1
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
2
|
Nandolo W, Mészáros G, Wurzinger M, Banda LJ, Gondwe TN, Mulindwa HA, Nakimbugwe HN, Clark EL, Woodward-Greene MJ, Liu M, Liu GE, Van Tassell CP, Rosen BD, Sölkner J. Detection of copy number variants in African goats using whole genome sequence data. BMC Genomics 2021; 22:398. [PMID: 34051743 PMCID: PMC8164248 DOI: 10.1186/s12864-021-07703-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Background Copy number variations (CNV) are a significant source of variation in the genome and are therefore essential to the understanding of genetic characterization. The aim of this study was to develop a fine-scaled copy number variation map for African goats. We used sequence data from multiple breeds and from multiple African countries. Results A total of 253,553 CNV (244,876 deletions and 8677 duplications) were identified, corresponding to an overall average of 1393 CNV per animal. The mean CNV length was 3.3 kb, with a median of 1.3 kb. There was substantial differentiation between the populations for some CNV, suggestive of the effect of population-specific selective pressures. A total of 6231 global CNV regions (CNVR) were found across all animals, representing 59.2 Mb (2.4%) of the goat genome. About 1.6% of the CNVR were present in all 34 breeds and 28.7% were present in all 5 geographical areas across Africa, where animals had been sampled. The CNVR had genes that were highly enriched in important biological functions, molecular functions, and cellular components including retrograde endocannabinoid signaling, glutamatergic synapse and circadian entrainment. Conclusions This study presents the first fine CNV map of African goat based on WGS data and adds to the growing body of knowledge on the genetic characterization of goats. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07703-1.
Collapse
Affiliation(s)
- Wilson Nandolo
- University of Natural Resources and Life Sciences, Vienna, Austria.,Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Gábor Mészáros
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Maria Wurzinger
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Liveness J Banda
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Timothy N Gondwe
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | | | | | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - M Jennifer Woodward-Greene
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA.,National Agricultural Library, USDA-ARS, Beltsville, MD, USA
| | - Mei Liu
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA
| | | | - George E Liu
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA
| | | | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA.
| | - Johann Sölkner
- University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
3
|
Lower brain fatty acid amide hydrolase in treatment-seeking patients with alcohol use disorder: a positron emission tomography study with [C-11]CURB. Neuropsychopharmacology 2020; 45:1289-1296. [PMID: 31910433 PMCID: PMC7298050 DOI: 10.1038/s41386-020-0606-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 01/23/2023]
Abstract
The endocannabinoid enzyme, fatty acid amide hydrolase (FAAH), has been proposed as a therapeutic target for alcohol use disorder (AUD) and co-morbid psychiatric illnesses. Investigating this target in the living human brain and its relationship to clinical outcome is a critical step of informed drug development. Our objective was to establish whether brain FAAH levels are low in individuals with AUD and related to drinking behavior. In this pilot study, treatment-seeking patients with AUD completed two PET scans with the FAAH radiotracer [C-11]CURB after 3-7 days (n = 14) and 2-4 weeks (n = 9) of monitored abstinence. Healthy controls (n = 25) completed one scan. FAAH genetic polymorphism (rs324420) and blood concentrations of anandamide and other N-acylethanolamines metabolized by FAAH were determined and AUD symptoms assessed. In AUD, brain FAAH levels were globally lower than controls during early abstinence (F(1,36) = 5.447; p = 0.025)) and FAAH substrates (anandamide, oleoylethanolamide, and N-docosahexaenoylethanolamide) were significantly elevated (30-67%). No significant differences in FAAH or FAAH substrates were noted after 2-4 weeks abstinence. FAAH levels negatively correlated with drinks per week (r = -0.57, p = 0.032) and plasma concentrations of the three FAAH substrates (r > 0.57; p < 0.04)). Our findings suggest that early abstinence from alcohol in AUD is associated with transiently low brain FAAH levels, which are inversely related to heavier alcohol use and elevated plasma levels of FAAH substrates. Whether low FAAH is an adaptive beneficial response to chronic alcohol is unknown. Therapeutic strategies focusing on FAAH inhibition should consider the possibility that low FAAH during early abstinence may be related to drinking.
Collapse
|
4
|
Amato G, Manke A, Wiethe R, Vasukuttan V, Snyder R, Yueh YL, Decker A, Runyon S, Maitra R. Functionalized 6-(Piperidin-1-yl)-8,9-Diphenyl Purines as Peripherally Restricted Inverse Agonists of the CB1 Receptor. J Med Chem 2019; 62:6330-6345. [PMID: 31185168 DOI: 10.1021/acs.jmedchem.9b00727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peripherally restricted CB1 receptor antagonists may be useful in treating metabolic syndrome, diabetes, liver diseases, and gastrointestinal disorders. Clinical development of the centrally acting CB1 inverse agonist otenabant (1) was halted due to its potential of producing adverse effects. SAR studies of 1 are reported herein with the objective of producing peripherally restricted analogues. Crystal structures of hCB1 and docking studies with 1 indicate that the piperidine group could be functionalized at the 4-position to access a binding pocket that can accommodate both polar and nonpolar groups. The piperidine is studied as a linker, functionalized with alkyl, heteroalkyl, aryl, and heteroaryl groups using a urea connector. Orally bioavailable and peripherally selective compounds have been produced that are potent inverse agonists of hCB1 with exceptional selectivity for hCB1 over hCB2. Compound 38 blocked alcohol-induced liver steatosis in mice and has good ADME properties for further development.
