1
|
Chen S, Dou Y, Zhang S, Qiu H, Liu H, Xu Y, Shu L, Li Y. Rapid Identification of Chemical Constituents in New Compound Aloe Capsule Based on UPLC-Q-Orbitrap-MS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9944. [PMID: 39588781 DOI: 10.1002/rcm.9944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
RATIONALE The chemical composition of the new compound aloe capsule (NCAC) has not been fully elucidated to date, which poses challenges for pharmacology, scientific, and rational drug use. In this study, a rapid and sensitive method was established to comprehensively study the constituents in the NCAC. The contents of the NCAC were analyzed by UPLC-Q-Orbitrap-MS and data postprocessing technology. METHODS Firstly, the extract was separated by UPLC system, and the fragment information was obtained under positive and negative ions and then compared with the characteristic fragments described in the literature, so as to achieve the purpose of rapid identification of the compound of NCAC. RESULTS A total of 56 compounds including 21 chromones, 6 pyranones, 7 anthraquinones, 7 anthrone, 5 alkaloids, 4 amino acids, and 6 other components were detected in NCAC by comparing the retention time and mass spectrometry information and retrieving the reference literature. CONCLUSIONS The UPLC-Q-Orbitrap-MS method was developed and utilized successfully to identify the major constituents in NCAC and would be helpful for improving the quality control standard of NCAC.
Collapse
Affiliation(s)
- Siyue Chen
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajie Dou
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shumin Zhang
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huixin Qiu
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huiru Liu
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Xu
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lexin Shu
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Beigiazaraghbelagh P, Rostamizadeh S, Poursattar Marjani A, Bahrami A, Ghiasvand A, Arabi Z. Experimental and DFT studies on the green synthesis of 2-amino-4H-chromenes using a recyclable GOQDs-NS-doped catalyst. Sci Rep 2024; 14:31737. [PMID: 39738359 DOI: 10.1038/s41598-024-82347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/04/2024] [Indexed: 01/02/2025] Open
Abstract
This research presents an innovative approach for synthesizing 2-amino-4H-chromene derivatives, utilizing 30 mg of NS-doped graphene oxide quantum dots (GOQDs) as a catalyst in a one-pot, three-component reaction conducted in ethanol. The NS-doped GOQDs were synthesized using a cost-effective bottom-up method through the condensation of citric acid (CA) with thiourea and the reaction was carried out at 185∘ C, resulting in the elimination of water. The catalytic performance of the synthesized NS-doped GOQDs resulted in high product yields, achieving up to 98% for the 2-amino-4H-chromene derivatives from aromatic aldehydes, malononitrile, resorcinol, β -naphthol, and dimedone. The reaction showcased rapid completion time (typically < 2 h), low-cost reagents, and easy work-up procedures. In addition, the study integrates experimental and theoretical analyses, including density functional theory (DFT) calculations, to investigate the electronic properties of the synthesized compounds. Calculated HOMO and LUMO energies indicate efficient charge transfer within the molecular structure. The FT-IR spectra of compound 4c were recorded in the range of 4000-500 cm- 1 , and vibrational frequencies were computed at the B3LYP/6-311+G(d,p) level, correlating well with experimental data. Detailed analyses, including Mep surfaces, Mulliken population analysis, and Natural Bond Orbital (NBO) analysis, provide further insights into the electronic distribution and reactivity of the compounds. Furthermore, comparative1 H and13 C NMR analyses of compound 4c reveal strong agreement between computational and experimental findings. This research not only validates the synthetic method but also emphasizes the dual experimental and computational approach in understanding the structural and electronic characteristics of the 4c compound.
Collapse
Affiliation(s)
- Parvin Beigiazaraghbelagh
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| | - Shahnaz Rostamizadeh
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | | | - Aidin Bahrami
- Department of Physical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Arezu Ghiasvand
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Zahra Arabi
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| |
Collapse
|
3
|
Zhang S, Ding N, Zheng X, Lu Y, Wei J, Zeng H, Sun W, Zhou Y, Gao Y, Zhang Y, Hu Z. Chromones Featuring a [6,6]-Spiroketal Moiety Produced by Coculture of the Endophytic Fungi Chaetomium virescens and Xylaria Grammica. JOURNAL OF NATURAL PRODUCTS 2024. [PMID: 39688569 DOI: 10.1021/acs.jnatprod.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Under the guidance of HPLC-DAD analysis, ten new chromones featuring a rare [6,6]-spiroketal moiety, namely chaetovirexylariones A-J (1-10), together with two known congeners (11-12), were isolated from coculture of the endophytic fungi Chaetomium virescens and Xylaria grammica, from the rhizome of the medicinal plant Smilax glabra Roxb. Their structures were elucidated via a combination of NMR and HRESIMS data, and the absolute configurations of 1-10 were determined by the chemical conversion and single-crystal X-ray diffraction (Cu Kα) experiments, as well as the comparison of the experimental and calculated electronic circular dichroism (ECD) data. Compound 6 is the first report as a racemate of this type of natural product. Compound 10 represents the first example of a [6,6]-spiroketal chromone bearing a 5-amino-3-methyl-2-pentenoic acid fragment. Compound 8 demonstrated a reduction in PTX resistance of SW620/AD300 by a factor of 45, and had the potential to be an effective P-gp inhibitor and an antitumor chemotherapy sensitizer.
