1
|
Zhang J, Sun Y, Song W, Shan A. Vitamin E-Inhibited Phoxim-Induced Renal Oxidative Stress and Mitochondrial Apoptosis In Vivo and In Vitro of Piglets. Antioxidants (Basel) 2023; 12:2000. [PMID: 38001853 PMCID: PMC10668979 DOI: 10.3390/antiox12112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to phoxim at low levels caused bioaccumulation with neurotoxicity but also induced oxidative stress, tissue damage, and abnormal nutrient metabolism. This study described that vitamin E ameliorates phoxim-induced nephrotoxicity via inhibiting mitochondrial apoptosis. In vivo, 24 healthy piglets were treated with phoxim (0 mg/kg and 500 mg/kg) and vitamin E + phoxim (vitamin E + phoxim: 200 mg/kg + 500 mg/kg). In vitro, PK15 cells were treated with phoxim (0 mg/L and 1 mg/L) and vitamin E + phoxim (phoxim + vitamin E: 1 mg/L + 1 mg/L) for 12 h and 24 h. Our results indicated that accumulation of ROS, oxidative stress, and renal cell injury through stimulation of mitochondrial apoptosis resulted in phoxim-induced nephrotoxicity. Phoxim resulted in swollen mitochondria, blurred internal cristae, renal glomerular atrophy, and renal interstitial fibrosis. Vitamin E alleviated the adverse effects of phoxim by reducing ROS and improving antioxidant capacity in vivo and in vitro. Vitamin E significantly increased SDH in vitro (p < 0.01), while it decreased ROS, Bad, and cyto-c in vitro and SOD and CAT in vivo (p < 0.05). Vitamin E ameliorated phoxim-induced renal histopathologic changes, and mitochondria swelled. In addition, vitamin E regulates phoxim-induced apoptosis by alleviating oxidative damage to the mitochondria.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Yuecheng Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Wentao Song
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Franco A, Dang X, Zhang L, Molinoff PB, Dorn GW. Mitochondrial Dysfunction and Pharmacodynamics of Mitofusin Activation in Murine Charcot-Marie-Tooth Disease Type 2A. J Pharmacol Exp Ther 2022; 383:137-148. [PMID: 36507849 PMCID: PMC9553116 DOI: 10.1124/jpet.122.001332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023] Open
Abstract
Mitofusin (MFN) 1 and MFN2 are dynamin GTPase family mitochondrial proteins that mediate mitochondrial fusion requiring MFN conformational shifts, formation of macromolecular complexes on and between mitochondria, and GTP hydrolysis. Damaging MFN2 mutations cause an untreatable, largely pediatric progressive peripheral neuropathy, Charcot-Marie-Tooth (CMT) disease type 2A. We used small molecule allosteric mitofusin activators that promote MFN conformations favoring fusion to interrogate the effects of MFN2 conformation and GTPase activity on MFN2-mediated mitochondrial fusion and motility in vitro. We translated these findings in vivo by defining dose-dependent pharmacodynamic and disease-modifying effects of mitofusin activators in murine CMT2A. MFN2 catalytic GTPase activity and MFN2 conformational switching are essential for mitochondrial fusion, but the two processes are separate and dissociable. We report the first concentration-response relationships for mitofusin activators to stimulate mitochondrial transport through CMT2A neuronal axons, which is similar to their stimulation of mitochondrial fusion. In CMT2A mice, intermittent (daily short acting) and sustained (twice daily long acting) mitofusin activation were equally effective in reversing neuromuscular degeneration. Moreover, acute dose-dependent pharmacodynamic effects of mitofusin activators on mitochondrial transport through CMT2A neuronal axons anticipated those for long-term reversal of neurodegenerative phenotypes. A crossover study showed that CMT2A neuronal deficits recurred after mitofusin activators are discontinued, and revealed that CMT2A can be ameliorated by mitofusin activation even in old (>74 week) mice. These data add to our understanding of mitochondrial dysfunction induced by a CMT2A MFN2 GTPase mutation and provide additional information supporting the approach of pharmacological mitofusin activation in CMT2A. SIGNIFICANCE: This study interrogated the roles of MFN2 catalytic activity and allosteric activation on impaired mitochondrial fusion and neuronal transport as they impact an untreatable peripheral neuropathy caused by MFN2 mutations, Charcot-Marie-Tooth disease type 2A. The results mechanistically link mitochondrial fusion and motility to the relaxed MFN2 protein conformation and correction of mitochondrial abnormalities to in vivo reversal of neurodegeneration in murine CMT2A.
Collapse
Affiliation(s)
- Antonietta Franco
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Xiawei Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Lihong Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Perry B Molinoff
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Gerald W Dorn
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| |
Collapse
|
3
|
Luo W, Yang J. Schizophrenia predisposition gene Unc-51-like kinase 4 for the improvement of cerebral ischemia/reperfusion injury. Mol Biol Rep 2022; 49:2933-2943. [PMID: 35083612 DOI: 10.1007/s11033-021-07108-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (CIRI) has complex pathogenesis, and inhibiting apoptosis and supporting neural progenitor proliferation are extremely beneficial strategies for treating CIRI. Unc-51-like kinase 4 (ULK4), a susceptibility gene for schizophrenia, promotes neural progenitors proliferation. The phosphatidylinositol 3-kinase (PI3K) pathway plays a critical role in CIRI via inhibition of apoptosis. Therefore, the relationship among ULK4, the PI3K pathway, and apoptosis in the context of CIRI has attracted our great interest. METHODS AND RESULTS Primary cortical neurons were subjected to oxygen-glucose deprivation/reperfusion (OGD/R), and rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Transfection of the ULK4-overexpression lentivirus was performed alone or in combination with PI3K inhibitor treatment. Here, we revealed that ULK4 was poorly expressed in the cortex in MCAO/R rats and OGD/R-treated primary cortical neurons, ULK4 overexpression inhibited apoptosis, and reduced neurological deficit scores, cerebral infarct volume, and histopathological damage. Moreover, ULK4 overexpression increased PI3K expression and the p-protein kinase B/AKT and p-glycogen synthase kinase 3 beta (GSK3β)/GSK3β ratios, and inhibited apoptosis, while a PI3K inhibitor reversed the effects of ULK4 overexpression on CIRI. CONCLUSIONS ULK4 protects against CIRI, and the underlying mechanism involves PI3K pathway activation which in turn inhibits apoptosis.
Collapse
Affiliation(s)
- Wen Luo
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.,Department of Clinical Pharmacy, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, China
| | - Junqing Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Vaishali K, Kumar N, Rao V, Kovela RK, Sinha MK. Exercise and Mitochondrial Function: Importance and InferenceA Mini Review. Curr Mol Med 2021; 22:755-760. [PMID: 34844538 DOI: 10.2174/1566524021666211129110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
Skeletal muscles must generate and distribute energy properly in order to function perfectly. Mitochondria in skeletal muscle cells form vast networks to meet this need, and their functions may improve as a result of exercise. In the present review, we discussed exercise-induced mitochondrial adaptations, age-related mitochondrial decline, and a biomarker as a mitochondrial function indicator and exercise interference.