Collapse
Affiliation(s)
- George Amato
- Discovery Science and Technology , RTI International , 3040 Cornwallis Road , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Amruta Manke
- Discovery Science and Technology , RTI International , 3040 Cornwallis Road , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Robert Wiethe
- Discovery Science and Technology , RTI International , 3040 Cornwallis Road , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Vineetha Vasukuttan
- Discovery Science and Technology , RTI International , 3040 Cornwallis Road , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Rodney Snyder
- Discovery Science and Technology , RTI International , 3040 Cornwallis Road , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Yun Lan Yueh
- Discovery Science and Technology , RTI International , 3040 Cornwallis Road , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Ann Decker
- Discovery Science and Technology , RTI International , 3040 Cornwallis Road , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Scott Runyon
- Discovery Science and Technology , RTI International , 3040 Cornwallis Road , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Rangan Maitra
- Discovery Science and Technology , RTI International , 3040 Cornwallis Road , Research Triangle Park , North Carolina 27709-2194 , United States
| |
Collapse
|
5
|
Urquhart MA, Ross JA, Reyes BAS, Nitikman M, Thomas SA, Mackie K, Van Bockstaele EJ. Noradrenergic depletion causes sex specific alterations in the endocannabinoid system in the Murine prefrontal cortex. Neurobiol Stress 2019; 10:100164. [PMID: 31193575 PMCID: PMC6535650 DOI: 10.1016/j.ynstr.2019.100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/01/2019] [Accepted: 04/06/2019] [Indexed: 01/27/2023] Open
Abstract
Brain endocannabinoids (eCB), acting primarily via the cannabinoid type 1 receptor (CB1r), are involved in the regulation of many physiological processes, including behavioral responses to stress. A significant neural target of eCB action is the stress-responsive norepinephrine (NE) system, whose dysregulation is implicated in myriad psychiatric and neurodegenerative disorders. Using Western blot analysis, the protein expression levels of a key enzyme in the biosynthesis of the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol lipase-α (DGL-α), and two eCB degrading enzymes monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH) were examined in a mouse model that lacks the NE-synthesizing enzyme, dopamine β-hydroxylase (DβH-knockout, KO) and in rats treated with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4). In the prefrontal cortex (PFC), DGL-α protein expression was significantly increased in male and female DβH-KO mice (P < 0.05) compared to wild-type (WT) mice. DβH-KO male mice showed significant decreases in FAAH protein expression compared to WT male mice. Consistent with the DβH-KO results, DGL-α protein expression was significantly increased in male DSP-4-treated rats (P < 0.05) when compared to saline-treated controls. MGL and FAAH protein expression levels were significantly increased in male DSP-4 treated rats compared to male saline controls. Finally, we investigated the anatomical distribution of MGL and FAAH in the NE containing axon terminals of the PFC using immunoelectron microscopy. MGL was predominantly within presynaptic terminals while FAAH was localized to postsynaptic sites. These results suggest that the eCB system may be more responsive in males than females under conditions of NE perturbation, thus having potential implications for sex-specific treatment strategies of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- M A Urquhart
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - J A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - B A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - M Nitikman
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - S A Thomas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - K Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405-2204, USA
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| |
Collapse
|
6
|
Amato G, Manke A, Wiethe R, Vasukuttan V, Snyder R, Yueh YL, Decker A, Runyon S, Maitra R. Functionalized 6-(Piperidin-1-yl)-8,9-Diphenyl Purines as Peripherally Restricted Inverse Agonists of the CB1 Receptor. J Med Chem 2019. [DOI: 10.1021/acs.jmedchem.9b00727 10.1016/j.bmcl.2016.09.025 10.1038/s41598-018-20078-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- George Amato
- Discovery Science and Technology, RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, United States
| | - Amruta Manke
- Discovery Science and Technology, RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, United States
| | - Robert Wiethe
- Discovery Science and Technology, RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, United States
| | - Vineetha Vasukuttan
- Discovery Science and Technology, RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, United States
| | - Rodney Snyder
- Discovery Science and Technology, RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, United States
| | - Yun Lan Yueh
- Discovery Science and Technology, RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, United States
| | - Ann Decker
- Discovery Science and Technology, RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, United States
| | - Scott Runyon
- Discovery Science and Technology, RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, United States
| | - Rangan Maitra
- Discovery Science and Technology, RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, United States
| |
Collapse
|
7
|
PPARα/CB1 receptor dual ligands as a novel therapy for alcohol use disorder: Evaluation of a novel oleic acid conjugate in preclinical rat models. Biochem Pharmacol 2018; 157:235-243. [PMID: 30195735 DOI: 10.1016/j.bcp.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/05/2018] [Indexed: 11/20/2022]
Abstract
Recent studies have demonstrated the utility of drugs modulating the endogenous cannabinoid system to control excessive alcohol intake. Among them, drugs interacting with acylethanolamide receptors including cannabinoid CB1 receptor antagonists/inverse agonists, peroxisome proliferator-activated receptor alpha (PPARα) agonists or peroxisome proliferator-activated receptor gamma (PPARγ) agonists have demonstrated utility in the reduction of alcohol intake in animal models. However, few studies have addressed the potential utility of combining these classes of drugs, especially because of expected safety problems. In the present work we took the advantage of the availability of two novel dual ligands for these receptors, to test the hypothesis that these types of drugs might reproduce and even improve the pharmacological profile of those drugs interacting with single targets. To this end we tested (R)-3-[(4-Benzyl-2-oxooxazolidin-3-yl)methyl]-N-[4-(dodecylcarbamoyl)phenyl]benzamide (NF 10-360), a dual PPARα/γ agonist, and N-[1-(3,4-dihydroxyphenyl)propan-2-yl]oleamide (OLHHA), a dual CB1 receptor antagonist/PPARα agonist, in animal models of alcohol consumption. Both drugs were effective in reducing alcohol intake and alcohol self-administration, being OLHHA a very potent alcohol intake inhibitor (EC50 0.2 mg/kg). OLHHA also reduced self-administration of the opioid oxycodone. OLHHA actions on alcohol self-administration were replicated in alcohol-preferring Marchigian-Sardinian msP rats. Repeated administration of OLHHA did result neither in tolerance nor in toxicological or deleterious metabolic changes in the liver of msP rats. These data support the feasibility of developing novel dual ligands interacting with cannabinoid targets to treat alcohol use disorder in humans.
Collapse
|
8
|
THC inhibits the expression of ethanol-induced locomotor sensitization in mice. Alcohol 2017; 65:31-35. [PMID: 29084627 DOI: 10.1016/j.alcohol.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023]
Abstract
The motivational circuit activated by ethanol leads to behavioral changes that recruit the endocannabinoid system (ECS). Case reports and observational studies suggest that the use of Cannabis sp. mitigates problematic ethanol consumption in humans. Here, we verified the effects of the two main phytocannabinoid compounds of Cannabis sp., cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), in the expression of ethanol-induced locomotor sensitization in mice. Male adult DBA/2 mice were exposed to locomotor sensitization by daily intraperitoneal injections of ethanol (2.5 g/kg) for 12 days; control groups received saline. After the acquisition phase, animals were treated with cannabinoids: CBD (2.5 mg/kg); THC (2.5 mg/kg); CBD + THC (1:1 ratio), or vehicle for 4 days with no access to ethanol during this period. One day after the last cannabinoid injection, all animals were challenged with ethanol (2.0 g/kg) to evaluate the expression of the locomotor sensitization. Mice treated with THC alone or THC + CBD showed reduced expression of locomotor sensitization, compared to the vehicle control group. No effects were observed with CBD treatment alone. Our findings showing that phytocannabinoid treatment prevents the expression of behavioral sensitization in mice provide insight into the potential therapeutic use of phytocannabinoids in alcohol-related problems.
