1
|
Fetouh HA, El-Mossalamy EH, El Desouky JM, Batouti ME. Synthesis and characterization of new organometallic lanthanides metal complexes for photodynamic therapy. Sci Rep 2024; 14:26184. [PMID: 39478101 PMCID: PMC11526036 DOI: 10.1038/s41598-024-75800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
New Schiff base ligand: 4-methoxy salicaldhyde-2-2-phenyl-hydrazono acetaldehíyde prepared by facile method. The molecular structures characterized by elemental analysis and proton magnetic resonance spectra (1H-NMR spectra). This spectra at the chemical shifts (3.5-10.39 ppm) confirmed the types and the numbers of protons. The sharp melting point at the range 110-112 °C confirmed purity. New optically active metal (samarium, terbium and gadolinium) complexes of the Schiff base synthesized in a one pot reaction. Vibrational IR spectra confirmed functional groups. Scanning electron microscopy micrographs confirmed that the modified microstructure of the metal complexes differed in morphology than the ligand. Powder X-ray diffraction patterns confirmed good crystalline structure. The optically activity of the solid metal complexes confirmed from electronic absorption spectra. The UV absorbance band at the wavelength range 280-390 nm and the intense phosphorescence bands up to 830 nm enabled application in photo dynamic therapy for apoptosis cancer cells by conversion triplet oxygen in the tissues into reactive singlet oxygen. Low charge transfer energy: 2.59-2.61 eV, high molar extinction coefficients (ε) at the order of magnitude [Formula: see text] M- 1 cm- 1 and the intense phosphorescence bands reflected good photodynamic activity. The metal complexes are thermally stable.
Collapse
Affiliation(s)
- H A Fetouh
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - E H El-Mossalamy
- Chemistry Department, Faculty of Science, Benha University, Banha, Egypt
| | - J M El Desouky
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mervette El Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Singhal R, Mehra MK, Malik B, Pilania M. Iodine/DMSO-catalyzed oxidative deprotection of N-tosylhydrazone for benzoic acid synthesis. RSC Adv 2024; 14:30482-30486. [PMID: 39318462 PMCID: PMC11421529 DOI: 10.1039/d4ra05849f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
An oxidative deprotection of tosylhyrdazones has been demonstrated to afford benzoic acids using iodine and DMSO system. This efficient oxidative deprotection protocol offers exceptional functional group toleration under mild reaction conditions without any initiators or bases. Notably, the tosylhydrazone with the heteroaryl ring or with the aryl ring having base-sensitive hydroxyl and ester functional groups smoothly afforded the corresponding benzoic acid analogues under developed conditions. Moreover, this method features short reaction times, high product yields and easy purification by avoiding column-chromatographic purification.
Collapse
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry, Manipal University Jaipur Jaipur (Rajasthan) VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur Rajasthan 303007 India
| | - Manish K Mehra
- Department of Chemistry, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | - Babita Malik
- Department of Chemistry, Manipal University Jaipur Jaipur (Rajasthan) VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur Rajasthan 303007 India
| | - Meenakshi Pilania
- Department of Chemistry, Manipal University Jaipur Jaipur (Rajasthan) VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur Rajasthan 303007 India
| |
Collapse
|
3
|
Mattioli RR, Santos CS, de Souza BB, Branco PD, Bolt RRA, Raby-Buck SE, Gomes Cabral TL, Tormena CF, Browne DL, Pastre JC. On the Valorisation of Chitin-Derived Furans by Milling. CHEMSUSCHEM 2024:e202401584. [PMID: 39240242 DOI: 10.1002/cssc.202401584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/07/2024]
Abstract
Chitin-derived furans offer a sustainable alternative feedstock for nitrogen appended aromatic compounds. Herein, we address the challenge of using chitin-derived furans, 3-acetamido-5-acetylfuran (3A5AF) and 3-acetamido-5-furfural aldehyde (3A5F), to favour the formation of exo Diels-Alder adducts and 4-acetylaminophthalimides respectively, using a mechanochemical ball-milling technique. Mechanochemical activation is explored through the synthesis of 7-oxa-norbornene backbones with novel substitution pattern from 3A5AF in yields up to 77 % and improved exo:endo selectivity compared to solution-phase reactions. The synthesis of 4-acetylaminophthalimides from 3A5F in yields up to 79 % is also showcased from hydrazone derivatives.
Collapse
Affiliation(s)
- Renan Rodini Mattioli
- Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London (UCL), 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Camila Souza Santos
- Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Bruna Butke de Souza
- Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Pedro Dominguez Branco
- Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Robert R A Bolt
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London (UCL), 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sarah E Raby-Buck
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London (UCL), 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tadeu Luiz Gomes Cabral
- Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Claudio F Tormena
- Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London (UCL), 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Julio C Pastre
- Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| |
Collapse
|
4
|
Ćurčić V, Olszewski M, Maciejewska N, Višnjevac A, Srdić-Rajić T, Dobričić V, García-Sosa AT, Kokanov SB, Araškov JB, Silvestri R, Schüle R, Jung M, Nikolić M, Filipović NR. Quinoline-based thiazolyl-hydrazones target cancer cells through autophagy inhibition. Arch Pharm (Weinheim) 2024; 357:e2300426. [PMID: 37991233 DOI: 10.1002/ardp.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
Heterocyclic pharmacophores such as thiazole and quinoline rings have a significant role in medicinal chemistry. They are considered privileged structures since they constitute several Food and Drug Administration (FDA)-approved drugs for cancer treatment. Herein, we report the synthesis, in silico evaluation of the ADMET profiles, and in vitro investigation of the anticancer activity of a series of novel thiazolyl-hydrazones based on the 8-quinoline (1a-c), 2-quinoline (2a-c), and 8-hydroxy-2-quinolyl moiety (3a-c). The panel of several human cancer cell lines and the nontumorigenic human embryonic kidney cell line HEK-293 were used to evaluate the compound-mediated in vitro anticancer activities, leading to [2-(2-(quinolyl-8-ol-2-ylmethylene)hydrazinyl)]-4-(4-methoxyphenyl)-1,3-thiazole (3c) as the most promising compound. The study revealed that 3c blocks the cell-cycle progression of a human colon cancer cell line (HCT-116) in the S phase and induces DNA double-strand breaks. Also, our findings demonstrate that 3c accumulates in lysosomes, ultimately leading to the cell death of the hepatocellular carcinoma cell line (Hep-G2) and HCT-116 cells, by the mechanism of autophagy inhibition.
Collapse
Affiliation(s)
- Vladimir Ćurčić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Mateusz Olszewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | | | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Sanja B Kokanov
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | - Romano Silvestri
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Manfred Jung
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Milan Nikolić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
5
|
Kumar VP, Vishnu MS, Kumar S, Jaiswal S, Ayyannan SR. Exploration of a library of piperonylic acid-derived hydrazones possessing variable aryl functionalities as potent dual cholinesterase and monoamine oxidase inhibitors. Mol Divers 2023; 27:2465-2489. [PMID: 36355337 DOI: 10.1007/s11030-022-10564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
Abstract
A library of piperonylic acid-derived hydrazones possessing variable aryl moiety was synthesized and investigated for their multifunctional properties against cholinesterases (ChEs) and monoamine oxidases (MAOs). The in vitro enzymatic assay results revealed that the tested hydrazones have exhibited excellent cholinesterase inhibition profile. Compound 4i, (E)-N'-(2,3-dichlorobenzylidene)benzo[d][1,3]dioxole-5-carbohydrazide showed promising dual inhibitory profile against AChE (0.048 ± 0.007 μM), BChE (0.89 ± 0.018 μM), and MAO-B (0.95 ± 0.12 μM) enzymes. SAR exploration revealed that the truncation of the linker connecting both the aryl binding sites of the semicarbazone scaffold, by one atom, has relatively suppressed the AChE inhibitory potential. Kinetic studies disclosed that the compound 4i reversibly inhibited AChE enzyme in a competitive manner (Ki = 8.0 ± 0.076 nM), while it displayed a non-competitive and reversible inhibition profile against MAO-B (Ki = 9.6 ± 0.021 µM). Moreover, molecular docking studies of synthesized compounds against ChEs and MAOs provided the crucial molecular features that enable their close association and interaction with the target enzymes. All atomistic simulation studies confirmed the stable association of compound 4i within the active sites of AChE and MAO-B. In addition, theoretical ADMET prediction studies demonstrated the acceptable pharmacokinetic profile of the dual inhibitors. In summary, the attempted lead simplification study afforded a potent dual ChE-MAO-B inhibitor compound that merits further investigation.
