1
|
Viheriälä T, Hongisto H, Saari L, Oksanen M, Ilmarinen T, Väärämäki S, Uusitalo H, Nevalainen P, Skottman H. Novel Human Induced Pluripotent Stem Cell-Based Model for Retinal Pigment Epithelial Cells to Reveal Possible Disease Mechanisms for Macular Degeneration in Pseudoxanthoma Elasticum. J Ophthalmol 2024; 2024:6939920. [PMID: 39347541 PMCID: PMC11438508 DOI: 10.1155/2024/6939920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/06/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare metabolic disease with autosomal recessive inheritance. The manifestation in PXE is represented by retinal complications, pseudoxanthomas of the skin folding areas, and arterial calcification. The retinal complications are caused by the calcification of Bruch's membrane beneath retinal pigment epithelial cells (RPE) that can lead to retinal macular degeneration. The exact mechanism for the retinal pathophysiology is not known, and patients have variable symptoms and findings. Two induced pluripotent stem cell (hiPSC) lines from a patient carrying the common homozygous mutation c.3421C > T, p.Arg1141X in the ATP-binding cassette transporter gene (ABCC6; OMIM264800) were established and fully characterized. Then, RPE cells were differentiated, and molecular and functional characterization was conducted as a comparison to healthy controls. Data demonstrated that PXE-specific high-quality hiPSC lines can be established from a skin biopsy regardless of the skin-related disease phenotype and disease-specific RPE differentiation is feasible. The molecular and functional assessment of the PXE-specific RPE indicated increased pigmentation and reduced epithelial barrier functions as well as phagocytosis activity as compared to healthy controls. Although preliminary data, this indicates possible RPE-dependent factors that might explain the individual vulnerability of the retinas for macular degeneration in PXE. Future validation of the novel findings with additional PXE patients will be important.
Collapse
Affiliation(s)
- Taina Viheriälä
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| | - Heidi Hongisto
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| | - Lyydia Saari
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| | - Marika Oksanen
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| | - Tanja Ilmarinen
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| | - Suvi Väärämäki
- Centre for Vascular Surgery and Interventional Radiology Tampere University Hospital and Tampere University, Tampere, Finland
| | - Hannu Uusitalo
- SILK Department of Ophthalmology Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
- Tays Eye Centre Tampere University Hospital, Tampere, Finland
| | - Pasi Nevalainen
- Department of Internal Medicine Tampere University Hospital, Tampere, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Bhutani N. Pseudoxanthoma elasticum as a diagnostic challenge for pathologists: A rare case report. Ann Med Surg (Lond) 2022; 77:103571. [PMID: 35432986 PMCID: PMC9006764 DOI: 10.1016/j.amsu.2022.103571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
PXE is an extremely rare autosomal recessive disease. It involves major systems in the body like the cutaneous, ocular, cardiovascular, and gastrointestinal. The characteristic histopathological features are calcification and fragmentation of the elastic fibres. Currently, specific or effective treatment is not available.
Collapse
|
3
|
A meta-analysis of prognostic biomarkers in neonatal retinal hemorrhage. Int Ophthalmol 2021; 42:677-688. [PMID: 34623569 DOI: 10.1007/s10792-021-02055-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Neonatal retinal hemorrhage (RH) is a frequently occurring neonatal fundus condition and a very common ocular abnormality in neonates. Some of the key factors that influence the rate of RH are the mode of delivery, examination techniques, and time of examination after birth. The prognostic markers of severe RH are poorly known, making it difficult for an efficient diagnosis, prognosis, and treatment. Hence, to better understand the mechanism of disease, its study at the molecular level is required. Prognostic biomarkers are an essential tool for understanding the pathogenesis of the disease. In this paper, we present a meta-analysis of biomarkers to understand disease pathogenesis and support better diagnosis, prognosis, and treatment of neonatal RH. METHODS The meta-analysis was carried out by following the recommendation of PRISMA. The relevant articles were crawled using a systematic keyword using MeSH terms from the MEDLINE, PubMed, and Scopus databases, which were subjected to manual screening for reported biomarkers by two independent reviewers. The obtained biomarkers were further analyzed for gene-disease association and functional enrichment analysis. RESULTS Our meta-analysis suggests that genes ABCC6, Beta-APP, COL2A1, COL4A1, DNM2, ENPP1, IKBKG, ITGB2, IL-6, SELE, TREX1, and VEGFA are potential prognostic biomarkers associated with the neonatal RH. The gene-disease association and functional enrichment analysis suggest that few genes are associated with disease class "Vision"; however, some genes in the list are associated with the disease class "Pharmacogenomic," "Immune," "Renal." CONCLUSION The identified prognostic gene biomarkers may help to understand disease pathogenesis and provide a better diagnosis, prognosis, and treatment of neonatal RH.
Collapse
|
4
|
De Vilder EYG, Martin L, Lefthériotis G, Coucke P, Van Nieuwerburgh F, Vanakker OM. Rare Modifier Variants Alter the Severity of Cardiovascular Disease in Pseudoxanthoma Elasticum: Identification of Novel Candidate Modifier Genes and Disease Pathways Through Mixture of Effects Analysis. Front Cell Dev Biol 2021; 9:612581. [PMID: 34169069 PMCID: PMC8218811 DOI: 10.3389/fcell.2021.612581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Pseudoxanthoma elasticum (PXE), an ectopic mineralization disorder caused by pathogenic ABCC6 variants, is characterized by skin, ocular and cardiovascular (CV) symptoms. Due to striking phenotypic variability without genotype-phenotype correlations, modifier genes are thought to play a role in disease variability. In this study, we evaluated the collective modifying effect of rare variants on the cardiovascular phenotype of PXE. Materials and Methods: Mixed effects of rare variants were assessed by Whole Exome Sequencing in 11 PXE patients with an extreme CV phenotype (mild/severe). Statistical analysis (SKAT-O and C-alpha testing) was performed to identify new modifier genes for the CV PXE phenotype and enrichment analysis for genes significantly associated with the severe cohort was used to evaluate pathway and gene ontology features. Results Respectively 16 (SKAT-O) and 74 (C-alpha) genes were significantly associated to the severe cohort. Top significant genes could be stratified in 3 groups–calcium homeostasis, association with vascular disease and induction of apoptosis. Comparative analysis of both analyses led to prioritization of four genes (NLRP1, SELE, TRPV1, and CSF1R), all signaling through IL-1B. Conclusion This study explored for the first time the cumulative effect of rare variants on the severity of cardiovascular disease in PXE, leading to a panel of novel candidate modifier genes and disease pathways. Though further validation is essential, this panel may aid in risk stratification and genetic counseling of PXE patients and will help to gain new insights in the PXE pathophysiology.