Collapse
|
9
|
Inenaga K, Ono K, Hitomi S, Kuroki A, Ujihara I. Thirst sensation and oral dryness following alcohol intake. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:78-85. [PMID: 28725298 PMCID: PMC5501731 DOI: 10.1016/j.jdsr.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/28/2016] [Accepted: 12/08/2016] [Indexed: 01/18/2023] Open
Abstract
Substantial acute and chronic intakes of alcohol or ethanol (EtOH) severely influence oral sensations, such as thirst and oral dryness (dry mouth, xerostomia). Thirst sensation and oral dryness are primarily caused by the activation of neurons in brain regions, including the circumventricular organs and hypothalamus, which are referred to as the dipsogenic center, and by a decrease in salivary secretion, respectively. The sensation of thirst experienced after heavy-alcohol drinking is widely regarded as a consequence of EtOH-induced diuresis; however, EtOH in high doses induces anti-diuresis. Recently, it has been proposed that the ethanol metabolite acetaldehyde induces thirst via two distinct processes in the central nervous system from EtOH-induced diuresis, based on the results of animal experiments. The present review describes new insights regarding the induction mechanism of thirst sensation and oral dryness after drinking alcohol.
Collapse
Affiliation(s)
- Kiyotoshi Inenaga
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita, Kitakyushu 803-8580, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita, Kitakyushu 803-8580, Japan
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita, Kitakyushu 803-8580, Japan
| | - Ayu Kuroki
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita, Kitakyushu 803-8580, Japan
| | - Izumi Ujihara
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita, Kitakyushu 803-8580, Japan
| |
Collapse
|
10
|
Abstract
The cannabinoid CB1 receptor is abundant in the central nervous system and regulates neuronal transmission and other key physiological processes including those leading to pain, inflammation, memory, and feeding behavior. CB1 is activated by the endogenous ligands, arachidonoyl ethanolamine and 2-arachidonoyl glycerol, by various synthetic ligands (e.g., CP55940), and by Δ9-tetrahydrocannabinol, the psychoactive component of Cannabis sativa. These CB1 ligands are orthosteric and transduce downstream signals by binding CB1 and primarily inducing Gi coupling, but Gs and β-arrestin coupling are also possible. Recently, allosteric modulators for CB1 were discovered that bind to topographically distinct sites and can noncompetitively impact the potency and efficacy of orthosteric compounds. These offer the exciting potential for mechanistic analyses and for developing therapeutics. Yet, it is critical to elucidate whether a compound is a positive allosteric modulator or a negative allosteric modulator of orthosteric ligand-induced CB1 profiles to understand pathway specificity and ameliorate diseases. In this chapter, we present equilibrium and kinetic binding analysis to reveal the impact of allosteric modulators on CB1. Also described are activities consistent with CB1 activation (or inactivation) and include cellular internalization of CB1 and downstream signaling patterns. Since many CB1 allosteric modulators do not enhance G protein coupling, it is critical to distinguish CB1 activation and biased signaling patterns via β-arrestin from CB1 inactivation. These strategies can illuminate pathway specificity and are valuable for the fine-tuning of CB1 function.
Collapse
|
11
|
Abburi C, Wolfman SL, Metz RAE, Kamber R, McGehee DS, McDaid J. Tolerance to Ethanol or Nicotine Results in Increased Ethanol Self-Administration and Long-Term Depression in the Dorsolateral Striatum. eNeuro 2016; 3:ENEURO.0112-15.2016. [PMID: 27517088 PMCID: PMC4972936 DOI: 10.1523/eneuro.0112-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 01/27/2023] Open
Abstract
Ethanol (EtOH) and nicotine are the most widely coabused drugs. Tolerance to EtOH intoxication, including motor impairment, results in greater EtOH consumption and may result in a greater likelihood of addiction. Previous studies suggest that cross-tolerance between EtOH and nicotine may contribute to the abuse potential of these drugs. Here we demonstrate that repeated intermittent administration of either EtOH or nicotine in adult male Sprague Dawley rats results in tolerance to EtOH-induced motor impairment and increased EtOH self-administration. These findings suggest that nicotine and EtOH cross-tolerance results in decreased aversive and enhanced rewarding effects of EtOH. Endocannabinoid signaling in the dorsolateral striatum (DLS) has been implicated in both EtOH tolerance and reward, so we investigated whether nicotine or EtOH pretreatment might modulate endocannabinoid signaling in this region. Using similar EtOH and nicotine pretreatment methods resulted in increased paired-pulse ratios of evoked EPSCs in enkephalin-positive medium spiny neurons in DLS slices. Thus, EtOH and nicotine pretreatment may modulate glutamatergic synapses in the DLS presynaptically. Bath application of the CB1 receptor agonist Win 55,2-212 increased the paired-pulse ratio of evoked EPSCs in control slices, while Win 55,2-212 had no effect on paired-pulse ratio in slices from either EtOH- or nicotine-pretreated rats. Consistent with these effects, nicotine pretreatment occluded LTD induction by high-frequency stimulation of the corticostriatal inputs to the dorsolateral striatum. These results suggest that nicotine and EtOH pretreatment modulates striatal synapses to induce tolerance to the motor-impairing effects of EtOH, which may contribute to nicotine and EtOH coabuse.
Collapse
Affiliation(s)
- Chandrika Abburi
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| | - Shannon L. Wolfman
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Ryan A. E. Metz
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| | - Rinya Kamber
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| | - Daniel S. McGehee
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - John McDaid
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
12
|
Acute and chronic ethanol exposure differentially regulate CB1 receptor function at glutamatergic synapses in the rat basolateral amygdala. Neuropharmacology 2015; 108:474-84. [PMID: 26707595 DOI: 10.1016/j.neuropharm.2015.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/02/2015] [Accepted: 12/08/2015] [Indexed: 01/03/2023]
Abstract
The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol.
Collapse
|
13
|
Rivera P, Blanco E, Bindila L, Alen F, Vargas A, Rubio L, Pavón FJ, Serrano A, Lutz B, Rodríguez de Fonseca F, Suárez J. Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain. Front Cell Neurosci 2015; 9:379. [PMID: 26483633 PMCID: PMC4587308 DOI: 10.3389/fncel.2015.00379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/11/2015] [Indexed: 11/13/2022] Open
Abstract
Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of histone-3 (phospho-H3+) and the replicating cell DNA marker 5-bromo-2'-deoxyuridine (BrdU+) in the main neurogenic zones of adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ) and hypothalamus. Animals were allowed ad libitum ethanol intake (7.3 ± 1.1 g/kg/day) after a controlled isocaloric pair-feeding period of sucrose and alcoholic diets. Alcohol intake reduced the number of BrdU+ cells in SGZ, SVZ, and hypothalamus. The treatments (URB597, ACEA, JWH133) exerted a differential increase in alcohol consumption over time, but JWH133 specifically counteracted the deleterious effect of ethanol on NPC proliferation in the SVZ and SGZ, and ACEA reversed this effect in the SGZ only. JWH133 also induced an increased number of BrdU+ cells expressing neuron-specific β3-tubulin in the SVZ and SGZ. These results indicated that the specific activation of CB2 receptors rescued alcohol-induced impaired NPC proliferation, which is a potential clinical interest for the risk of neural damage in alcohol dependence.
