; 13:1144. [PMID: 38994995 PMCID: PMC11240758 DOI: 10.3390/cells13131144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Huntington's disease (HD) is a rare but progressive and devastating neurodegenerative disease characterized by involuntary movements, cognitive decline, executive dysfunction, and neuropsychiatric conditions such as anxiety and depression. It follows an autosomal dominant inheritance pattern. Thus, a child who has a parent with the mutated huntingtin (mHTT) gene has a 50% chance of developing the disease. Since the HTT protein is involved in many critical cellular processes, including neurogenesis, brain development, energy metabolism, transcriptional regulation, synaptic activity, vesicle trafficking, cell signaling, and autophagy, its aberrant aggregates lead to the disruption of numerous cellular pathways and neurodegeneration. Essential heavy metals are vital at low concentrations; however, at higher concentrations, they can exacerbate HD by disrupting glial-neuronal communication and/or causing dysbiosis (disturbance in the gut microbiota, GM), both of which can lead to neuroinflammation and further neurodegeneration. Here, we discuss in detail the interactions of iron, manganese, and copper with glial-neuron communication and GM and indicate how this knowledge may pave the way for the development of a new generation of disease-modifying therapies in HD.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20670, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20670, Morocco
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
16
|
Hong S, Kim Y, Kwon Y, Cho SH. Antidepressant Effect of Heracleum moellendorffii Extract on Behavioral Changes in Astrocyte Ablation Mouse Model of Depression by Modulating Neuroinflammation through the Inhibition of Lipocalin-2. Nutrients 2024; 16:2049. [PMID: 38999797 PMCID: PMC11243176 DOI: 10.3390/nu16132049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Astrocyte dysfunction and inflammation play a pivotal role in depression. In this study, we evaluated the antidepressant properties of Heracleum moellendorffii root extract (HME), which is traditionally used for inflammation-related diseases, in a mouse model with astrocyte depletion that resembles the prefrontal cortex pathology of depressive patients. Mice were divided into four groups, with 10 mice per group. To induce astrocyte ablation in the mice's prefrontal cortex (PFC), we used astrocytic toxin L-alpha-aminoadipic acid (L-AAA) and administered HME orally at 200 and 500 mg/kg for 22 days. We utilized the tail suspension test (TST) to assess depression-like behaviors and the open field test (OFT) to evaluate anxiety-like activities. Additionally, astrocytic and inflammatory markers in the PFC were evaluated using immunohistochemistry and ELISA. The results showed that infusion of L-AAA significantly decreased the expression of astrocytic glial fibrillary acidic protein (GFAP), which was accompanied by increased depression and anxiety-like behaviors. However, HME significantly reversed these effects by dose-dependently enhancing GFAP expression and modulating inflammatory markers, such as TNF-α, IL-6, and particularly lipocalin-2, a master proinflammatory mediator. These results imply that HME contributes to the alleviation of depression and anxiety-like behaviors by promoting astrocyte recovery and reducing neuroinflammation, especially through lipocalin-2 inhibition.
Collapse
Affiliation(s)
- Soonsang Hong
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
| | - Yunna Kim
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea;
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - YongJu Kwon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
| | - Seung-Hun Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea;
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
17
|
Bansal Y, Codeluppi SA, Banasr M. Astroglial Dysfunctions in Mood Disorders and Rodent Stress Models: Consequences on Behavior and Potential as Treatment Target. Int J Mol Sci 2024; 25:6357. [PMID: 38928062 PMCID: PMC11204179 DOI: 10.3390/ijms25126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M2J 4A6, Canada
| |
Collapse
|
18
|
Untiet V, Verkhratsky A. How astrocytic chloride modulates brain states. Bioessays 2024; 46:e2400004. [PMID: 38615322 DOI: 10.1002/bies.202400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
The way the central nervous system (CNS) responds to diverse stimuli is contingent upon the specific brain state of the individual, including sleep and wakefulness. Despite the wealth of readout parameters and data delineating the brain states, the primary mechanisms are yet to be identified. Here we highlight the role of astrocytes, with a specific emphasis on chloride (Cl-) homeostasis as a modulator of brain states. Neuronal activity is regulated by the concentration of ions that determine excitability. Astrocytes, as the CNS homeostatic cells, are recognised for their proficiency in maintaining dynamic homeostasis of ions, known as ionostasis. Nevertheless, the contribution of astrocyte-driven ionostasis to the genesis of brain states or their response to sleep-inducing pharmacological agents has been overlooked. Our objective is to underscore the significance of astrocytic Cl- homeostasis, elucidating how it may underlie the modulation of brain states. We endeavour to contribute to a comprehensive understanding of the interplay between astrocytes and brain states.
Collapse
Affiliation(s)
- Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
19
|
Tizabi Y, Getachew B, Hauser SR, Tsytsarev V, Manhães AC, da Silva VDA. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci 2024; 14:558. [PMID: 38928557 PMCID: PMC11201416 DOI: 10.3390/brainsci14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, RJ, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| |
Collapse
|
20
|
Miquel-Rio L, Sarriés-Serrano U, Sancho-Alonso M, Florensa-Zanuy E, Paz V, Ruiz-Bronchal E, Manashirov S, Campa L, Pilar-Cuéllar F, Bortolozzi A. ER stress in mouse serotonin neurons triggers a depressive phenotype alleviated by ketamine targeting eIF2α signaling. iScience 2024; 27:109787. [PMID: 38711453 PMCID: PMC11070602 DOI: 10.1016/j.isci.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Depression is a devastating mood disorder that causes significant disability worldwide. Current knowledge of its pathophysiology remains modest and clear biological markers are lacking. Emerging evidence from human and animal models reveals persistent alterations in endoplasmic reticulum (ER) homeostasis, suggesting that ER stress-related signaling pathways may be targets for prevention and treatment. However, the neurobiological basis linking the pathways involved in depression-related ER stress remains unknown. Here, we report that an induced model of ER stress in mouse serotonin (5-HT) neurons is associated with reduced Egr1-dependent 5-HT cellular activity and 5-HT neurotransmission, resulting in neuroplasticity deficits in forebrain regions and a depressive-like phenotype. Ketamine administration engages downstream eIF2α signaling to trigger rapid neuroplasticity events that rescue the depressive-like effects. Collectively, these data identify ER stress in 5-HT neurons as a cellular pathway involved in the pathophysiology of depression and show that eIF2α is critical in eliciting ketamine's fast antidepressant effects.
Collapse
Affiliation(s)
- Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- University of Barcelona (UB), 08036 Barcelona, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Eva Florensa-Zanuy
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Molecular and Cellular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Esther Ruiz-Bronchal
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sharon Manashirov
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- miCure Therapeutics LTD., Tel-Aviv 6423902, Israel
| | - Leticia Campa
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Fuencisla Pilar-Cuéllar
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Molecular and Cellular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
21
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024:10.1007/s12035-024-04205-5. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
22
|
Parise EM, Gyles TM, Godino A, Sial OK, Browne CJ, Parise LF, Torres-Berrío A, Salery M, Durand-de Cuttoli R, Rivera MT, Cardona-Acosta AM, Holt L, Markovic T, van der Zee YY, Lorsch ZS, Cathomas F, Garon JB, Teague C, Issler O, Hamilton PJ, Bolaños-Guzmán CA, Russo SJ, Nestler EJ. Sex-Specific Regulation of Stress Susceptibility by the Astrocytic Gene Htra1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588724. [PMID: 38659771 PMCID: PMC11042238 DOI: 10.1101/2024.04.12.588724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Major depressive disorder (MDD) is linked to impaired structural and synaptic plasticity in limbic brain regions. Astrocytes, which regulate synapses and are influenced by chronic stress, likely contribute to these changes. We analyzed astrocyte gene profiles in the nucleus accumbens (NAc) of humans with MDD and mice exposed to chronic stress. Htra1 , which encodes an astrocyte-secreted protease targeting the extracellular matrix (ECM), was significantly downregulated in the NAc of males but upregulated in females in both species. Manipulating Htra1 in mouse NAc astrocytes bidirectionally controlled stress susceptibility in a sex-specific manner. Such Htra1 manipulations also altered neuronal signaling and ECM structural integrity in NAc. These findings highlight astroglia and the brain's ECM as key mediators of sex-specific stress vulnerability, offering new approaches for MDD therapies.