Collapse
Affiliation(s)
- Eva Y G De Vilder
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,The Research Foundation - Flanders, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Ludovic Martin
- Department of Dermatology, Angers University Hospital, Angers, France
| | - Georges Lefthériotis
- Department of Vascular Physiology and Sports Medicine, Angers University, Angers, France
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Nielsen MMK, Aryal E, Safari E, Mojsoska B, Jenssen H, Prabhala BK. Current State of SLC and ABC Transporters in the Skin and Their Relation to Sweat Metabolites and Skin Diseases. Proteomes 2021; 9:proteomes9020023. [PMID: 34065737 PMCID: PMC8163169 DOI: 10.3390/proteomes9020023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023] Open
Abstract
With a relatively large surface area (2 m2) and 15% of total body mass, the skin forms the largest organ of the human body. The main functions of the skin include regulation of body temperature by insulation or sweating, regulation of the nervous system, regulation of water content, and protection against external injury. To perform these critical functions, the skin encodes genes for transporters responsible for the cellular trafficking of essential nutrients and metabolites to maintain cellular hemostasis. However, the knowledge on the expression, regulation, and function of these transporters is very limited and needs more work to elucidate how these transporters play a role both in disease progression and in healing. Furthermore, SLC and ABC transporters are understudied, and even less studied in skin. There are sparse reports on relation between transporters in skin and sweat metabolites. This mini review focuses on the current state of SLC and ABC transporters in the skin and their relation to sweat metabolites and skin diseases.
Collapse
Affiliation(s)
- Marcus M. K. Nielsen
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.M.K.N.); (E.A.)
| | - Eva Aryal
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.M.K.N.); (E.A.)
| | - Elnaz Safari
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran;
| | - Biljana Mojsoska
- Institute of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark; (B.M.); (H.J.)
| | - Håvard Jenssen
- Institute of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark; (B.M.); (H.J.)
| | - Bala Krishna Prabhala
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.M.K.N.); (E.A.)
- Correspondence:
| |
Collapse
|
6
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
7
|
Structural and Functional Characterization of the ABCC6 Transporter in Hepatic Cells: Role on PXE, Cancer Therapy and Drug Resistance. Int J Mol Sci 2021; 22:ijms22062858. [PMID: 33799762 PMCID: PMC8000515 DOI: 10.3390/ijms22062858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a complex autosomal recessive disease caused by mutations of ABCC6 transporter and characterized by ectopic mineralization of soft connective tissues. Compared to the other ABC transporters, very few studies are available to explain the structural components and working of a full ABCC6 transporter, which may provide some idea about its physiological role in humans. Some studies suggest that mutations of ABCC6 in the liver lead to a decrease in some circulating factor and indicate that PXE is a metabolic disease. It has been reported that ABCC6 mediates the efflux of ATP, which is hydrolyzed in PPi and AMP; in the extracellular milieu, PPi gives potent anti-mineralization effect, whereas AMP is hydrolyzed to Pi and adenosine which affects some cellular properties by modulating the purinergic pathway. Structural and functional studies have demonstrated that silencing or inhibition of ABCC6 with probenecid changed the expression of several genes and proteins such as NT5E and TNAP, as well as Lamin, and CDK1, which are involved in cell motility and cell cycle. Furthermore, a change in cytoskeleton rearrangement and decreased motility of HepG2 cells makes ABCC6 a potential target for anti-cancer therapy. Collectively, these findings suggested that ABCC6 transporter performs functions that modify both the external and internal compartments of the cells.
Collapse
|
8
|
Verschuere S, Van Gils M, Nollet L, Vanakker OM. From membrane to mineralization: the curious case of the ABCC6 transporter. FEBS Lett 2020; 594:4109-4133. [PMID: 33131056 DOI: 10.1002/1873-3468.13981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette subfamily C member 6 gene/protein (ABCC6) is an ATP-dependent transmembrane transporter predominantly expressed in the liver and the kidney. ABCC6 first came to attention in human medicine when it was discovered in 2000 that mutations in its encoding gene, ABCC6, caused the autosomal recessive multisystemic mineralization disease pseudoxanthoma elasticum (PXE). Since then, the physiological and pathological roles of ABCC6 have been the subject of intense research. In the last 20 years, significant findings have clarified ABCC6 structure as well as its physiological role in mineralization homeostasis in humans and animal models. Yet, several facets of ABCC6 biology remain currently incompletely understood, ranging from the precise nature of its substrate(s) to the increasingly complex molecular genetics. Nonetheless, advances in our understanding of pathophysiological mechanisms causing mineralization lead to several treatment options being suggested or already tested in pilot clinical trials for ABCC6 deficiency. This review highlights current knowledge of ABCC6 and the challenges ahead, particularly the attempts to translate basic science into clinical practice.
Collapse
Affiliation(s)
- Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Lukas Nollet
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| |
Collapse
|
9
|
Tanaka N, Kawai J, Hirasawa N, Mano N, Yamaguchi H. ATP-Binding Cassette Transporter C4 is a Prostaglandin D2 Exporter in HMC-1 cells. Prostaglandins Leukot Essent Fatty Acids 2020; 159:102139. [PMID: 32544819 DOI: 10.1016/j.plefa.2020.102139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
ATP-binding cassette transporter C4 (ABCC4) is associated with multidrug resistance and the regulation of cell signalling. Some prostaglandins (PGs), including: PGE2, PGF2α, PGE3, and PGF3α are known substrates of ABCC4, and are released from some types of cells to exert their biological effects. In the present study, we demonstrate that PGD2 is a novel substrate of ABCC4 using a transport assay based on inside-out membrane vesicles prepared from ABCC4-overexpressing cells. Then, we used two types of cell lines with confirmed ABCC4 mRNA and PGD2 release capacity (human mast cell lines HMC-1 cells and human rhabdomyosarcoma cell lines TE671 cells) to evaluate the contribution of ABCC4. The extracellular levels of PGD2 were unchanged following addition of a selective ABCC4 inhibitor in TE671 cells. Pharmacological inhibition and knockdown of ABCC4 significantly reduced the extracellular levels of PGD2 by at least 53% in HMC-1 cells. Moreover, the extracellular levels of PGD2 decreased by at least 20% using the selective ABCC4 inhibitor in the other mast cell line RBL-2H3 cells. Therefore, our results suggest that ABCC4 functions as a PGD2 exporter in HMC-1 cells.