Collapse
Affiliation(s)
- Vaishali K
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka. India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar. India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka. India
| | - Rakesh Krishna Kovela
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi (Meghe), Wardha, Maharashtra. India
| | - Mukesh Kumar Sinha
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka. India
| |
Collapse
|
5
|
Butera G, Vecellio Reane D, Canato M, Pietrangelo L, Boncompagni S, Protasi F, Rizzuto R, Reggiani C, Raffaello A. Parvalbumin affects skeletal muscle trophism through modulation of mitochondrial calcium uptake. Cell Rep 2021; 35:109087. [PMID: 33951435 PMCID: PMC8113653 DOI: 10.1016/j.celrep.2021.109087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/27/2021] [Accepted: 04/15/2021] [Indexed: 01/07/2023] Open
Abstract
Parvalbumin (PV) is a cytosolic Ca2+-binding protein highly expressed in fast skeletal muscle, contributing to an increased relaxation rate. Moreover, PV is an “atrogene” downregulated in most muscle atrophy conditions. Here, we exploit mice lacking PV to explore the link between the two PV functions. Surprisingly, PV ablation partially counteracts muscle loss after denervation. Furthermore, acute PV downregulation is accompanied by hypertrophy and upregulation by atrophy. PV ablation has a minor impact on sarcoplasmic reticulum but is associated with increased mitochondrial Ca2+ uptake, mitochondrial size and number, and contacts with Ca2+ release sites. Mitochondrial calcium uniporter (MCU) silencing abolishes the hypertrophic effect of PV ablation, suggesting that mitochondrial Ca2+ uptake is required for hypertrophy. In turn, an increase of mitochondrial Ca2+ is required to enhance expression of the pro-hypertrophy gene PGC-1α4, whose silencing blocks hypertrophy due to PV ablation. These results reveal how PV links cytosolic Ca2+ control to mitochondrial adaptations, leading to muscle mass regulation. PV is downregulated during skeletal muscle atrophy, and its levels affect trophism Skeletal muscle mitochondria undergo remodeling in PV knockout mice Mitochondria increase cytosolic Ca2+ buffer capacity in PV knockout skeletal muscles Increased mitochondrial Ca2+ triggers the PGC-1α4 pathway, inducing muscle growth
Collapse
Affiliation(s)
- Gaia Butera
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | | | - Marta Canato
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Laura Pietrangelo
- CAST (Center for Advanced Studies and Technology) and DMSI (Department of Medicine and Aging Sciences), University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Simona Boncompagni
- CAST and DNICS (Department of Neuroscience, Imaging and Clinical Sciences), University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Feliciano Protasi
- CAST (Center for Advanced Studies and Technology) and DMSI (Department of Medicine and Aging Sciences), University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy; Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy; ZRS, Koper, Slovenia.
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy; Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy.
| |
Collapse
|
6
|
Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol 2020; 329:113309. [PMID: 32289315 DOI: 10.1016/j.expneurol.2020.113309] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) diseases, both traumatic and neurodegenerative, are characterized by impaired mitochondrial bioenergetics and often disturbed mitochondrial dynamics. The dysregulation observed in these pathologies leads to defective respiratory chain function and reduced ATP production, thereby promoting neuronal death. As such, attenuation of mitochondrial dysfunction through induction of mitochondrial biogenesis (MB) is a promising, though still underexplored, therapeutic strategy. MB is a multifaceted process involving the integration of highly regulated transcriptional events, lipid membrane and protein synthesis/assembly and replication of mtDNA. Several nuclear transcription factors promote the expression of genes involved in oxidative phosphorylation, mitochondrial import and export systems, antioxidant defense and mitochondrial gene transcription. Of these, the nuclear-encoded peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is the most commonly studied and is widely accepted as the 'master regulator' of MB. Several recent preclinical studies document that reestablishment of mitochondrial homeostasis through increased MB results in inhibited injury progression and increased functional recovery. This perspective will briefly review the role of mitochondrial dysfunction in the propagation of CNS diseases, while also describing current research strategies that mediate mitochondrial dysfunction and compounds that induce MB for the treatment of acute and chronic neuropathologies.
Collapse
|
7
|
He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med 2020; 146:45-58. [PMID: 31704373 DOI: 10.1016/j.freeradbiomed.2019.11.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/07/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of death and physical disability worldwide. Mitochondrial dysfunction has been considered as one of the hallmarks of ischemic stroke and contributes to the pathology of ischemia and reperfusion. Mitochondria is essential in promoting neural survival and neurological improvement following ischemic stroke. Therefore, mitochondria represent an important drug target for stroke treatment. This review discusses the mitochondrial molecular mechanisms underlying cerebral ischemia and involved in reactive oxygen species generation, mitochondrial electron transport dysfunction, mitochondria-mediated regulation of inflammasome activation, mitochondrial dynamics and biogenesis, and apoptotic cell death. We highlight the potential of mitochondrial transfer by stem cells as a therapeutic target for stroke treatment and provide valuable insights for clinical strategies. A better understanding of the roles of mitochondria in ischemia-induced cell death and protection may provide a rationale design of novel therapeutic interventions in the ischemic stroke.
Collapse
Affiliation(s)
- Zhi He
- Department of Pharmacy, Luohe Medical College, Luohe, 462000, China
| | - Niya Ning
- Department of Obstetrics and Gynecology, Shaoling District People's Hospital of Luohe City, Luohe, 462300, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, 610052, China.
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol 2018; 16:263-275. [PMID: 29549824 PMCID: PMC5854930 DOI: 10.1016/j.redox.2018.03.002] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Stroke is the leading cause of adult disability and mortality in most developing and developed countries. The current best practices for patients with acute ischemic stroke include intravenous tissue plasminogen activator and endovascular thrombectomy for large-vessel occlusion to improve clinical outcomes. However, only a limited portion of patients receive thrombolytic therapy or endovascular treatment because the therapeutic time window after ischemic stroke is narrow. To address the current shortage of stroke management approaches, it is critical to identify new potential therapeutic targets. The mitochondrion is an often overlooked target for the clinical treatment of stroke. Early studies of mitochondria focused on their bioenergetic role; however, these organelles are now known to be important in a wide range of cellular functions and signaling events. This review aims to summarize the current knowledge on the mitochondrial molecular mechanisms underlying cerebral ischemia and involved in reactive oxygen species generation and scavenging, electron transport chain dysfunction, apoptosis, mitochondrial dynamics and biogenesis, and inflammation. A better understanding of the roles of mitochondria in ischemia-related neuronal death and protection may provide a rationale for the development of innovative therapeutic regimens for ischemic stroke and other stroke syndromes. Review of current treatment of ischemic stroke indicates deficiency in the contemporary methods. Discuss the mitochondrial ROS-related signaling that affect neuronal fate after ischemic stroke. Mechanisms of mitochondrial dynamics and mitophagy could be pivotal for ischemic stroke. Inhibiting mitochondrion-induced inflammatory response is a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC
| | - Sujira Mukda
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Shang-Der Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan, ROC.
| |
Collapse
|
9
|
Cryo-EM Studies of Drp1 Reveal Cardiolipin Interactions that Activate the Helical Oligomer. Sci Rep 2017; 7:10744. [PMID: 28878368 PMCID: PMC5587723 DOI: 10.1038/s41598-017-11008-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
Dynamins are mechano-chemical GTPases involved in the remodeling of cellular membranes. In this study, we have investigated the mechanism of dynamin-related protein 1 (Drp1), a key mediator of mitochondrial fission. To date, it is unclear how Drp1 assembles on the mitochondrial outer membrane in response to different lipid signals to induce membrane fission. Here, we present cryo-EM structures of Drp1 helices on nanotubes with distinct lipid compositions to mimic membrane interactions with the fission machinery. These Drp1 polymers assemble exclusively through stalk and G-domain dimerizations, which generates an expanded helical symmetry when compared to other dynamins. Interestingly, we found the characteristic gap between Drp1 and the lipid bilayer was lost when the mitochondrial specific lipid cardiolipin was present, as Drp1 directly interacted with the membrane. Moreover, this interaction leads to a change in the helical structure, which alters G-domain interactions to enhance GTPase activity. These results demonstrate how lipid cues at the mitochondrial outer membrane (MOM) can alter Drp1 structure to activate the fission machinery.