Collapse
|
23
|
Gao R, Ali T, Liu Z, Li A, Hao L, He L, Yu X, Li S. Ceftriaxone averts neuroinflammation and relieves depressive-like behaviors via GLT-1/TrkB signaling. Biochem Biophys Res Commun 2024; 701:149550. [PMID: 38310688 DOI: 10.1016/j.bbrc.2024.149550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
The beneficial effect of a beta-lactam antibiotic, Ceftriaxone (CEF), to improve depressive-like symptoms has been documented previously, attributed to its modulation of glutamate neurotransmission. Here, we aimed to determine whether CEF could improve LPS-altered glutamatergic signaling associated with neuroinflammation-allied depression. To assess our goals, we established a neuroinflammation-allied depression mice model by injecting lipopolysaccharides (LPS), followed by behavioral and biochemical analysis. LPS-treated mice displayed depressive symptoms, neuroinflammation, dysregulated glutamate and its transporter (GLT-1) expression, altered expression of astrocyte reactive markers (GFAP, cxcl10, steap4, GBP2, and SRGN), and dysregulated BDNF/TrkB signaling. However, these changes were rescued by CEF treatment, as we found decreased neuroinflammation, relief of depression symptoms, and improved GLT-1 and BDNF/TrkB signaling upon CEF treatment. Moreover, GLT-1 and BDNF/TrkB regulation role of CEF was validated by K252a and DHK treatment. In summary, the anti-depressive effects of glutamate modulators, like CEF, are closely related to their anti-inflammatory role.
Collapse
Affiliation(s)
- Ruyan Gao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, People's Republic of China.
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, People's Republic of China.
| | - Zizhen Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, People's Republic of China.
| | - Axiang Li
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Liangliang Hao
- Hospital of Chengdu, University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, People's Republic of China.
| | - Liufang He
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen University, People's Republic of China.
| | - Xiaoming Yu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, People's Republic of China; Institute of Chemical Biology, Shenzhen Bay Laboratory, People's Republic of China.
| |
Collapse
|
24
|
Chamaa F, Magistretti PJ, Fiumelli H. Astrocyte-derived lactate in stress disorders. Neurobiol Dis 2024; 192:106417. [PMID: 38296112 DOI: 10.1016/j.nbd.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Stress disorders are psychiatric disorders arising following stressful or traumatic events. They could deleteriously affect an individual's health because they often co-occur with mental illnesses. Considerable attention has been focused on neurons when considering the neurobiology of stress disorders. However, like other mental health conditions, recent studies have highlighted the importance of astrocytes in the pathophysiology of stress-related disorders. In addition to their structural and homeostatic support role, astrocytes actively serve several functions in regulating synaptic transmission and plasticity, protecting neurons from toxic compounds, and providing metabolic support for neurons. The astrocyte-neuron lactate shuttle model sets forth the importance of astrocytes in providing lactate for the metabolic supply of neurons under intense activity. Lactate also plays a role as a signaling molecule and has been recently studied regarding its antidepressant activity. This review discusses the involvement of astrocytes and brain energy metabolism in stress and further reflects on the importance of lactate as an energy supply in the brain and its emerging antidepressant role in stress-related disorders.
Collapse
Affiliation(s)
- Farah Chamaa
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
25
|
Wang X, Zhang F, Niu L, Yan J, Liu H, Wang D, Hui J, Dai H, Song J, Zhang Z. High-frequency repetitive transcranial magnetic stimulation improves depressive-like behaviors in CUMS-induced rats by modulating astrocyte GLT-1 to reduce glutamate toxicity. J Affect Disord 2024; 348:265-274. [PMID: 38159655 DOI: 10.1016/j.jad.2023.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/20/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Impaired glutamate recycling plays an important role in the pathophysiology of depression, and it has been demonstrated that glutamate transporter-1 (GLT-1) on astrocytes is involved in glutamate uptake. Studies have shown that repetitive transcranial magnetic stimulation (rTMS) is effective in treating depression, however, the exact mechanism of rTMS treatment remains unclear. Here, we used a chronic unpredictable mild stress (CUMS) protocol to induce depression-like behaviors in rats followed by rTMS treatment. Behavioral assessment was primarily through SPT, FST, OFT and body weight. Histological analysis focused on GFAP and GLT-1 expression, synaptic plasticity, apoptosis and PI3K/Akt/CREB pathway-related proteins. The results showed that rTMS treatment increased sucrose preference, improved locomotor activity, shortened immobility time as well as increased body weight. And rTMS intervention reversed the elevated glutamate concentration in the hippocampus of CUMS rats using an ELISA kit. Moreover, rTMS ameliorated the reduction in GFAP and GLT-1 expression, alleviated the decrease in BDNF, PSD95 and synapsin-1 expression, also reversed the expression levels of BAX and Bcl2 in the hippocampus of CUMS-induced rats. Moreover, rTMS also increased the protein phosphorylation level of PI3K/Akt/CREB pathway. These results suggest that rTMS treatment ameliorates depression-like behaviors in the rat model by reversing the reduction of GLT-1 on astrocytes and reducing glutamate accumulation in the synaptic cleft, which in turn ameliorates synaptic plasticity damage and neuronal apoptosis. The regulation of GLT-1 by rTMS may be through the PI3K/Akt/CREB pathway.
Collapse
Affiliation(s)
- Xiaonan Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Le Niu
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China; The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Junni Yan
- Nanjing Brain Hospital, Nanjing, 210029, China
| | - Huanhuan Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Di Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Juan Hui
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Haiyue Dai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China.
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China.
| |
Collapse
|
26
|
Ochi S, Yamada K, Saito T, Saido TC, Iinuma M, Azuma K, Kubo KY. Effects of early tooth loss on chronic stress and progression of neuropathogenesis of Alzheimer's disease in adult Alzheimer's model AppNL-G-F mice. Front Aging Neurosci 2024; 16:1361847. [PMID: 38469162 PMCID: PMC10925668 DOI: 10.3389/fnagi.2024.1361847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Alzheimer's disease (AD), the most common neurodegenerative disease, is characterized by accumulated amyloid-β (Aβ) plaques, aggregated phosphorylated tau protein, gliosis-associated neuroinflammation, synaptic dysfunction, and cognitive impairment. Many cohort studies indicate that tooth loss is a risk factor for AD. The detailed mechanisms underlying the association between AD and tooth loss, however, are not yet fully understood. Methods We explored the involvement of early tooth loss in the neuropathogenesis of the adult AppNL-G-F mouse AD model. The maxillary molars were extracted bilaterally in 1-month-old male mice soon after tooth eruption. Results Plasma corticosterone levels were increased and spatial learning memory was impaired in these mice at 6 months of age. The cerebral cortex and hippocampus of AD mice with extracted teeth showed an increased accumulation of Aβ plaques and phosphorylated tau proteins, and increased secretion of the proinflammatory cytokines, including interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), accompanied by an increased number of microglia and astrocytes, and decreased synaptophysin expression. AD mice with extracted teeth also had a shorter lifespan than the control mice. Discussion These findings revealed that long-term tooth loss is a chronic stressor, activating the recruitment of microglia and astrocytes; exacerbating neuroinflammation, Aβ deposition, phosphorylated tau accumulation, and synaptic dysfunction; and leading to spatial learning and memory impairments in AD model mice.