Collapse
Affiliation(s)
- Patricia Rivera
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Eduardo Blanco
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; Departament de Pedagogia i Psicologia, Facultat de Ciències de l'Educació, Universitat de Lleida Lleida, Spain
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University of Mainz Mainz, Germany
| | - Francisco Alen
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Antonio Vargas
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Leticia Rubio
- Departamento de Anatomía y Medicina Legal, Universidad de Málaga Málaga, Spain
| | - Francisco J Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University of Mainz Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| |
Collapse
|
14
|
Subbanna S, Psychoyos D, Xie S, Basavarajappa BS. Postnatal ethanol exposure alters levels of 2-arachidonylglycerol-metabolizing enzymes and pharmacological inhibition of monoacylglycerol lipase does not cause neurodegeneration in neonatal mice. J Neurochem 2015; 134:276-87. [PMID: 25857698 DOI: 10.1111/jnc.13120] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 01/20/2023]
Abstract
The consumption of ethanol by pregnant women may cause neurological abnormalities, affecting learning and memory processes in children, and are collectively described as fetal alcohol spectrum disorders. However, the molecular mechanisms underlying these changes are still poorly understood. In our previous studies, we found that ethanol treatment of postnatal day 7 (P7) mice significantly enhances the anandamide levels but not the 2-arachidonylglycerol (2-AG) levels and induces widespread neurodegeneration, but the reason for the lack of significant effects of ethanol on the 2-AG level is unknown. In this study, we examined developmental changes in diacylglycerol lipase-α, β (DAGL-α and β) and monoacylglycerol lipase (MAGL). We found that the levels of these proteins were significantly higher in adult brains compared to those detected early in brain development. Next, we examined the influence of P7 ethanol treatment on these enzymes, finding that it differentially altered the DAGL-α protein and mRNA levels but consistently enhanced those of the DAGL-β. Interestingly, the ethanol treatment enhanced MAGL protein and mRNA levels. Inhibition of MAGL with KML29 failed to induce neurodegeneration in P7 mice. Collectively, these findings suggest that ethanol significantly activates DAGL-β and MAGL in the neonatal brain, resulting in no net change in 2-AG levels.
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Delphine Psychoyos
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Shan Xie
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,New York State Psychiatric Institute, College of Physicians & Surgeons, Columbia University, New York, New York, USA.,Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
15
|
Alvarez JC, Pape E, Grassin-Delyle S, Knapp A. Cannabinoïdes de synthèse : aspects pharmacologiques. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2015. [DOI: 10.1016/j.toxac.2014.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Meinhardt MW, Sommer WH. Postdependent state in rats as a model for medication development in alcoholism. Addict Biol 2015; 20:1-21. [PMID: 25403107 DOI: 10.1111/adb.12187] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rational development of novel therapeutic strategies for alcoholism requires understanding of its underlying neurobiology and pathophysiology. Obtaining this knowledge largely relies on animal studies. Thus, choosing the appropriate animal model is one of the most critical steps in pre-clinical medication development. Among the range of animal models that have been used to investigate excessive alcohol consumption in rodents, the postdependent model stands out. It was specifically developed to test the role of negative affect as a key driving force in a perpetuating addiction cycle for alcoholism. Here, we will describe our approach to make rats dependent via chronic intermittent exposure to alcohol, discuss the validity of this model, and compare it with other commonly used animal models of alcoholism. We will summarize evidence that postdependent rats fulfill several criteria of a 'Diagnostic and Statistical Manual of Mental Disorders IV/V-like' diagnostic system. Importantly, these animals show long-lasting excessive consumption of and increased motivation for alcohol, and evidence for loss of control over alcohol intake. Our conclusion that postdependent rats are an excellent model for medication development for alcoholism is underscored by a summary of more than two dozen pharmacological tests aimed at reversing these abnormal alcohol responses. We will end with open questions on the use of this model. In the tradition of the Sanchis-Segura and Spanagel review, we provide comic strips that illustrate the postdependent procedure and relevant phenotypes in this review.
Collapse
Affiliation(s)
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology; University of Heidelberg; Germany
- Department of Addiction Medicine; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| |
Collapse
|
17
|
Al Mansouri S, Ojha S, Al Maamari E, Al Ameri M, Nurulain SM, Bahi A. The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice. Pharmacol Biochem Behav 2014; 124:260-8. [DOI: 10.1016/j.pbb.2014.06.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/15/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023]
|
18
|
Hirvonen J, Zanotti-Fregonara P, Umhau JC, George DT, Rallis-Frutos D, Lyoo CH, Li CT, Hines CS, Sun H, Terry GE, Morse C, Zoghbi SS, Pike VW, Innis RB, Heilig M. Reduced cannabinoid CB1 receptor binding in alcohol dependence measured with positron emission tomography. Mol Psychiatry 2013; 18:916-21. [PMID: 22776901 PMCID: PMC3594469 DOI: 10.1038/mp.2012.100] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/06/2012] [Accepted: 06/12/2012] [Indexed: 11/09/2022]
Abstract
Brain cannabinoid CB1 receptors contribute to alcohol-related behaviors in experimental animals, but their potential role in humans with alcohol dependence is poorly understood. We measured CB1 receptors in alcohol dependent patients in early and protracted abstinence, and in comparison with control subjects without alcohol use disorders, using positron emission tomography and [(18)F]FMPEP-d2, a radioligand for CB1 receptors. We scanned 18 male in-patients with alcohol dependence twice, within 3-7 days of admission from ongoing drinking, and after 2-4 weeks of supervised abstinence. Imaging data were compared with those from 19 age-matched healthy male control subjects. Data were also analyzed for potential influence of a common functional variation (rs2023239) in the CB1 receptor gene (CNR1) that may moderate CB1 receptor density. On the first scan, CB1 receptor binding was 20-30% lower in patients with alcohol dependence than in control subjects in all brain regions and was negatively correlated with years of alcohol abuse. After 2-4 weeks of abstinence, CB1 receptor binding remained similarly reduced in these patients. Irrespective of the diagnostic status, C allele carriers at rs2023239 had higher CB1 receptor binding compared with non-carriers. Alcohol dependence is associated with a widespread reduction of cannabinoid CB1 receptor binding in the human brain and this reduction persists at least 2-4 weeks into abstinence. The correlation of reduced binding with years of alcohol abuse suggests an involvement of CB1 receptors in alcohol dependence in humans.