Collapse
|
10
|
Huang ST, Huang CC, Sheen JM, Lin TK, Liao PL, Huang WL, Wang PW, Liou CW, Chuang JH. Phyllanthus urinaria’s Inhibition of Human Osteosarcoma Xenografts Growth in Mice is Associated with Modulation of Mitochondrial Fission/Fusion Machinery. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1507-1523. [DOI: 10.1142/s0192415x16500841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osteosarcoma is an aggressive bone cancer arising from primitive transformed cells of mesenchymal origin to form malignant osteoid. Phyllanthus urinaria [Formula: see text]P. urinaria[Formula: see text] is a widely used folk medicine in cancer treatment, however the mechanism of P. urinaria inhibited human osteosarcoma is unclear. The present study was aimed at investigating the antitumoral effects of an aqueous P. urinaria on human osteosarcoma in vivo and the related underlying mechanisms, mainly focusing on mitochondrial dynamic dysfunction. Our results showed that oral administration of P. urinaria to mice led to significant inhibition of tumor development without substantial changes to body weight or major organs. Histological examinations with H&E, Giemsa, and Masson trichrome stains confirmed inhibition of tumor growth by the P. urinaria treatment. Immunohistochemical staining of proliferation markers antigen KI-67 (Ki67) and proliferating cell nuclear antigen (PCNA), as well as a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated a decrease of tumor proliferation and an increase of apoptosis, which was associated with the modulation of B-cell lymphoma 2 (Bcl-2) family activating the caspase cascade in the P. urinaria-treated mice. The neovascularization marker cluster of differentiation 31 (CD31) was inhibited in P. urinaria-treated xenografts, implicating the potential anti-angiogenic effect of P. urinaria. P. urinaria treatment resulted in a significant decrease in the mitochondrial fusion proteins, including mitofusin 1/2 (Mfn1/2) and optic atrophy type 1 (Opa1), as well as an increase in the fission protein dynamin-related protein 1 (Drp1). The results of this study suggest mitochondrial dysfunction is associated with dynamic change that is involved in the apoptosis and anti-angiogenesis elicited by P. urinaria.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Chun Huang
- Division of General Surgery, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Jer-Ming Sheen
- Department of Chinese Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Liao
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Liang Huang
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Department of Internal Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Division of Pediatric Surgery and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Chen SD, Zhen YY, Lin JW, Lin TK, Huang CW, Liou CW, Chan SHH, Chuang YC. Dynamin-Related Protein 1 Promotes Mitochondrial Fission and Contributes to The Hippocampal Neuronal Cell Death Following Experimental Status Epilepticus. CNS Neurosci Ther 2016; 22:988-999. [PMID: 27577016 DOI: 10.1111/cns.12600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/13/2023] Open
Abstract
AIMS Prolonged seizure activity may result in mitochondrial dysfunction and lead to cell death in the hippocampus. Mitochondrial fission may occur in an early stage of neuronal cell death. This study examined the role of the mitochondrial fission protein dynamin-related protein 1 (Drp1) in the hippocampus following status epilepticus. METHODS Kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 area in Sprague Dawley rats to induce prolonged seizure activity. Biochemical analysis, electron microscopy, and immunofluorescence staining were performed to evaluate the subsequent molecular and cellular events. The effects of pretreatment with a mitochondrial fission protein inhibitor, Mdivi-1 (2 nmol), were also evaluated. RESULTS Phosphorylation of Drp1 at serine 616 (p-Drp1(Ser616)) was elevated from 1 to 24 h after the elicited seizure activity. Pretreatment with Mdivi-1 decreased the Drp1 phosphorylation at Ser616 and limited the mitochondrial fission. Mdivi-1 rescued the Complex I dysfunction, decreased the levels of oxidized proteins, decreased the activation of cytochrome c/caspase-3 signaling, and blunted cell death in CA3 neurons. CONCLUSION Our findings suggest that activation of p-Drp1(Ser616) is related to seizure-induced neuronal damage. Modulation of p-Drp1(Ser616) expression is accompanied by decreases in mitochondrial fission, mitochondrial dysfunction, and oxidation, providing a neuroprotective effect against seizure-induced hippocampal neuronal damage.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jui-Wei Lin
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Chuang YC, Lin TK, Yang DI, Yang JL, Liou CW, Chen SD. Peroxisome proliferator-activated receptor-gamma dependent pathway reduces the phosphorylation of dynamin-related protein 1 and ameliorates hippocampal injury induced by global ischemia in rats. J Biomed Sci 2016; 23:44. [PMID: 27175924 PMCID: PMC4865999 DOI: 10.1186/s12929-016-0262-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/06/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein that, upon phosphorylation at serine 616 (p-Drp1(Ser616)), plays a pivotal role in neuronal death after ischemia. In the present study, we hypothesized that peroxisome proliferator-activated receptor-gamma (PPARγ)-dependent pathway can reduce the expression of p-Drp1(Ser616) and ameliorate hippocampal injury induced by global ischemia in rats. RESULTS We found that pretreatment of the rats with Mdivi-1, a selective Drp1 inhibitor, decreased the level of transient global ischemia (TGI)-induced p-Drp1(Ser616) and reduced cellular contents of oxidized proteins, activated caspase-3 expression as well as the extent of DNA fragmentation. Delivery of siRNA against Drp1 attenuated the expression of p-Drp1(Ser616) that was accompanied by alleviation of the TGI-induced protein oxidation, activated caspase-3 expression and DNA fragmentation in hippocampal proteins. Exogenous application of pioglitazone, a PPARγ agonist, reduced the p-Drp1(Ser616) expression, decreased TGI-induced oxidative stress and activated caspase-3 expression, lessened the extents of DNA fragmentation, and diminished the numbers of TUNEL-positive neuronal cells; all of these effects were reversed by GW9662, a PPARγ antagonist. CONCLUSIONS Our findings thus indicated that inhibition of TGI-induced p-Drp1(Ser616) expression by Drp1 inhibitor and Drp1-siRNA can decrease protein oxidation, activated caspase-3 expression and neuronal damage in the hippocampal CA1 subfield. PPARγ agonist, through PPARγ-dependent mechanism and via decreasing p-Drp1(Ser616) expression, can exert anti-oxidative and anti-apoptotic effects against ischemic neuronal injury.
Collapse
Affiliation(s)
- Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Jenq-Lin Yang
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan. .,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology. Sci Rep 2016; 6:22244. [PMID: 26924205 PMCID: PMC4770288 DOI: 10.1038/srep22244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/10/2016] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain. Aβ plaques are produced through sequential β/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription activator-like (TAL) effector nucleases (TALENs) induce mutations with high efficiency at specific genomic loci, and it is thus possible to knock out specific regions using TALENs. In this study, we designed and expressed TALENs specific for the C-terminus of APP in HeLa cells, in which KPI-APPs are predominantly expressed. The KPI-APP mutants lack a 12-aa region that encompasses a 5-aa trans-membrane (TM) region and 7-aa juxta-membrane (JM) region. The mutated KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial morphology was altered, resulting in an increase in spherical mitochondria in the mutant cells through the disruption of the balance between fission and fusion. Mitochondrial dysfunction, including decreased ATP levels, disrupted mitochondrial membrane potential, increased ROS generation and impaired mitochondrial dehydrogenase activity, was also found. These results suggest that specific regions of KPI-APPs are important for mitochondrial localization and function.
Collapse
|
14
|
Ye S, Zhou T, Cheng K, Chen M, Wang Y, Jiang Y, Yang P. Carboxylic Acid Fullerene (C60) Derivatives Attenuated Neuroinflammatory Responses by Modulating Mitochondrial Dynamics. NANOSCALE RESEARCH LETTERS 2015; 10:953. [PMID: 26058514 PMCID: PMC4481245 DOI: 10.1186/s11671-015-0953-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/21/2015] [Indexed: 05/30/2023]
Abstract
Fullerene (C60) derivatives, a unique class of compounds with potent antioxidant properties, have been reported to exert a wide variety of biological activities including neuroprotective properties. Mitochondrial dynamics are an important constituent of cellular quality control and function, and an imbalance of the dynamics eventually leads to mitochondria disruption and cell dysfunctions. This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model. Using a cell-based functional screening system labeled with DsRed2-mito in BV-2 cells, we showed that LPS stimulation led to excessive mitochondrial fission, increased mitochondrial localization of dynamin-related protein 1 (Drp1), both of which were markedly suppressed by C60-COOH pretreatment. LPS-induced mitochondria reactive oxygen species (ROS) generation and collapse of mitochondrial membrane potential (ΔΨm) were also significantly inhibited by C60-COOH. Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators. Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives.
