1
|
Increased eHSP70-to-iHSP70 ratio disrupts vascular responses to calcium and activates the TLR4-MD2 complex in type 1 diabetes. Life Sci 2022; 310:121079. [DOI: 10.1016/j.lfs.2022.121079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
2
|
de Oliveira AA, Mendoza VO, Rastogi S, Nunes KP. New insights into the role and therapeutic potential of HSP70 in diabetes. Pharmacol Res 2022; 178:106173. [PMID: 35278625 DOI: 10.1016/j.phrs.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Emerging evidence indicates that HSP70 represents a key mechanism in the pathophysiology of β-cell dysfunction, insulin resistance, and various diabetic complications, including micro- and macro-vascular alterations, as well as impaired hemostasis. Hyperglycemia, a hallmark of both types of diabetes, increases the circulating levels of HSP70 (eHSP70), but there is still divergence about whether diabetes up- or down-regulates the intracellular fraction of this protein (iHSP70). Here, we consider that iHSP70 levels reduce in diabetic arterial structures and that the vascular system is in direct contact with all other systems in the body suggesting that a systemic response might also be happening for iHSP70, which is characterized by decreased levels of HSP70 in the vasculature. Furthermore, although many pathways have been proposed to explain HSP70's functions in diabetes, and organs/tissues/cells-specific variations occur, the membrane-bound receptor of the innate immune system, Toll-like receptor 4, and its downstream signal transduction pathways appear to be a constant, not only when we explore the actions of eHSP70, but also when we assess the contributions of iHSP70. In this review, we focus on discussing the multiple roles of HSP70 across organs/tissues/cells affected by hyperglycemia to further explore the possibility of targeting this protein with pharmacological and non-pharmacological approaches in the context of diabetes.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Valentina Ochoa Mendoza
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Swasti Rastogi
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
3
|
Zhang Z, Liu H, Hu X, He Y, Li L, Yang X, Wang C, Hu M, Tao S. Heat Shock Protein 70 Mediates the Protective Effect of Naringenin on High-Glucose-Induced Alterations of Endothelial Function. Int J Endocrinol 2022; 2022:7275765. [PMID: 35958293 PMCID: PMC9359828 DOI: 10.1155/2022/7275765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
Endothelial dysfunction plays a pivotal role in the development and progression of diabetic vascular complications. Naringenin (Nar) is a flavanone bioactive isolated from citrus fruits known to have in vitro and in vivo antidiabetic properties. However, whether Nar affects endothelial function remains unclear in diabetes or under high-glucose (HG) condition. Using an in vitro model of hyperglycemia in human umbilical vein endothelial cells (HUVECs), we found that Nar administration markedly attenuated HG-induced alterations of endothelial function, evidenced by the mitigation of oxidative stress and inflammation, the reduction of cell adhesion molecular expressions, and the improvement of insulin resistance. We also found that HG exposure significantly reduced the levels of intracellular heat shock protein 70 (iHSP70 or iHSPA1A) and the release of HSP70 from HUVECs. HSP70 depletion mimicked and clearly diminished the protective effects of Nar on HG-induced alterations of endothelial function. In addition, Nar treatment significantly enhanced iHSP70 protein levels through a transcription-dependent manner. These results demonstrated that Nar could protect HUVECs against HG-induced alterations of endothelial function through upregulating iHSP70 protein levels. These findings are also helpful in providing new therapeutic strategies that are promising in the clinical use of Nar for the treatment of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Zhihan Zhang
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Liu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Hu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yikang He
- Tongji Medical College Huazhong University of Science and Technology, School of Nursing, Wuhan 430030, China
| | - Lu Li
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Xinyu Yang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Mingbai Hu
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shengxiang Tao
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
de Oliveira AA, Nunes KP. Crosstalk of TLR4, vascular NADPH oxidase, and COVID-19 in diabetes: What are the potential implications? Vascul Pharmacol 2021; 139:106879. [PMID: 34051372 PMCID: PMC8152239 DOI: 10.1016/j.vph.2021.106879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
Toll-like receptor 4 (TLR4) contributes to the pathophysiology of diabetes. This happens, at least in part, because TLR4 modulates the enzyme NADPH oxidase, a primary source of ROS in vascular structures. Increased oxidative stress disrupts key vascular signaling mechanisms and drives the progression of diabetes, elevating the likelihood of cardiovascular diseases. Recently, it has been shown that patients with diabetes are also at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Given the importance of the interaction between TLR4 and NADPH oxidase to the disrupted diabetic vascular system, we put forward the hypothesis that TLR4-mediated NADPH oxidase-derived ROS might be a critical mechanism to help explain why this disparity appears in diabetic patients, but unfortunately, conclusive experimental evidence still lacks in the literature. Herein, we focus on discussing the pathological implications of this signaling communication in the diabetic vasculature and exploring this crosstalk in the context of diabetes-associated severe COVID-19.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