Collapse
Affiliation(s)
- Jussi Hirvonen
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | | | - John C. Umhau
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD
| | - David T. George
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD
| | - Denise Rallis-Frutos
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Chul Hyoung Lyoo
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Cheng-Ta Li
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Christina S. Hines
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Hui Sun
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD
| | - Garth E. Terry
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Cheryl Morse
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD
| |
Collapse
|
19
|
Anandamide-CB1 receptor signaling contributes to postnatal ethanol-induced neonatal neurodegeneration, adult synaptic, and memory deficits. J Neurosci 2013; 33:6350-66. [PMID: 23575834 DOI: 10.1523/jneurosci.3786-12.2013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), which is comparable with the third trimester in human pregnancy, induces synaptic dysfunctions. However, the molecular mechanisms underlying these dysfunctions are still poorly understood. Although the endocannabinoid system has been shown to be an important modulator of ethanol sensitivity in adult mice, its potential role in synaptic dysfunctions in mice exposed to ethanol during early brain development is not examined. In this study, we investigated the potential role of endocannabinoids and the cannabinoid receptor type 1 (CB1R) in neonatal neurodegeneration and adult synaptic dysfunctions in mice exposed to ethanol at P7. Ethanol treatment at P7, which induces neurodegeneration, increased anandamide (AEA) but not 2-arachidonylglycerol biosynthesis and CB1R protein expression in the hippocampus and cortex, two brain areas that are important for memory formation and storage, respectively. N-Arachidonoyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), glycerophosphodiesterase (GDE1), and CB1R protein expression were enhanced by transcriptional activation of the genes encoding NAPE-PLD, GDE1, and CB1R proteins, respectively. In addition, ethanol inhibited ERK1/2 and AKT phosphorylation. The blockade of CB1Rs before ethanol treatment at P7 relieved ERK1/2 but not AKT phosphorylation and prevented neurodegeneration. CB1R knock-out mice exhibited no ethanol-induced neurodegeneration and inhibition of ERK1/2 phosphorylation. The protective effects of CB1R blockade through pharmacological or genetic deletion resulted in normal adult synaptic plasticity and novel object recognition memory in mice exposed to ethanol at P7. The AEA/CB1R/pERK1/2 signaling pathway may be directly responsible for the synaptic and memory deficits associated with fetal alcohol spectrum disorders.
Collapse
|
20
|
Vasiljevik T, Franks LN, Ford BM, Douglas JT, Prather PL, Fantegrossi WE, Prisinzano TE. Design, synthesis, and biological evaluation of aminoalkylindole derivatives as cannabinoid receptor ligands with potential for treatment of alcohol abuse. J Med Chem 2013; 56:4537-50. [PMID: 23631463 DOI: 10.1021/jm400268b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Attenuation of increased endocannabinoid signaling with a CB1R neutral antagonist might offer a new therapeutic direction for treatment of alcohol abuse. We have recently reported that a monohydroxylated metabolite of the synthetic aminoalkylindole cannabinoid JHW-073 (3) exhibits neutral antagonist activity at CB1Rs and thus may serve as a promising lead for the development of novel alcohol abuse therapies. In the current study, we show that systematic modification of an aminoalkylindole scaffold identified two new compounds with dual CB1R antagonist/CB2R agonist activity. Similar to the CB1R antagonist/inverse agonist rimonabant, analogues 27 and 30 decrease oral alcohol self-administration without affecting total fluid intake and block the development of alcohol-conditioned place preference. Collectively, these initial findings suggest that design and systematic modification of aminoalkylindoles such as 3 may lead to development of novel cannabinoid ligands with dual CB1R antagonist/CB2R agonist activity with potential for use as treatments of alcohol abuse.
Collapse
Affiliation(s)
- Tamara Vasiljevik
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
N-Methyl-3-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-carbazole-6-carboxamides as a novel class of cannabinoid receptors agonists with low CNS penetration. Bioorg Med Chem Lett 2012; 22:3884-9. [PMID: 22607668 DOI: 10.1016/j.bmcl.2012.04.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 11/23/2022]
Abstract
Cannabinoid CB(1) receptor agonists exhibit potent analgesic effects in rodents and humans, but their clinical utility as analgesic drugs is often limited by centrally mediated side effects. We report herein the preparation of N-methyl-3-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-carbazole-6-carboxamides as a novel class of hCB(1)/hCB(2) dual agonists with attractive physicochemical properties. More specifically, (R)-N,9-dimethyl-N-(4-(methylamino)-4-oxobutyl)-3-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-carbazole-6-carboxamide, displayed an extremely low level of CNS penetration (Rat Cbr/Cplasma=0.005 or 0.5%) and was devoid of CNS side effects during pharmaco-dynamic testing.
Collapse
|
22
|
Palmer RHC, Button TM, Rhee SH, Corley RP, Young SE, Stallings MC, Hopfer CJ, Hewitt JK. Genetic etiology of the common liability to drug dependence: evidence of common and specific mechanisms for DSM-IV dependence symptoms. Drug Alcohol Depend 2012; 123 Suppl 1:S24-32. [PMID: 22243758 PMCID: PMC3342475 DOI: 10.1016/j.drugalcdep.2011.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/09/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND We investigated the etiological nature of comorbid alcohol, tobacco, and cannabis DSM-IV dependence symptoms in late adolescence and young adulthood while accounting for gender differences in the magnitude of genetic and environmental influences. METHODS Univariate and multivariate twin modeling was used to determine the heritability of each substance and the etiology of multiple drug problems in a sample of 2484 registrants of the Center for Antisocial Drug Dependence who provided data at the second wave of an ongoing longitudinal study. We report on mean and prevalence levels of whole-life DSM-IV dependence symptoms that were assessed with the Composite International Diagnostic Interview-Substance Abuse Module. Biometrical analyses were limited to age-adjusted DSM-IV dependence symptom counts from a subset of twins that reported using alcohol, tobacco, or cannabis in their lifetime. RESULTS Male and female alcohol, tobacco, and cannabis DSM-IV symptoms are indicators of a heritable unidimensional latent continuous trait. Additive genetic factors explain more than 60% of the common liability to drug dependence. A larger proportion of the variation in each substance is attributable to substance-specific genetic and environmental factors. CONCLUSIONS These data suggest that both common and substance-specific genetic and environmental factors contribute to individual differences in the levels of DSM-IV alcohol, tobacco, and cannabis dependence symptoms.