Collapse
Affiliation(s)
- Shefang Ye
- />Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Tong Zhou
- />Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Keman Cheng
- />Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Mingliang Chen
- />Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 People’s Republic of China
| | - Yange Wang
- />Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Yuanqin Jiang
- />Department of Surgery, First Affiliated Hospital of Xiamen University, Xiamen, 361003 People’s Republic of China
| | - Peiyan Yang
- />Department of Surgery, First Affiliated Hospital of Xiamen University, Xiamen, 361003 People’s Republic of China
| |
Collapse
|
15
|
Liu L, Song Y, Zhao M, Yi Z, Zeng Q. Protective effects of edaravone, a free radical scavenger, on lipopolysaccharide-induced acute kidney injury in a rat model of sepsis. Int Urol Nephrol 2015; 47:1745-52. [DOI: 10.1007/s11255-015-1070-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/24/2015] [Indexed: 02/06/2023]
|
16
|
Francy CA, Alvarez FJD, Zhou L, Ramachandran R, Mears JA. The mechanoenzymatic core of dynamin-related protein 1 comprises the minimal machinery required for membrane constriction. J Biol Chem 2015; 290:11692-703. [PMID: 25770210 DOI: 10.1074/jbc.m114.610881] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 11/06/2022] Open
Abstract
Mitochondria are dynamic organelles that continually undergo cycles of fission and fusion. Dynamin-related protein 1 (Drp1), a large GTPase of the dynamin superfamily, is the main mediator of mitochondrial fission. Like prototypical dynamin, Drp1 is composed of a mechanochemical core consisting of the GTPase, middle, and GTPase effector domain regions. In place of the pleckstrin homology domain in dynamin, however, Drp1 contains an unstructured variable domain, whose function is not yet fully resolved. Here, using time-resolved EM and rigorous statistical analyses, we establish the ability of full-length Drp1 to constrict lipid bilayers through a GTP hydrolysis-dependent mechanism. We also show the variable domain limits premature Drp1 assembly in solution and promotes membrane curvature. Furthermore, the mechanochemical core of Drp1, absent of the variable domain, is sufficient to mediate GTP hydrolysis-dependent membrane constriction.
Collapse
Affiliation(s)
- Christopher A Francy
- From the Department of Pharmacology, Center for Mitochondrial Diseases, and Cleveland Center for Membrane and Structural Biology, and
| | - Frances J D Alvarez
- From the Department of Pharmacology, Center for Mitochondrial Diseases, and Cleveland Center for Membrane and Structural Biology, and
| | - Louie Zhou
- From the Department of Pharmacology, Center for Mitochondrial Diseases, and Cleveland Center for Membrane and Structural Biology, and
| | - Rajesh Ramachandran
- Cleveland Center for Membrane and Structural Biology, and the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Jason A Mears
- From the Department of Pharmacology, Center for Mitochondrial Diseases, and Cleveland Center for Membrane and Structural Biology, and
| |
Collapse
|
17
|
Faber C, Zhu ZJ, Castellino S, Wagner DS, Brown RH, Peterson RA, Gates L, Barton J, Bickett M, Hagerty L, Kimbrough C, Sola M, Bailey D, Jordan H, Elangbam CS. Cardiolipin profiles as a potential biomarker of mitochondrial health in diet-induced obese mice subjected to exercise, diet-restriction and ephedrine treatment. J Appl Toxicol 2014; 34:1122-9. [PMID: 25132005 DOI: 10.1002/jat.3030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 11/08/2022]
Abstract
Cardiolipin (CL) is crucial for mitochondrial energy metabolism and structural integrity. Alterations in CL quantity or CL species have been associated with mitochondrial dysfunction in several pathological conditions and diseases, including mitochondrial dysfunction-related compound attrition and post-market withdrawal of promising drugs. Here we report alterations in the CL profiles in conjunction with morphology of soleus muscle (SM) and brown adipose tissue (BAT) in diet-induced obese (DIO) mice, subjected to ephedrine treatment (EPH: 200 mg kg(-1) day(-1) orally), treadmill exercise (EX: 10 meters per min, 1 h per day), or dietary restriction (DR: 25% less of mean food consumed by the EX group) for 7 days. Mice from the DR and EPH groups had a significant decrease in percent body weight and reduced fat mass compared with DIO controls. Morphologic alterations in the BAT included brown adipocytes with reduced cytoplasmic lipid droplets and increased cytoplasmic eosinophilia in the EX, DR and EPH groups. Increased cytoplasmic eosinophilia in the BAT was ultrastructurally manifested by increased mitochondrial cristae, fenestration of mitochondrial cristae, increased electron density of mitochondrial matrix, and increased complexity of shape and elongation of mitochondria. Mitochondrial ultrastructural alterations in the SM of the EX and DR groups included increased mitochondrial cristae, cup-shaped mitochondria and mitochondrial degeneration. All four CL species (tri-linoleoyl-mono-docosahexaenoyl, tetralinoleoyl, tri-linoleoyl-mono-oleoyl, and di-linoleoyl-di-oleoyl) were increased in the BAT of the DR and EPH groups and in the SM of the EPH and EX groups. In conclusion, cardiolipin profiling supported standard methods for assessing mitochondrial biogenesis and health, and may serve as a potential marker of mitochondrial dysfunction in preclinical toxicity studies.
Collapse
Affiliation(s)
- Catherine Faber
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bustillo-Zabalbeitia I, Montessuit S, Raemy E, Basañez G, Terrones O, Martinou JC. Specific interaction with cardiolipin triggers functional activation of Dynamin-Related Protein 1. PLoS One 2014; 9:e102738. [PMID: 25036098 PMCID: PMC4103857 DOI: 10.1371/journal.pone.0102738] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/23/2014] [Indexed: 11/18/2022] Open
Abstract
Dynamin-Related Protein 1 (Drp1), a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM) and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G), bundle signaling element (BSE) and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH) domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL). Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.