Collapse
Affiliation(s)
- Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Nanjing Ding
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xinyu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuling Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jiangchun Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuan Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
4
|
Geronikaki A. Special Issue: "Enzymes and Enzyme Inhibitors-Applications in Medicine and Diagnosis 2.0". Int J Mol Sci 2024; 25:13422. [PMID: 39769186 PMCID: PMC11678085 DOI: 10.3390/ijms252413422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The first paper in this Special Issue explores the synthesis, characterization, biological, and catalytic activities of new gold(I) and silver(I) complexes that are stabilized by caffeine derivatives and used as NHC ligands [...].
Collapse
Affiliation(s)
- Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Sun J, Song J. TiO 2/CuWO 4 heterojunction photocatalyst in the preparation of cardiovascular chromeno[4,3- b]chromene drugs. RSC Adv 2024; 14:39636-39644. [PMID: 39691223 PMCID: PMC11650655 DOI: 10.1039/d4ra07857h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
Chromeno[4,3-b]chromenes have shown potential as effective drugs against cardiovascular diseases. This study centered on a novel heterojunction nanocomposite TiO2/CuWO4, which incorporates titanium dioxide (TiO2) and copper tungstate(vi) to improve photocatalytic efficiency. The characterization of the TiO2/CuWO4 photocatalyst was performed using various techniques, including FT-IR, XRD, TEM, DRS, SEM, EDS, and XPS. TiO2/CuWO4 demonstrated significant effectiveness as a photocatalyst for the synthesis of chromeno[4,3-b]chromene derivatives, which show potential antibacterial and antifungal properties beneficial for oral health concerns such as dental caries and periodontal disease. While TiO2 can absorb light to produce electrons and holes under direct illumination, its photocatalytic efficiency is improved when paired with CuWO4. The research also explored the influence of several factors, including the quantity of photocatalyst, reaction duration, temperature, solvent selection, and the reusability of the nanocomposite. Optimal reaction conditions were found to involve 1 mmol of dimedone, benzaldehyde, and 4-hydroxycoumarin, using 12 mg of TiO2/CuWO4 in 4 mL of ethanol, subjected to irradiation from a green laser at room temperature for 30 minutes. The results indicate that the TiO2/CuWO4 heterojunction ranks among the most effective options for photocatalytic synthesis of chromeno[4,3-b]chromene derivatives.
Collapse
Affiliation(s)
- Jiaqi Sun
- Department of Cardiology, The Second Affiliated Hospital of Xinjiang Medical University Urumqi City 830000 China
| | - Jiahao Song
- Department of Cardiology, The Second Affiliated Hospital of Xinjiang Medical University Urumqi City 830000 China
| |
Collapse
|
6
|
Listratova AV, Borisov RS, Polovkov NY, Kulikova LN. Synthesis and Biological Activity of Chromeno[3,2- c]Pyridines. Molecules 2024; 29:4997. [PMID: 39519637 PMCID: PMC11547192 DOI: 10.3390/molecules29214997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The review summarizes all synthetic methodologies for the preparation of chromeno[3,2-c]pyridines and chromeno[3,2-c]quinolines. The proposed approaches are systemized based on ways for the construction of the heterocyclic system. The presence of these compounds in nature and their bioactivity are also discussed. Natural products with an annelated chromeno[3,2-c]pyridine fragment are well-known and a number of alkaloids derived from this system as a key core have been recently isolated. These compounds demonstrate antimicrobial, antivirus, and cytotoxic activities, making chromeno[3,2-c]pyridine structural motifs promising for medicinal chemistry.