Collapse
Affiliation(s)
- Rohan H. C. Palmer
- Division of Behavioral Genetics, Rhode Island Hospital,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University
| | - Tanya M. Button
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO
| | - Soo H. Rhee
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO
| | - Robin P. Corley
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO
| | - Susan E. Young
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO
| | - Michael C. Stallings
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO
| | | | - John K. Hewitt
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO
| |
Collapse
|
23
|
Molet J, Bouaziz E, Hamon M, Lanfumey L. Early exposure to ethanol differentially affects ethanol preference at adult age in two inbred mouse strains. Neuropharmacology 2012; 63:338-48. [PMID: 22521807 DOI: 10.1016/j.neuropharm.2012.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/19/2012] [Accepted: 03/30/2012] [Indexed: 11/18/2022]
Abstract
Although the acute effects of ethanol exposure on brain development have been extensively studied, the long term consequences of juvenile ethanol intake on behavior at adult age, regarding especially ethanol consumption, are still poorly known. The aim of this study was to analyze the consequences of ethanol ingestion in juvenile C57BL/6J and DBA/2J mice on ethanol intake and neurobiological regulations at adulthood. Mice were given intragastric ethanol at 4 weeks of age under different protocols and their spontaneous ethanol consumption was assessed in a free choice paradigm at adulthood. Both serotonin 5-HT(1A) and cannabinoid CB1 receptors were investigated using [(35)S]GTP-γ-S binding assay for the juvenile ethanol regimens which modified adult ethanol consumption. In DBA/2J mice, juvenile ethanol ingestion dose-dependently promoted adult spontaneous ethanol consumption. This early ethanol exposure enhanced 5-HT(1A) autoreceptor-mediated [(35)S]GTP-γ-S binding in the dorsal raphe nucleus and reduced CB1 receptor-mediated G protein coupling in both the striatum and the globus pallidus at adult age. In contrast, early ethanol ingestion by C57BL/6J mice transiently lowered spontaneous ethanol consumption and increased G protein coupling of postsynaptic 5-HT(1A) receptors in the hippocampus but had no effect on CB1 receptors at adulthood. These results show that a brief and early exposure to ethanol can induce strain-dependent long-lasting changes in both behavior toward ethanol and key receptors of central 5-HT and CB systems in mice.
Collapse
Affiliation(s)
- Jenny Molet
- INSERM UMR 894, Centre de Psychiatrie et Neurosciences, F-75013 Paris, France
| | | | | | | |
Collapse
|
24
|
Alim TN. Resilience to meet the challenge of addiction: psychobiology and clinical considerations. Alcohol Res 2012; 34:506-15. [PMID: 23584116 PMCID: PMC3860393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Acute and chronic stress-related mechanisms play an important role in the development of addiction and its chronic, relapsing nature. Multisystem adaptations in brain, body, behavioral, and social function may contribute to a dysregulated physiological state that is maintained beyond the homeostatic range. In addition, chronic abuse of substances leads to an altered set point across multiple systems. Resilience can be defined as the absence of psychopathology despite exposure to high stress and reflects a person's ability to cope successfully in the face of adversity, demonstrating adaptive psychological and physiological stress responses. The study of resilience can be approached by examining interindividual stress responsibility at multiple phenotypic levels, ranging from psychological differences in the way people cope with stress to differences in neurochemical or neural circuitry function. The ultimate goal of such research is the development of strategies and interventions to enhance resilience and coping in the face of stress and prevent the onset of addiction problems or relapse.
Collapse
|
25
|
Gorelick DA, Goodwin RS, Schwilke E, Schwope DM, Darwin WD, Kelly DL, McMahon RP, Liu F, Ortemann-Renon C, Bonnet D, Huestis MA. Antagonist-elicited cannabis withdrawal in humans. J Clin Psychopharmacol 2011; 31:603-12. [PMID: 21869692 PMCID: PMC3717344 DOI: 10.1097/jcp.0b013e31822befc1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ⁹-tetrahydrocannabinol (THC) dosages (40-120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0-8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses.
Collapse
Affiliation(s)
- David A Gorelick
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bailey CR, Neumeister A. Cb1 receptor-mediated signaling emerges as a novel lead to evidence-based treatment development for stress-related psychopathology. Neurosci Lett 2011; 502:1-4. [DOI: 10.1016/j.neulet.2011.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Lehtonen M, Storvik M, Malinen H, Hyytiä P, Lakso M, Auriola S, Wong G, Callaway JC. Determination of endocannabinoids in nematodes and human brain tissue by liquid chromatography electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:677-94. [DOI: 10.1016/j.jchromb.2011.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 02/05/2023]
|
28
|
Thanos PK, Gopez V, Delis F, Michaelides M, Grandy DK, Wang GJ, Kunos G, Volkow ND. Upregulation of cannabinoid type 1 receptors in dopamine D2 receptor knockout mice is reversed by chronic forced ethanol consumption. Alcohol Clin Exp Res 2010; 35:19-27. [PMID: 20958329 DOI: 10.1111/j.1530-0277.2010.01318.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. METHODS We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [³H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. RESULTS We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. CONCLUSIONS The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Department of Health and Human Services, Laboratory of Neuroimaging, NIAAA, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lehtonen M, Storvik M, Tupala E, Hyytiä P, Tiihonen J, Callaway JC. Endogenous cannabinoids in post-mortem brains of Cloninger type 1 and 2 alcoholics. Eur Neuropsychopharmacol 2010; 20:245-52. [PMID: 20122818 DOI: 10.1016/j.euroneuro.2009.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 11/26/2022]
Abstract
The endogenous cannabinoid (EC) system has been recently implicated in several neuropsychiatric disorders. This study analyzed post-mortem brain regions of Cloninger type 1 (n=9) and 2 (n=8) alcoholics and non-alcoholic controls (n=10) for ECs by quantitative liquid chromatography with triple quadrupole mass spectrometric detection. A significant difference was found in anandamide (AEA) levels in nucleus accumbens (NAcc) between the three groups (p=0.047). AEA levels were significantly lower when compared to controls in both perigenual anterior cingulate (p=0.017) and frontal cortices (p=0.018) of type 1 alcoholics. Similar trends were observed for dihomo-gamma-linolenoyl ethanolamide and docosahexaenoyl ethanolamide, but not for 2-arachidonoylglycerol, palmitoyl ethanolamide, or oleoyl ethanolamide. Although preliminary, and from diagnostic groups with a relatively small number of subjects and substantially different mean ages for each group, these results suggest that the EC system may be hyperactive in type 2 alcoholics and hypoactive in type 1 alcoholics.