Collapse
Affiliation(s)
- Itsasne Bustillo-Zabalbeitia
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Sylvie Montessuit
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Etienne Raemy
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Gorka Basañez
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Oihana Terrones
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | |
Collapse
|
19
|
Huang ST, Bi KW, Kuo HM, Lin TK, Liao PL, Wang PW, Chuang JH, Liou CW. Phyllanthus urinaria induces mitochondrial dysfunction in human osteosarcoma 143B cells associated with modulation of mitochondrial fission/fusion proteins. Mitochondrion 2014; 17:22-33. [PMID: 24836433 DOI: 10.1016/j.mito.2014.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/14/2014] [Accepted: 05/09/2014] [Indexed: 01/26/2023]
Abstract
Phyllanthus urinaria (P. urinaria), a widely used herbal medicine, has been reported to possess various biological characteristics including anti-inflammation, anti-virus, anti-bacteria, anti-hepatotoxicity and anti-cancer. This study provides molecular evidence associated with the dynamics and organization of mitochondria in osteosarcoma 143B cells resulted from P urinaria. Herein, P. urinaria-induced cytotoxicity and ROS associated with the inhibition of mitochondrial membrane potential were reversed by N-acetylcysteine (NAC). The endogenous antioxidant enzymes such as manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GPX1) were activated by P. urinaria, but not correlated to catalase. P. urinaria decreased mitochondrial respiration activity as well as respiratory chain enzymes and HIF-1α in osteosarcoma 143B cells. Additionally, both adenosine triphosphate (ATP) synthase activation and ATP production were suppressed by P. urinaria. We further investigated changes of mitochondrial dynamic in osteosarcoma 143B cells. P. urinaria indeed fragmented the mitochondrial network of osteosarcoma 143B cells. We found a significant decrease in optic atrophy type 1 (Opa1) and mitofusin 1 (Mfn1) related to fusion proteins as well as increase mitochondrial fission 1 protein (Fis1) related to fission protein. It indicated that P. urinaria modulated the mitochondrial dynamics via fusion and fission machinery. Altogether, this study offers the evidence that mitochondrial dysfunction with dynamic change is essential components for the anti-cancer mechanism elicited by P. urinaria.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- Department of Chinese Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Kuo-Wei Bi
- Department of Chinese Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Liao
- Department of Internal Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Division of Pediatric Surgery and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Division of Pediatric Surgery and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Hood DA, Uguccioni G, Vainshtein A, D'souza D. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: implications for health and disease. Compr Physiol 2013; 1:1119-34. [PMID: 23733637 DOI: 10.1002/cphy.c100074] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria have paradoxical functions within cells. Essential providers of energy for cellular survival, they are also harbingers of cell death (apoptosis). Mitochondria exhibit remarkable dynamics, undergoing fission, fusion, and reticular expansion. Both nuclear and mitochondrial DNA (mtDNA) encode vital sets of proteins which, when incorporated into the inner mitochondrial membrane, provide electron transport capacity for ATP production, and when mutated lead to a broad spectrum of diseases. Acute exercise can activate a set of signaling cascades in skeletal muscle, leading to the activation of the gene expression pathway, from transcription, to post-translational modifications. Research has begun to unravel the important signals and their protein targets that trigger the onset of mitochondrial adaptations to exercise. Exercise training leads to an accumulation of nuclear- and mtDNA-encoded proteins that assemble into functional complexes devoted to mitochondrial respiration, reactive oxygen species (ROS) production, the import of proteins and metabolites, or apoptosis. This process of biogenesis has important consequences for metabolic health, the oxidative capacity of muscle, and whole body fitness. In contrast, the chronic muscle disuse that accompanies aging or muscle wasting diseases provokes a decline in mitochondrial content and function, which elicits excessive ROS formation and apoptotic signaling. Research continues to seek the molecular underpinnings of how regular exercise can be used to attenuate these decrements in organelle function, maintain skeletal muscle health, and improve quality of life.
Collapse
Affiliation(s)
- David A Hood
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
21
|
Katsetos CD, Koutzaki S, Melvin JJ. Mitochondrial dysfunction in neuromuscular disorders. Semin Pediatr Neurol 2013; 20:202-15. [PMID: 24331362 DOI: 10.1016/j.spen.2013.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review deciphers aspects of mitochondrial (mt) dysfunction among nosologically, pathologically, and genetically diverse diseases of the skeletal muscle, lower motor neuron, and peripheral nerve, which fall outside the traditional realm of mt cytopathies. Special emphasis is given to well-characterized mt abnormalities in collagen VI myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy), megaconial congenital muscular dystrophy, limb-girdle muscular dystrophy type 2 (calpainopathy), centronuclear myopathies, core myopathies, inflammatory myopathies, spinal muscular atrophy, Charcot-Marie-Tooth neuropathy type 2, and drug-induced peripheral neuropathies. Among inflammatory myopathies, mt abnormalities are more prominent in inclusion body myositis and a subset of polymyositis with mt pathology, both of which are refractory to corticosteroid treatment. Awareness is raised about instances of phenotypic mimicry between cases harboring primary mtDNA depletion, in the context of mtDNA depletion syndrome, and established neuromuscular disorders such as spinal muscular atrophy. A substantial body of experimental work, derived from animal models, attests to a major role of mitochondria (mt) in the early process of muscle degeneration. Common mechanisms of mt-related cell injury include dysregulation of the mt permeability transition pore opening and defective autophagy. The therapeutic use of mt permeability transition pore modifiers holds promise in various neuromuscular disorders, including muscular dystrophies.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA.
| | - Sirma Koutzaki
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA
| | - Joseph J Melvin
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
22
|
Abstract
Shape changes and topological remodeling of membranes are essential for the identity of organelles and membrane trafficking. Although all cellular membranes have common features, membranes of different organelles create unique environments that support specialized biological functions. The endoplasmic reticulum (ER) is a prime example of this specialization, as its lipid bilayer forms an interconnected system of cisternae, vesicles, and tubules, providing a highly compartmentalized structure for a multitude of biochemical processes. A variety of peripheral and integral membrane proteins that facilitate membrane curvature generation, fission, and/or fusion have been identified over the past two decades. Among these, the dynamin-related proteins (DRPs) have emerged as key players. Here, we review recent advances in our functional and molecular understanding of fusion DRPs, exemplified by atlastin, an ER-resident DRP that controls ER structure, function, and signaling.
Collapse
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005;
| | | | | | | | | |
Collapse
|
23
|
Kiebish MA, Yang K, Liu X, Mancuso DJ, Guan S, Zhao Z, Sims HF, Cerqua R, Cade WT, Han X, Gross RW. Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J Lipid Res 2013; 54:1312-25. [PMID: 23410936 DOI: 10.1194/jlr.m034728] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Barth syndrome is a complex metabolic disorder caused by mutations in the mitochondrial transacylase tafazzin. Recently, an inducible tafazzin shRNA knockdown mouse model was generated to deconvolute the complex bioenergetic phenotype of this disease. To investigate the underlying cause of hemodynamic dysfunction in Barth syndrome, we interrogated the cardiac structural and signaling lipidome of this mouse model as well as its myocardial bioenergetic phenotype. A decrease in the distribution of cardiolipin molecular species and robust increases in monolysocardiolipin and dilysocardiolipin were demonstrated. Additionally, the contents of choline and ethanolamine glycerophospholipid molecular species containing precursors for lipid signaling at the sn-2 position were altered. Lipidomic analyses revealed specific dysregulation of HETEs and prostanoids, as well as oxidized linoleic and docosahexaenoic metabolites. Bioenergetic interrogation uncovered differential substrate utilization as well as decreases in Complex III and V activities. Transgenic expression of cardiolipin synthase or iPLA2γ ablation in tafazzin-deficient mice did not rescue the observed phenotype. These results underscore the complex nature of alterations in cardiolipin metabolism mediated by tafazzin loss of function. Collectively, we identified specific lipidomic, bioenergetic, and signaling alterations in a murine model that parallel those of Barth syndrome thereby providing novel insights into the pathophysiology of this debilitating disease.
Collapse
Affiliation(s)
- Michael A Kiebish
- Division of Bioorganic Chemistry and Molecular Pharmacology, Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang N, Wang S, Li Y, Che L, Zhao Q. A selective inhibitor of Drp1, mdivi-1, acts against cerebral ischemia/reperfusion injury via an anti-apoptotic pathway in rats. Neurosci Lett 2013; 535:104-9. [DOI: 10.1016/j.neulet.2012.12.049] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/24/2012] [Accepted: 12/26/2012] [Indexed: 12/25/2022]
|
25
|
Altick AL, Feng CY, Schlauch K, Johnson LA, von Bartheld CS. Differences in gene expression between strabismic and normal human extraocular muscles. Invest Ophthalmol Vis Sci 2012; 53:5168-77. [PMID: 22786898 DOI: 10.1167/iovs.12-9785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Strabismic extraocular muscles (EOMs) differ from normal EOMs in structural and functional properties, but the gene expression profile of these two types of EOM has not been examined. Differences in gene expression may inform about causes and effects of the strabismic condition in humans. METHODS EOM samples were obtained during corrective surgery from patients with horizontal strabismus and from deceased organ donors with normal EOMs. Microarrays and quantitative PCR identified significantly up- and down-regulated genes in EOM samples. Analysis was performed on probe sets with more than 3-fold differential expression between normal and strabismic samples, with an adjusted P value of ≤ 0.05. RESULTS Microarray analysis showed that 604 genes in these samples had significantly different expression. Expression predominantly was upregulated in genes involved in extracellular matrix structure, and down-regulated in genes related to contractility. Expression of genes associated with signaling, calcium handling, mitochondria function and biogenesis, and energy homeostasis also was significantly different between normal and strabismic EOM. Skeletal muscle PCR array identified 22 (25%) of 87 muscle-specific genes that were significantly down-regulated in strabismic EOMs; none was significantly upregulated. CONCLUSIONS Differences in gene expression between strabismic and normal human EOMs point to a relevant contribution of the peripheral oculomotor system to the strabismic condition. Decreases in expression of contractility genes and increases of extracellular matrix-associated genes indicate imbalances in EOM structure. We conclude that gene regulation of proteins fundamental to contractile mechanics and extracellular matrix structure is involved in pathogenesis and/or consequences of strabismus, suggesting potential novel therapeutic targets.