Collapse
Affiliation(s)
- Anna V. Listratova
- Organic Chemistry Department, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Roman S. Borisov
- A.V.Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (R.S.B.); (N.Y.P.)
| | - Nikolay Yu. Polovkov
- A.V.Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (R.S.B.); (N.Y.P.)
| | - Larisa N. Kulikova
- Organic Chemistry Department, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| |
Collapse
|
7
|
Qu Q, Zhang Y, Zhao X, Zhang X, Wei X, Tang Y, Lei X, Song X. Polygonum ciliinerve (Nakai) Ohwi: a review of its botany, traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5403-5420. [PMID: 38396156 DOI: 10.1007/s00210-024-03015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Polygonum ciliinerve (Nakai) Ohwi is a perennial twining vine plant from the Polygonaceae family, which is a Chinese herbal medicine with great value for development and utilization. The purpose of this paper is to provide a systematic review of the botany, traditional uses, phytochemistry, pharmacology, pharmacokinetics, and toxicology of Polygonum ciliinerve (Nakai) Ohwi, as well as an outlook on the future research directions and development prospects of the plant. Data on Polygonum ciliinerve (Nakai) Ohwi were obtained from different databases, including China National Knowledge Infrastructure, Baidu Academic, Wanfang Database, Google Academic, PubMed, Web of Science, SpringerLink, Wiley; books; standards; and Ph.D. and MSc theses. So far, 86 compounds have been identified from Polygonum ciliinerve (Nakai) Ohwi, including anthraquinones, stilbenes, flavonoids, tannins, chromogenic ketones, organic acids and esters, lignans, isobenzofurans, alkaloids, naphthols, and others. Studies have found that Polygonum ciliinerve (Nakai) Ohwi has a wide range of pharmacological effects, including antiviral, antibacterial, anti-inflammatory and analgesic, antitumor, immunomodulatory, hypoglycemic, and antioxidant effects. Clinically, Polygonum ciliinerve (Nakai) Ohwi is very effective in the treatment of gastritis and chronic gastritis. Based on its traditional use, chemical composition, and pharmacological activity, Polygonum ciliinerve (Nakai) Ohwi is a promising source of natural medicine in drug development.
Collapse
Affiliation(s)
- Qiong Qu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ying Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaomei Zhao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinbo Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xuan Wei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yingying Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xuan Lei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiao Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.
- Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
8
|
Kumar N, Jangid K, Kumar V, Yadav RP, Mishra J, Upadhayay S, Kumar V, Devi B, Kumar V, Dwivedi AR, Kumar P, Baranwal S, Bhatti JS, Kumar V. In Vitro and In Vivo Investigations of Chromone Derivatives as Potential Multitarget-Directed Ligands: Cognitive Amelioration Utilizing a Scopolamine-Induced Zebrafish Model. ACS Chem Neurosci 2024; 15:2565-2585. [PMID: 38795037 DOI: 10.1021/acschemneuro.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024] Open
Abstract
Alzheimer's disease is a complex neurological disorder linked with multiple pathological hallmarks. The interrelation of therapeutic targets assists in the enhancement of cognitive decline through interference with overall neuronal transmission. We have synthesized and screened various chromone derivatives as potential multitarget-directed ligands for the effective treatment of Alzheimer's disease. The synthesized compounds exhibited multipotent activity against AChE, BuChE, MAO-B, and amyloid β aggregation. Three potent compounds, i.e., VN-3, VN-14, and VN-19 were identified that displayed remarkable activities against different targets. These compounds displayed IC50 values of 80 nM, 2.52 μM, and 140 nM against the AChE enzyme, respectively, and IC50 values of 2.07 μM, 70 nM, and 450 nM against the MAO-B isoform, respectively. VN-3 displayed potent activity against self-induced Aβ1-42 aggregation with inhibition of 58.3%. In the ROS inhibition studies, the most potent compounds reduced the intracellular ROS levels up to 80% in SH-SY5Y cells at 25 μM concentration. The compounds were found to be neuroprotective and noncytotoxic even at a concentration of 25 μM against SH-SY5Y cells. In silico studies showed that the compounds were nicely accommodated in the active sites of the receptors along with thermodynamically stable orientations. Compound VN-19 exhibited a balanced multitargeting profile against AChE, BuChE, MAO-B, and Aβ1-42 enzymes and was further evaluated for in vivo activities on the scopolamine-induced zebrafish model. VN-19 was found to ameliorate the cognitive decline in zebrafish brains by protecting them against scopolamine-induced neurodegeneration. Thus, VN-3, VN-14, and VN-19 were identified as potent multitarget-directed ligands with a balanced activity profile against different targets and can be developed as therapeutics for AD.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vishal Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Ravi Prakash Yadav
- Gastrointestinal Disease Lab, Department of Microbiology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vinay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bharti Devi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
- Gitam School of Pharmacy, Hyderabad, Telangana 502329, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Somesh Baranwal
- Gastrointestinal Disease Lab, Department of Microbiology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| |
Collapse
|
9
|
Kumar S, Arora A, Maikhuri VK, Chaudhary A, Kumar R, Parmar VS, Singh BK, Mathur D. Advances in chromone-based copper(ii) Schiff base complexes: synthesis, characterization, and versatile applications in pharmacology and biomimetic catalysis. RSC Adv 2024; 14:17102-17139. [PMID: 38808245 PMCID: PMC11130647 DOI: 10.1039/d4ra00590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Chromones are well known as fundamental structural elements found in numerous natural compounds and medicinal substances. The Schiff bases of chromones have a much wider range of pharmacological applications such as antitumor, antioxidant, anti-HIV, antifungal, anti-inflammatory, and antimicrobial properties. A lot of research has been carried out on chromone-based copper(ii) Schiff-base complexes owing to their role in the organometallic domain and promise as potential bioactive cores. This review article is centered on copper(ii) Schiff-base complexes derived from chromones, highlighting their diverse range of pharmacological applications documented in the past decade, as well as the future research opportunities they offer.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