5
|
de Oliveira AA, Priviero F, Webb RC, Nunes KP. Impaired HSP70 Expression in the Aorta of Female Rats: A Novel Insight Into Sex-Specific Differences in Vascular Function. Front Physiol 2021; 12:666696. [PMID: 33967836 PMCID: PMC8100344 DOI: 10.3389/fphys.2021.666696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Heat-shock protein 70 (HSP70) contributes to cellular calcium (Ca2+) handling mechanisms during receptor-mediated vascular contraction. Interestingly, previous studies have independently reported sex-related differences in HSP70 expression and Ca2+ dynamics. Still, it is unknown if sex, as a variable, plays a role in the impact that HSP70 has upon vascular contraction. To narrow this gap, we investigated if differences exist in the expression levels of HSP70 in the aorta, and if targeting this protein contributes to sex disparity in vascular responses. We report that, compared with male animals, female rats present a reduction in the basal levels of HSP70. More compelling, we found that the blockade of HSP70 has a greater impact on phenylephrine-induced phasic and tonic vascular contraction in female animals. In fact, it seems that the inhibition of HSP70 significantly affects vascular Ca2+ handling mechanisms in females, which could be associated with the fact that these animals have impaired HSP70 expression. Corroborating this idea, we uncovered that the higher sensitivity of female rats to HSP70 inhibition does not involve an increase in NO-dependent vasodilation nor a decrease in vascular oxidative stress. In summary, our findings reveal a novel mechanism associated with sex-specific differences in vascular responses to α-1 adrenergic stimulation, which might contribute to unraveling the network of intertwined pathways conferring female protection to (cardio)vascular diseases.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Fernanda Priviero
- Department of Physiology, Augusta University, Augusta, GA, United States
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
6
|
de Oliveira AA, Priviero F, Tostes RC, Webb RC, Nunes KP. Dissecting the interaction between HSP70 and vascular contraction: role of [Formula: see text] handling mechanisms. Sci Rep 2021; 11:1420. [PMID: 33446873 PMCID: PMC7809064 DOI: 10.1038/s41598-021-80966-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
Heat-shock protein 70 (HSP70) is a ubiquitously expressed molecular chaperone with various biological functions. Recently, we demonstrated that HSP70 is key for adequate vascular reactivity. However, the specific mechanisms targeted by HSP70 to assist in this process remain elusive. Since there is a wealth of evidence connecting HSP70 to calcium ([Formula: see text]), a master regulator of contraction, we designed this study to investigate whether blockade of HSP70 disrupts vascular contraction via impairment of [Formula: see text] handling mechanisms. We performed functional studies in aortas isolated from male Sprague Dawley rats in the presence or absence of exogenous [Formula: see text], and we determined the effects of VER155008, an inhibitor of HSP70, on [Formula: see text] handling as well as key mechanisms that regulate vascular contraction. Changes in the intracellular concentration of [Formula: see text] were measured with a biochemical assay kit. We report that blockade of HSP70 leads to [Formula: see text] mishandling in aorta stimulated with phenylephrine, decreasing both phasic and tonic contractions. Importantly, in [Formula: see text] free Krebs' solution, inhibition of HSP70 only reduced the [Formula: see text] of the phasic contraction if the protein was blocked before IP3r-mediated [Formula: see text] release, suggesting that HSP70 has a positive effect towards this receptor. Corroborating this statement, VER155008 did not potentiate an IP3r inhibitor's outcomes, even with partial blockade. In another set of experiments, the inhibition of HSP70 attenuated the amplitude of the tonic contraction independently of the moment VER155008 was added to the chamber (i.e., whether it was before or after IP3r-mediated phasic contraction). More compelling, following re-addition of [Formula: see text], VER155008 amplified the inhibitory effects of a voltage-dependent [Formula: see text] channel blocker, but not of a voltage-independent [Formula: see text] channel inhibitor, indicating that HSP70 has a positive impact on the latter. Lastly, the mechanism by which HSP70 modulates vascular contraction does not involve the [Formula: see text] sensitizer protein, Rho-kinase, nor the SERCA pump, as blockade of these proteins in the presence of VER155008 almost abolished contraction. In summary, our findings shed light on the processes targeted by HSP70 during vascular contraction and open research avenues for potential new mechanisms in vascular diseases.