Collapse
Affiliation(s)
- V Pavan Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - M S Vishnu
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India.
| |
Collapse
|
6
|
Sun S, Zhang Q, Zi W. Palladium-Catalyzed Enantioselective Hydrohydrazonation of 1,3-Dienes. Org Lett 2023; 25:8397-8401. [PMID: 37983182 DOI: 10.1021/acs.orglett.3c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
We presented a method for synthesizing allylic chiral hydrazones from 1,4-disubstituted 1,3-dienes and hydrazones through a (R)-DTBM-Segphos-Pd(0)-catalyzed hydrohydrazonation reaction. This transformation has a wide range of substrates and good functional group tolerance. The desired products were obtained in medium to high yield and good regio- and enantioselectivity. Synthetic transformation of the products into various nitrogen-containing chiral compounds was demonstrated.
Collapse
Affiliation(s)
- Shaozi Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China
| |
Collapse
|
7
|
Zubrickė I, Jonuškienė I, Kantminienė K, Tumosienė I, Petrikaitė V. Synthesis and In Vitro Evaluation as Potential Anticancer and Antioxidant Agents of Diphenylamine-Pyrrolidin-2-one-Hydrazone Derivatives. Int J Mol Sci 2023; 24:16804. [PMID: 38069128 PMCID: PMC10871122 DOI: 10.3390/ijms242316804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The title compounds were synthesized by the reaction of 5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide with various aldehydes bearing aromatic and heterocyclic moieties and acetophenones, and their cytotoxicity was tested via MTT assay against human triple-negative breast cancer MDA-MB-231, human melanoma IGR39, human pancreatic carcinoma Panc-1, and prostate cancer cell line PPC-1. Furthermore, the selectivity of compounds towards cancer cells compared to fibroblasts was also investigated. Four compounds were identified as the most promising anticancer agents out of a series of pyrrolidinone-hydrazone derivatives bearing a diphenylamine moiety. These compounds were most selective against the prostate cancer cell line PPC-1 and the melanoma cell lines IGR39, with EC50 values in the range of 2.5-20.2 µM against these cell lines. In general, the compounds were less active against triple-negative breast cancer MDA-MB-231 cell line, and none of them showed an inhibitory effect on the migration of these cells. In the 'wound healing' assay, N'-((5-nitrothiophen-2-yl)methylene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide was identified as the most promising derivative that could be further developed as an antimetastatic agent. N'-(5-chloro- and N'-(3,4-dichlorobenzylidene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazides most efficiently reduced the cell viability in IGR39 cell spheroids, while there was no effect of the investigated pyrrolidinone-hydrazone derivatives on PPC-1 3D cell cultures. Antioxidant activity determined via FRAP assay of N'-(1-(4-aminophenyl)ethylidene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide was 1.2 times higher than that of protocatechuic acid.
Collapse
Affiliation(s)
- Irma Zubrickė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania; (I.Z.); (I.J.); (I.T.)
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania; (I.Z.); (I.J.); (I.T.)
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
| | - Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania; (I.Z.); (I.J.); (I.T.)
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, 50162 Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, 10257 Vilnius, Lithuania
| |
Collapse
|
8
|
Dongxu Z. Trifluoromethylated hydrazones and acylhydrazones as potent nitrogen-containing fluorinated building blocks. Beilstein J Org Chem 2023; 19:1741-1754. [PMID: 38025086 PMCID: PMC10667715 DOI: 10.3762/bjoc.19.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Nitrogen-containing organofluorine derivatives, which are prepared using fluorinated building blocks, are among the most important active fragments in various pharmaceutical and agrochemical products. This review focuses on the reactivity, synthesis, and applications of fluoromethylated hydrazones and acylhydrazones. It summarizes recent methodologies that have been used for the synthesis of various nitrogen-containing organofluorine compounds.
Collapse
Affiliation(s)
- Zhang Dongxu
- Department of Fire Protection Engineering, China Fire and Rescue Institute, Beijing 102202, P. R. of China
| |
Collapse
|
9
|
Khalil KD, Riyadh SM, Bashal AH, Abolibda TZ, Gomha SM. Green Synthetic Approaches of 2-Hydrazonothiazol-4(5 H)-ones Using Sustainable Barium Oxide-Chitosan Nanocomposite Catalyst. Polymers (Basel) 2023; 15:3817. [PMID: 37765671 PMCID: PMC10534876 DOI: 10.3390/polym15183817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The diverse applications of metal oxide-biopolymer matrix as a nanocomposite heterogenous catalyst have caused many researches to scrutinize the potential of this framework. In this study, a novel hybrid barium oxide-chitosan nanocomposite was synthesized through a facile and cost-effective co-precipitation method by doping barium oxide nanoparticles within the chitosan matrix at a weight percentage of 20 wt.% BaO-chitosan. A thin film of the novel hybrid material was produced by casting the nanocomposite solution in a petri dish. Several instrumental methods, including Fourier-transform infrared (FTIR), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), were used to analyze and characterize the structure of the BaO-CS nanocomposite. The chemical interaction with barium oxide molecules resulted in a noticeable displacement of the most significant chitosan-specific peaks in the FTIR spectra. When the surface morphology of SEM graphs was analyzed, a dramatic morphological change in the chitosan surface was also discovered; this morphological change can be attributed to the surface adsorption of BaO molecules. Additionally, the patterns of the XRD demonstrated that the crystallinity of the material, chitosan, appears to be enhanced upon interaction with barium oxide molecules with the active sites, OH and NH2 groups, along the chitosan backbone. The prepared BaO-CS nanocomposite can be used successfully as an effective heterogenous recyclable catalyst for the reaction of N,N'-(alkane-diyl)bis(2-chloroacetamide) with 2-(arylidinehydrazine)-1-carbothioamide as a novel synthetic approach to prepare 2-hydrazonothiazol-4(5H)-ones. This new method provides a number of benefits, including quick and permissive reaction conditions, better reaction yields, and sustainable catalysts for multiple uses.
Collapse
Affiliation(s)
- Khaled D. Khalil
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu 46423, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawrah 30002, Saudi Arabia;
| | - Ali H. Bashal
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu 46423, Saudi Arabia;
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (T.Z.A.); (S.M.G.)