| | - Aditi Arora
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Vipin K Maikhuri
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi Delhi India
| | - Rajesh Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, R. D. S College, B. R. A. Bihar University Muzaffarpur India
| | - Virinder S Parmar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
- Amity Institute of Click Chemistry and Research Studies, Amity University Sector 125 Noida 201313 Uttar Pradesh India
| | - Brajendra K Singh
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Divya Mathur
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, Daulat Ram College, University of Delhi Delhi India
| |
Collapse
|
10
|
Farzaneh E, Mohammadi M, Raymand P, Noori M, Golestani S, Ranjbar S, Ghasemi Y, Mohammadi-Khanaposhtani M, Asadi M, Nasli Esfahani E, Rastegar H, Larijani B, Mahdavi M, Taslimi P. Pyrano[2,3-b]chromone derivatives as novel dual inhibitors of α-glucosidase and α-amylase: Design, synthesis, biological evaluation, and in silico studies. Bioorg Chem 2024; 145:107207. [PMID: 38402795 DOI: 10.1016/j.bioorg.2024.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024]
Abstract
Inhibition of α-glucosidase and α-amylase is an important target for treatment of type 2 diabetes. In this work, a novel series of pyrano[2,3-b]chromene derivatives 5a-m was designed based on potent α-glucosidase and α-amylase inhibitors and synthesized by simple chemical reactions. These compounds were evaluated against the latter enzymes. Most of the title compounds exhibited high inhibitory activity against α-glucosidase and α-amylase in comparison to standard inhibitor (acarbose). Representatively, the most potent compound, 4-methoxy derivative 5d, was 30.4 fold more potent than acarbose against α-glucosidase and 6.1 fold more potent than this drug against α-amylase. In silico molecular modeling demonstrated that compound 5d attached to the active sites of α-glucosidase and α-amylase with a favorable binding energies and established interactions with important amino acids. Dynamics of compound 5d also showed that this compound formed a stable complex with the α-glucosidase active site. In silicodrug-likeness as well as ADMET prediction of this compound was also performed and satisfactory results were obtained.
Collapse
Affiliation(s)
- Elnaz Farzaneh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooya Raymand
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahand Golestani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ranjbar
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Iran
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Türkiye.
| |
Collapse
|
11
|
Nazeri MT, Nasiriani T, Torabi S, Shaabani A. Isocyanide-based multicomponent reactions for the synthesis of benzopyran derivatives with biological scaffolds. Org Biomol Chem 2024; 22:1102-1134. [PMID: 38251960 DOI: 10.1039/d3ob01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Benzopyrans (BZPs) are among the most privileged and influential small O-heterocycles that form the core of many natural compounds, commercial drugs, biological compositions, agrochemicals, and functional materials. BZPs are divided into six general categories including coumarins, chromans, 2H-chromenes, 4H-chromenes, chromones, and 4-chromanones, each of which is abundant in many plants and foods. These oxygenated heterocyclic compounds are fascinating motifs and have extensive applications in biology and materials science. Hence, numerous efforts have been made to develop innovative approaches for their extraction and synthesis. However, most of them are step-by-step or multi-step strategies that suffer from waste material generation and a tedious extraction process. Isocyanide-based multicomponent reactions (I-MCRs) offer a highly efficient method for overcoming these problems. The I-MCR is a simple and environmentally friendly one-pot domino procedure that does not require intermediate isolation or workup and is generally more efficient in material usage. This review covers all research articles related to I-MCRs for synthesizing BZP derivatives from the beginning to the middle of the year 2023. This strategy will be useful for organic and pharmaceutical chemists to design new drugs and optimize the synthesis steps of biological compounds and commercial drugs with benzopyran cores.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Tahereh Nasiriani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Saeed Torabi
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
- Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
12
|
Chniti S, Pongrácz P, Kollár L, Bényei A, Dörnyei Á, Takács A. Synthesis of Chroman-2,4-diones via Ring-Opening/Ring-Closing Reaction Involving Palladium-Catalyzed Intramolecular Aryloxycarbonylation. J Org Chem 2024; 89:1175-1183. [PMID: 38193890 PMCID: PMC10804402 DOI: 10.1021/acs.joc.3c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Palladium-catalyzed aminocarbonylation of 3-iodochromone was studied in the presence of primary and secondary amines using atmospheric pressure of carbon monoxide as a carbonyl source. This procedure successfully provided a library of chromone-3-carboxamides and 3-substituted chroman-2,4-diones in 40 to 92% isolated yields. The reaction proceeded via highly chemoselective aminocarbonylation (up to 100%) in the presence of secondary amines by using monodentate or bidentate phosphine ligands. The tendency of 3-iodochromone substrate to undergo ANRORC rearrangement with N-nucleophiles was crucial to shift the reaction toward an unprecedented chemoselective carbonylative transformation, where a late-stage carbonyl insertion is favored concomitantly to the last ring-closure step. The proposed aza-Michael addition/ring-opening/intramolecular aryloxycarbonylation sequence showed compatibility, uniquely, to primary amines when XantPhos was used as a ligand. The solid-state structures of chromone-3-carboxamide (2a) and chroman-2,4-dione (3s) were undoubtedly established by single-crystal XRD analysis. A catalytic cycle was proposed to rationalize the formation of the two types of carbonylated compounds.