Collapse
Affiliation(s)
- Amy L Altick
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
26
|
Gentil BJ, Minotti S, Beange M, Baloh RH, Julien JP, Durham HD. Normal role of the low-molecular-weight neurofilament protein in mitochondrial dynamics and disruption in Charcot-Marie-Tooth disease. FASEB J 2011; 26:1194-203. [PMID: 22155564 DOI: 10.1096/fj.11-196345] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intermediate filaments serve important structural roles, but other cellular functions are increasingly recognized. This study demonstrated normal function of the low-molecular-weight neurofilament protein (NFL) in mitochondrial dynamics and disruption in Charcot-Marie-Tooth disease (CMT) due to mutations in the Nefl gene. In motor neurons of spinal cord cultured from Nefl-knockout mice, mitochondrial length and the rate of fusion were decreased concomitant with increased motility. These parameters were normalized after expression of NFL(wt) on the Nefl(-/-) background, but not by overexpression of the profusion protein, mitofusin 2 (MFN2). The effects of CMT-causing NFL mutants bore similarities to and differences from Nefl knockout. In the early phase of toxicity before disruption of the neurofilament network, NFL(Q333P) and NFL(P8R) integrated into neurofilaments and had effects on mitochondria similar to those with Nefl knockout. The reduction of fusion rate by NFL(Q333P) was partly due to interference with the function of the profusion protein MFN2, which is mutated in CMT2A, functionally linking these forms of CMT. In the later phase of toxicity, mitochondria essentially stopped moving in neurons expressing NFL mutants, probably a consequence of cytoskeletal disruption. Overall, the data point to important functions of neurofilaments in mitochondrial dynamics as well as primary involvement in CMT2E/1F.
Collapse
Affiliation(s)
- Benoit J Gentil
- Montreal Neurological Institute, 3801 University St., Room 649, Montreal, QC, Canada H3A 2B4.
| | | | | | | | | | | |
Collapse
|
27
|
Zakharchenko MV, Khunderyakova NV, Kondrashova MN. Importance of preserving the biophysical organization of isolated mitochondria for revealing their physiological regulation. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911050290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Rodrigues RM, Macko P, Palosaari T, Whelan MP. Autofluorescence microscopy: a non-destructive tool to monitor mitochondrial toxicity. Toxicol Lett 2011; 206:281-8. [PMID: 21864658 DOI: 10.1016/j.toxlet.2011.06.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 06/08/2011] [Accepted: 06/18/2011] [Indexed: 01/22/2023]
Abstract
Visualization of NADH by fluorescence microscopy makes it possible to distinguish mitochondria inside living cells, allowing structure analysis of these organelles in a non-invasive way. Mitochondrial morphology is determined by the occurrence of mitochondrial fission and fusion. During normal cell function mitochondria appear as elongated tubular structures. However, cellular malfunction induces mitochondria to fragment into punctiform, vesicular structures. This change in morphology is associated with the generation of reactive oxygen species (ROS) and early apoptosis. The aim of this study is to demonstrate that autofluorescence imaging of mitochondria in living eukaryotic cells provides structural and morphological information that can be used to assess mitochondrial health. We firstly established the illumination conditions that do not affect mitochondrial structure and calculated the maximum safe light dose to which the cells can be exposed. Subsequently, sequential recording of mitochondrial fluorescence was performed and changes in mitochondrial morphology were monitored in a continuous non-destructive way. This approach was then used to assess mitochondrial toxicity induced by potential toxicants exposed to mammalian cells. Both mouse and human cells were used to evaluate mitochondrial toxicity of different compounds with different toxicities. This technique constitutes a novel and promising approach to explore chemical induced toxicity because of its reliability to monitor mitochondrial morphology changes and corresponding toxicity in a non-invasive way.
Collapse
Affiliation(s)
- Robim M Rodrigues
- European Commission Joint Research Centre, Institute for Health and Customer Protection, Via E. Fermi 2749, 21027 Ispra (Varese), Italy.
| | | | | | | |
Collapse
|
29
|
Moss TJ, Daga A, McNew JA. Fusing a lasting relationship between ER tubules. Trends Cell Biol 2011; 21:416-23. [PMID: 21550242 DOI: 10.1016/j.tcb.2011.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 11/18/2022]
Abstract
Atlastin is an integral membrane GTPase localized to the endoplasmic reticulum (ER). In vitro and in vivo analyses indicate that atlastin is a membrane fusogen capable of driving membrane fusion, suggesting a role in ER structure and maintenance. Interestingly, mutations in the human atlastin-1 gene, SPG3A, cause a form of autosomal dominant hereditary spastic paraplegia (HSP). The etiology of HSP is unclear, but two predominant forms of the disorder are caused by mutant proteins that affect ER structure, formation and maintenance in motor neurons. In this review, we describe the current knowledge about the molecular mechanism of atlastin function and its potential role in HSP. Greater understanding of the function of atlastin and associated proteins should provide important insight into normal ER biogenesis and maintenance, as well as the pathology of disease.
Collapse
Affiliation(s)
- Tyler J Moss
- Department of Biochemistry and Cell Biology, Rice University, MS601, Houston, TX 77005, USA
| | | | | |
Collapse
|
30
|
Abstract
The structure and function of the mitochondrial network is regulated by mitochondrial biogenesis, fission, fusion, transport and degradation. A well-maintained balance of these processes (mitochondrial dynamics) is essential for neuronal signaling, plasticity and transmitter release. Core proteins of the mitochondrial dynamics machinery play important roles in the regulation of apoptosis, and mutations or abnormal expression of these factors are associated with inherited and age-dependent neurodegenerative disorders. In Parkinson's disease (PD), oxidative stress and mitochondrial dysfunction underlie the development of neuropathology. The recessive Parkinsonism-linked genes PTEN-induced kinase 1 (PINK1) and Parkin maintain mitochondrial integrity by regulating diverse aspects of mitochondrial function, including membrane potential, calcium homeostasis, cristae structure, respiratory activity, and mtDNA integrity. In addition, Parkin is crucial for autophagy-dependent clearance of dysfunctional mitochondria. In the absence of PINK1 or Parkin, cells often develop fragmented mitochondria. Whereas excessive fission may cause apoptosis, coordinated induction of fission and autophagy is believed to facilitate the removal of damaged mitochondria through mitophagy, and has been observed in some types of cells. Compensatory mechanisms may also occur in mice lacking PINK1 that, in contrast to cells and Drosophila, have only mild mitochondrial dysfunction and lack dopaminergic neuron loss. A better understanding of the relationship between the specific changes in mitochondrial dynamics/turnover and cell death will be instrumental to identify potentially neuroprotective pathways steering PINK1-deficient cells towards survival. Such pathways may be manipulated in the future by specific drugs to treat PD and perhaps other neurodegenerative disorders characterized by abnormal mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Hansruedi Büeler
- Department of Anatomy and Neurobiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
31
|
Wang Z, Liu Y, Liu J, Liu K, Wen J, Wen S, Wu Z. HSG/Mfn2 gene polymorphism and essential hypertension: a case-control association study in Chinese. J Atheroscler Thromb 2010; 18:24-31. [PMID: 20940517 DOI: 10.5551/jat.5611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Hyperplasia suppressor gene/mitofusion-2 (HSG/Mfn2) is a hyperplasia suppressor gene and an essential component of mitochondrial fusion machinery; however, the association between the single nucleotide polymorphism (SNP) of HSG/Mfn2 and hypertension is unclear. METHODS In this study, 542 normotensive subjects (NT group) and 539 hypertensive patients (EH group) were screened for an association study between HSG/Mfn2 and hypertension. RESULTS The results showed that the genotype distribution and allelic frequency of rs873457, rs2336384, rs1474868, rs4846085 and rs2236055 were significantly different (p lt; 0.05 for all) between EH and NT groups, although those of rs4240897 and rs873458 were not. When comparing the dominant model, significant differences still existed (p lt; 0.05 for all). The allelic frequency of rs4240897 was also slightly different between EH and NT groups (P = 0.047). When subgrouped by sex, the genotype distribution and allelic frequency of all the SNPs (except rs873458) were significantly different in male (p lt; 0.05 for all) but not in female groups. For all the SNPs, only the allelic frequency of rs4240897 was obviously different in female NT and EH groups (p lt; 0.01). Logistic regression showed that body mass index and rs873457 were closely associated with BP after adjusting for age. The frequency of the C-G-A-A-A-C-C haplotype was significantly higher in essential hypertensive patients versus control individuals, both in the entire population, in male or female groups (p lt; 0.01 for all). As for other haplotypes, most were only significantly different in the entire population and male subjects. CONCLUSION The genetic variations of HSG/Mfn2 may be associated with hypertension in male Chinese.