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (T.Z.A.); (S.M.G.)
| |
Collapse
|
10
|
Witusik-Perkowska M, Głowacka P, Pieczonka AM, Świderska E, Pudlarz A, Rachwalski M, Szymańska J, Zakrzewska M, Jaskólski DJ, Szemraj J. Autophagy Inhibition with Chloroquine Increased Pro-Apoptotic Potential of New Aziridine-Hydrazide Hydrazone Derivatives against Glioblastoma Cells. Cells 2023; 12:1906. [PMID: 37508570 PMCID: PMC10378024 DOI: 10.3390/cells12141906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor therapy escape due to undesired side effects induced by treatment, such as prosurvival autophagy or cellular senescence, is one of the key mechanisms of resistance that eventually leads to tumor dormancy and recurrence. Glioblastoma is the most frequent and practically incurable neoplasm of the central nervous system; thus, new treatment modalities have been investigated to find a solution more effective than the currently applied standards based on temozolomide. The present study examined the newly synthesized compounds of aziridine-hydrazide hydrazone derivatives to determine their antineoplastic potential against glioblastoma cells in vitro. Although the output of our investigation clearly demonstrates their proapoptotic activity, the cytotoxic effect appeared to be blocked by treatment-induced autophagy, the phenomenon also detected in the case of temozolomide action. The addition of an autophagy inhibitor, chloroquine, resulted in a significant increase in apoptosis triggered by the tested compounds, as well as temozolomide. The new aziridine-hydrazide hydrazone derivatives, which present cytotoxic potential against glioblastoma cells comparable to or even higher than that of temozolomide, show promising results and, thus, should be further investigated as antineoplastic agents. Moreover, our findings suggest that the combination of an apoptosis inducer with an autophagy inhibitor could optimize chemotherapeutic efficiency, and the addition of an autophagy inhibitor should be considered as an optional adjunctive therapy minimizing the risk of tumor escape from treatment.
Collapse
Affiliation(s)
- Monika Witusik-Perkowska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Adam M Pieczonka
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Agnieszka Pudlarz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Michał Rachwalski
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Julia Szymańska
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Dariusz J Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego 22, 90-153 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| |
Collapse
|
11
|
Akinyele OF, Fakola EG, Adeboye OO, Chinuomah SC. Investigation of Methyl-5-(pentan-3-yloxy)-7-oxabicyclo[4.1.0]hept-3-ene-3-carboxyhydrazide Derivatives as Potential Inhibitors of COVID-19 Main Protease: DFT and Molecular Docking Study. Bioinform Biol Insights 2023; 17:11779322231182050. [PMID: 37377795 PMCID: PMC10291222 DOI: 10.1177/11779322231182050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The search for effective therapeutics to combat COVID-19 has led to the exploration of the biological activity of numerous compounds. In this study, hydrazones derived from oseltamivir intermediate, methyl 5-(pentan-3-yloxy)-7-oxabicyclo[4.1.0]hept-3-ene-3-carboxylate have been investigated for their potential as drug candidates against the COVID-19 virus using computational methods, including density functional theory (DFT) studies, molecular docking, and absorption, distribution, metabolism, excretion and toxicity (ADMET) analysis. The DFT studies provide information on the electronic properties of the compounds while the molecular docking results using AutoDock reported the binding energies between the main protease of COVID-19 and the compounds. The DFT results revealed that the energy gap of the compounds ranged from 4.32 to 5.82 eV while compound HC had the highest energy gap (5.82 eV) and chemical potential (2.90 eV). The electrophilicity index values of the 11 compounds ranged from 2.49 to 3.86, thus they were classified as strong electrophiles. The molecular electrostatic potential (MESP) revealed electron-rich and electron-deficient regions of the compounds. The docking results reveal that all the compounds had better docking scores than remdesivir and chloroquine, frontline drugs employed in combating COVID-19, with HC having the best docking score of -6.5. The results were visualized using Discovery studio, which revealed hydrogen bonding, pi-alkyl interaction, alkyl interaction, salt bridge interaction, halogen interaction as being responsible for the docking scores. The drug-likeness results showed that the compounds qualify as oral drug candidates as none of them violated Vebers and Lipinski's rule. Thus, they could serve as potential inhibitors of COVID-19.
Collapse
|
12
|
Cebotari D, Calancea S, Marrot J, Guillot R, Falaise C, Guérineau V, Touboul D, Haouas M, Gulea A, Floquet S. Tuning the nuclearity of [Mo 2O 2S 2] 2+-based assemblies by playing with the degree of flexibility of bis-thiosemicarbazone ligands. Dalton Trans 2023; 52:3059-3071. [PMID: 36779751 DOI: 10.1039/d2dt03760b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
[MoV2O2S2]2+-based thiosemicarbazone complexes appear as very promising molecules for biological applications due to the intrinsic properties of their components. This paper deals with the synthesis and characterization of six coordination complexes obtained by the reaction of [MoV2O2S2]2+ clusters with bis-thiosemicarbazone ligands that contain flexible or rigid spacers between the two thiosemicarbazone units. Interestingly, structural characterization by single-crystal X-ray diffraction, MALDI-TOF MS technique and NMR spectroscopy revealed that the nuclearity of the complex is controlled by the nature of the spacer between the thiosemicarbazone units. Binuclear complexes, namely [MoV2O2S2(L1-3)], are isolated with flexible spacers while tetranuclear complexes [(MoV2O2S2)2(L4-6)2] are formed when the bis-thiosemicarbazone ligands are built on rigid spacers.
Collapse
Affiliation(s)
- Diana Cebotari
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France. .,State University of Moldova, MD-2009 Chisinau, Republic of Moldova
| | - Sergiu Calancea
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France.
| | - Jerôme Marrot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France.
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, CNRS UMR 8182, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France.
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France.
| | - Aurelian Gulea
- State University of Moldova, MD-2009 Chisinau, Republic of Moldova
| | - Sébastien Floquet
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France.
| |
Collapse
|
13
|
Baashen MA. Synthesis and antibacterial evaluation of novel hydrazones and bis-hydrazones containing 1,2,3-triazole moiety. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2151297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammed A. Baashen
- Department of Chemistry, College of Science and Humanities, Shaqra University, Dawadmi, Saudi Arabia
| |
Collapse
|
14
|
Acylhydrazones and Their Biological Activity: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248719. [PMID: 36557851 PMCID: PMC9783609 DOI: 10.3390/molecules27248719] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Due to the structure of acylhydrazones both by the pharmacophore -CO-NH-N= group and by the different substituents present in the molecules of compounds of this class, various pharmacological activities were reported, including antitumor, antimicrobial, antiviral, antiparasitic, anti-inflammatory, immunomodulatory, antiedematous, antiglaucomatous, antidiabetic, antioxidant, and actions on the central nervous system and on the cardiovascular system. This fragment is found in the structure of several drugs used in the therapy of some diseases that are at the top of public health problems, like microbial infections and cardiovascular diseases. Moreover, the acylhydrazone moiety is present in the structure of some compounds with possible applications in the treatment of other different pathologies, such as schizophrenia, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Considering these aspects, we consider that a study of the literature data regarding the structural and biological properties of these compounds is useful.
Collapse
|
15
|
Popov LD, Tupolova YP, Vlasenko VG, Borodkin SA, Levchenkov SI, Lebedev VE, Askalepova OI, Borodkin GS, Zubenko AA, Gishko KB, Zubavichus YV, Lazarenko VA, Shcherbakov IN. Synthesis, Structure, and Properties of 2-Oxo-3-formylquinolone Acylhydrazone Containing a Trimethylammonium Fragment and also of Transition Metal Complexes Based on This Compound. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
16
|
Fuior A, Cebotari D, Garbuz O, Calancea S, Gulea A, Floquet S. Biological properties of a new class of [Mo2O2S2]-based thiosemicarbazone coordination complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Design, Synthesis, and In Vitro Antiproliferative Screening of New Hydrazone Derivatives Containing cis-(4-Chlorostyryl) Amide Moiety. Symmetry (Basel) 2022. [DOI: 10.3390/sym14112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hydrazones are regarded as a distinctive category of organic compounds because of their tremendous characteristics and potential uses in analytical, chemical, and medicinal chemistry. In the present study, a new series of Hydrazone Derivatives bearing cis-(4-chlorostyryl) amide moiety were designed and synthesized. In vitro cytotoxicity screening showed that compounds 3i, 3l, 3m, and 3n revealed potent anticancer activity against MCF-7 cancer cell line with IC50 values between 2.19–4.37 μM compared with Staurosporin as a reference compound. The antiproliferative activity of these compounds appears to be correlated well with their ability to inhibit the VEGFR-2 kinase enzyme. Activation of the damage response pathway leads to cellular cycle arrest at the G1 phase. Fluorochrome Annexin V/PI staining indicated that cell death proceeds through the apoptotic pathway mechanism. The mechanistic pathway was confirmed by a significant increase in the level of active caspase 9 compared with control untreated MCF-7 cells.