Collapse
Affiliation(s)
- Suzuko Ochi
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kumiko Yamada
- Department of Health and Nutrition, Faculty of Health Science, Nagoya Women's University, Nagoya, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mitsuo Iinuma
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kin-Ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, Nagoya, Japan
| |
Collapse
|
27
|
Choi J, Kang J, Kim T, Nehs CJ. Sleep, mood disorders, and the ketogenic diet: potential therapeutic targets for bipolar disorder and schizophrenia. Front Psychiatry 2024; 15:1358578. [PMID: 38419903 PMCID: PMC10899493 DOI: 10.3389/fpsyt.2024.1358578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Bipolar disorder and schizophrenia are serious psychiatric conditions that cause a significant reduction in quality of life and shortened life expectancy. Treatments including medications and psychosocial support exist, but many people with these disorders still struggle to participate in society and some are resistant to current therapies. Although the exact pathophysiology of bipolar disorder and schizophrenia remains unclear, increasing evidence supports the role of oxidative stress and redox dysregulation as underlying mechanisms. Oxidative stress is an imbalance between the production of reactive oxygen species generated by metabolic processes and antioxidant systems that can cause damage to lipids, proteins, and DNA. Sleep is a critical regulator of metabolic homeostasis and oxidative stress. Disruption of sleep and circadian rhythms contribute to the onset and progression of bipolar disorder and schizophrenia and these disorders often coexist with sleep disorders. Furthermore, sleep deprivation has been associated with increased oxidative stress and worsening mood symptoms. Dysfunctional brain metabolism can be improved by fatty acid derived ketones as the brain readily uses both ketones and glucose as fuel. Ketones have been helpful in many neurological disorders including epilepsy and Alzheimer's disease. Recent clinical trials using the ketogenic diet suggest positive improvement in symptoms for bipolar disorder and schizophrenia as well. The improvement in psychiatric symptoms from the ketogenic diet is thought to be linked, in part, to restoration of mitochondrial function. These findings encourage further randomized controlled clinical trials, as well as biochemical and mechanistic investigation into the role of metabolism and sleep in psychiatric disorders. This narrative review seeks to clarify the intricate relationship between brain metabolism, sleep, and psychiatric disorders. The review will delve into the initial promising effects of the ketogenic diet on mood stability, examining evidence from both human and animal models of bipolar disorder and schizophrenia. The article concludes with a summary of the current state of affairs and encouragement for future research focused on the role of metabolism and sleep in mood disorders.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Jiseung Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Christa J. Nehs
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
29
|
Domin H, Konieczny J, Cieślik P, Pochwat B, Wyska E, Szafarz M, Lenda T, Biała D, Gąsior Ł, Śmiałowska M, Szewczyk B. The antidepressant-like and glioprotective effects of the Y2 receptor antagonist SF-11 in the astroglial degeneration model of depression in rats: Involvement of glutamatergic inhibition. Behav Brain Res 2024; 457:114729. [PMID: 37871655 DOI: 10.1016/j.bbr.2023.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
In this study, we explored the potential antidepressant-like properties of the brain-penetrant Y2 receptor (Y2R) antagonist SF-11 [N-(4-ethoxyphenyl)- 4-(hydroxydiphenylmethyl)- 1-piperidinecarbothioamide] in the astroglial degeneration model of depression with an emphasis on checking the possible mechanisms implicated in this antidepressant-like effect. The model of depression relies on the loss of astrocytes in the medial prefrontal cortex (mPFC) in Sprague-Dawley rats after administering the gliotoxin L-alpha-aminoadipic acid (L-AAA). SF-11 was administered intraperitoneally (i.p.) once (10 mg/kg) or for three consecutive days (10 mg/kg/day), and the effects of L-AAA and SF-11 injected alone or in combination were investigated using the forced swim test (FST), sucrose intake test (SIT), Western blotting, immunohistochemical staining, and microdialysis. SF-11 produced an antidepressant-like effect after single or three-day administration in rats subjected to astrocyte impairment, as demonstrated by the FST and SIT, respectively. Immunoblotting and immunohistochemical analyses showed that SF-11 reversed the L-AAA-induced astrocyte cell death in the mPFC, suggesting it is glioprotective. Microdialysis studies showed that SF-11 decreased extracellular glutamate (Glu) levels compared to basal value when administered alone and compared to the basal value and control group in LAAA-treated rats. The results from immunoblotting analysis indicated the involvement of Y2Rs in the astrocyte ablation model of depression and the antidepressant-like effect of SF-11. In addition, we observed the participation of the caspase-3 apoptotic pathway in the mechanism of gliotoxin action induced by L-AAA. These findings demonstrate that SF-11, a Y2R antagonist, elicited a rapid antidepressant-like response, possibly linked to its ability to inhibit glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland.
| | - Jolanta Konieczny
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Bartłomiej Pochwat
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Szafarz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Tomasz Lenda
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Dominika Biała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Łukasz Gąsior
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| |
Collapse
|
30
|
Koga Y, Kajitani N, Miyako K, Takizawa H, Boku S, Takebayashi M. TCF7L2: A potential key regulator of antidepressant effects on hippocampal astrocytes in depression model mice. J Psychiatr Res 2024; 170:375-386. [PMID: 38215648 DOI: 10.1016/j.jpsychires.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Clinical and preclinical studies suggest that hippocampal astrocyte dysfunction is involved in the pathophysiology of depression; however, the underlying molecular mechanisms remain unclear. Here, we attempted to identify the hippocampal astrocytic transcripts associated with antidepressant effects in a mouse model of depression. We used a chronic corticosterone-induced mouse model of depression to assess the behavioral effects of amitriptyline, a tricyclic antidepressant. Hippocampal astrocytes were isolated using fluorescence-activated cell sorting, and RNA sequencing was performed to evaluate the transcriptional profiles associated with depressive effects and antidepressant responses. Depression model mice exhibited typical depression-like behaviors that improved after amitriptyline treatment; the depression group mice also had significantly reduced GFAP-positive astrocyte numbers in hippocampal subfields. Comprehensive transcriptome analysis of hippocampal astrocytes showed opposing responses to amitriptyline in depression group and control mice, suggesting the importance of using the depression model. Transcription factor 7 like 2 (TCF7L2) was the only upstream regulator gene altered in depression model mice and restored in amitriptyline-treated depression model mice. In fact, TCF7L2 expression was significantly decreased in the depression group. The level of TCF7L2 long non-coding RNA, which controls mRNA expression of the TCF7L2 gene, was also significantly decreased in this group and recovered after amitriptyline treatment. The Gene Ontology biological processes associated with astrocytic TCF7L2 included proliferation, differentiation, and cytokine production. We identified TCF7L2 as a gene associated with depression- and antidepressant-like behaviors in response to amitriptyline in hippocampal astrocytes. Our findings could provide valuable insights into the mechanism of astrocyte-mediated antidepressant effects.