Collapse
Affiliation(s)
- Sami Chniti
- Department
of General and Inorganic Chemistry, Faculty of Sciences, University of Pécs, Ifjúság u. 6., Pécs H-7624, Hungary
| | - Péter Pongrácz
- Department
of General and Inorganic Chemistry, Faculty of Sciences, University of Pécs, Ifjúság u. 6., Pécs H-7624, Hungary
| | - László Kollár
- Department
of General and Inorganic Chemistry, Faculty of Sciences, University of Pécs, Ifjúság u. 6., Pécs H-7624, Hungary
- János
Szentágothai Research Centre, University
of Pécs, Ifjúság
u. 20., Pécs H-7624, Hungary
- HUN-REN-PTE
Research Group for Selective Chemical Syntheses, Ifjúság u. 6., Pécs H-7624, Hungary
| | - Attila Bényei
- Department
of Physical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen H-4032, Hungary
| | - Ágnes Dörnyei
- Department
of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság u. 6., Pécs H-7624, Hungary
| | - Attila Takács
- János
Szentágothai Research Centre, University
of Pécs, Ifjúság
u. 20., Pécs H-7624, Hungary
- HUN-REN-PTE
Research Group for Selective Chemical Syntheses, Ifjúság u. 6., Pécs H-7624, Hungary
| |
Collapse
|
13
|
Tokalı FS, Şenol H, Yetke Hİ, Hacıosmanoğlu-Aldoğan E. Novel quinazoline-chromene hybrids as anticancer agents: Synthesis, biological activity, molecular docking, dynamics and ADME studies. Arch Pharm (Weinheim) 2023; 356:e2300423. [PMID: 37736677 DOI: 10.1002/ardp.202300423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023]
Abstract
In this study, new quinazoline-chromene hybrid compounds were synthesized. The cytotoxic effects on cell viability of the hybrid compounds were tested against A549 human lung adenocarcinoma and BEAS-2B healthy bronchial epithelial cell lines in vitro. In addition, the ability of the active compounds to inhibit cell migration was tested. Molecular docking studies were performed to evaluate the ligand-protein interactions, and molecular dynamics simulations were performed to determine the interactions and stability of ligand-protein complexes. In silico absorption, distribution, metabolism, and excretion (ADME) studies were conducted to estimate the drug-likeness of the compounds. Compounds 4 (IC50 = 51.2 µM) and 5 (IC50 = 44.2 µM) were found to be the most active agents against A549 cells. They are found to be more selective against A549 cells than the reference drug doxorubicin. They also have the ability to significantly inhibit cell migration. They have the best docking scores against epidermal growth factor receptor (EGFR) (-11.300 and -11.226 kcal/mol) and vascular endothelial growth factor receptor 2 (VEGFR2) (-10.987 and -11.247 kcal/mol), respectively. In MD simulations, compounds 4 and 5 have strong hydrogen bond interactions above 80% of simulation times and showed a low ligand root mean square deviation (RMSD) around 2 Å. According to the ADME analysis, compounds 4 and 5 exhibit excellent drug-likeness and pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Türkiye
| | - Halil Şenol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| | - Hande İpek Yetke
- Department of Biophysics, Faculty of Medicine, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| | | |
Collapse
|
14
|
Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol 2023; 251:126158. [PMID: 37549764 DOI: 10.1016/j.ijbiomac.2023.126158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Monoamine oxidase is a flavin enzyme that catalyzes the oxidation of monoamine neurotransmitters in the brain. Various toxic by-products, aldehydes and hydrogen peroxide produced during the catalytic process, can cause oxidative stress and neuronal cell death. Overexpression of MAO-B and insufficient dopamine concentration are recognized as pathological factors in neurodegenerative diseases (NDs) including Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, the