Collapse
|
18
|
Torres-Calis A, García JJ. Homogeneous Manganese-Catalyzed Hydrofunctionalizations of Alkenes and Alkynes: Catalytic and Mechanistic Tendencies. ACS OMEGA 2022; 7:37008-37038. [PMID: 36312376 PMCID: PMC9608411 DOI: 10.1021/acsomega.2c05109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many manganese-based homogeneous catalytic precursors have been developed as powerful alternatives in organic synthesis. Among these, the hydrofunctionalizations of unsaturated C-C bonds correspond to outstanding ways to afford compounds with more versatile functional groups, which are commonly used as building blocks in the production of fine chemicals and feedstock for the industrial field. Herein, we present an account of the Mn-catalyzed homogeneous hydrofunctionalizations of alkenes and alkynes with the main objective of finding catalytic and mechanistic tendencies that could serve as a platform for the works to come.
Collapse
|
19
|
Šermukšnytė A, Kantminienė K, Jonuškienė I, Tumosienė I, Petrikaitė V. The Effect of 1,2,4-Triazole-3-thiol Derivatives Bearing Hydrazone Moiety on Cancer Cell Migration and Growth of Melanoma, Breast, and Pancreatic Cancer Spheroids. Pharmaceuticals (Basel) 2022; 15:ph15081026. [PMID: 36015174 PMCID: PMC9416745 DOI: 10.3390/ph15081026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
4-Phenyl-3-[2-(phenylamino)ethyl]-1H-1,2,4-triazole-5(4H)-thione was used as a starting compound for the synthesis of the corresponding 1,2,4-triazol-3-ylthioacetohydrazide, which reacts with isatins and various aldehydes bearing aromatic and heterocyclic moieties provided target hydrazones. Their cytotoxicity was tested by the MTT assay against human melanoma IGR39, human triple-negative breast cancer (MDA-MB-231), and pancreatic carcinoma (Panc-1) cell lines. The selectivity of compounds towards cancer cells was also studied. In general, the synthesized compounds were more cytotoxic against the melanoma cell line. N′-(2-oxoindolin-3-ylidene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide, N′-((1H-pyrrol-2-yl)methylene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide and N′-(2-hydroxy-5-nitrobenzylidene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide were identified as the most active among all synthesized compounds in 3D cell cultures. N′-(4-(dimethylamino)benzylidene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide inhibited all cancer cell migration, was characterized as relatively more selective towards cancer cells, and could be further tested as an antimetastatic candidate.
Collapse
Affiliation(s)
- Aida Šermukšnytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
- Correspondence: (K.K.); (V.P.)
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
| | - Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, 50162 Kaunas, Lithuania
- Correspondence: (K.K.); (V.P.)
| |
Collapse
|
20
|
Marchetti F, Tombesi A, Di Nicola C, Pettinari R, Verdicchio F, Crispini A, Scarpelli F, Baldassarri C, Marangoni E, Hofer A, Galindo A, Petrelli R. Zinc(II) Complex with Pyrazolone-Based Hydrazones is Strongly Effective against Trypanosoma brucei Which Causes African Sleeping Sickness. Inorg Chem 2022; 61:13561-13575. [PMID: 35969809 PMCID: PMC9446893 DOI: 10.1021/acs.inorgchem.2c02201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Two pyrazolone-based hydrazones H2L′
[in general,
H2L′; in detail, H2L1 = 5-methyl-2-phenyl-4-(2-phenyl-1-(2-(4-(trifluoromethyl)phenyl)hydrazineyl)ethyl)-2,4-dihydro-3H-pyrazol-3-one, H2L2 = (Z)-5-methyl-2-phenyl-4-(2-phenyl-1-(2-(pyridin-2-yl)hydrazineyl)ethylidene)-2,4-dihydro-3H-pyrazol-3-one] were reacted with Zn(II) and Cu(II) acceptors
affording the complexes [Zn(HL1)2(MeOH)2], [Cu(HL1)2], and [M(HL2)2] (M = Cu or Zn). X-ray and DFT studies showed the free
proligands to exist in the N–H,N–H tautomeric form and
that in [Zn(HL1)2(MeOH)2], zinc is
six-coordinated by the N,O-chelated (HL1) ligand and other
two oxygen atoms of coordinated methanol molecules, while [Cu(HL1)2] adopts a square planar geometry with the two
(HL1) ligands in anti-conformation. Finally, the [M(HL2)2] complexes are octahedral with the two (HL2) ligands acting as κ-O,N,N-donors in planar conformation.
Both the proligands and metal complexes were tested against the parasite Trypanosoma brucei and Balb3T3 cells. The Zn(II)
complexes were found to be very powerful, more than the starting proligands,
while maintaining a good safety level. In detail, H2L1 and its
Zn(II) complex have high selective index (55 and >100, respectively)
against T. brucei compared to the mammalian
Balb/3T3 reference cells. These results encouraged the researchers
to investigate the mechanism of action of these compounds that have
no structural relations with the already known drugs used against T. brucei. Interestingly, the analysis of NTP and
dNTP pools in T. brucei treated by H2L1 and its Zn(II) complex showed that the drugs had a strong
impact on the CTP pools, making it likely that CTP synthetase is the
targeted enzyme. New
Zn(II) and Cu(II) complexes with pyrazolone-based hydrazone
ligands display different structural features. The Zn(II) complexes
show strong efficiency against the parasite Trypanosoma
brucei, while maintaining a good safety level. They
strongly impact the CTP pools, indicating that CTP synthetase is the
targeted enzyme.
Collapse
Affiliation(s)
- Fabio Marchetti
- Chemistry Interdisciplinary Project (CHIP), School of Science and Technology, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
| | - Alessia Tombesi
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
| | - Corrado Di Nicola
- Chemistry Interdisciplinary Project (CHIP), School of Science and Technology, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
| | - Riccardo Pettinari
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
| | - Federico Verdicchio
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
| | - Alessandra Crispini
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Francesca Scarpelli
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Cecilia Baldassarri
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
| | - Elisa Marangoni
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umea University, 901 87 Umeå, Sweden
| | - Agustín Galindo
- Departamento de Química Inorganíca, Facultad de Química, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| | - Riccardo Petrelli
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
| |
Collapse
|
21
|
Li A, Wang T, Feng Y, Qin Q, Jiang W, Tan Y. Synthesis, Crystal Structure, and Anticancer Activity of the Dinuclear Dibutyltin Complexes. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222050218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Kvasovs N, Gevorgyan V. Accessing Illusive E Isomers of α-Ester Hydrazones via Visible-Light-Induced Pd-Catalyzed Heck-Type Alkylation. Org Lett 2022; 24:4176-4181. [PMID: 35653178 PMCID: PMC10122867 DOI: 10.1021/acs.orglett.2c01409] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A visible-light-induced Pd-catalyzed stereoselective synthesis of alkylated ester hydrazones has been developed. This method operates via generation of a nucleophilic carbon-centered radical from alkyl bromide, iodide, or redox-active ester, followed by its addition to hydrazone, and a subsequent desaturation by palladium. The majority of products have E configuration, which are inaccessible by conventional condensation methods. In addition, a sequential C,N-alkylation protocol has been developed: a reaction between 1,3-dihalides and glyoxylate-derived hydrazone, delivering tetrahydropyridazines.