Collapse
Affiliation(s)
- Nobuaki Tanaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, 800-8, Shimokomazawa, Nagano, 381-0008, Japan; Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, 980-8574, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, 980-8574, Japan; Department of Pharmacy, Yamagata University Hospital, Yamagata, 990-9585, Japan.
| |
Collapse
|
10
|
Mózner O, Bartos Z, Zámbó B, Homolya L, Hegedűs T, Sarkadi B. Cellular Processing of the ABCG2 Transporter-Potential Effects on Gout and Drug Metabolism. Cells 2019; 8:E1215. [PMID: 31597297 PMCID: PMC6830335 DOI: 10.3390/cells8101215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
The human ABCG2 is an important plasma membrane multidrug transporter, involved in uric acid secretion, modulation of absorption of drugs, and in drug resistance of cancer cells. Variants of the ABCG2 transporter, affecting cellular processing and trafficking, have been shown to cause gout and increased drug toxicity. In this paper, we overview the key cellular pathways involved in the processing and trafficking of large membrane proteins, focusing on ABC transporters. We discuss the information available for disease-causing polymorphic variants and selected mutations of ABCG2, causing increased degradation and impaired travelling of the transporter to the plasma membrane. In addition, we provide a detailed in silico analysis of an as yet unrecognized loop region of the ABCG2 protein, in which a recently discovered mutation may actually promote ABCG2 membrane expression. We suggest that post-translational modifications in this unstructured loop at the cytoplasmic surface of the protein may have special influence on ABCG2 processing and trafficking.
Collapse
Affiliation(s)
- Orsolya Mózner
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - Zsuzsa Bartos
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| | - Boglárka Zámbó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - Tamás Hegedűs
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| |
Collapse
|
11
|
Sun Q, Wang W, Wu L, Cheng L, Tong X, Xu X. Unexpected ABCC6 mRNA splicing in a Chinese family with pseudoxanthoma elasticum. Acta Ophthalmol 2019; 97:e381-e389. [PMID: 30328268 DOI: 10.1111/aos.13819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To identify the clinical characteristics and pathogenic genes among a Chinese family with angioid streaks and to assess a novel splicing mutation at the transcriptional and translational levels. METHODS Consenting family members were clinically evaluated, and blood samples were collected for targeted exome capture sequencing and/or Sanger sequencing. The two affected siblings were assessed by multimodal fundus imaging. ABCC6 splicing patterns were analysed by RNA identification and quantification using the proband's peripheral blood mononuclear cells. Minigene experiments were performed to verify the university. Plasmids expressing the transcripts were transfected into HEK293 cells to assess protein translation. Bioinformatic analyses were also performed to predict the splicing patterns and the functional consequences of the mutation. RESULTS The two siblings were trans-compound heterozygous pseudoxanthoma elasticum (PXE) patients with the same genotype (c.3703C>T and c.1177-2A>G for ABCC6) but different phenotypes. We identified several ABCC6 alternative splicing transcripts that were not previously reported. The novel splicing mutation c.1177-2A>G led to the upregulation of three transcripts, one using a cryptic splice acceptor in the upstream region of the intron, another using a cryptic splice acceptor in the downstream exon, and the third stimulating non-canonical U12-type splicing. All the transcripts were successfully translated in vitro. CONCLUSION The genotype-phenotype correlation of PXE is poorly understood. The novel ABCC6 splicing mutation c.1177-2A>G results in multiple splicing patterns. Endogenous U2 to U12 conversion may occur in humans in a disease state. Peripheral blood mononuclear cells can be reliably used to study ABCC6 RNA.
Collapse
Affiliation(s)
- Qiao Sun
- Department of Ophthalmology Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
- Shanghai Key Laboratory of Fundus Disease Shanghai China
| | - Weijun Wang
- Department of Ophthalmology Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
- Shanghai Key Laboratory of Fundus Disease Shanghai China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology Shanghai Key Laboratory of Tumor Microenvironment and Inflammation Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lu Cheng
- Department of Ophthalmology Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
- Shanghai Key Laboratory of Fundus Disease Shanghai China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology Shanghai Key Laboratory of Tumor Microenvironment and Inflammation Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xun Xu
- Department of Ophthalmology Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
- Shanghai Key Laboratory of Fundus Disease Shanghai China
| |
Collapse
|
12
|
|
13
|
Tordai H, Jakab K, Gyimesi G, András K, Brózik A, Sarkadi B, Hegedus T. ABCMdb reloaded: updates on mutations in ATP binding cassette proteins. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:3074791. [PMID: 28365738 PMCID: PMC5467578 DOI: 10.1093/database/bax023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 12/26/2022]
Abstract
ABC (ATP-Binding Cassette) proteins with altered function are responsible for numerous human diseases. To aid the selection of positions and amino acids for ABC structure/function studies we have generated a database, ABCMdb (Gyimesi et al., ABCMdb: a database for the comparative analysis of protein mutations in ABC transporters, and a potential framework for a general application. Hum Mutat 2012; 33:1547–1556.), with interactive tools. The database has been populated with mentions of mutations extracted from full text papers, alignments and structural models. In the new version of the database we aimed to collect the effect of mutations from databases including ClinVar. Because of the low number of available data, even in the case of the widely studied disease-causing ABC proteins, we also included the possible effects of mutations based on SNAP2 and PROVEAN predictions. To aid the interpretation of variations in non-coding regions, the database was supplemented with related DNA level information. Our results emphasize the importance of in silico predictions because of the sparse information available on variants and suggest that mutations at analogous positions in homologous ABC proteins have a strong predictive power for the effects of mutations. Our improved ABCMdb advances the design of both experimental studies and meta-analyses in order to understand drug interactions of ABC proteins and the effects of mutations on functional expression. Database URL:http://abcm2.hegelab.org
Collapse
Affiliation(s)
- Hedvig Tordai
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences and Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| | - Kristóf Jakab
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences and Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland and
| | - Kinga András
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences and Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| | - Anna Brózik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary
| | - Tamás Hegedus
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences and Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| |
Collapse
|
14
|
The transcriptional activity of hepatocyte nuclear factor 4 alpha is inhibited via phosphorylation by ERK1/2. PLoS One 2017; 12:e0172020. [PMID: 28196117 PMCID: PMC5308853 DOI: 10.1371/journal.pone.0172020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) nuclear receptor is a master regulator of hepatocyte development, nutrient transport and metabolism. HNF4α is regulated both at the transcriptional and post-transcriptional levels by different mechanisms. Several kinases (PKA, PKC, AMPK) were shown to phosphorylate and decrease the activity of HNF4α. Activation of the ERK1/2 signalling pathway, inducing proliferation and survival, inhibits the expression of HNF4α. However, based on our previous results we hypothesized that HNF4α is also regulated at the post-transcriptional level by ERK1/2. Here we show that ERK1/2 is capable of directly phosphorylating HNF4α in vitro at several phosphorylation sites including residues previously shown to be targeted by other kinases, as well. Furthermore, we also demonstrate that phosphorylation of HNF4α leads to a reduced trans-activational capacity of the nuclear receptor in luciferase reporter gene assay. We confirm the functional relevance of these findings by demonstrating with ChIP-qPCR experiments that 30-minute activation of ERK1/2 leads to reduced chromatin binding of HNF4α. Accordingly, we have observed decreasing but not disappearing binding of HNF4α to the target genes. In addition, 24-hour activation of the pathway further decreased HNF4α chromatin binding to specific loci in ChIP-qPCR experiments, which confirms the previous reports on the decreased expression of the HNF4a gene due to ERK1/2 activation. Our data suggest that the ERK1/2 pathway plays an important role in the regulation of HNF4α-dependent hepatic gene expression.