Collapse
Affiliation(s)
- Zuoguang Wang
- Department of Hypertension, Beijing Anzhen Hospital, Attached to Capital University of Medical Sciences, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Chaoyang District, Beijing, PR China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Sussman MA. Mitochondrial integrity: preservation through Akt/Pim-1 kinase signaling in the cardiomyocyte. Expert Rev Cardiovasc Ther 2009; 7:929-38. [PMID: 19673671 DOI: 10.1586/erc.09.48] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The central role of mitochondria as mediators of cell survival is indisputable and gathering increasing attention as a focal point for interventional strategies to mitigate apoptotic cell death in the wake of cardiomyopathic injury. A legacy of signal transduction studies has proven that mitochondrial integrity can be enhanced by kinases involved in cell survival. Among the many survival signaling cascades under investigation, the wide-ranging impact of Akt upon mitochondrial biology is well known. However, despite years of investigation, emerging research continues to reveal new mechanisms governing the protective effects of Akt signaling in the context of cardiomyocyte mitochondria. This review focuses on two emerging pathways that mediate preservation of mitochondrial function downstream of Akt: hexokinase and Pim-1 kinase.
Collapse
Affiliation(s)
- Mark A Sussman
- San Diego State University, SDSU Heart Institute, Department of Biology, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
33
|
Affiliation(s)
- Scott Severance
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
34
|
Gondi CS, Dinh DH, Gujrati M, Rao JS. RNAi-mediated downregulation of MMP-2 activates the extrinsic apoptotic pathway in human glioma xenograft cells. Int J Oncol 2009; 35:851-9. [PMID: 19724922 PMCID: PMC2739107 DOI: 10.3892/ijo_00000399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Malignant gliomas are characterized by invasive and infiltrative behavior that generally involves the destruction of normal brain tissue. Strategies to treat infiltrating gliomas, such as chemotherapy and gene therapy, have remained largely unsuccessful. The infiltrative nature of gliomas can be attributed largely to proteases, which include serine, metallo- and cysteine- proteases. Our previous work and that of others strongly suggest a relationship between the expression of uPAR, MMP-9, and MMP-2; this relationship is generally indicative of the infiltrative phenotype of gliomas. In the present study, we have demonstrated that the RNAi-mediated downregulation of MMP-2 induces apoptosis in the 4910 human glioma xenograft cell line. Using Western blot analysis, we observed that caspase-8 levels increased in MMP-2-downregulated cells whereas TRADD and TRAF-2 levels decreased. Further, NIK levels increased in MMP-2-downregulated cells. To determine the nuclear localization of AIF and IkappaBalpha, we analyzed the levels of AIF, IkappaBalpha and pIkappaBalpha in the cytosolic and nuclear fractions of MMP-2-downregulated cells. Western blot analysis revealed that MMP-2 downregulation resulted in the translocation of AIF to the nucleus and also inhibited the nuclear localization of pIkappaBalpha. To confirm the involvement of AIF, we performed FACS analysis to determine the integrity of the mitochondrial membrane using the MitoPT method. FACS analysis showed that the downregulation of MMP-2 caused a collapse in the mitochondrial cell membrane. Immunolocalization of AIF revealed that in MMP-2-downregulated cells, AIF translocates to the nucleus, thereby enabling the induction of apoptosis. RT-PCR analysis revealed that caspase-8 was overexpressed 57-fold, whereas p73 was downregulated 28-fold. Evidence of apoptosis was determined by TUNEL assay and visualization of nuclear fragmentation by DAPI staining. In summary, it is evident from our results that MMP-2 downregulation induces caspase-8 and AIF-mediated apoptosis and, as such, shows potential for glioma therapy.
Collapse
Affiliation(s)
- Christopher S. Gondi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Dzung H. Dinh
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Meena Gujrati
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| |
Collapse
|
35
|
Preservation of the in vivo state of mitochondrial network for ex vivo physiological study of mitochondria. Int J Biochem Cell Biol 2009; 41:2036-50. [DOI: 10.1016/j.biocel.2009.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 04/19/2009] [Accepted: 04/21/2009] [Indexed: 11/22/2022]
|
36
|
GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance. Neurobiol Dis 2009; 36:509-20. [PMID: 19782751 DOI: 10.1016/j.nbd.2009.09.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/10/2009] [Accepted: 09/20/2009] [Indexed: 12/12/2022] Open
Abstract
Mutations in the GDAP1 gene lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease; CMT). Here, we demonstrate that GDAP1 is a mitochondrial fission factor whose activity is dependent on the fission factors Drp1 and Fis1. Unlike other mitochondrial fission factors, GDAP1 overexpression or knockdown does not influence the susceptibility of cells to apoptotic stimuli. Recessively inherited CMT-associated forms of GDAP1 (rmGDAP1s) have reduced fission activity, whereas dominantly inherited forms (dmGDAP1s) interfere with mitochondrial fusion. Only the expression of dmGDAP1s increases the production of ROS, leads to uneven mitochondrial transmembrane potentials, and enhances the susceptibility to apoptotic stimuli. Taken together, our results indicate that wild-type GDAP1 promotes fission without increasing the risk of apoptosis. In CMT, recessive GDAP1 mutations are associated with reduced fission activity, while dominant mutations impair mitochondrial fusion and cause mitochondrial damage. Thus, different cellular mechanisms that disturb mitochondrial dynamics underlie the similar clinical manifestations caused by GDAP1 mutations, depending on the mode of inheritance.
Collapse
|
37
|
Jeyaraju DV, Cisbani G, De Brito OM, Koonin EV, Pellegrini L. Hax1 lacks BH modules and is peripherally associated to heavy membranes: implications for Omi/HtrA2 and PARL activity in the regulation of mitochondrial stress and apoptosis. Cell Death Differ 2009; 16:1622-9. [PMID: 19680265 DOI: 10.1038/cdd.2009.110] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hax1 has an important role in immunodeficiency syndromes and apoptosis. A recent report (Chao et al., Nature, 2008) proposed that the Bcl-2-family-related protein, Hax1, suppresses apoptosis in lymphocytes and neurons through a mechanism that involves its association to the inner mitochondrial membrane rhomboid protease PARL, to proteolytically activate the serine protease Omi/HtrA2 and eliminate active Bax. This model implies that the control of cell-type sensitivity to pro-apoptotic stimuli is governed by the PARL/Hax1 complex in the mitochondria intermembrane space and, more generally, that Bcl-2-family-related proteins can control mitochondrial outer-membrane permeabilization from inside the mitochondrion. Further, it defines a novel, anti-apoptotic Opa1-independent pathway for PARL. In this study, we present evidence that, in vivo, the activity of Hax1 cannot be mechanistically coupled to PARL because the two proteins are confined in distinct cellular compartments and their interaction in vitro is an artifact. We also show by sequence analysis and secondary structure prediction that Hax1 is extremely unlikely to be a Bcl-2-family-related protein because it lacks Bcl-2 homology modules. These results indicate a different function and mechanism of Hax1 in apoptosis and re-opens the question of whether mammalian PARL, in addition to apoptosis, regulates mitochondrial stress response through Omi/HtrA2 processing.