inhibition of MAO-B is an attractive target for the treatment of NDs. Despite significant efforts, few selective and reversible MAO-B inhibitors have been clinically approved. Natural products have emerged as valuable sources of lead compounds in drug discovery. Compounds such as chromone, coumarin, chalcone, caffeine, and aurone, present in natural structures, are considered as privileged scaffolds in the synthesis of MAO-B inhibitors. In this review, we summarized the structure-activity relationship (SAR) of MAO-B inhibitors based on the naturally privileged scaffolds over the past 20 years. Additionally, we proposed a balanced discussion on the advantages and limitations of natural scaffold-based MAO-B inhibitors with providing a future perspective in drug development.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
15
|
Zhao W, He Z, Yang X, Yu Y, Baell JB, Huang F. Visible-Light-Induced Synthesis of 3-Alkyl Chromones under Catalyst- and Additive-Free Conditions. J Org Chem 2023; 88:13634-13644. [PMID: 37679947 DOI: 10.1021/acs.joc.3c01339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Herein, we reported an efficient and facile visible-light-induced 3-alkyl chromone synthesis from easily accessible o-hydroxyaryl enaminones and α-diazo esters. In this protocol, excellent yields were obtained with a broad substrate scope at room temperature, tolerating various functional groups. Of note is that this eco-friendly methodology features catalyst- and additive-free, mild reaction conditions, simple operation procedure, and easy scale-up, which affords a convenient pathway for the preparation of 3-alkyl chromones. Experimental results and density functional theory (DFT) computation analyses confirm the participation of carbene species and active cyclopropane intermediate.
Collapse
Affiliation(s)
- Wei Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhiqin He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaohui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
16
|
Adly OMI, Taha A, Fahmy SA, Ibrahim MA. TD-DFT calculations, dipole moments, and solvatochromic properties of 2-aminochromone-3-carboxaldehyde and its hydrazone derivatives. RSC Adv 2023; 13:26587-26603. [PMID: 37674487 PMCID: PMC10478642 DOI: 10.1039/d3ra05081e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
2-Aminochromone-3-carboxaldehyde (ACC) and its hydrazones (ACMHCA and ACMNPHTCA) with semicarbazide hydrochloride and N-phenylthiosemicarbazide were synthesized and characterized by elemental analysis and spectral studies. The solvatochromic behavior of the title compounds in various solvents showed distinct bathochromic shifts on going from nonpolar to polar solvents, suggesting intramolecular-charge-transfer (ICT) solute-solvent interactions. The ground and excited state dipole moments of ACC, ACMHCA, and ACMNPHTCA were determined experimentally by the solvatochromic shift method using the Bilot-Kawski, Lippert-Mataga, Bakhshiev, Kawski-Chamma-Viallet functions, and a microscopic Reichardt's solvent polarity parameter (ENT). All the investigated molecules showed a substantial increase in the dipole moment upon excitation to the emitting state. The experimental results were generally consistent with the values obtained by the TD-DFT, B3LYP/6-311G++(d,p) method. Molecular electrostatic potential (MEP) mapping and natural charge and natural bonding orbital (NBO) analysis were performed and the results were discussed. The 1H NMR chemical shifts of the prepared compounds were simulated by the gage independent atomic orbital (GIAO) method and compared with their experimental chemical shift values. The biological activity data were correlated with the frontier molecular orbitals. The photovoltaic behavior of the title compounds showed there was sufficient electron injection.