Collapse
|
15
|
Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells. Pharmaceutics 2016; 9:pharmaceutics9010003. [PMID: 28036031 PMCID: PMC5374369 DOI: 10.3390/pharmaceutics9010003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Human hepatoma cells may represent a valuable alternative to the use of human hepatocytes for studying hepatic drug transporters, which is now a regulatory issue during drug development. In the present work, we have characterized hepatic drug transporter expression, activity and regulation in human hepatoma HuH-7 cells, in order to determine the potential relevance of these cells for drug transport assays. HuH-7 cells displayed notable multidrug resistance-associated protein (MRP) activity, presumed to reflect expression of various hepatic MRPs, including MRP2. By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP), organic anion-transporting polypeptides (OATPs) and organic cation transporter 1 (OCT1), and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP). Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2), OCT1 and bile salt export pump) or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3) in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated. HuH-7 cells additionally exhibited farnesoid X receptor (FXR)- and nuclear factor erythroid 2-related factor 2 (Nrf2)-related up-regulation of some transporters. Such data indicate that HuH-7 cells, although expressing rather poorly some main hepatic drug transporters, may be useful for investigating interactions of drugs with MRPs, notably MRP2, and for studying FXR- or Nrf2-mediated gene regulation.
Collapse
|
16
|
Bardawil T, Khalil S, Bergqvist C, Abbas O, Kibbi AG, Bitar F, Nemer G, Kurban M. Genetics of inherited cardiocutaneous syndromes: a review. Open Heart 2016; 3:e000442. [PMID: 27933191 PMCID: PMC5133403 DOI: 10.1136/openhrt-2016-000442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022] Open
Abstract
The life of a human being originates as a single cell which, under the influence of certain factors, divides sequentially into multiple cells that subsequently become committed to develop and differentiate into the different structures and organs. Alterations occurring early on in the development process may lead to fetal demise in utero. Conversely, abnormalities at later stages may result in structural and/or functional abnormalities of varying severities. The cardiovascular system and skin share certain developmental and structural factors; therefore, it is not surprising to find several inherited syndromes with both cardiac and skin manifestations. Here, we will review the overlapping pathways in the development of the skin and heart, as well as the resulting syndromes. We will also highlight several cutaneous clues that may help physicians screen and uncover cardiac anomalies that may be otherwise hidden and result in sudden cardiac death.
Collapse
Affiliation(s)
| | | | | | - Ossama Abbas
- Department of Dermatology , American University of Beirut , Beirut Lebanon
| | - Abdul Ghani Kibbi
- Department of Dermatology , American University of Beirut , Beirut Lebanon
| | - Fadi Bitar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, BeirutLebanon; Department of Pediatrics, American University of Beirut, BeirutLebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics , American University of Beirut , Beirut Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut, BeirutLebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, BeirutLebanon; Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
17
|
Li Q, Sundberg JP, Levine MA, Terry SF, Uitto J. The effects of bisphosphonates on ectopic soft tissue mineralization caused by mutations in the ABCC6 gene. Cell Cycle 2015; 14:1082-9. [PMID: 25607347 DOI: 10.1080/15384101.2015.1007809] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) and generalized arterial calcification of infancy (GACI) are heritable ectopic mineralization disorders. Most cases of PXE and many cases of GACI harbor mutations in the ABCC6 gene. There is no effective treatment for these disorders. We explored the potential efficacy of bisphosphonates to prevent ectopic calcification caused by ABCC6 mutations by feeding Abcc6(-/-) mice with diet containing etidronate disodium (ETD) or alendronate sodium trihydrate (AST) in quantities corresponding to 1x, 5x, or 12x of the doses used to treat osteoporosis in humans. The mice were placed on diet at 4 weeks of age, and the degree of mineralization was assessed at 12 weeks by quantitation of the calcium deposits in the dermal sheath of vibrissae, a progressive biomarker of the mineralization, by computerized morphometry of histopathologic sections and by direct chemical assay of calcium. We found that ETD, but not AST, at the 12x dosage, significantly reduced mineralization, suggesting that selected bisphosphonates may be helpful for prevention of mineral deposits in PXE and GACI caused by mutations in the ABCC6 gene, when combined with careful monitoring of efficacy and potential side-effects.
Collapse
Affiliation(s)
- Qiaoli Li
- a Department of Dermatology and Cutaneous Biology; Sidney Kimmel Medical College ; Thomas Jefferson University ; Philadelphia , PA USA
| | | | | | | | | |
Collapse
|
18
|
Marconi B, Bobyr I, Campanati A, Molinelli E, Consales V, Brisigotti V, Scarpelli M, Racchini S, Offidani A. Pseudoxanthoma elasticum and skin: Clinical manifestations, histopathology, pathomechanism, perspectives of treatment. Intractable Rare Dis Res 2015; 4:113-22. [PMID: 26361562 PMCID: PMC4561240 DOI: 10.5582/irdr.2015.01014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023] Open
Abstract
Pseudoxantoma elasticum (PXE), also known as Groenblad-Strandberg syndrome, is a rare heritable disease with an estimated prevalence of 1:50,000 in the general population. PXE is considered a prototype of multisystem ectopic mineralization disorders and it is characterized by aberrant mineralization of soft connective tissue with degeneration of the elastic fibers, involving primarily the eyes, the cardiovascular system, and the skin. Cutaneous lesions consist of small, asymptomatic, yellowish papules or larger coalescent plaques, typically located on the neck and the flexural areas. PXE is caused by mutations in the ABCC6 (ATP-binding cassette subfamily C member 6) gene that encodes a transmembrane ATP binding efflux transporter, normally expressed in the liver and the kidney; however, the exact mechanism of ectopic mineralization remains largely unknown. The histological examination of cutaneous lesions, revealing accumulation of pleomorphic elastic structures in middermis, is essential for the definitive diagnosis of PXE, excluding PXE-like conditions. PXE is currently an intractable disease; although the cutaneous findings primarily present a cosmetic problem, they signify the risk for development of ocular and cardiovascular complications associated with considerable morbidity and mortality. The purpose of this review is to present a comprehensive overview of this rare form of hereditary connective tissue disorders, focus on the pathogenesis, the clinical manifestation, and the differential diagnosis of PXE. Emphasis is also placed on the management of cutaneous lesions and treatment perspectives of PXE.