Collapse
Affiliation(s)
- Marko Lehtonen
- Department of Pharmaceutical Chemistry, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
30
|
Terry GE, Hirvonen J, Liow JS, Seneca N, Tauscher JT, Schaus JM, Phebus L, Felder CC, Morse CL, Pike VW, Halldin C, Innis RB. Biodistribution and dosimetry in humans of two inverse agonists to image cannabinoid CB1 receptors using positron emission tomography. Eur J Nucl Med Mol Imaging 2010; 37:1499-506. [PMID: 20333514 DOI: 10.1007/s00259-010-1411-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 02/05/2010] [Indexed: 01/16/2023]
Abstract
PURPOSE Cannabinoid subtype 1 (CB(1)) receptors are found in nearly every organ in the body, may be involved in several neuropsychiatric and metabolic disorders, and are therefore an active target for pharmacotherapy and biomarker development. We recently reported brain imaging of CB(1) receptors with two PET radioligands: (11)C-MePPEP and (18)F-FMPEP-d (2). Here we describe the biodistribution and dosimetry estimates for these two radioligands. METHODS Seven healthy subjects (four men and three women) underwent whole-body PET scans for 120 min after injection with (11)C-MePPEP. Another seven healthy subjects (two men and five women) underwent whole-body PET scans for 300 min after injection with (18)F-FMPEP-d (2). Residence times were acquired from regions of interest drawn on tomographic images of visually identifiable organs for both radioligands and from radioactivity excreted in urine for (18)F-FMPEP-d (2). RESULTS The effective doses of (11)C-MePPEP and (18)F-FMPEP-d (2) are 4.6 and 19.7 microSv/MBq, respectively. Both radioligands demonstrated high uptake of radioactivity in liver, lung, and brain shortly after injection and accumulated radioactivity in bone marrow towards the end of the scan. After injection of (11)C-MePPEP, radioactivity apparently underwent hepatobiliary excretion only, while radioactivity from (18)F-FMPEP-d (2) showed both hepatobiliary and urinary excretion. CONCLUSION (11)C-MePPEP and (18)F-FMPEP-d (2) yield an effective dose similar to other PET radioligands labeled with either (11)C or (18)F. The high uptake in brain confirms the utility of these two radioligands to image CB(1) receptors in brain, and both may also be useful to image CB(1) receptors in the periphery.
Collapse
Affiliation(s)
- Garth E Terry
- Molecular Imaging Branch, National Institute of Mental Health, 31 Center Drive, Bethesda, MD 20892-2035, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Maccarrone M. Endocannabinoids: friends and foes of reproduction. Prog Lipid Res 2009; 48:344-54. [PMID: 19602425 DOI: 10.1016/j.plipres.2009.07.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/07/2009] [Accepted: 07/07/2009] [Indexed: 12/20/2022]
Abstract
Endocannabinoids are fatty acid amides like anandamide (AEA), and monoacylglycerols like 2-arachidonoylglycerol, that bind to cannabinoid, vanilloid and peroxisome proliferator-activated receptors. Their biological actions are controlled through not yet fully characterized cellular mechanisms. These compounds, together with their related enzymes, that include key proteins for the synthesis and degradation of endocannabinoids, cannabinoid and non-cannabinoid receptors, and purported membrane transporter(s), form the "endocannabinoid system (ECS)". In the past few years AEA and related ECS elements have emerged as essential players in various aspects of human reproduction, both for males and females. Here, the key features of the ECS and the potential of its components to direct human fertility towards a positive or negative end will be reviewed. In particular, the involvement of AEA and related ECS elements in regulating embryo oviductal transport, blastocyst implantation and placental development (in females), and sperm survival, motility, capacitation and acrosome reaction (in males) will be addressed, as well as the role of endocannabinoids in sperm-oviduct interactions. Additionally, the possibility that blood AEA and its hydrolase FAAH may represent reliable diagnostic markers of natural and assisted reproduction in humans will be discussed, along with the therapeutic exploitation of ECS-oriented drugs as useful fertility enhancers.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biomedical Sciences, University of Teramo, Piazza Aldo Moro 45, Teramo 64100, Italy.
| |
Collapse
|
32
|
Prestifilippo JP, Fernández-Solari J, Medina V, Rettori V, Elverdin JC. Role of the endocannabinoid system in ethanol-induced inhibition of salivary secretion. Alcohol Alcohol 2009; 44:443-8. [PMID: 19589828 DOI: 10.1093/alcalc/agp040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIM The aim of the present study was to determine whether the endocannabinoid system could be involved in the ethanol-induced inhibition of salivation in adult male Wistar rats. METHODS Salivary secretion induced by different concentrations of methacholine, a cholinergic agonist, and the endocannabinoid arachidonoyl ethanolamide (anandamide, AEA) production in the submandibular gland (SMG) were determined in rats after ethanol (3 g/kg) administration by gastric gavage. To study the participation of cannabinod receptors in ethanol action, we evaluated methacholine-induced salivary secretion after ethanol administration when CB1 or CB2 receptors were blocked by intra-SMG injections of their selective antagonists AM251 and AM630, respectively. Additionally, we evaluated the in vitro effect of ethanol (0.1 M) on SMG production of cAMP, alone or combined with AM251 or AM630. RESULTS Acute ethanol administration increased AEA production in SMG and also inhibited the methacholine-induced saliva secretion that was partially restored by intraglandular injection of AM251 or AM630. In addition, ethanol significantly reduced the forskolin-induced increase in cAMP content in SMG in vitro while treatment with AM251 blocked this response. CONCLUSION We conclude that the inhibitory effect produced by ethanol on submandibular gland salivary secretion is mediated, at least in part, by the endocannabinoid system.
Collapse
|
33
|
Mangieri RA, Hong KIA, Piomelli D, Sinha R. An endocannabinoid signal associated with desire for alcohol is suppressed in recently abstinent alcoholics. Psychopharmacology (Berl) 2009; 205:63-72. [PMID: 19343330 PMCID: PMC2715164 DOI: 10.1007/s00213-009-1518-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/09/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alcoholics report persistent alcohol craving that is heightened by cognitive cues, stressful situations, and abstinence. The role of endogenous cannabinoids in human alcohol craving--though long suspected--remains elusive. MATERIALS AND METHODS We employed laboratory exposure to stress, alcohol cue, and neutral relaxed situations through guided imagery procedures to evoke alcohol desire and craving in healthy social drinkers (n = 11) and in treatment-engaged, recently abstinent alcoholic subjects (n = 12) and assessed alcohol craving, heart rate, and changes in circulating endocannabinoid levels. Subjective anxiety was also measured as a manipulation check for the procedures. RESULTS In healthy social drinkers, alcohol cue imagery increased circulating levels of the endocannabinoid anandamide, whereas neutral and stress-related imagery had no such effect. Notably, baseline and response anandamide levels in these subjects were negatively and positively correlated with self-reported alcohol craving scores, respectively. Cue-induced increases in heart rate were also correlated with anandamide responses. By contrast, no imagery-induced anandamide mobilization was observed in alcoholics, whose baseline anandamide levels were markedly reduced compared to healthy drinkers and were uncorrelated to either alcohol craving or heart rate. CONCLUSIONS The results suggest that plasma anandamide levels provide a marker of the desire for alcohol in social drinkers, which is suppressed in recently abstinent alcoholics.