Collapse
Affiliation(s)
- Omima M I Adly
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo Egypt
| | - Ali Taha
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo Egypt
| | - Shery A Fahmy
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo Egypt
| | - Magdy A Ibrahim
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo Egypt
| |
Collapse
|
17
|
Kulikova LN, Purgatorio R, Beloglazkin AA, Tafeenko VA, Reza RG, Levickaya DD, Sblano S, Boccarelli A, de Candia M, Catto M, Voskressensky LG, Altomare CD. Chemical and Biological Evaluation of Novel 1 H-Chromeno[3,2- c]pyridine Derivatives as MAO Inhibitors Endowed with Potential Anticancer Activity. Int J Mol Sci 2023; 24:ijms24097724. [PMID: 37175433 PMCID: PMC10178506 DOI: 10.3390/ijms24097724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
About twenty molecules sharing 1H-chromeno[3,2-c]pyridine as the scaffold and differing in the degree of saturation of the pyridine ring, oxidation at C10, 1-phenylethynyl at C1 and 1H-indol-3-yl fragments at C10, as well as a few small substituents at C6 and C8, were synthesized starting from 1,2,3,4-tetrahydro-2-methylchromeno[3,2-c]pyridin-10-ones (1,2,3,4-THCP-10-ones, 1) or 2,3-dihydro-2-methyl-1H-chromeno[3,2-c]pyridines (2,3-DHPCs, 2). The newly synthesized compounds were tested as inhibitors of the human isoforms of monoamine oxidase (MAO A and B) and cholinesterase (AChE and BChE), and the following main SARs were inferred: (i) The 2,3-DHCP derivatives 2 inhibit MAO A (IC50 about 1 μM) preferentially; (ii) the 1,2,3,4-THCP-10-one 3a, bearing the phenylethynyl fragment at C1, returned as a potent MAO B inhibitor (IC50 0.51 μM) and moderate inhibitor of both ChEs (IC50s 7-8 μM); (iii) the 1H-indol-3-yl fragment at C10 slightly increases the MAO B inhibition potency, with the analog 6c achieving MAO B IC50 of 3.51 μM. The MAO B inhibitor 3a deserves further pharmacological studies as a remedy in the symptomatic treatment of Parkinson's disease and neuroprotectant for Alzheimer's disease. Besides the established neuroprotective effects of MAO inhibitors, the role of MAOs in tumor insurgence and progression has been recently reported. Herein, antiproliferative assays with breast (MCF-7), colon (HCT116) and cisplatin-resistant ovarian (SK-OV-3) tumor cells revealed that the 10-indolyl-bearing 2,3,4,10-THCP analog 6c exerts anti-tumor activity with IC50s in the range 4.83-11.3 μM.
Collapse
Affiliation(s)
- Larisa N Kulikova
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Andrey A Beloglazkin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
| | - Viktor A Tafeenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119234 Moscow, Russia
| | - Raesi Gh Reza
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Daria D Levickaya
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sabina Sblano
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Leonid G Voskressensky
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
18
|
Kirishnamaline G, Magdaline JD, Chithambarathanu T. Structural elucidation, spectroscopic investigation, in silico docking, and in vitro cytotoxicity studies of chromone derivatives as potential anti-breast cancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
19
|
Chen X, Chen Y, Xie S, Wang X, Wu Y, Zhang H, Zhao Y, Jia J, Wang B, Li W, Tang J, Xiao X. The mechanism of Renshen-Fuzi herb pair for treating heart failure-Integrating a cardiovascular pharmacological assessment with serum metabolomics. Front Pharmacol 2022; 13:995796. [PMID: 36545315 PMCID: PMC9760753 DOI: 10.3389/fphar.2022.995796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
Background: Renshen-Fuzi herb pair (RS-FZ) is often used in the clinical treatment of heart failure (HF) and has a remarkable therapeutic effect. However, the mechanism of RS-FZ for treating HF remains unclear. In our study, we explored the mechanism of RS-FZ for treating HF. Methods: Evaluation of RS-FZ efficacy by cardiovascular pharmacology. Moreover, Global metabolomics profiling of the serum was detected by UPLC-QTOF/MS. Multivariate statistics analyzed the specific serum metabolites and corresponding metabolic pathways. Combining serum metabolomics with network pharmacology, animal experiments screened and validated the critical targets of RS-FZ intervention in HF. Results: RS-FZ significantly ameliorated myocardial fibrosis, enhanced cardiac function, and reduced the serum HF marker (brain natriuretic peptide) level in rats with HF. Through topological analysis of the "Metabolite-Target-Component" interaction network, we found that 79 compounds of RS-FZ directly regulated the downstream specific serum metabolites by acting on four critical target proteins (CYP2D6, EPHX2, MAOB, and ENPP2). The immunohistochemistry results showed that RS-FZ observably improved the expression of CYP2D6 and ENPP2 proteins while decreasing the expression of EPHX2 and MAOB proteins dramatically. Conclusion: The integrated cardiovascular pharmacological assessment with serum metabolomics revealed that RS-FZ plays a crucial role in the treatment of HF by intervening in CYP2D6, EPHX2, MAOB, and ENPP2 target proteins. It provides a theoretical basis for RS-FZ for treating HF.