Collapse
Affiliation(s)
- Nikita Kvasovs
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
23
|
Branković J, Milivojević N, Milovanović V, Simijonović D, Petrović ZD, Marković Z, Šeklić DS, Živanović MN, Vukić MD, Petrović VP. Evaluation of antioxidant and cytotoxic properties of phenolic N-acylhydrazones: structure-activity relationship. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211853. [PMID: 35706666 PMCID: PMC9174720 DOI: 10.1098/rsos.211853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/06/2022] [Indexed: 05/03/2023]
Abstract
Cancer is still a relentless public health issue. Particularly, colorectal cancer is the third most prevalent cancer in men and the second in women. Moreover, cancer development and growth are associated with various cell disorders, such as oxidative stress and inflammation. The quest for efficient therapeutics is a challenging task, especially when it comes to achieving both cytotoxicity and selectivity. Herein, five series of phenolic N-acylhydrazones were synthesized and evaluated for their antioxidant potency, as well as their influence on HCT-116 and MRC-5 cells viability. Among 40 examined analogues, 20 of them expressed antioxidant activity against the DPPH radical. Furthermore, density functional theory was employed to estimate the antioxidant potency of the selected analogues from the thermodynamical aspect, as well as the preferable free-radical scavenging pathway. Cytotoxicity assay exposed enhanced selectivity of a number of analogues toward cancer cells. The structure-activity analysis revealed the impact of the type and position of the functional groups on both cell viability and selectivity toward cancer cells.
Collapse
Affiliation(s)
- Jovica Branković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Nevena Milivojević
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Vesna Milovanović
- University of Kragujevac, Faculty of Agronomy in Čačak, Ljubićska 30, Čačak, Serbia
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Zorica D. Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Zoran Marković
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dragana S. Šeklić
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marko N. Živanović
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Milena D. Vukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Vladimir P. Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
24
|
Fuior A, Cebotari D, Haouas M, Marrot J, Espallargas GM, Guérineau V, Touboul D, Rusnac RV, Gulea A, Floquet S. Synthesis, Structures, and Solution Studies of a New Class of [Mo 2O 2S 2]-Based Thiosemicarbazone Coordination Complexes. ACS OMEGA 2022; 7:16547-16560. [PMID: 35601294 PMCID: PMC9118386 DOI: 10.1021/acsomega.2c00705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/01/2022] [Indexed: 06/01/2023]
Abstract
This paper deals with the synthesis, structural studies, and behavior in solution of unprecedented coordination complexes built by the association of a panel of 14 representative thiosemicarbazone ligands with the cluster [Mo2O2S2]2+. These complexes have been thoroughly characterized both in the solid state and in solution by XRD and by NMR, respectively. In particular, HMBC 1H{15N} and 1H DOSY NMR experiments bring important elements for understanding the complexes' behavior in solution. These studies demonstrate that playing on the nature and the position of various substituents on the ligands strongly influences the coordination modes of the ligands as well as the numbers of isomers in solution, mainly 2 products for the majority of complexes and up to 5 for some of them.
Collapse
Affiliation(s)
- Arcadie Fuior
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Diana Cebotari
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Mohamed Haouas
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| | - Jérôme Marrot
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| | | | - Vincent Guérineau
- Institut
de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Cedex Gif-sur-Yvette, France
| | - David Touboul
- Institut
de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Cedex Gif-sur-Yvette, France
| | - Roman V. Rusnac
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Aurelian Gulea
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Sébastien Floquet
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| |
Collapse
|
25
|
Synthesis, X-ray Structure and Biological Studies of New Self-Assembled Cu(II) Complexes Derived from s-triazine Schiff Base Ligand. Molecules 2022; 27:molecules27092989. [PMID: 35566339 PMCID: PMC9106035 DOI: 10.3390/molecules27092989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The two ligands 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)aniline (DMAT) and 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)phenol (DMOHT) were used to synthesize three heteroleptic Cu(II) complexes via a self-assembly technique. The structure of the newly synthesized complexes was characterized using elemental analysis, FTIR and X-ray photoelectron spectroscopy (XPS) to be [Cu(DMAT)(H2O)(NO3)]NO3.C2H5OH (1), [Cu(DMOT)(CH3COO)] (2) and [Cu(DMOT)(NO3)] (3). X-ray single-crystal structure of complex 1 revealed a hexa-coordinated Cu(II) ion with one DMAT as a neutral tridentate NNN-chelate, one bidentate nitrate group and one water molecule. In the case of complex 2, the Cu(II) is tetra-coordinated with one DMOT as an anionic tridentate NNO-chelate and one monodentate acetate group. The antimicrobial, antioxidant and anticancer activities of the studied compounds were examined. Complex 1 had the best anticancer activity against the lung carcinoma A-549 cell line (IC50 = 5.94 ± 0.58 µM) when compared to cis-platin (25.01 ± 2.29 µM). The selectivity index (SI) of complex 1 was the highest (6.34) when compared with the free ligands (1.3–1.8), and complexes 2 (0.72) and 3 (2.97). The results suggested that, among those compounds studied, complex 1 is the most promising anticancer agent against the lung carcinoma A-549 cell line. In addition, complex 1 had the highest antioxidant activity (IC50 = 13.34 ± 0.58 µg/mL) which was found to be comparable to the standard ascorbic acid (IC50 = 10.62 ± 0.84 µg/mL). Additionally, complex 2 showedbroad-spectrum antimicrobial action against the microbes studied. The results revealed it to possess the strongest action of all the three complexes against B. subtilis. The MIC values found are 39.06, 39.06 and 78.125 mg/mL for complexes 1–3, respectively.
Collapse
|
26
|
Bala I, Singh K, Kataria R, Sindhu M. Exploration of structural, electrostatic and photophysical behaviour of novel Ni (II), Cu (II) and Zn (II) complexes, and their utility as potent antimicrobial agents. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Indu Bala
- Department of Chemistry Kurukshetra University Kurukshetra Haryana India
| | - Kiran Singh
- Department of Chemistry Kurukshetra University Kurukshetra Haryana India
| | - Ramesh Kataria
- Department of Chemistry and Center of Advanced Studies in Chemistry Panjab University Chandigarh India
| | - Meena Sindhu
- Department of Microbiology, COBS&H CCS Haryana Agricultural University Hisar India
| |
Collapse
|
27
|
Ewert W, Günther S, Miglioli F, Falke S, Reinke PYA, Niebling S, Günther C, Han H, Srinivasan V, Brognaro H, Lieske J, Lorenzen K, Garcia-Alai MM, Betzel C, Carcelli M, Hinrichs W, Rogolino D, Meents A. Hydrazones and Thiosemicarbazones Targeting Protein-Protein-Interactions of SARS-CoV-2 Papain-like Protease. Front Chem 2022; 10:832431. [PMID: 35480391 PMCID: PMC9038201 DOI: 10.3389/fchem.2022.832431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
The papain-like protease (PLpro) of SARS-CoV-2 is essential for viral propagation and, additionally, dysregulation of the host innate immune system. Using a library of 40 potential metal-chelating compounds we performed an X-ray crystallographic screening against PLpro. As outcome we identified six compounds binding to the target protein. Here we describe the interaction of one hydrazone (H1) and five thiosemicarbazone (T1-T5) compounds with the two distinct natural substrate binding sites of PLpro for ubiquitin and ISG15. H1 binds to a polar groove at the S1 binding site by forming several hydrogen bonds with PLpro. T1-T5 bind into a deep pocket close to the polyubiquitin and ISG15 binding site S2. Their interactions are mainly mediated by multiple hydrogen bonds and further hydrophobic interactions. In particular compound H1 interferes with natural substrate binding by sterical hindrance and induces conformational changes in protein residues involved in substrate binding, while compounds T1-T5 could have a more indirect effect. Fluorescence based enzyme activity assay and complementary thermal stability analysis reveal only weak inhibition properties in the high micromolar range thereby indicating the need for compound optimization. Nevertheless, the unique binding properties involving strong hydrogen bonding and the various options for structural optimization make the compounds ideal lead structures. In combination with the inexpensive and undemanding synthesis, the reported hydrazone and thiosemicarbazones represent an attractive scaffold for further structure-based development of novel PLpro inhibitors by interrupting protein-protein interactions at the S1 and S2 site.