Collapse
Affiliation(s)
- Yusaku Koga
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kotaro Miyako
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hitoshi Takizawa
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; International Research Center for Medical Sciences, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
31
|
Miyako K, Kajitani N, Koga Y, Takizawa H, Boku S, Takebayashi M. Identification of the antidepressant effect of electroconvulsive stimulation-related genes in hippocampal astrocyte. J Psychiatr Res 2024; 170:318-327. [PMID: 38194849 DOI: 10.1016/j.jpsychires.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Major depressive disorder (MDD) remains a significant global health concern, with limited and slow efficacy of existing antidepressants. Electroconvulsive therapy (ECT) has superior and immediate efficacy for MDD, but its action mechanism remains elusive. Therefore, the elucidation of the action mechanism of ECT is expected to lead to the development of novel antidepressants with superior and immediate efficacy. Recent studies suggest a potential role of hippocampal astrocyte in MDD and ECT. Hence, we investigated antidepressant effect of electroconvulsive stimulation (ECS), an animal model of ECT, -related genes in hippocampal astrocyte with a mouse model of MDD, in which corticosterone (CORT)-induced depression-like behaviors were recovered by ECS. In this model, both of CORT-induced depression-like behaviors and the reduction of hippocampal astrocyte were recovered by ECS. Following it, astrocytes were isolated from the hippocampus of this model and RNA-seq was performed with these isolated astrocytes. Interestingly, gene expression patterns altered by CORT were reversed by ECS. Additionally, cell proliferation-related signaling pathways were inhibited by CORT and recovered by ECS. Finally, serum and glucocorticoid kinase-1 (SGK1), a multi-functional protein kinase, was identified as a candidate gene reciprocally regulated by CORT and ECS in hippocampal astrocyte. Our findings suggest a potential role of SGK1 in the antidepressant effect of ECS via the regulation of the proliferation of astrocyte and provide new insights into the involvement of hippocampal astrocyte in MDD and ECT. Targeting SGK1 may offer a novel approach to the development of new antidepressants which can replicate superior and immediate efficacy of ECT.
Collapse
Affiliation(s)
- Kotaro Miyako
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusaku Koga
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
32
|
Cardon I, Grobecker S, Kücükoktay S, Bader S, Jahner T, Nothdurfter C, Koschitzki K, Berneburg M, Weber BHF, Stöhr H, Höring M, Liebisch G, Braun F, Rothammer-Hampl T, Riemenschneider MJ, Rupprecht R, Milenkovic VM, Wetzel CH. Mitochondrial and Cellular Function in Fibroblasts, Induced Neurons, and Astrocytes Derived from Case Study Patients: Insights into Major Depression as a Mitochondria-Associated Disease. Int J Mol Sci 2024; 25:963. [PMID: 38256041 PMCID: PMC10815943 DOI: 10.3390/ijms25020963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The link between mitochondria and major depressive disorder (MDD) is increasingly evident, underscored both by mitochondria's involvement in many mechanisms identified in depression and the high prevalence of MDD in individuals with mitochondrial disorders. Mitochondrial functions and energy metabolism are increasingly considered to be involved in MDD's pathogenesis. This study focused on cellular and mitochondrial (dys)function in two atypical cases: an antidepressant non-responding MDD patient ("Non-R") and another with an unexplained mitochondrial disorder ("Mito"). Skin biopsies from these patients and controls were used to generate various cell types, including astrocytes and neurons, and cellular and mitochondrial functions were analyzed. Similarities were observed between the Mito patient and a broader MDD cohort, including decreased respiration and mitochondrial function. Conversely, the Non-R patient exhibited increased respiratory rates, mitochondrial calcium, and resting membrane potential. In conclusion, the Non-R patient's data offered a new perspective on MDD, suggesting a detrimental imbalance in mitochondrial and cellular processes, rather than simply reduced functions. Meanwhile, the Mito patient's data revealed the extensive effects of mitochondrial dysfunctions on cellular functions, potentially highlighting new MDD-associated impairments. Together, these case studies enhance our comprehension of MDD.
Collapse
Affiliation(s)
- Iseline Cardon
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Sonja Grobecker
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Selin Kücükoktay
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Tatjana Jahner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Kevin Koschitzki
- Department of Dermatology, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
- Institute of Clinical Human Genetics, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Frank Braun
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Tanja Rothammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany
| | | | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Vladimir M. Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| |
Collapse
|
33
|
Rubina SS, Chichanovskaya LV, Makarova II, Slusar NN. [Significance of immunological markers in patients with obstructive sleep apnea and comorbid pathology]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:47-53. [PMID: 39269296 DOI: 10.17116/jnevro202412408147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
OBJECTIVE To determine the significance of immunological markers in patients with obstructive sleep apnea (OSA) and comorbid pathology. MATERIAL AND METHODS Sixty-five patients were examined. Two groups of patients were distinguished: the main group with moderate and severe OSA and the control group without OSA. The subjects underwent anthropometry, polysomnography, assessment of cognitive and emotional disorders. Glial fibrillar acidic protein (GFAP), antibodies against NR1-NR2 subunits of NMDA receptors (AT to GRIN2A) and the acetylcholine receptor (AT to AChR), and brain-derived neurotrophic factor (BDNF) were studied by enzyme immunoassay. RESULTS In patients with OSA, indicators of markers: GFAP (p=0.017), BDNF (p=0.006), antibodies to AChR (p=0.002), as well as chronic cerebral ischemia (p=0.000), depression on the HADS (p=0.004) and the Beck scale (p=0.000), drowsiness on the Epworth scale (p=0.001), asthenia on the visual analogue scale (p=0.000) and the MFI 20 (p=0.013) were higher than in the control group. A relationship was established in the main group between the identified subjective disorders on the Mini-Mental State Examination scale (MMSE) and BDNF (r=0.302, p=0.014) and the average score on the MMSE and BDNF (r=-0.266, p=0.032). CONCLUSION The results demonstrate the relationship of neurospecific proteins with cognitive impairment in patients with OSA. The neuromarker GFAP in patients with sleep apnea has shown itself to be a predictor of decreased neurogenesis, and BDNF as a representative marker of neuroplasticity. Large values of AT to AChR in patients with OSA may indicate possible neuromuscular transmission disorders. Along with drowsiness and asthenia, patients with OSA have changes in the emotional background, mainly due to depression. The severity of depression and the severity of asthenia increase with increasing severity of apnea and are probably associated with low levels of saturation, which in turn leads to dysregulation of the prefrontal cortex, hippocampus and amygdala.