Collapse
Affiliation(s)
- Amanda A. de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| | - Fernanda Priviero
- Department of Physiology, Augusta University, Augusta, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Kenia P. Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| |
Collapse
|
7
|
Nunes KP, Webb RC. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases 2020; 12:458-469. [PMID: 32970516 DOI: 10.1080/21541248.2020.1822721] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
While Rho-signalling controlling vascular contraction is a canonical mechanism, with the modern approaches used in research, we are advancing our understanding and details into this pathway are often uncovered. RhoA-mediated Rho-kinase is the major regulator of vascular smooth muscle cells and a key player manoeuvring other functions in these cells. The discovery of new interactions, such as oxidative stress and hydrogen sulphide with Rho signalling are emerging addition not only in the physiology of the smooth muscle, but especially in the pathophysiology of vascular diseases. Likewise, the interplay between ageing and Rho-kinase in the vasculature has been recently considered. Importantly, in smooth muscle contraction, this pathway may also be affected by sex hormones, and consequently, sex-differences. This review provides an overview of Rho signalling mediating vascular contraction and focuses on recent topics discussed in the literature affecting this pathway such as ageing, sex differences and oxidative stress.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
8
|
de Oliveira AA, Faustino J, Webb RC, Nunes KP. Blockade of the TLR4-MD2 complex lowers blood pressure and improves vascular function in a murine model of type 1 diabetes. Sci Rep 2020; 10:12032. [PMID: 32694567 PMCID: PMC7374604 DOI: 10.1038/s41598-020-68919-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
While the pathogenesis of diabetes-induced high blood pressure (BP) is not entirely clear, current evidence suggests that Toll-like receptor 4 (TLR4) is a key player in the mechanisms associated with hypertension. However, it is unknown whether this receptor affects BP under type 1 diabetes. Likewise, there is insufficient knowledge about the role of TLR4 in diabetes-associated vascular dysfunction of large arteries. To narrow these gaps, in this study, we investigated if blockade of the TLR4-MD2 complex impacts BP and vascular function in diabetic rats. We injected streptozotocin in male Sprague Dawley rats and treated them with a neutralizing anti-TLR4 antibody for 14 days. BP was directly measured in conscious animals at the end of the treatment. In another set of experiments, we excised the aorta from control and diabetic animals, and measured TLR4 and MD2—a co-receptor that confers functionality to TLR4—levels by Western blotting. We also performed functional studies and evaluated ROS levels with and without a pharmacological inhibitor for TLR4 as well as for MD2. Additionally, we scrutinized a large human RNA-Seq dataset of aortic tissue to assess the co-expression of TLR4, MD2, and subunits of the vascular NADPH oxidases under diabetes and hypertension. We report that (a) chronic blockade of the TLR4–MD2 complex lowers BP in diabetic animals; that (b) type 1 diabetes modulates the levels of MD2 expression in the aorta, but not TLR4, at least in the conditions evaluated in this study; and, that (c) acute inhibition of TLR4 or MD2 diminishes vascular contractility and reduces oxidative stress in the aorta of these animals. In summary, we show evidence that the TLR4–MD2 complex is involved in the mechanisms linking type 1 diabetes and hypertension.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| | - Josemar Faustino
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Kenia Pedrosa Nunes
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA.
| |
Collapse
|
9
|
An additional physiological role for HSP70: Assistance of vascular reactivity. Life Sci 2020; 256:117986. [PMID: 32585245 DOI: 10.1016/j.lfs.2020.117986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
AIMS HSP70, a molecular chaperone, helps to maintain proteostasis. In muscle biology, however, evidence suggests HSP70 to have a more versatile range of functions, as genetic deletion of its inducible genes impairs Ca2+ handling, and consequently, cardiac and skeletal muscle contractility. Still, it is unknown whether HSP70 is involved in vascular reactivity, an intrinsic physiological mechanism of blood vessels. Therefore, we designed this study to test the hypothesis that proper vascular reactivity requires the assistance of HSP70. MAIN METHODS We performed functional studies in a wire-myograph using thoracic aorta isolated from male Sprague Dawley rats. Experiments were conducted with and without an HSP70 inhibitor as well as in heat-stressed vessels. The expression levels of HSP70 were evaluated with Western blotting. NO and ROS levels were assessed with fluorescence microscopy. KEY FINDINGS We report that blockade of HSP70 weakens contraction in response to phenylephrine (dose-response) in the aorta. Additionally, we demonstrated that inhibition of HSP70 affects the amplitude of the fast and of the slow components of the time-force curve. Corroborating these findings, we found that inhibition of HSP70, in vessels over-expressing this protein, partly rescues the contractile phenotype of aortic rings. Furthermore, we show that blockade of HSP70 facilitates relaxation in response to acetylcholine and clonidine without affecting the basal levels of NO and ROS. SIGNIFICANCE Our work introduces an additional physiological role for HSP70, the assistance of vascular reactivity, which highlights this protein as a new player in vascular physiology, and therefore, uncovers a promising research avenue for vascular diseases.