Collapse
Affiliation(s)
- Barbara Marconi
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| | - Ivan Bobyr
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| | - Anna Campanati
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
- Address correspondence to: Dr. Anna Campanati, Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Via Conca 71, Ancona 60020, Italty. E-mail:
| | - Elisa Molinelli
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| | - Veronica Consales
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| | - Valerio Brisigotti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| | - Marina Scarpelli
- Institute of Pathological Anatomy and Histopathology, Polytechnic University Marche, Ancona, Italty
| | - Stefano Racchini
- Institute of Pathological Anatomy and Histopathology, Polytechnic University Marche, Ancona, Italty
| | - Annamaria Offidani
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytehnic Marche University, Ancona, Italty
| |
Collapse
|
19
|
Le Vee M, Jouan E, Noel G, Stieger B, Fardel O. Polarized location of SLC and ABC drug transporters in monolayer-cultured human hepatocytes. Toxicol In Vitro 2015; 29:938-46. [PMID: 25862123 DOI: 10.1016/j.tiv.2015.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/16/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
Abstract
Human hepatocytes cultured in a monolayer configuration represent a well-established in vitro model in liver toxicology, notably used in drug transporter studies. Polarized status of drug transporters, i.e., their coordinated location at sinusoidal or canalicular membranes, remains however incompletely documented in these cultured hepatocytes. The present study was therefore designed to analyze transporter expression and location in such cells. Most of drug transporters were first shown to be present at notable mRNA levels in monolayer-cultured human hepatocytes. Cultured human hepatocytes, which morphologically exhibited bile canaliculi-like structures, were next demonstrated, through immunofluorescence staining, to express the influx transporters organic anion transporting polypeptide (OATP) 1B1, OATP2B1 and organic cation transporter (OCT) 1 and the efflux transporter multidrug resistance-associated protein (MRP) 3 at their sinusoidal pole. In addition, the efflux transporters P-glycoprotein and MRP2 were detected at the canalicular pole of monolayer-cultured human hepatocytes. Moreover, canalicular secretion of reference substrates for the efflux transporters bile salt export pump, MRP2 and P-glycoprotein as well as sinusoidal drug transporter activities were observed. This polarized and functional expression of drug transporters in monolayer-cultured human hepatocytes highlights the interest of using this human in vitro cell model in xenobiotic transport studies.
Collapse
Affiliation(s)
- Marc Le Vee
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Elodie Jouan
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Gregory Noel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
20
|
Probert PME, Meyer SK, Alsaeedi F, Axon AA, Fairhall EA, Wallace K, Charles M, Oakley F, Jowsey PA, Blain PG, Wright MC. An expandable donor-free supply of functional hepatocytes for toxicology. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00214h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
The B-13 cell is a readily expandable rat pancreatic acinar-like cell that differentiates on simple plastic culture substrata into replicatively-senescent hepatocyte-like (B-13/H) cells in response to glucocorticoid exposure. B-13/H cells express a variety of liver-enriched and liver-specific genes, many at levels similar to hepatocytes in vivo. Furthermore, the B-13/H phenotype is maintained for at least several weeks in vitro, in contrast to normal hepatocytes which rapidly de-differentiate under the same simple – or even under more complex – culture conditions. The origin of the B-13 cell line and the current state of knowledge regarding differentiation to B-13/H cells are presented, followed by a review of recent advances in the use of B-13/H cells in a variety of toxicity endpoints. B-13 cells therefore offer Toxicologists a cost-effective and easy to use system to study a range of toxicologically-related questions. Dissecting the mechanism(s) regulating the formation of B-13/H cell may also increase the likelihood of engineering a human equivalent, providing Toxicologists with an expandable donor-free supply of functional rat and human hepatocytes, invaluable additions to the tool kit of in vitro toxicity tests.
Collapse
Affiliation(s)
- Philip M. E. Probert
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Stephanie K. Meyer
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fouzeyyah Alsaeedi
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Andrew A. Axon
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Emma A. Fairhall
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Karen Wallace
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Michelle Charles
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fiona Oakley
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Paul A. Jowsey
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Peter G. Blain
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Matthew C. Wright
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
21
|
Kuzaj P, Kuhn J, Michalek RD, Karoly ED, Faust I, Dabisch-Ruthe M, Knabbe C, Hendig D. Large-scaled metabolic profiling of human dermal fibroblasts derived from pseudoxanthoma elasticum patients and healthy controls. PLoS One 2014; 9:e108336. [PMID: 25265166 PMCID: PMC4181624 DOI: 10.1371/journal.pone.0108336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022] Open
Abstract
Mutations in the ABC transporter ABCC6 were recently identified as cause of Pseudoxanthoma elasticum (PXE), a rare genetic disorder characterized by progressive mineralization of elastic fibers. We used an untargeted metabolic approach to identify biochemical differences between human dermal fibroblasts from healthy controls and PXE patients in an attempt to find a link between ABCC6 deficiency, cellular metabolic alterations and disease pathogenesis. 358 compounds were identified by mass spectrometry covering lipids, amino acids, peptides, carbohydrates, nucleotides, vitamins and cofactors, xenobiotics and energy metabolites. We found substantial differences in glycerophospholipid composition, leucine dipeptides, and polypeptides as well as alterations in pantothenate and guanine metabolism to be significantly associated with PXE pathogenesis. These findings can be linked to extracellular matrix remodeling and increased oxidative stress, which reflect characteristic hallmarks of PXE. Our study could facilitate a better understanding of biochemical pathways involved in soft tissue mineralization.
Collapse
Affiliation(s)
- Patricia Kuzaj
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Ryan D. Michalek
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - Edward D. Karoly
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Mareike Dabisch-Ruthe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
22
|
Kuzaj P, Kuhn J, Dabisch-Ruthe M, Faust I, Götting C, Knabbe C, Hendig D. ABCC6- a new player in cellular cholesterol and lipoprotein metabolism? Lipids Health Dis 2014; 13:118. [PMID: 25064003 PMCID: PMC4124508 DOI: 10.1186/1476-511x-13-118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/17/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Dysregulations in cholesterol and lipid metabolism have been linked to human diseases like hypercholesterolemia, atherosclerosis or the metabolic syndrome. Many ABC transporters are involved in trafficking of metabolites derived from these pathways. Pseudoxanthoma elasticum (PXE), an autosomal-recessive disease caused by ABCC6 mutations, is characterized by atherogenesis and soft tissue calcification. METHODS In this study we investigated the regulation of cholesterol biosynthesis in human dermal fibroblasts from PXE patients and healthy controls. RESULTS Gene expression analysis of 84 targets indicated dysregulations in cholesterol metabolism in PXE fibroblasts. Transcript levels of ABCC6 were strongly increased in lipoprotein-deficient serum (LPDS) and under serum starvation in healthy controls. For the first time, increased HMG CoA reductase activities were found in PXE fibroblasts. We further observed strongly elevated transcript and protein levels for the proprotein convertase subtilisin/kexin type 9 (PCSK9), as well as a significant reduction in APOE mRNA expression in PXE. CONCLUSION Increased cholesterol biosynthesis, elevated PCSK9 levels and reduced APOE mRNA expression newly found in PXE fibroblasts could enforce atherogenesis and cardiovascular risk in PXE patients. Moreover, the increase in ABCC6 expression accompanied by the induction of cholesterol biosynthesis supposes a functional role for ABCC6 in human lipoprotein and cholesterol homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Doris Hendig
- Herz- und Diabeteszentrum NRW, Institut für Laboratoriums- und Transfusionsmedizin, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32 545 Bad Oeynhausen, Germany.