Collapse
Affiliation(s)
- Wiebke Ewert
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Francesca Miglioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sven Falke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Patrick Y. A. Reinke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Stephan Niebling
- European Molecular Biology Laboratory Hamburg, DESY, Hamburg, Germany
| | - Christian Günther
- European Molecular Biology Laboratory Hamburg, DESY, Hamburg, Germany
| | | | - Vasundara Srinivasan
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, University Hamburg, Hamburg, Germany
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, University Hamburg, Hamburg, Germany
| | - Julia Lieske
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | | | | | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, University Hamburg, Hamburg, Germany
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Winfried Hinrichs
- Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alke Meents
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| |
Collapse
|
28
|
Cukierman DS, Rey NA. Tridentate N-Acylhydrazones as Moderate Ligands for the Potential Management of Cognitive Decline Associated With Metal-Enhanced Neuroaggregopathies. Front Neurol 2022; 13:828654. [PMID: 35250832 PMCID: PMC8888665 DOI: 10.3389/fneur.2022.828654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Daphne S Cukierman
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nicolás A Rey
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Liao A, Li L, Wang T, Lu A, Wang Z, Wang Q. Discovery of Phytoalexin Camalexin and Its Derivatives as Novel Antiviral and Antiphytopathogenic-Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2554-2563. [PMID: 35179026 DOI: 10.1021/acs.jafc.1c07805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In response to the invasion of plant viruses and pathogenic fungi, higher plants produce defensive allelochemicals. Finding candidate varieties of botanical pesticides based on allelochemicals is one of the important ways to create efficient and green pesticides. Here, a series of camalexin derivatives based on a phytoalexin camalexin scaffold were designed, synthesized, and assessed for their antiviral and fungicidal activities systematically. Most of these camalexin derivatives exhibited better antiviral activities against tobacco mosaic virus (TMV) than the control antiviral agent ribavirin. Under the same test conditions, the anti-TMV activities of compounds 3d, 5a, 5d, and 10f-10h were found to be equivalent to or better than that of ningnanmycin, an agricultural cytosine nucleoside antibiotic with excellent protective effect. The antiviral mechanism research showed that compound 5a could cause 20S CP disk fusion and disintegration, thus affecting the assembly of virus particles. The results of molecular docking indicate that there were obvious hydrogen bonds between compounds 3d, 5a, and 10f and TMV CP. The binding constants of compounds 5a and 10f to TMV CP were also calculated using fluorescence titration. These camalexin derivatives also presented broad spectrum fungicidal activities, especially for Rhizoctonia solani and Physalospora piricola. In this work, the design, synthesis, structure optimization, and mode of action of camalexin derivatives were carried out progressively. This work provides a reference for using defensive chemical compounds as novel pesticide lead compounds.
Collapse
Affiliation(s)
- Ancai Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lin Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tienan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
da Silva ET, da Silva Santos L, de Andrade GF, Rosa EJR, de Souza MVN. Camphor nitroimine: a key building block in unusual transformations and its applications in the synthesis of bioactive compounds. Mol Divers 2022; 26:3463-3483. [PMID: 34982358 DOI: 10.1007/s11030-021-10341-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/09/2021] [Indexed: 11/29/2022]
Abstract
The development of new drugs requires a lot of time and high financial investments. It involves a research network in which there is the participation of several researchers from different areas. For a new drug to reach the market, thousands of substances must be evaluated. There are several tools for this and the use of suitable building blocks can facilitate the process by allowing a lead compound to have suitable parameters. These compounds are key structures containing special functional groups that also permit adequate synthetic transformations, leading to several structures of interest in a short period of time. In this review, the use of camphor nitroimine as a potential key building block is explored. Derived from camphor, an abundant natural product present in various plant species, this nitroimine has proved to be quite versatile, allowing the access to substances with miscellaneous biological activities, ligands to asymmetric catalysis, asymmetric oxidants, O-N transfer agents and other applications. Its easy conversion to camphecene and other derivatives is described, as well as their applications in medicinal chemistry. Druglikeness analyses were performed on these studied agents as well as on their bioactive derivatives in order to assess their use in the development of potential drugs.
Collapse
Affiliation(s)
- Emerson Teixeira da Silva
- Laboratório de Síntese de Substâncias contra Doenças Tropicais-SSCDT, Departamento de Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Luciano da Silva Santos
- Laboratório de Síntese de Substâncias contra Doenças Tropicais-SSCDT, Departamento de Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Acadêmico Translacional Em Fármacos e Medicamentos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Gabriel Fernandes de Andrade
- Laboratório de Síntese de Substâncias contra Doenças Tropicais-SSCDT, Departamento de Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Emerson Joaquim Rodrigues Rosa
- Laboratório de Síntese de Substâncias contra Doenças Tropicais-SSCDT, Departamento de Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Marcus Vinícius Nora de Souza
- Laboratório de Síntese de Substâncias contra Doenças Tropicais-SSCDT, Departamento de Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil. .,Programa de Pós-Graduação Acadêmico Translacional Em Fármacos e Medicamentos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Xu J, Liu M, Hu Y, Wang L, Wang W, Wu Y, Guo H. Palladium-catalyzed allylic alkylation of hydrazones with hydroxy-tethered allyl carbonates: synthesis of functionalized hydrazones. Org Chem Front 2022. [DOI: 10.1039/d2qo01186g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd-catalyzed allylic alkylation of hydroxy-tethered allyl carbonates and hydrazones worked well without an external base to afford various E configurations of functionalized hydrazones, which were successfully transformed into pyridazines.
Collapse
Affiliation(s)
- Jiaqing Xu
- Department of Chemistry, Innovation Center of Pesticide Research, and Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. China
| | - Min Liu
- Department of Chemistry, Innovation Center of Pesticide Research, and Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. China
| | - Yimin Hu
- Department of Chemistry, Innovation Center of Pesticide Research, and Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. China
| | - Lei Wang
- Nutrichem, Co., LTD, Beijing, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hongchao Guo
- Department of Chemistry, Innovation Center of Pesticide Research, and Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
32
|
Hristova-Avakumova NG, Valcheva EP, Anastassova NO, Nikolova-Mladenova BI, Atanasova LA, Angelova SE, Yancheva DY. In vitro and in silico studies of radical scavenging activity of salicylaldehyde benzoylhydrazones. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Wu J, Wang J, Han Y, Lin Y, Wang J, Bu M. Synthesis and Cytotoxic Activity of Novel Betulin Derivatives Containing Hydrazide-Hydrazone Moieties. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211055345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of novel betulin derivatives containing hydrazide-hydrazone moieties were synthesized. All compounds were evaluated for their cytotoxicity against four human carcinoma cell lines (HepG2, A549, MCF-7 and HCT-116) and a normal human gastric epithelial cell line (GES-1). Among them, compound 6i was the most potent against HepG2 and MCF-7 cell lines, with IC50 values of 9.27 and 8.87 μM, respectively. The results suggest that the incorporation of a hydrazide-hydrazone side chain at the C-28 position of betulin is beneficial for compounds to display significant cytotoxicity. Compound 6i may be used as a promising skeleton for antitumor agents with improved efficacy.