Collapse
Affiliation(s)
- S S Rubina
- Tver State Medical University, Tver, Russia
| | | | | | - N N Slusar
- Tver State Medical University, Tver, Russia
| |
Collapse
|
34
|
Krystal JH, Kaye AP, Jefferson S, Girgenti MJ, Wilkinson ST, Sanacora G, Esterlis I. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc Natl Acad Sci U S A 2023; 120:e2305772120. [PMID: 38011560 DOI: 10.1073/pnas.2305772120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ketamine has emerged as a transformative and mechanistically novel pharmacotherapy for depression. Its rapid onset of action, efficacy for treatment-resistant symptoms, and protection against relapse distinguish it from prior antidepressants. Its discovery emerged from a reconceptualization of the neurobiology of depression and, in turn, insights from the elaboration of its mechanisms of action inform studies of the pathophysiology of depression and related disorders. It has been 25 y since we first presented our ketamine findings in depression. Thus, it is timely for this review to consider what we have learned from studies of ketamine and to suggest future directions for the optimization of rapid-acting antidepressant treatment.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Sarah Jefferson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
35
|
Xiao Y, Zhao L, Zang X, Xue S. Compressed primary-to-transmodal gradient is accompanied with subcortical alterations and linked to neurotransmitters and cellular signatures in major depressive disorder. Hum Brain Mapp 2023; 44:5919-5935. [PMID: 37688552 PMCID: PMC10619397 DOI: 10.1002/hbm.26485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Major depressive disorder (MDD) has been shown to involve widespread changes in low-level sensorimotor and higher-level cognitive functions. Recent research found that a primary-to-transmodal gradient could capture a cortical hierarchical organization ranging from perception and action to cognition in healthy subjects, but a prominent gradient dysfunction in MDD patients. However, whether and how this cortical gradient is linked to subcortical impairments and whether it is reflected in the microscale neurotransmitter systems and cell type-specific transcriptional signatures remain largely unknown. Data were acquired from 323 MDD patients and 328 sex- and age-matched healthy controls derived from the REST-meta-MDD project, and the human brain neurotransmitter systems density maps and gene expression data were drawn from two publicly available datasets. We investigated alterations of the primary-to-transmodal gradient in MDD patients and their correlations with clinical symptoms of depression and anxiety, as well as their paralleled subcortical impairments. The correlations between MDD-related gradient alterations and densities of the neurotransmitter systems and gene expression information were assessed, respectively. The results demonstrated that MDD patients had a compressed primary-to-transmodal gradient accompanied by paralleled alterations in subcortical regions including the caudate, amygdala, and thalamus. The case-control gradient differences were spatially correlated with the densities of the neurotransmitter systems including the serotonin and dopamine receptors, and meanwhile with gene expression enriched in astrocytes, excitatory and inhibitory neuronal cells. These findings mapped the paralleled subcortical impairments in cortical hierarchical organization and also helped us understand the possible molecular and cellular substrates of the co-occurrence of high-level cognitive impairments with low-level sensorimotor abnormalities in MDD.
Collapse
Affiliation(s)
- Yang Xiao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Lei Zhao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Xuelian Zang
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Shao‐Wei Xue
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| |
Collapse
|
36
|
Vazquez-Juarez E, Srivastava I, Lindskog M. The effect of ketamine on synaptic mistuning induced by impaired glutamate reuptake. Neuropsychopharmacology 2023; 48:1859-1868. [PMID: 37301901 PMCID: PMC10584870 DOI: 10.1038/s41386-023-01617-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Mistuning of synaptic transmission has been proposed to underlie many psychiatric disorders, with decreased reuptake of the excitatory neurotransmitter glutamate as one contributing factor. Synaptic tuning occurs through several diverging and converging forms of plasticity. By recording evoked field postsynaptic potentials in the CA1 area in hippocampal slices, we found that inhibiting glutamate transporters using DL-TBOA causes retuning of synaptic transmission, resulting in a new steady state with reduced synaptic strength and a lower threshold for inducing long-term synaptic potentiation (LTP). Moreover, a similar reduced threshold for LTP was observed in a rat model of depression with decreased levels of glutamate transporters. Most importantly, we found that the antidepressant ketamine counteracts the effects of increased glutamate on the various steps involved in synaptic retuning. We, therefore, propose that ketamine's mechanism of action as an antidepressant is to restore adequate synaptic tuning.
Collapse
Affiliation(s)
- Erika Vazquez-Juarez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ipsit Srivastava
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Medical Cell Biology, Uppsala University, 751 24, Uppsala, Sweden
| | - Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Department of Medical Cell Biology, Uppsala University, 751 24, Uppsala, Sweden.
| |
Collapse
|
37
|
Xu SX, Xie XH, Yao L, Wang W, Zhang H, Chen MM, Sun S, Nie ZW, Nagy C, Liu Z. Human in vivo evidence of reduced astrocyte activation and neuroinflammation in patients with treatment-resistant depression following electroconvulsive therapy. Psychiatry Clin Neurosci 2023; 77:653-664. [PMID: 37675893 DOI: 10.1111/pcn.13596] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
AIM The current study aimed to investigate the neuroinflammatory hypothesis of depression and the potential anti-inflammatory effect of electroconvulsive therapy (ECT) in vivo, utilizing astrocyte-derived extracellular vesicles (ADEVs) isolated from plasma. METHODS A total of 40 patients with treatment-resistant depression (TRD) and 35 matched healthy controls were recruited at baseline, and 34 patients with TRD completed the post-ECT visits. Blood samples were collected at baseline and post-ECT. Plasma ADEVs were isolated and confirmed, and the concentrations of two astrocyte markers (glial fibrillary acidic protein [GFAP] and S100β), an extracellular vesicle marker cluster of differentiation 81 (CD81), and nine inflammatory markers in ADEVs were measured as main analyses. In addition, correlation analysis was conducted between clinical features and ADEV protein levels as exploratory analysis. RESULTS At baseline, the TRD group exhibited significantly higher levels of two astrocyte markers GFAP and S100β, as well as CD81 compared with the healthy controls. Inflammatory markers interferon γ (IFN-γ), interleukin (IL) 1β, IL-4, IL-6, tumor necrosis factor α, IL-10, and IL-17A were also significantly higher in the TRD group. After ECT, there was a significant reduction in the levels of GFAP, S100β, and CD81, along with a significant decrease in the levels of IFN-γ and IL-4. Furthermore, higher levels of GFAP, S100β, CD81, and inflammatory cytokines were associated with more severe depressive symptoms and poorer cognitive function. CONCLUSION This study provides direct insight supporting the astrocyte activation and neuroinflammatory hypothesis of depression using ADEVs. ECT may exert an anti-inflammatory effect through inhibition of such activation of astrocytes.
Collapse
Affiliation(s)
- Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhao-Wen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Corina Nagy
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Androulakis XM, Yu X, Zhu X, Thiam MA, Cai G. Migraine and major depression: localizing shared genetic susceptibility in different cell types of the nervous systems. Front Neurol 2023; 14:1254290. [PMID: 38033772 PMCID: PMC10684773 DOI: 10.3389/fneur.2023.1254290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Background There is a bidirectional relationship between migraine and major depression disorder (MDD). They likely share important risk genes associated with different cell types in the central nervous system (CNS) and peripheral nervous system (PNS). Profiling the expression of these genes in specific cell types is critical in understanding the pathophysiology of the relationship between migraine and MDD. Methods Associated genes shared by migraine and MDD were identified by consolidating multiple curations of human disease-gene associations. Subsequently, the expression of overlapping genes was profiled and compared across the different cell types in CNS, PNS and neurovascular cells using eight single cell RNA sequencing datasets, including two human CNS datasets, two mouse CNS datasets, one human PNS dataset and three mouse PNS datasets. Results 45 shared genes between migraine and MDD were identified. Consistently found in all eight datasets, dopaminergic and serotonergic neurotransmitters were broadly expressed in CNS and PNS cell types. Glutamatergic and endocannabinoid genes were specifically expressed in CNS neurons and astrocytes. Synthesis and/or Release and Binding of Neuropeptides were specifically expressed in PNS peptidergic nociceptor (PEP). Genes related to inflammatory factors and immune responses were specifically expressed in CNS microglia. Among which, IL1B and COMT were highly expressed in CNS microglia cells. Conclusion Single cell RNA sequencing of the CNS and PNS helps to identify the shared genes between migraine and MDD that are enriched in specific cell types. The findings provide new insight in understanding the underlying mechanism of action for the bidirectional co-morbidity between migraine and MDD.