Collapse
Affiliation(s)
- Xiaofei Chen
- College of Medicine, Chengdu University of Chinese Medicine, Chengdu, China,Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yulong Chen
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiyang Xie
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Wang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yali Wu
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya Zhao
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinhao Jia
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bin Wang
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weixia Li
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| | - Jinfa Tang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| | - Xiaohe Xiao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| |
Collapse
|
20
|
Ye YF, Li F, Chen JL, An ZQ, Zhang GY, Wang YB. Transition-Metal-Free Synthesis of 3-Acyl Chromones by the Tandem Reaction of Ynones and Methyl Salicylates. J Org Chem 2022; 87:14005-14015. [PMID: 36210518 DOI: 10.1021/acs.joc.2c01637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A facile and effective tandem reaction of ynones and methyl salicylates was developed to obtain a broad range of 3-acyl chromones in moderate-to-excellent yields. This protocol underwent a Michael addition and cyclization process, which exhibited easily accessible substrates, broad substrate scope, and high regioselectivity under mild and transition-metal-free conditions. Moreover, gram-scale reaction and further chemical transformation of the products were also further studied.
Collapse
Affiliation(s)
- Ya-Fang Ye
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Feng Li
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jia-Le Chen
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zi-Qian An
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Gui-Ying Zhang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yan-Bo Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
21
|
Narváez-Ordoñez EG, Pabón-Carcelén KA, Zurita-Saltos DA, Bonilla-Valladares PM, Yánez-Darquea TG, Ramos-Guerrero LA, Ulic SE, Jios JL, Echeverría GA, Piro OE, Langer P, Alcívar-León CD, Heredia-Moya J. Synthesis, Experimental and Theoretical Study of Azidochromones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092636. [PMID: 35565987 PMCID: PMC9105743 DOI: 10.3390/molecules27092636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
A series of 2-(haloalkyl)-3-azidomethyl and 6-azido chromones has been synthetized, characterized and studied by theoretical (DFT calculations) and spectroscopic methods (UV-Vis, NMR). The crystal structure of 3-azidomethyl-2-difluoromethyl chromone, determined by X-ray diffraction methods, shows a planar framework due to extended π-bond delocalization. Its molecular packing is stabilized by F···H, N···H and O···H hydrogen bonds, π···π stacking and C–O···π intermolecular interactions. Moreover, AIM, NCI and Hirshfeld analysis evidenced that azido moiety has a significant role in the stabilization of crystal packing through weak intermolecular interactions, where analysis of electronic density suggested closed-shell (CS) interatomic interactions.
Collapse
Affiliation(s)
- Ena G. Narváez-Ordoñez
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gilberto Gato Sobral, Quito 170521, Ecuador; (E.G.N.-O.); (K.A.P.-C.); (D.A.Z.-S.); (P.M.B.-V.); (T.G.Y.-D.)
| | - Kevin A. Pabón-Carcelén
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gilberto Gato Sobral, Quito 170521, Ecuador; (E.G.N.-O.); (K.A.P.-C.); (D.A.Z.-S.); (P.M.B.-V.); (T.G.Y.-D.)
| | - Daniel A. Zurita-Saltos
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gilberto Gato Sobral, Quito 170521, Ecuador; (E.G.N.-O.); (K.A.P.-C.); (D.A.Z.-S.); (P.M.B.-V.); (T.G.Y.-D.)
| | - Pablo M. Bonilla-Valladares
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gilberto Gato Sobral, Quito 170521, Ecuador; (E.G.N.-O.); (K.A.P.-C.); (D.A.Z.-S.); (P.M.B.-V.); (T.G.Y.-D.)
| | - Trosky G. Yánez-Darquea
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gilberto Gato Sobral, Quito 170521, Ecuador; (E.G.N.-O.); (K.A.P.-C.); (D.A.Z.-S.); (P.M.B.-V.); (T.G.Y.-D.)
| | | | - Sonia E. Ulic
- CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 No 1465, La Plata 1900, Buenos Aires, Argentina;
- Departamento de Ciencias Básicas, Facultad de Ciencias Exactas, Universidad Nacional de Luján, Rutas 5 y 7, Luján 6700, Buenos Aires, Argentina
| | - Jorge L. Jios
- Laboratorio UPL (UNLP-CIC), Camino Centenario e/505 y 508 (1897) M.B. Gonnet and Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, República Argentina. 47 esq. 115, La Plata 1900, Buenos Aires, Argentina;
| | - Gustavo A. Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata), La Plata 1900, Buenos Aires, Argentina; (G.A.E.); (O.E.P.)
| | - Oscar E. Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata), La Plata 1900, Buenos Aires, Argentina; (G.A.E.); (O.E.P.)
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany;
- Leibniz Institut für Katalyse, Universität Rostock e. V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Christian D. Alcívar-León
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gilberto Gato Sobral, Quito 170521, Ecuador; (E.G.N.-O.); (K.A.P.-C.); (D.A.Z.-S.); (P.M.B.-V.); (T.G.Y.-D.)
- Correspondence: (C.D.A.-L.); (J.H.-M.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
- Correspondence: (C.D.A.-L.); (J.H.-M.)
| |
Collapse
|