Collapse
Affiliation(s)
- Jiale Wu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jiafeng Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Yinglong Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jing Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
34
|
Dongare G, Aswar A. Synthesis, spectral characterization, thermo-kinetic and biological studies of some complexes derived from tridentate hydrazone Schiff base. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Hydrazone-based green corrosion inhibitors for API grade carbon steel in HCl: Insights from electrochemical, XPS, and computational studies. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Tian Z, Liao A, Kang J, Gao Y, Lu A, Wang Z, Wang Q. Toad Alkaloid for Pesticide Discovery: Dehydrobufotenine Derivatives as Novel Agents against Plant Virus and Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9754-9763. [PMID: 34415761 DOI: 10.1021/acs.jafc.1c03714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant viruses and fungi are a serious threat to food security and natural ecosystems. The efficient and environment-friendly control methods are urgently needed to help safeguard such resources. Here, we achieved the efficient synthesis of toad alkaloid dehydrobufotenine in eight steps with an overall yield of 8% from 5-methoxyindole. A series of dehydrobufotenine derivatives were designed, synthesized, and evaluated for their antiviral and fungicidal activities systematically. It was found for the first time that these compounds have good anti-plant virus activities and anti-plant pathogen activities. The antiviral activities of 21 compounds were similar to or better than those of ribavirin. Compounds 12 and 17 displayed better antiviral activities than ningnanmycin which is perhaps the most effective anti-plant virus agent. The antiviral mechanism research study of 12 revealed that it could make 20S CP disk fusion and aggregation. Further molecular docking results showed that there are hydrogen bonds between compounds 12, 17, and tobacco mosaic virus CP. The docking results are consistent with the antiviral activity. These compounds also displayed broad-spectrum fungicidal activities against 14 kinds of fungi, especially for Sclerotinia sclerotiorum. In this work, the synthesis, structure optimization, structure-activity relationship studies, and mode of action research of dehydrobufotenine alkaloids were carried out. It provides a reference for the development of the anti-plant virus agent and anti-plant pathogen agent from toad alkaloids.
Collapse
Affiliation(s)
- Zhaoyong Tian
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ancai Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jin Kang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yongyue Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Aidang Lu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
37
|
Munir R, Javid N, Zia-ur-Rehman M, Zaheer M, Huma R, Roohi A, Athar MM. Synthesis of Novel N-Acylhydrazones and Their C-N/N-N Bond Conformational Characterization by NMR Spectroscopy. Molecules 2021; 26:molecules26164908. [PMID: 34443493 PMCID: PMC8399016 DOI: 10.3390/molecules26164908] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
In this article, a synthesis of N’-(benzylidene)-2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazides and their structural interpretation by NMR experiments is described in an attempt to explain the duplication of some peaks in their 1H- and 13C-NMR spectra. Twenty new 6-methyl-1H-pyrazolo[3,4-b]quinoline substituted N-acylhydrazones 6(a–t) were synthesized from 2-chloro-6-methylquinoline-3-carbaldehyde (1) in four steps. 2-Chloro-6-methylquinoline-3-carbaldehyde (1) afforded 6-methyl-1H-pyrazolo[3,4-b]quinoline (2), which upon N-alkylation yielded 2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetate (3). The hydrazinolysis of 3 followed by the condensation of resulting 2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazide (4) with aromatic aldehydes gave N-acylhydrazones 6(a–t). Structures of the synthesized compounds were established by readily available techniques such as FT-IR, NMR and mass spectral studies. The stereochemical behavior of 6(a–t) was studied in dimethyl sulfoxide-d6 solvent by means of 1H NMR and 13C NMR techniques at room temperature. NMR spectra revealed the presence of N’-(benzylidene)-2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazides as a mixture of two conformers, i.e., E(C=N)(N-N) synperiplanar and E(C=N)(N-N)antiperiplanar at room temperature in DMSO-d6. The ratio of both conformers was also calculated and E(C=N) (N-N) syn-periplanar conformer was established to be in higher percentage in equilibrium with the E(C=N) (N-N)anti-periplanar form.
Collapse
Affiliation(s)
- Rubina Munir
- Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan;
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
- Correspondence: or (R.M.); (M.Z.R.)
| | - Noman Javid
- Department of Chemistry (C-Block), Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan;
| | - Muhammad Zia-ur-Rehman
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan;
- Correspondence: or (R.M.); (M.Z.R.)
| | - Muhammad Zaheer
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan;
| | - Rahila Huma
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
| | - Ayesha Roohi
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
| | | |
Collapse
|
38
|
Tumosienė I, Jonuškienė I, Kantminienė K, Mickevičius V, Petrikaitė V. Novel N-Substituted Amino Acid Hydrazone-Isatin Derivatives: Synthesis, Antioxidant Activity, and Anticancer Activity in 2D and 3D Models In Vitro. Int J Mol Sci 2021; 22:ijms22157799. [PMID: 34360565 PMCID: PMC8346030 DOI: 10.3390/ijms22157799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
A series of novel mono and bishydrazones each bearing a 2-oxindole moiety along with substituted phenylaminopropanamide, pyrrolidin-2-one, benzimidazole, diphenylmethane, or diphenylamine fragments were synthesized, and their anticancer activities were tested by MTT assay against human melanoma A375 and colon adenocarcinoma HT-29 cell lines. In general, the synthesized compounds were more cytotoxic against HT-29 than A375. 3-((4-Methoxyphenyl)(3-oxo-3-(2-(2-oxoindolin-3-ylidene)hydrazinyl)propyl)amino)-N′-(2-oxoindolin-3-ylidene)propanehydrazide and (N′,N‴)-1,1′-(methylenebis(4,1-phenylene))bis(5-oxo-N′-(2-oxoindolin-3-ylidene)pyrrolidine-3-carbohydrazide) were identified as the most active compounds against HT-29 in 2D and 3D cell cultures. The same compounds showed the highest antioxidant activity among the synthesized compounds screened by ferric reducing antioxidant power assay (FRAP). Their antioxidant activity is on par with that of a well-known antioxidant ascorbic acid.
Collapse
Affiliation(s)
- Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (I.J.); (V.M.)
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (I.J.); (V.M.)
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence:
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (I.J.); (V.M.)
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania;
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
39
|
Mildness in preparative conditions directly affects the otherwise straightforward syntheses outcome of Schiff-base isoniazid derivatives: Aroylhydrazones and their solvolysis-related dihydrazones. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Almehmadi MA, Aljuhani A, Alraqa SY, Ali I, Rezki N, Aouad MR, Hagar M. Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1,2,3-triazole conjugates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129148] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Abdelrahman MS, Khattab TA, Kamel S. Development of a novel colorimetric thermometer based on poly( N-vinylcaprolactam) with push–π–pull tricyanofuran hydrazone anion dye. NEW J CHEM 2021. [DOI: 10.1039/d1nj00221j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermochromic poly(N-vinylcaprolactam-co-tricyanofuran hydrazone) [poly(VC-co-TCFH)] gel labeled with a halochromic chromophore was developed using traditional free radical polymerization.