Collapse
Affiliation(s)
| | - Xuanxuan Yu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Xia Zhu
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Melinda A. Thiam
- Department of Psychiatry, New Mexico VA Healthcare Care System, Albuquerque, NM, United States
| | - Guoshuai Cai
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Lei L, Wang YT, Hu D, Gai C, Zhang Y. Astroglial Connexin 43-Mediated Gap Junctions and Hemichannels: Potential Antidepressant Mechanisms and the Link to Neuroinflammation. Cell Mol Neurobiol 2023; 43:4023-4040. [PMID: 37875763 DOI: 10.1007/s10571-023-01426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Major depression disorder (MDD) is a neuropsychiatric disorder associated with a high suicide rate and a higher disability rate than any other disease. Evidence suggests that the pathological mechanism of MDD is related to astrocyte dysfunction. Depression is mainly associated with the expression of connexin 43 (Cx43) and the function of Cx43-mediated gap junctions and hemichannels in astrocytes. Moreover, neuroinflammation has been a hotspot in research on the pathology of depression, and Cx43-mediated functions are thought to be involved in neuroinflammation-related depression. However, the specific mechanism of Cx43-mediated functions in neuroinflammation-related depression pathology remains unclear. Therefore, this review summarizes and discusses Cx43 expression, the role of gap junction intercellular communication, and its relationship with neuroinflammation in depression. This review also focuses on the effects of antidepressant drugs (e.g., monoamine antidepressants, psychotropic drugs, and N-methyl-D-aspartate receptor antagonists) on Cx43-mediated function and provides evidence for Cx43 as a novel target for the treatment of MDD. The pathogenesis of MDD is related to astrocyte dysfunction, with reduced Cx43 expression, GJ dysfunction, decreased GJIC and reduced BDNF expression in the depressed brain. The effect of Cx43 on neuroinflammation-related depression involving inflammatory cytokines, glutamate excitotoxicity, and HPA axis dysregulation. Antidepressant drugs targeting Cx43 can effectively relieve depressive symptoms.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Cong Gai
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
40
|
Jazaeri SZ, Taghizadeh G, Babaei JF, Goudarzi S, Saadatmand P, Joghataei MT, Khanahmadi Z. Aquaporin 4 beyond a water channel; participation in motor, sensory, cognitive and psychological performances, a comprehensive review. Physiol Behav 2023; 271:114353. [PMID: 37714320 DOI: 10.1016/j.physbeh.2023.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
Aquaporin 4 (AQP4) is a protein highly expressed in the central nervous system (CNS) and peripheral nervous system (PNS) as well as various other organs, whose different sites of action indicate its importance in various functions. AQP4 has a variety of essential roles beyond water homeostasis. In this article, we have for the first time summarized different roles of AQP4 in motor and sensory functions, besides cognitive and psychological performances, and most importantly, possible physiological mechanisms by which AQP4 can exert its effects. Furthermore, we demonstrated that AQP4 participates in pathology of different neurological disorders, various effects depending on the disease type. Since neurological diseases involve a spectrum of dysfunctions and due to the difficulty of obtaining a treatment that can simultaneously affect these deficits, it is therefore suggested that future studies consider the role of this protein in different functional impairments related to neurological disorders simultaneously or separately by targeting AQP4 expression and/or polarity modulation.
Collapse
Affiliation(s)
- Seyede Zohreh Jazaeri
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Goudarzi
- Experimental Medicine Research Center, Tehran University of medical Sciences, Tehran, Iran
| | - Pegah Saadatmand
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Innovation in Medical Education, Faculty of Medicine, Ottawa University, Ottawa, Canada.
| | - Zohreh Khanahmadi
- Department of Occupational Therapy, School of Rehabilitation Services, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
Bering T, Gadgaard C, Vorum H, Honoré B, Rath MF. Diurnal proteome profile of the mouse cerebral cortex: Conditional deletion of the Bmal1 circadian clock gene elevates astrocyte protein levels and cell abundance in the neocortex and hippocampus. Glia 2023; 71:2623-2641. [PMID: 37470358 DOI: 10.1002/glia.24443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Circadian oscillators, defined by cellular 24 h clock gene rhythms, are found throughout the brain. Cerebral cortex-specific conditional knockout of the clock gene Bmal1 (Bmal1 CKO) leads to depressive-like behavior, but the molecular link from clock gene to altered behavior is unknown. Further, diurnal proteomic data on the cerebral cortex are currently unavailable. With the aim of determining the diurnal proteome profile and downstream targets of the cortical circadian clock, we here performed a proteomic analysis of the mouse cerebral cortex. Proteomics identified approximately 2700 proteins in both the neocortex and the hippocampus. In the neocortex, 15 proteins were differentially expressed (>2-fold) between day and night, mainly mitochondrial and neuronal plasticity proteins. Only three hippocampal proteins were differentially expressed, suggesting that daily protein oscillations are more prominent in the neocortex. The number of differentially expressed proteins was reduced in the Bmal1 CKO, suggesting that daily rhythms in the cerebral cortex are primarily driven by local clocks. The proteome of the Bmal1 CKO cerebral cortex was dominated by upregulated proteins expressed in astrocytes, including GFAP (4-fold) and FABP7 (>20-fold), in both the neocortex and hippocampus. These findings were confirmed at the transcript level. Cellular analyses of astrocyte components revealed an increased number of GFAP-positive cells in the Bmal1 CKO cerebral cortex. Further, BMAL1 was found to be expressed in both GFAP- and FABP7-positive astrocytes of control animals. Our data show that Bmal1 is required for proper cellular composition of the cerebral cortex, suggesting that increased cortical astrocyte activity may induce behavioral changes.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Gadgaard
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Wang J, Liu G, Xu K, Ai K, Huang W, Zhang J. The role of neurotransmitters in mediating the relationship between brain alterations and depressive symptoms in patients with inflammatory bowel disease. Hum Brain Mapp 2023; 44:5357-5371. [PMID: 37530546 PMCID: PMC10543356 DOI: 10.1002/hbm.26439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
A growing body of evidence from neuroimaging studies suggests that inflammatory bowel disease (IBD) is associated with functional and structural alterations in the central nervous system and that it has a potential link to emotional symptoms, such as anxiety and depression. However, the neurochemical underpinnings of depression symptoms in IBD remain unclear. We hypothesized that changes in cortical gamma-aminobutyric acid (GABA+) and glutamine (Glx) concentrations are related to cortical thickness and resting-state functional connectivity in IBD as compared to healthy controls. To test this, we measured whole-brain cortical thickness and functional connectivity within the medial prefrontal cortex (mPFC), as well as the concentrations of neurotransmitters in the same brain region. We used the edited magnetic resonance spectroscopy (MRS) with the MEGA-PRESS sequence at a 3 T scanner to quantitate the neurotransmitter levels in the mPFC. Subjects with IBD (N = 37) and healthy control subjects (N = 32) were enrolled in the study. Compared with healthy controls, there were significantly decreased GABA+ and Glx concentrations in the mPFC of patients with IBD. The cortical thickness of patients with IBD was thin in two clusters that included the right medial orbitofrontal cortex and the right posterior cingulate cortex. A seed-based functional connectivity analysis indicated that there was higher connectivity of the mPFC with the left precuneus cortex (PC) and the posterior cingulate cortex, and conversely, lower connectivity in the left frontal pole was observed. The functional connectivity between the mPFC and the left PC was negatively correlated with the IBD questionnaire score (r = -0.388, p = 0.018). GABA+ concentrations had a negative correlation with the Hamilton Depression Scale (HAMD) score (r = -0.497, p = 0.002). Glx concentration was negatively correlated with the HAMD score (r = -0.496, p = 0.002) and positively correlated with the Short-Form McGill Pain Questionnaire score (r = 0.330, p = 0.046, uncorrected). There was a significant positive correlation between the ratio of Glx to GABA+ and the HAMD score (r = 0.428, p = 0.008). Mediation analysis revealed that GABA+ significantly mediated the main effect of the relationship between the structural and functional alterations and the severity of depression in patients with IBD. Our study provides initial evidence of neurochemistry that can be used to identify potential mechanisms underlying the modulatory effects of GABA+ on the development of depression in patients with IBD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Guangyao Liu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kun Xu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kai Ai