| |
Collapse
|
23
|
Hosen MJ, Zubaer A, Thapa S, Khadka B, De Paepe A, Vanakker OM. Molecular docking simulations provide insights in the substrate binding sites and possible substrates of the ABCC6 transporter. PLoS One 2014; 9:e102779. [PMID: 25062064 PMCID: PMC4111409 DOI: 10.1371/journal.pone.0102779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 06/24/2014] [Indexed: 02/02/2023] Open
Abstract
The human ATP-binding cassette family C member 6 (ABCC6) gene encodes an ABC transporter protein (ABCC6), primarily expressed in liver and kidney. Mutations in the ABCC6 gene cause pseudoxanthoma elasticum (PXE), an autosomal recessive connective tissue disease characterized by ectopic mineralization of the elastic fibers. The pathophysiology underlying PXE is incompletely understood, which can at least partly be explained by the undetermined nature of the ABCC6 substrates as well as the unknown substrate recognition and binding sites. Several compounds, including anionic glutathione conjugates (N-ethylmaleimide; NEM-GS) and leukotriene C4 (LTC4) were shown to be modestly transported in vitro; conversely, vitamin K3 (VK3) was demonstrated not to be transported by ABCC6. To predict the possible substrate binding pockets of the ABCC6 transporter, we generated a 3D homology model of ABCC6 in both open and closed conformation, qualified for molecular docking and virtual screening approaches. By docking 10 reported in vitro substrates in our ABCC6 3D homology models, we were able to predict the substrate binding residues of ABCC6. Further, virtual screening of 4651 metabolites from the Human Serum Metabolome Database against our open conformation model disclosed possible substrates for ABCC6, which are mostly lipid and biliary secretion compounds, some of which are found to be involved in mineralization. Docking of these possible substrates in the closed conformation model also showed high affinity. Virtual screening expands this possibility to explore more compounds that can interact with ABCC6, and may aid in understanding the mechanisms leading to PXE.
Collapse
Affiliation(s)
- Mohammad Jakir Hosen
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Abdullah Zubaer
- Swapnojaatra Bioresearch Laboratory, DataSoft Systems, Dhaka, Bangladesh
| | - Simrika Thapa
- Swapnojaatra Bioresearch Laboratory, DataSoft Systems, Dhaka, Bangladesh
| | - Bijendra Khadka
- Swapnojaatra Bioresearch Laboratory, DataSoft Systems, Dhaka, Bangladesh
| | - Anne De Paepe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
24
|
Carey AS, Liang L, Edwards J, Brandt T, Mei H, Sharp AJ, Hsu DT, Newburger JW, Ohye RG, Chung WK, Russell MW, Rosenfeld JA, Shaffer LG, Parides MK, Edelmann L, Gelb BD. Effect of copy number variants on outcomes for infants with single ventricle heart defects. CIRCULATION. CARDIOVASCULAR GENETICS 2013; 6:444-51. [PMID: 24021551 PMCID: PMC3987966 DOI: 10.1161/circgenetics.113.000189] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Human genomes harbor copy number variants (CNVs), which are regions of DNA gains or losses. Although pathogenic CNVs are associated with congenital heart disease (CHD), their effect on clinical outcomes is unknown. This study sought to determine whether pathogenic CNVs among infants with single ventricle physiology were associated with inferior neurocognitive and somatic growth outcomes. METHODS AND RESULTS Genomic DNAs from 223 subjects of 2 National Heart, Lung, and Blood Institute-sponsored randomized clinical trials in infants with single ventricle CHD and 270 controls from The Cancer Genome Atlas project were analyzed for rare CNVs>300 kb using array comparative genomic hybridization. Neurocognitive and growth outcomes at 14 months from the CHD trials were compared among subjects with and without pathogenic CNVs. Putatively pathogenic CNVs, comprising 25 duplications and 6 deletions, had a prevalence of 13.9%, significantly greater than the 4.4% rate of such CNVs among controls. CNVs associated with genomic disorders were found in 13 cases but not in controls. Several CNVs likely to be causative of single ventricle CHD were observed, including aberrations altering the dosage of GATA4, MYH11, and GJA5. Subjects with pathogenic CNVs had worse linear growth, and those with CNVs associated with known genomic disorders had the poorest neurocognitive and growth outcomes. A minority of children with pathogenic CNVs were noted to be dysmorphic on clinical genetics examination. CONCLUSIONS Pathogenic CNVs seem to contribute to the cause of single ventricle forms of CHD in ≥10% of cases and are clinically subtle but adversely affect outcomes in children harboring them.
Collapse
Affiliation(s)
- Abigail S. Carey
- Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Li Liang
- Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Jonathan Edwards
- Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Tracy Brandt
- Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Hui Mei
- Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Andrew J. Sharp
- Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Daphne T. Hsu
- Pediatric Cardiology, The Children’s Hospital at Montefiore, Bronx, NY
| | | | - Richard G. Ohye
- Dept of Cardiac Surgery, Section of Pediatric Cardiovascular Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Wendy K. Chung
- Dept of Pediatrics, Columbia University Medical Center, New York, NY
| | - Mark W. Russell
- Division of Pediatric Cardiology, C.S. Mott Children’s Hospital, University of Michigan, Ann Arbor, MI
| | | | - Lisa G. Shaffer
- Paw Print Genetics, Genetic Veterinary Sciences, Spokane, WA
| | - Michael K. Parides
- Dept of Health Evidence & Policy, Icahn School of Medicine at Mount Sinai, New York
| | - Lisa Edelmann
- Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Bruce D. Gelb
- Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York
- Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
- Dept of Pediatrics, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
25
|
Pomozi V, Le Saux O, Brampton C, Apana A, Iliás A, Szeri F, Martin L, Monostory K, Paku S, Sarkadi B, Szakács G, Váradi A. ABCC6 is a basolateral plasma membrane protein. Circ Res 2013; 112:e148-51. [PMID: 23625951 DOI: 10.1161/circresaha.111.300194] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE ABCC6 plays a crucial role in ectopic calcification; mutations of the gene cause pseudoxanthoma elasticum and general arterial calcification of infancy. To elucidate the role of ABCC6 in cellular physiology and disease, it is crucial to establish the exact subcellular localization of the native ABCC6 protein. OBJECTIVE In a recent article in Circulation Research, ABCC6 was reported to localize to the mitochondria-associated membrane and not the plasma membrane. As the suggested mitochondrial localization is inconsistent with published data and the presumed role of ABCC6, we performed experiments to determine the cellular localization of ABCC6 in its physiological environment. METHODS AND RESULTS We performed immunofluorescent labeling of frozen mouse and human liver sections, as well as primary hepatocytes. We used several different antibodies recognizing human and mouse ABCC6. Our results unequivocally show that ABCC6 is in the basolateral membrane of hepatocytes and is not associated with the mitochondria, mitochondria-associated membrane, or the endoplasmic reticulum. CONCLUSIONS Our findings support the model that ABCC6 is in the basolateral membrane, mediating the sinusoidal efflux of a metabolite from the hepatocytes to systemic circulation.