Collapse
|
10
|
Zhou Y, Little PJ, Downey L, Afroz R, Wu Y, Ta HT, Xu S, Kamato D. The Role of Toll-like Receptors in Atherothrombotic Cardiovascular Disease. ACS Pharmacol Transl Sci 2020; 3:457-471. [PMID: 32566912 PMCID: PMC7296543 DOI: 10.1021/acsptsci.9b00100] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are dominant components of the innate immune system. Activated by both pathogen-associated molecular patterns and damage-associated molecular patterns, TLRs underpin the pathology of numerous inflammation related diseases that include not only immune diseases, but also cardiovascular disease (CVD), diabetes, obesity, and cancers. Growing evidence has demonstrated that TLRs are involved in multiple cardiovascular pathophysiologies, such as atherosclerosis and hypertension. Specifically, a trial called the Canakinumab Anti-inflammatory Thrombosis Outcomes Study showed the use of an antibody that neutralizes interleukin-1β, reduces the recurrence of cardiovascular events, demonstrating inflammation as a therapeutic target and also the research value of targeting the TLR system in CVD. In this review, we provide an update of the interplay between TLR signaling, inflammatory mediators, and atherothrombosis, with an aim to identify new therapeutic targets for atherothrombotic CVD.
Collapse
Affiliation(s)
- Ying Zhou
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
| | - Peter J. Little
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
- Department
of Pharmacy, Xinhua College of Sun Yat-Sen
University, Tianhe District, Guangzhou, Guangdong Province 510520, China
| | - Liam Downey
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
| | - Rizwana Afroz
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
| | - Yuao Wu
- Australian
Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Hang T. Ta
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
- Australian
Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Suowen Xu
- Aab
Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Danielle Kamato
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
- Department
of Pharmacy, Xinhua College of Sun Yat-Sen
University, Tianhe District, Guangzhou, Guangdong Province 510520, China
| |
Collapse
|
11
|
de Oliveira AA, Faustino J, de Lima ME, Menezes R, Nunes KP. Unveiling the Interplay between the TLR4/MD2 Complex and HSP70 in the Human Cardiovascular System: A Computational Approach. Int J Mol Sci 2019; 20:E3121. [PMID: 31247943 PMCID: PMC6651210 DOI: 10.3390/ijms20133121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
While precise mechanisms underlying cardiovascular diseases (CVDs) are still not fully understood, previous studies suggest that the innate immune system, through Toll-like receptor 4 (TLR4), plays a crucial part in the pathways leading to these diseases, mainly because of its interplay with endogenous molecules. The Heat-shock protein 70 family (HSP70-70kDa) is of particular interest in cardiovascular tissues as it may have dual effects when interacting with TLR4 pathways. Although the hypothesis of the HSP70 family members acting as TLR4 ligands is becoming widely accepted, to date no co-crystal structure of this complex is available and it is still unknown whether this process requires the co-adaptor MD2. In this study, we aimed at investigating the interplay between the TLR4/MD2 complex and HSP70 family members in the human cardiovascular system through transcriptomic data analysis and at proposing a putative interaction model between these proteins. We report compelling evidence of correlated expression levels between TLR4 and MD2 with HSP70 cognate family members, especially in heart tissue. In our molecular docking simulations, we found that HSP70 in the ATP-bound state presents a better docking score towards the TLR4/MD2 complex compared to the ADP-bound state (-22.60 vs. -10.29 kcal/mol, respectively). Additionally, we show via a proximity ligation assay for HSP70 and TLR4, that cells stimulated with ATP have higher formation of fluorescent spots and that MD2 might be required for the complexation of these proteins. The insights provided by our computational approach are potential scaffolds for future in vivo studies investigating the interplay between the TLR4/MD2 complex and HSP70 family members in the cardiovascular system.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Josemar Faustino
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Maria Elena de Lima
- Grupo Santa Casa de Belo Horizonte, Programa de Pós-graduação em Ciências da Saúde, Biomedicina e Medicina, Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, MG 30150-240, Brazil
| | - Ronaldo Menezes
- Department of Computer Science, University of Exeter, Exeter EX4 4PY, UK
| | - Kenia Pedrosa Nunes
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
| |
Collapse
|