Collapse
Affiliation(s)
- Regina A Mangieri
- Department of Pharmacology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
34
|
Basavarajappa BS, Nixon RA, Arancio O. Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration. Mini Rev Med Chem 2009; 9:448-62. [PMID: 19356123 DOI: 10.2174/138955709787847921] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endocannabinoid system, including endogenous ligands ('endocannabinoids' ECs), their receptors, synthesizing and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. ECs are bioactive lipids, which comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied ECs, and act as agonists of cannabinoid receptors. Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol (Delta(9)-THC), the psychoactive principle of cannabis sativa preparations like hashish and marijuana. Recently, however, several lines of evidence have suggested that the EC system may play an important role in early neuronal development as well as a widespread role in neurodegeneration disorders. Many of the effects of cannabinoids and ECs are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, although additional receptors may be implicated. Both CB1 and CB2 couple primarily to inhibitory G proteins and are subject to the same pharmacological influences as other GPCRs. This new system is briefly presented in this review, in order to put in a better perspective the role of the EC pathway from neurodevelopment to neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, the potential exploitation of antagonists of CB1 receptors, or of inhibitors of EC metabolism, as next-generation therapeutics is discussed.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA.
| | | | | |
Collapse
|
35
|
Giroud C, Bollmann M, Thomas A, Mangin P, Favrat B. Consommation de cannabis: quels sont les risques ? ACTA ACUST UNITED AC 2009. [DOI: 10.1051/ata/2009021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Hanus LO. Pharmacological and therapeutic secrets of plant and brain (endo)cannabinoids. Med Res Rev 2009; 29:213-71. [PMID: 18777572 DOI: 10.1002/med.20135] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Research on the chemistry and pharmacology of cannabinoids and endocannabinoids has reached enormous proportions, with approximately 15,000 articles on Cannabis sativa L. and cannabinoids and over 2,000 articles on endocannabinoids. The present review deals with the history of the Cannabis sativa L. plant, its uses, constituent compounds and their biogeneses, and similarity to compounds from Radula spp. In addition, details of the pharmacology of natural cannabinoids, as well as synthetic agonists and antagonists are presented. Finally, details regarding the pioneering isolation of the endocannabinoid anandamide, as well as the pharmacology and potential therapeutic uses of endocannabinoid congeners are presented.
Collapse
Affiliation(s)
- Lumír Ondrej Hanus
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
37
|
Melis M, Pillolla G, Perra S, Colombo G, Muntoni AL, Pistis M. Electrophysiological properties of dopamine neurons in the ventral tegmental area of Sardinian alcohol-preferring rats. Psychopharmacology (Berl) 2009; 201:471-81. [PMID: 18777018 DOI: 10.1007/s00213-008-1309-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 08/19/2008] [Indexed: 11/25/2022]
Abstract
RATIONALE Sardinian alcohol-preferring (sP) or -nonpreferring (sNP) rats are one of the few pairs of lines of rats selectively bred for their voluntary alcohol preference or aversion, respectively. Ventral tegmental area (VTA) dopamine (DA) neurons have long been implicated in many drug-related behaviors, including alcohol self-administration. However, the electrophysiological properties of these cells in sP and sNP rats remain unknown. OBJECTIVES This study was designed to examine the properties of posterior VTA DA neurons and to unveil functional differences between sP and sNP rats. MATERIALS AND METHODS The electrophysiological properties of DA cells were examined performing either single-cell extracellular recordings in anesthetized rats or whole-cell patch-clamp recordings in slices. RESULTS Extracellular single-unit recordings revealed an increased spontaneous activity in sP rats. However, a corresponding difference was not found in vitro. Moreover, DA cells of sP and sNP rats showed similar intrinsic properties, suggesting changes at synaptic level. Therefore, inhibitory- and excitatory-mediated currents were studied. A decreased probability of GABA release was found in sP rats. Additionally, sP rats showed a reduced depolarization-induced suppression of inhibition, which is an endocannabinoid-mediated form of short-term plasticity. Additionally, the effect of cannabinoid-type 1 (CB1) receptor agonist WIN55,212-2 on GABAA IPSCs was smaller in sP rats, suggesting either a reduced number or functionality of CB1 receptors in the VTA. CONCLUSIONS Our findings suggest that both decreased GABA release and endocannabinoid transmission in the VTA play a role in the increased impulse activity of DA cells and, ultimately, in alcohol preference displayed by sP rats.
Collapse
Affiliation(s)
- Miriam Melis
- B.B. Brodie Department of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Pagé D, Balaux E, Boisvert L, Liu Z, Milburn C, Tremblay M, Wei Z, Woo S, Luo X, Cheng YX, Yang H, Srivastava S, Zhou F, Brown W, Tomaszewski M, Walpole C, Hodzic L, St-Onge S, Godbout C, Salois D, Payza K. Novel benzimidazole derivatives as selective CB2 agonists. Bioorg Med Chem Lett 2008; 18:3695-700. [DOI: 10.1016/j.bmcl.2008.05.073] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 12/29/2022]
|
39
|
Hagues G, Costentin J, Duterte-Boucher D. Locomotor effects of morphine or alcohol in mice after a repeated treatment with the cannabinoid agonist HU 210. Eur J Pharmacol 2008; 586:197-204. [DOI: 10.1016/j.ejphar.2008.02.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
|
40
|
Basavarajappa BS. Neuropharmacology of the endocannabinoid signaling system-molecular mechanisms, biological actions and synaptic plasticity. Curr Neuropharmacol 2007; 5:81-97. [PMID: 18084639 PMCID: PMC2139910 DOI: 10.2174/157015907780866910] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/07/2007] [Accepted: 02/14/2007] [Indexed: 11/22/2022] Open
Abstract
The endocannabinoid signaling system is composed of the cannabinoid receptors; their endogenous ligands, the endocannabinoids; the enzymes that produce and inactivate the endocannabinoids; and the endocannabinoid transporters. The endocannabinoids are a new family of lipidic signal mediators, which includes amides, esters, and ethers of long-chain polyunsaturated fatty acids. Endocannabinoids signal through the same cell surface receptors that are targeted by Delta(9)-tetrahydrocannabinol (Delta(9)THC), the active principles of cannabis sativa preparations like hashish and marijuana. The biosynthetic pathways for the synthesis and release of endocannabinoids are still rather uncertain. Unlike neurotransmitter molecules that are typically held in vesicles before synaptic release, endocannabinoids are synthesized on demand within the plasma membrane. Once released, they travel in a retrograde direction and transiently suppress presynaptic neurotransmitter release through activation of cannabinoid receptors. The endocannabinoid signaling system is being found to be involved in an increasing number of pathological conditions. In the brain, endocannabinoid signaling is mostly inhibitory and suggests a role for cannabinoids as therapeutic agents in central nervous system (CNS) disease. Their ability to modulate synaptic efficacy has a wide range of functional consequences and provides unique therapeutic possibilities. The present review is focused on new information regarding the endocannabinoid signaling system in the brain. First, the structure, anatomical distribution, and signal transduction mechanisms of cannabinoid receptors are described. Second, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. Finally, the role of the endocannabinoid signaling system in the CNS and its potential as a therapeutic target in various CNS disease conditions, including alcoholism, are discussed.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|