Collapse
Affiliation(s)
- Viola Pomozi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schurgers LJ, Uitto J, Reutelingsperger CP. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. Trends Mol Med 2013; 19:217-26. [PMID: 23375872 DOI: 10.1016/j.molmed.2012.12.008] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/30/2012] [Accepted: 12/28/2012] [Indexed: 01/13/2023]
Abstract
Vascular mineralization has recently emerged as a risk factor for cardiovascular morbidity and mortality. Previously regarded as a passive end-stage process, vascular mineralization is currently recognized as an actively regulated process with cellular and humoral contributions. The discovery that the vitamin K-dependent matrix Gla-protein (MGP) is a strong inhibitor of vascular calcification has propelled our mechanistic understanding of this process and opened novel avenues for diagnosis and treatment. This review focuses on molecular mechanisms of vascular mineralization involving MGP and discusses the potential for treatments and biomarkers to monitor patients at risk for vascular mineralization.
Collapse
Affiliation(s)
- Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
27
|
Arányi T, Bacquet C, de Boussac H, Ratajewski M, Pomozi V, Fülöp K, Brampton CN, Pulaski L, Le Saux O, Váradi A. Transcriptional regulation of the ABCC6 gene and the background of impaired function of missense disease-causing mutations. Front Genet 2013; 4:27. [PMID: 23483032 PMCID: PMC3593682 DOI: 10.3389/fgene.2013.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/20/2013] [Indexed: 12/11/2022] Open
Abstract
The human ATP-binding cassette family C member 6 (ABCC6) gene encodes an ABC transporter protein expressed primarily in the liver and to a lesser extent in the kidneys and the intestines. We review here the mechanisms of this restricted tissue-specific expression and the role of hepatocyte nuclear factor 4α which is responsible for the expression pattern. Detailed analyses uncovered further regulators of the expression of the gene pointing to an intronic primate-specific regulator region, an activator of the expression of the gene by binding CCAAT/enhancer-binding protein beta, which interacts with other proteins acting in the proximal promoter. This regulatory network is affected by various environmental stimuli including oxidative stress and the extracellular signal-regulated protein kinases 1 and 2 pathway. We also review here the structural and functional consequences of disease-causing missense mutations of ABCC6. A significant clustering of the missense disease-causing mutations was found at the domain–domain interfaces. This clustering means that the domain contacts are much less permissive to amino acid replacements than the rest of the protein. We summarize the experimental methods resulting in the identification of mutants with preserved transport activity but failure in intracellular targeting. These mutants are candidates for functional rescue by chemical chaperons. The results of such research can provide the basis of future allele-specific therapy of ABCC6-mediated disorders like pseudoxanthoma elasticum or the generalized arterial calcification in infancy.
Collapse
Affiliation(s)
- Tamás Arányi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ashraf T, Kis O, Banerjee N, Bendayan R. Drug Transporters At Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-4711-5_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Li Q, Berndt A, Guo H, Sundberg JP, Uitto J. A novel animal model for pseudoxanthoma elasticum: the KK/HlJ mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1190-6. [PMID: 22846719 DOI: 10.1016/j.ajpath.2012.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 12/23/2022]
Abstract
Pseudoxanthoma elasticum is a multisystem ectopic mineralization disorder caused by mutations in the ABCC6 gene. A mouse model with targeted ablation of the corresponding gene (Abcc6(tm1JfK)) develops ectopic mineralization on the dermal sheath of vibrissae as biomarker of the progressive mineralization disorder. Survey of 31 mouse strains in a longitudinal aging study has identified three mouse strains with similar ectopic mineralization of the vibrissae, particularly the KK/HlJ strain. We report here that this mouse strain depicts, in addition to ectopic mineralization of the dermal sheath of vibrissae, mineral deposits in a number of internal organs. Energy dispersive X-ray analysis and topographic mapping found the presence of calcium and phosphate as the principal ions in the mineral deposits, similar to that in Abcc6(tm1JfK) mice, suggesting the presence of calcium hydroxyapatite. The mineralization was associated with a splice junction mutation at the 3' end of exon 14 of the Abcc6 gene, resulting in a 5-bp deletion from the coding region and causing frame-shift of translation. As a consequence, essentially no Abcc6 protein was detected in the liver of the KK/HlJ mice, similar to that in Abcc6(tm1JfK) mice. Collectively, our studies found that the KK/HlJ mouse strain is characterized by ectopic mineralization due to a mutation in the Abcc6 gene and therefore provides a novel model system to study pseudoxanthoma elasticum.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
30
|
Gyimesi G, Borsodi D, Sarankó H, Tordai H, Sarkadi B, Hegedűs T. ABCMdb: a database for the comparative analysis of protein mutations in ABC transporters, and a potential framework for a general application. Hum Mutat 2012; 33:1547-56. [PMID: 22693078 DOI: 10.1002/humu.22138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/29/2012] [Indexed: 11/08/2022]
Abstract
To overcome the pathological phenomena caused by altered function of ABC (ATP Binding Cassette) proteins, their mechanisms of action are extensively investigated, often involving the design of mutant constructs for experiments. Designing mutagenetic constructs, interpreting the result of mutagenetic experiments, and finding individual genetic variants require an extensive knowledge of previously published mutations. To aid the recapitulation of mutations described in the literature, we set up a database of ABC protein mutations (ABCMdb) extracted from full-text papers using an automatic mining approach. We have also developed a Web application interface to compare mutations in different ABC proteins using sequence alignments and to interactively map the mutations to 3D structural models. Currently our database contains protein mutations published for ABCB1, ABCB11, ABCC1, ABCC6, ABCC7, and the proteins of the ABCG subfamily. The database will be extended to include other members and subfamilies, and to provide information on whether or not a mutation is disease causing, represents a high-incidence polymorphism, or was generated only in vitro. The ABCMdb database should already help to compare the effects of mutations at homologous positions in different ABC proteins, and its interactive tools aim to advance the design of experiments for a wider range of proteins.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
31
|
Ratajewski M, de Boussac H, Sachrajda I, Bacquet C, Kovács T, Váradi A, Pulaski L, Arányi T. ABCC6 expression is regulated by CCAAT/enhancer-binding protein activating a primate-specific sequence located in the first intron of the gene. J Invest Dermatol 2012; 132:2709-17. [PMID: 22763786 DOI: 10.1038/jid.2012.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a rare recessive genetic disease causing skin, eye, and cardiovascular lesions, is characterized by the calcification of elastic fibers. The disorder is due to loss-of-function mutations of the ABCC6 gene, but the pathophysiology of the disease is still not understood. Here we investigated the transcriptional regulation of the gene, using DNase I hypersensitivity assay followed by luciferase reporter gene assay. We identified three DNase I hypersensitive sites (HSs) specific to cell lines expressing ABCC6. These HSs are located in the proximal promoter and in the first intron of the gene. We further characterized the role of the HSs by luciferase assay and demonstrated the transcriptional activity of the intronic HS. We identified the CCAAT/enhancer-binding protein β (C/EBPβ) as a factor binding the second intronic HS by chromatin immunoprecipitation and corroborated this finding by luciferase assays. We also showed that C/EBPβ interacts with the proximal promoter of the gene. We propose that C/EBPβ forms a complex with other regulatory proteins including the previously identified regulatory factor hepatocyte nuclear factor 4α (HNF4α). This complex would account for the tissue-specific expression of the gene and might serve as a metabolic sensor. Our results point toward a better understanding of the physiological role of ABCC6.