Collapse
Affiliation(s)
- Meram S. Abdelrahman
- Dyeing
- Printing and Auxiliaries Department
- National Research Centre
- Cairo 12622
- Egypt
| | - Tawfik A. Khattab
- Dyeing
- Printing and Auxiliaries Department
- National Research Centre
- Cairo 12622
- Egypt
| | - Samir Kamel
- Chemical Industries Research Division
- National Research Centre
- Cairo 12622
- Egypt
| |
Collapse
|
42
|
Oliveira AP, Ferencs M, Azevedo VO, Diniz R, Louro SR, Alves OC, Beraldo H. Physicochemical characterization of antimony(III), copper(II) and silver(I) complexes with 4-nitroimidazole-derived hydrazones. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Thiosemicarbazone Complexes of Transition Metals as Catalysts for Cross-Coupling Reactions. Catalysts 2020. [DOI: 10.3390/catal10101107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Catalysis of cross-coupling reactions under phosphane-free conditions represents an important ongoing challenge. Although transition metal complexes based on the thiosemicarbazone unit have been known for a very long time, their use in homogeneous catalysis has been studied only relatively recently. In particular, reports of cross-coupling catalytic reactions with such complexes have appeared only in the last 15 years. This review provides a survey of the research in this area and a discussion of the prospects for future developments.
Collapse
|
44
|
Cunha MR, Bhardwaj R, Carrel AL, Lindinger S, Romanin C, Parise-Filho R, Hediger MA, Reymond JL. Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Med Chem 2020; 11:1032-1040. [PMID: 33479695 PMCID: PMC7513592 DOI: 10.1039/d0md00145g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential vanilloid 6 (TRPV6) is a calcium channel implicated in multifactorial diseases and overexpressed in numerous cancers. We recently reported the phenyl-cyclohexyl-piperazine cis-22a as the first submicromolar TRPV6 inhibitor. This inhibitor showed a seven-fold selectivity against the closely related calcium channel TRPV5 and no activity on store-operated calcium channels (SOC), but very significant off-target effects and low microsomal stability. Here, we surveyed analogues incorporating structural features of the natural product capsaicin and identified 3OG, a new oxygenated analog with similar potency against TRPV6 (IC50 = 0.082 ± 0.004 μM) and ion channel selectivity, but with high microsomal stability and very low off-target effects. This natural product-inspired inhibitor does not exhibit any non-specific toxicity effects on various cell lines and is proposed as a new tool compound to test pharmacological inhibition of TRPV6 mediated calcium flux in disease models.
Collapse
Affiliation(s)
- Micael Rodrigues Cunha
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
- Department of Pharmacy , University of São Paulo , Prof. Lineu Prestes Avenue 580 , 05508-000 São Paulo , Brazil .
| | - Rajesh Bhardwaj
- Department of Nephrology and Hypertension , University Hospital Bern , Inselspital , 3010 Bern , Switzerland .
| | - Aline Lucie Carrel
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Sonja Lindinger
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Christoph Romanin
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Roberto Parise-Filho
- Department of Pharmacy , University of São Paulo , Prof. Lineu Prestes Avenue 580 , 05508-000 São Paulo , Brazil .
| | - Matthias A Hediger
- Department of Nephrology and Hypertension , University Hospital Bern , Inselspital , 3010 Bern , Switzerland .
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| |
Collapse
|
45
|
Tumosienė I, Kantminienė K, Klevinskas A, Petrikaitė V, Jonuškienė I, Mickevičius V. Antioxidant and Anticancer Activity of Novel Derivatives of 3-[(4-Methoxyphenyl)amino]propane-hydrazide. Molecules 2020; 25:molecules25132980. [PMID: 32610506 PMCID: PMC7412228 DOI: 10.3390/molecules25132980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Series of novel 3-[(4-methoxyphenyl)amino]propanehydrazide derivatives bearing semicarbazide, thiosemicarbazide, thiadiazole, triazolone, triazolethione, thiophenyltriazole, furan, thiophene, naphthalene, pyrrole, isoindoline-1,3-dione, oxindole, etc. moieties were synthesized and their molecular structures were confirmed by IR, 1H-, 13C-NMR spectroscopy and mass spectrometry data. The antioxidant activity of the synthesized compounds was screened by DPPH radical scavenging method. The antioxidant activity of N-(1,3-dioxoisoindolin-2-yl)-3-((4-methoxyphenyl)amino)propanamide and 3-((4-methoxyphenyl)amino)-N’-(1-(naphthalen-1-yl)-ethylidene)propanehydrazide has been tested to be ca. 1.4 times higher than that of a well-known antioxidant ascorbic acid. Anticancer activity was tested by MTT assay against human glioblastoma U-87 and triple-negative breast cancer MDA-MB-231 cell lines. In general, the tested compounds were more cytotoxic against U-87 than MDA-MB-231 cell line. 1-(4-Fluorophenyl)-2-((5-(2-((4-methoxyphenyl)amino)ethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)thio)ethanone has been identified as the most active compound against the glioblastoma U-87 cell line.
Collapse
Affiliation(s)
- Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-37-300178
| | - Arnas Klevinskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania;
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
| |
Collapse
|
46
|
Almeida ML, Viana DCF, da Costa VCM, Dos Santos FA, Pereira MC, Pitta MGR, de Melo Rêgo MJB, Pitta IR, Pitta MGR. Synthesis, Antitumor Activity and Molecular Docking Studies on Seven Novel Thiazacridine Derivatives. Comb Chem High Throughput Screen 2020; 23:359-368. [PMID: 32189590 DOI: 10.2174/1386207323666200319105239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE In the last decades, cancer has become a major problem in public health all around the globe. Chimeric chemical structures have been established as an important trend on medicinal chemistry in the last years. Thiazacridines are hybrid molecules composed of a thiazolidine and acridine nucleus, both pharmacophores that act on important biological targets for cancer. By the fact it is a serious disease, seven new 3-acridin-9-ylmethyl-thiazolidine-2,4-dione derivatives were synthesized, characterized, analyzed by computer simulation and tested in tumor cells. In order to find out if the compounds have therapeutic potential. MATERIALS AND METHODS Seven new 3-acridin-9-ylmethyl-thiazolidine-2,4-dione derivatives were synthesized through Michael addition and Knoevenagel condensation strategies. Characterization was performed by NMR and Infrared spectroscopy techniques. Regarding biological activity, thiazacridines were tested against solid and hematopoietic tumoral cell lines, namely Jurkat (acute T-cell leukemia); HL-60 (acute promyelocytic leukemia); DU 145 (prostate cancer); MOLT-4 (acute lymphoblastic leukemia); RAJI (Burkitt's lymphoma); K562 (chronic myelogenous leukemia) and normal cells PBMC (healthy volunteers). Molecular docking analysis was also performed in order to assess major targets of these new compounds. Cell cycle and clonogenic assay were also performed. RESULTS Compound LPSF/AA-62 (9f) exhibited the most potent anticancer activity against HL-60 (IC50 3,7±1,7 μM), MOLT-4 (IC50 5,7±1,1 μM), Jurkat (IC50 18,6 μM), Du-145 (IC50 20±5 μM) and Raji (IC50 52,3±9,2 μM). While the compound LPSF/AA-57 (9b) exhibited anticancer activity against the K562 cell line (IC50 51,8±7,8 μM). Derivative LPSF/AA-62 (9f) did not interfere in the cell cycle phases of the Molt-4 lineage. However, the LPSF/AA-62 (9f) derivative significantly reduced the formation of prostate cancer cell clones. The compound LPSF/AA-62 (9f) has shown strong anchorage stability with enzymes topoisomerases 1 and 2, in particular due the presence of chlorine favored hydrogen bonds with topoisomerase 1. CONCLUSION The 3-(acridin-9-ylmethyl)-5-((10-chloroanthracen-9-yl)methylene)thiazolidine-2,4-dione (LPSF/AA-62) presented the most promising results, showing anti-tumor activity in 5 of the 6 cell types tested, especially inhibiting the formation of colonies of prostate tumor cells (DU-145).
Collapse
Affiliation(s)
- Marcel L Almeida
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Douglas C F Viana
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Valécia C M da Costa
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Flaviana A Dos Santos
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Michelly C Pereira
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Maira G R Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Moacyr J B de Melo Rêgo
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Ivan R Pitta
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Marina G R Pitta
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|