- Deparment of Clinical and Technical Support, Philips HealthcareXi'anChina
| | - Wenjing Huang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Jing Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
43
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Schoenfeld TJ, Rhee D, Smith JA, Padmanaban V, Brockett AT, Jacobs HN, Cameron HA. Rewarded Maze Training Increases Approach Behavior in Rats Through Neurogenesis-Dependent Growth of Ventral Hippocampus-Prelimbic Circuits. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:725-733. [PMID: 37881563 PMCID: PMC10593943 DOI: 10.1016/j.bpsgos.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 10/27/2023] Open
Abstract
Background Learning complex navigation routes increases hippocampal volume in humans, but it is not clear whether this growth impacts behaviors outside the learning situation or what cellular mechanisms are involved. Methods We trained rats with pharmacogenetic suppression of adult neurogenesis and littermate controls in 3 mazes over 3 weeks and tested novelty approach behavior several days after maze exposure. We then measured hippocampus and prelimbic cortex volumes using magnetic resonance imaging and assessed neuronal and astrocyte morphology. Finally, we investigated the activation and behavioral role of the ventral CA1 (vCA1)-to-prelimbic pathway using immediate-early genes and DREADDs (designer receptors exclusively activated by designer drugs). Results Maze training led to volume increase of both the vCA1 region of the hippocampus and the prelimbic region of the neocortex compared with rats that followed fixed paths. Growth was also apparent in individual neurons and astrocytes in these 2 regions, and behavioral testing showed increased novelty approach in maze-trained rats in 2 different tests. Suppressing adult neurogenesis prevented the effects on structure and approach behavior after maze training without affecting maze learning itself. The vCA1 neurons projecting to the prelimbic area were more activated by novelty in maze-trained animals, and suppression of this pathway decreased approach behavior. Conclusions Rewarded navigational learning experiences induce volumetric and morphologic growth in the vCA1 and prelimbic cortex and enhance activation of the circuit connecting these 2 regions. Both the structural and behavioral effects of maze training require ongoing adult neurogenesis, suggesting a role for new neurons in experience-driven increases in novelty exploration.
Collapse
Affiliation(s)
- Timothy J. Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, Tennessee
| | - Diane Rhee
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jesse A. Smith
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Varun Padmanaban
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Adam T. Brockett
- Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Hannah N. Jacobs
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Heather A. Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
45
|
Campos ACP, Pagano RL, Lipsman N, Hamani C. What do we know about astrocytes and the antidepressant effects of DBS? Exp Neurol 2023; 368:114501. [PMID: 37558154 DOI: 10.1016/j.expneurol.2023.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition that affects millions of individuals worldwide. Deep brain stimulation (DBS) has been widely used with excellent outcomes in neurological disorders such as Parkinson's disease, tremor, and dystonia. More recently, DBS has been proposed as an adjuvant therapy for TRD. To date, the antidepressant efficacy of DBS is still controversial, and its mechanisms of action remain poorly understood. Astrocytes are the most abundant cells in the nervous system. Once believed to be a "supporting" element for neuronal function, astrocytes are now recognized to play a major role in brain homeostasis, neuroinflammation and neuroplasticity. Because of its many roles in complex multi-factorial disorders, including TRD, understanding the effect of DBS on astrocytes is pivotal to improve our knowledge about the antidepressant effects of this therapy. In depression, the number of astrocytes and the expression of astrocytic markers are decreased. One of the potential consequences of this reduced astrocytic function is the development of aberrant glutamatergic neurotransmission, which has been documented in several models of depression-like behavior. Evidence from preclinical work suggests that DBS may directly influence astrocytic activity, modulating the release of gliotransmitters, reducing neuroinflammation, and altering structural tissue organization. Compelling evidence for an involvement of astrocytes in potential mechanisms of DBS derive from studies suggesting that pharmacological lesions or the inhibition of these cells abolishes the antidepressant-like effect of DBS. In this review, we summarize preclinical data suggesting that the modulation of astrocytes may be an important mechanism for the antidepressant-like effects of DBS.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Nir Lipsman
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
46
|
Hviid CVB, Benros ME, Krogh J, Nordentoft M, Christensen SH. Serum glial fibrillary acidic protein and neurofilament light chain in treatment-naïve patients with unipolar depression. J Affect Disord 2023; 338:341-348. [PMID: 37336248 DOI: 10.1016/j.jad.2023.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Unipolar depression has been associated with increased levels of glial dysfunction and neurodegeneration biomarkers, such as Glial Fibrillary Acidic Protein (GFAP) and Neurofilament light chain (NfL). However, previous studies were conducted on patients taking psychotropic medication and did not monitor longitudinal associations between disease status and GFAP/NfL. METHODS Treatment-naïve patients with unipolar depression (n = 110) and healthy controls (n = 33) were included. GFAP/NfL serum levels were analyzed by Single Molecule Array at baseline and 3-month follow-up. The primary endpoint was GFAP/NfL levels in patients with depression compared with healthy controls. The secondary endpoint was the associations between GFAP/NfL with depression severity and cognitive function. RESULTS The patients' mean HAM-D17 score was 18.9 (SD 3.9) at baseline and improved by 7.9 (SD 6.8) points during follow-up. GFAP/NfL was quantified in all individuals. At baseline, the adjusted GFAP levels were -16.8 % (95 % CI: -28.8 to -1.9, p = 0.03) lower among patients with depression compared to healthy controls, while NfL levels were comparable between the groups (p = 0.57). In patients with depression, mean NfL levels increased from baseline to follow-up (0.68 pg/ml, p = 0.03), while GFAP levels were unchanged (p = 0.24). We did not find consistent associations between NfL/GFAP with depression scores or cognitive function. CONCLUSION This largest study of serum NfL/GFAP levels in patients with depression did not support previous findings of elevated GFAP/NfL in patients with depression or positive associations with depression severity. Although limited by a small control group, our study may support the presence of glial dysfunction but not damage to neurons in depression.
Collapse
Affiliation(s)
- Claus V B Hviid
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Michael E Benros
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jesper Krogh
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Denmark
| | - Silje H Christensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
47
|
Dong W, Huang Y, Shu Y, Fan X, Tian X, Yan Y, Mi J, Lu L, Zeng X, Cao Y. Water extract of goji berries improves neuroinflammation induced by a high-fat and high-fructose diet based on the bile acid-mediated gut-brain axis pathway. Food Funct 2023; 14:8631-8645. [PMID: 37670564 DOI: 10.1039/d3fo02651e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The high-fat and high-fructose diet (HFFD) is a common diet in westernized societies, which worsens disturbances in gut microbiota and bile acid (BA) metabolism. Herein, the present study aimed to investigate the effects of the water extract of Lycium barbarum fruits (LBE) on gut microbiota and BA metabolism in mice with HFFD-induced neuroinflammation. The results showed that supplementation of LBE for 14 weeks remarkably ameliorated weight gain and insulin resistance and suppressed microglial activation and neural neuroinflammation induced by HFFD. The results of Morris water maze and Y-maze tests demonstrated that LBE attenuated HFFD-induced cognitive impairment. Moreover, LBE elevated hepatic BA biosynthesis and excretion of BAs and increased elimination of BAs via the feces. Notably, LBE supplementation resulted in the enrichment of tauroursodeoxycholic acid in the cortex and hippocampus. Furthermore, the 16S rDNA sequencing results showed that LBE could modulate the structure of gut microbiota, and in the meantime decrease the relative abundance of Clostridium_XlVa, which is associated with BA homeostasis. Additionally, LBE exerted neuroprotective effects involving the increment of Lactococcus, known as a potentially beneficial bacterium. These results demonstrated that LBE could ameliorate neuroinflammation and cognitive impairment in HFFD-induced mice through the gut-liver-brain axis, which might be due to the regulation of BA homeostasis and gut microbiota in mice.