Collapse
Affiliation(s)
- Marcin Ratajewski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Velázquez-Cayón RT, Torres-Lagares D, Yáñez-Vico RM, Cárabe-Fernández A, Benítez-Rodríguez J, Serrera-Figallo MA, Gutiérrez-Pérez JL. Dental impactions related to pseudoxanthoma elasticum. J Oral Maxillofac Surg 2012; 70:e214-6. [PMID: 22374064 DOI: 10.1016/j.joms.2011.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/12/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
Abstract
Pseudoxanthoma elasticum is a rare genetic disorder causing degeneration and calcification of elastic fibers, leading to injuries in the skin, retina, and cardiovascular system. This report describes a case of a 30-year-old woman whose diagnosis of pseudoxanthoma elasticum was confirmed after a skin biopsy. The patient presented at the Clinical Management Unit of the Department of Oral and Maxillofacial Surgery, Virgen del Rocio Hospital (Seville, Spain) with pain related to a semi-erupted lower first molar. Radiologic examination disclosed multiple dental impactions. Cases of oligodontia, amelogenesis imperfecta, and mucosal lesions related to pseudoxanthoma elasticum were found in the current literature, but there were no reports of multiple dental impactions.
Collapse
|
33
|
Szabó Z, Váradi A, Li Q, Uitto J. ABCC6 does not transport adenosine - relevance to pathomechanism of pseudoxanthoma elasticum. Mol Genet Metab 2011; 104:421; author reply 422. [PMID: 21813308 DOI: 10.1016/j.ymgme.2011.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 01/31/2023]
|
34
|
Fülöp K, Jiang Q, Wetering KVD, Pomozi V, Szabó PT, Arányi T, Sarkadi B, Borst P, Uitto J, Váradi A. ABCC6 does not transport vitamin K3-glutathione conjugate from the liver: relevance to pathomechanisms of pseudoxanthoma elasticum. Biochem Biophys Res Commun 2011; 415:468-71. [PMID: 22056557 DOI: 10.1016/j.bbrc.2011.10.095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/21/2011] [Indexed: 10/15/2022]
Abstract
Vitamin K is a cofactor required for gamma-glutamyl carboxylation of several proteins regulating blood clotting, bone formation and soft tissue mineralization. Vitamin K3 is an important intermediate during conversion of the dietary vitamin K1 to the most abundant vitamin K2 form. It has been suggested that ABCC6 may have a role in transporting vitamin K or its derivatives from the liver to the periphery. This activity is missing in pseudoxanthoma elasticum, a genetic disorder caused by mutations in ABCC6 characterized by abnormal soft tissue mineralization. Here we examined the efflux of the glutathione conjugate of vitamin K3 (VK3GS) from the liver in wild type and Abcc6(-/-) mice, and in transport assays in vitro. We found in liver perfusion experiments that VK3GS is secreted into the inferior vena cava, but we observed no significant difference between wild type and Abcc6(-/-) animals. We overexpressed the human ABCC6 transporter in Sf9 insect and MDCKII cells and assayed its vitamin K3-conjugate transport activity in vitro. We found no measurable transport of VK3GS by ABCC6, whereas ABCC1 transported this compound at high rate in these assays. These results show that VK3GS is not the essential metabolite transported by ABCC6 from the liver and preventing the symptoms of pseudoxanthoma elasticum.
Collapse
Affiliation(s)
- Krisztina Fülöp
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Expression and in vivo rescue of human ABCC6 disease-causing mutants in mouse liver. PLoS One 2011; 6:e24738. [PMID: 21935449 PMCID: PMC3173462 DOI: 10.1371/journal.pone.0024738] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/16/2011] [Indexed: 12/31/2022] Open
Abstract
Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application.
Collapse
|
36
|
Uitto J, Bercovitch L, Terry SF, Terry PF. Pseudoxanthoma elasticum: progress in diagnostics and research towards treatment : Summary of the 2010 PXE International Research Meeting. Am J Med Genet A 2011; 155A:1517-26. [PMID: 21671388 PMCID: PMC3121926 DOI: 10.1002/ajmg.a.34067] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/25/2011] [Indexed: 11/07/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a prototypic heritable disorder with ectopic mineralization, manifests with characteristic skin findings, ocular involvement, and cardiovascular problems. The classic forms of PXE are due to loss-of-function mutations in the ABCC6 gene, which encodes ABCC6, a putative transmembrane efflux transporter expressed primarily in the liver. While considerable progress has recently been made in understanding the molecular genetics and pathomechanisms of PXE, no effective or specific treatment is currently available for this disorder. PXE International, the premiere patient advocacy organization, organized a workshop in November 2010 to assess the current state of diagnostics and research to develop an agenda towards treatment of PXE. This overview summarizes the progress in PXE research, with emphasis on molecular therapies for this, currently intractable, disorder.
Collapse
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|