Collapse
Affiliation(s)
- Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yifan Shu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Xinyi Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China.
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China.
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China.
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China.
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| |
Collapse
|
48
|
Seki I, Izumi H, Okamoto N, Ikenouchi A, Morimoto Y, Horie S, Yoshimura R. Serum Extracellular Vesicle-Derived hsa-miR-2277-3p and hsa-miR-6813-3p Are Potential Biomarkers for Major Depression: A Preliminary Study. Int J Mol Sci 2023; 24:13902. [PMID: 37762202 PMCID: PMC10531403 DOI: 10.3390/ijms241813902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of the present study was to examine the association between miRNA levels in extracellular vesicles (EVs) from serum and the severity of Major Depression (MD). Patient sera from 16 MD cases were collected at our university hospital. The miRNAs contained in EVs were extracted using a nanofiltration method, and their expression levels were analyzed using miRNA microarrays. Intergroup comparisons were performed to validate the diagnostic performance of miRNAs in EVs. Furthermore, candidate miRNAs in EVs were added to neural progenitor cells, astrocytes, and microglial cells in vitro, and the predicted target genes of the candidate miRNAs were extracted. The predicted target genes underwent enrichment analysis. The expression levels of hsa-miR-6813-3p and hsa-miR-2277-3p were significantly downregulated with increasing depression severity of MD. The pathway enrichment analysis suggests that hsa-miR-6813-3p may be involved in glucocorticoid receptor and gamma-aminobutyric acid receptor signaling. Additionally, hsa-miR-2277-3p was found to be involved in the dopaminergic neural pathway. The analysis of serum miRNAs in EVs suggests that hsa-miR-6813-3p and hsa-miR-2277-3p could serve as novel biomarkers for MD, reflecting its severity. Moreover, these miRNAs in EVs could help understand MD pathophysiology.
Collapse
Affiliation(s)
- Issei Seki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (I.S.); (N.O.); (A.I.)
| | - Hiroto Izumi
- Center for Stress-related Disease Control and Prevention, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (H.I.); (Y.M.)
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan
| | - Naomichi Okamoto
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (I.S.); (N.O.); (A.I.)
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (I.S.); (N.O.); (A.I.)
| | - Yasuo Morimoto
- Center for Stress-related Disease Control and Prevention, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (H.I.); (Y.M.)
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan
| | - Seichi Horie
- Center for Stress-related Disease Control and Prevention, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (H.I.); (Y.M.)
- Department of Health Policy and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan; (I.S.); (N.O.); (A.I.)
| |
Collapse
|
49
|
Zhang YM, Qi YB, Gao YN, Chen WG, Zhou T, Zang Y, Li J. Astrocyte metabolism and signaling pathways in the CNS. Front Neurosci 2023; 17:1217451. [PMID: 37732313 PMCID: PMC10507181 DOI: 10.3389/fnins.2023.1217451] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Astrocytes comprise half of the cells in the central nervous system and play a critical role in maintaining metabolic homeostasis. Metabolic dysfunction in astrocytes has been indicated as the primary cause of neurological diseases, such as depression, Alzheimer's disease, and epilepsy. Although the metabolic functionalities of astrocytes are well known, their relationship to neurological disorders is poorly understood. The ways in which astrocytes regulate the metabolism of glucose, amino acids, and lipids have all been implicated in neurological diseases. Metabolism in astrocytes has also exhibited a significant influence on neuron functionality and the brain's neuro-network. In this review, we focused on metabolic processes present in astrocytes, most notably the glucose metabolic pathway, the fatty acid metabolic pathway, and the amino-acid metabolic pathway. For glucose metabolism, we focused on the glycolysis pathway, pentose-phosphate pathway, and oxidative phosphorylation pathway. In fatty acid metabolism, we followed fatty acid oxidation, ketone body metabolism, and sphingolipid metabolism. For amino acid metabolism, we summarized neurotransmitter metabolism and the serine and kynurenine metabolic pathways. This review will provide an overview of functional changes in astrocyte metabolism and provide an overall perspective of current treatment and therapy for neurological disorders.
Collapse
Affiliation(s)
- Yong-mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-bei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
50
|
Yu G, Liu Z, Wu X, Becker B, Zhang K, Fan H, Peng S, Kuang N, Kang J, Dong G, Zhao XM, Schumann G, Feng J, Sahakian BJ, Robbins TW, Palaniyappan L, Zhang J. Common and disorder-specific cortical thickness alterations in internalizing, externalizing and thought disorders during early adolescence: an Adolescent Brain and Cognitive Development study. J Psychiatry Neurosci 2023; 48:E345-E356. [PMID: 37673436 PMCID: PMC10495167 DOI: 10.1503/jpn.220202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/13/2023] [Accepted: 05/17/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A growing body of neuroimaging studies has reported common neural abnormalities among mental disorders in adults. However, it is unclear whether the distinct disorder-specific mechanisms operate during adolescence despite the overlap among disorders. METHODS We studied a large cohort of more than 11 000 preadolescent (age 9-10 yr) children from the Adolescent Brain and Cognitive Development cohort. We adopted a regrouping approach to compare cortical thickness (CT) alterations and longitudinal changes between healthy controls (n = 4041) and externalizing (n = 1182), internalizing (n = 1959) and thought disorder (n = 347) groups. Genome-wide association study (GWAS) was performed on regional CT across 4468 unrelated European youth. RESULTS Youth with externalizing or internalizing disorders exhibited increased regional CT compared with controls. Externalizing (p = 8 × 10-4, Cohen d = 0.10) and internalizing disorders (p = 2 × 10-3, Cohen d = 0.08) shared thicker CT in the left pars opercularis. The somatosensory and the primary auditory cortex were uniquely affected in externalizing disorders, whereas the primary motor cortex and higher-order visual association areas were uniquely affected in internalizing disorders. Only youth with externalizing disorders showed decelerated cortical thinning from age 10-12 years. The GWAS found 59 genome-wide significant associated genetic variants across these regions. Cortical thickness in common regions was associated with glutamatergic neurons, while internalizing-specific regional CT was associated with astrocytes, oligodendrocyte progenitor cells and GABAergic neurons. LIMITATIONS The sample size of the GWAS was relatively small. CONCLUSION Our study provides strong evidence for the presence of specificity in CT, developmental trajectories and underlying genetic underpinnings among externalizing and internalizing disorders during early adolescence. Our results support the neurobiological validity of the regrouping approach that could supplement the use of a dimensional approach in future clinical practice.
Collapse
Affiliation(s)
- Gechang Yu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Zhaowen Liu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Xinran Wu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Benjamin Becker
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Kai Zhang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Huaxin Fan
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Songjun Peng
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Nanyu Kuang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jujiao Kang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Guiying Dong
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Xing-Ming Zhao
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Gunter Schumann
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jianfeng Feng
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Barbara J Sahakian
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Trevor W Robbins
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Lena Palaniyappan
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jie Zhang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| |
Collapse
|