Collapse
Affiliation(s)
- D V Jeyaraju
- Mitochondria Biology Laboratory, CRULRG, Université Laval, Quebec, QC, Canada G1J 2G3
| | | | | | | | | |
Collapse
|
38
|
Nehme R, Conradt B. egl-1: a key activator of apoptotic cell death in C. elegans. Oncogene 2009; 27 Suppl 1:S30-40. [DOI: 10.1038/onc.2009.41] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Arnold S, Beyer C. Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. J Neurochem 2009; 110:1-11. [DOI: 10.1111/j.1471-4159.2009.06133.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Mitochondrial and axonal abnormalities precede disruption of the neurofilament network in a model of charcot-marie-tooth disease type 2E and are prevented by heat shock proteins in a mutant-specific fashion. J Neuropathol Exp Neurol 2009; 68:642-52. [PMID: 19458545 DOI: 10.1097/nen.0b013e3181a5deeb] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in NEFL encoding the light neurofilament subunit (NFL) cause Charcot-Marie-Tooth disease type 2E (CMT2E), which affects both motor and sensory neurons. We expressed the disease-causing mutants NFL and NFL in motor neurons of dissociated spinal cord-dorsal root ganglia and demonstrated that they are incorporated into the preexisting neurofilament network but eventually disrupt neurofilaments without causing significant motor neuron death. Importantly, rounding of mitochondria and reduction in axonal diameter occurred before disruption of the neurofilament network, indicating that mitochondrial dysfunction contributes to the pathogenesis of CMT2E, as well as to CMT caused by mitofusin mutations. Heat shock proteins (HSPs) are involved in the formation of the neurofilament network and in protecting cells from misfolded mutant proteins. Cotransfection of HSPB1 with mutated NEFL maintained the neurofilament network, axonal diameter, and mitochondrial length in motor neurons expressing NFL, but not NFL. Conversely, HSPA1 cotransfection was effective in motor neurons expressing NFL, but not NFL. Thus, there are NFL mutant-specific differences in the ability of individual HSPs to prevent neurofilament abnormalities, reduction in axonal caliber, and disruption of mitochondrial morphology in motor neurons. These results suggest that HSP inducers have therapeutic potential for CMT2E but that their efficacy would depend on the profile of HSPs induced and the type of NEFL mutation.
Collapse
|
41
|
Claypool SM. Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2059-68. [PMID: 19422785 DOI: 10.1016/j.bbamem.2009.04.020] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 03/31/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
The ability of phospholipids to act as determinants of membrane protein structure and function is probably best exemplified by cardiolipin (CL), the signature phospholipid of mitochondria. Early efforts to reconstitute individual respiratory complexes and members of the mitochondrial carrier family, most notably the ADP/ATP carrier (AAC), often demonstrated the importance of CL. Over the past decade, the significance of CL in the organization of components of the electron transport chain into higher order assemblies, termed respiratory supercomplexes, has been established. Another protein required for oxidative phosphorylation, AAC, has received comparatively little attention likely stemming from the fact that AACs were thought to function in isolation as either homodimers or monomers. Recently however, AACs have been demonstrated to interact with the respiratory supercomplex, other members of the mitochondrial carrier family, and the TIM23 translocon. Interestingly, many if not all of these interactions depend on CL. As the paradigm for the mitochondrial carrier family, these discoveries with AAC suggest that other members of this large group of important proteins may be more gregarious than anticipated. Moreover, it is proposed that AAC and perhaps additional members of the mitochondrial carrier family might represent downstream targets of pathological states involving alterations in CL.
Collapse
Affiliation(s)
- Steven M Claypool
- Department of Physiology, Johns Hopkins Medical School, MD 21205, USA.
| |
Collapse
|
42
|
Brooks C, Wei Q, Cho SG, Dong Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest 2009; 119:1275-85. [PMID: 19349686 DOI: 10.1172/jci37829] [Citation(s) in RCA: 595] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 02/18/2009] [Indexed: 12/22/2022] Open
Abstract
The mechanism of mitochondrial damage, a key contributor to renal tubular cell death during acute kidney injury, remains largely unknown. Here, we have demonstrated a striking morphological change of mitochondria in experimental models of renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. This change contributed to mitochondrial outer membrane permeabilization, release of apoptogenic factors, and consequent apoptosis. Following either ATP depletion or cisplatin treatment of rat renal tubular cells, mitochondrial fragmentation was observed prior to cytochrome c release and apoptosis. This mitochondrial fragmentation was inhibited by Bcl2 but not by caspase inhibitors. Dynamin-related protein 1 (Drp1), a critical mitochondrial fission protein, translocated to mitochondria early during tubular cell injury, and both siRNA knockdown of Drp1 and expression of a dominant-negative Drp1 attenuated mitochondrial fragmentation, cytochrome c release, caspase activation, and apoptosis. Further in vivo analysis revealed that mitochondrial fragmentation also occurred in proximal tubular cells in mice during renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. Notably, both tubular cell apoptosis and acute kidney injury were attenuated by mdivi-1, a newly identified pharmacological inhibitor of Drp1. This study demonstrates a rapid regulation of mitochondrial dynamics during acute kidney injury and identifies mitochondrial fragmentation as what we believe to be a novel mechanism contributing to mitochondrial damage and apoptosis in vivo in mouse models of disease.
Collapse
Affiliation(s)
- Craig Brooks
- Department of Cellular Biology and Anatomy, Medical College of Georgia, and Charlie Norwood VA Medical Center, Augusta, 30912, USA
| | | | | | | |
Collapse
|
43
|
Camões F, Bonekamp NA, Delille HK, Schrader M. Organelle dynamics and dysfunction: A closer link between peroxisomes and mitochondria. J Inherit Metab Dis 2009; 32:163-80. [PMID: 19067229 DOI: 10.1007/s10545-008-1018-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/30/2008] [Accepted: 11/04/2008] [Indexed: 12/23/2022]
Abstract
Mitochondria and peroxisomes are ubiquitous subcellular organelles, which fulfil an indispensable role in the cellular metabolism of higher eukaryotes. Moreover, they are highly dynamic and display large plasticity. There is growing evidence now that both organelles exhibit a closer interrelationship than previously appreciated. This connection includes metabolic cooperations and cross-talk, a novel putative mitochondria-to-peroxisome vesicular trafficking pathway, as well as an overlap in key components of their fission machinery. Thus, peroxisomal alterations in metabolism, biogenesis, dynamics and proliferation can potentially influence mitochondrial functions, and vice versa. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interrelationship with a particular emphasis on organelle dynamics and its implication in diseases.
Collapse
Affiliation(s)
- F Camões
- Centre for Cell Biology & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | |
Collapse
|
44
|
Kuznetsov AV, Hermann M, Saks V, Hengster P, Margreiter R. The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 2009; 41:1928-39. [PMID: 19703655 DOI: 10.1016/j.biocel.2009.03.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/26/2009] [Accepted: 03/07/2009] [Indexed: 12/22/2022]
Abstract
Recent advances in mitochondrial imaging have revealed that in many cells mitochondria can be highly dynamic. They can undergo fission/fusion processes modulated by various mitochondria-associated proteins and also by conformational transitions in the inner mitochondrial membrane. Moreover, precise mitochondrial distribution can be achieved by their movement along the cytoskeleton, recruiting various connector and motor proteins. Such movement is evident in various cell types ranging from yeast to mammalian cells and serves to direct mitochondria to cellular regions of high ATP demand or to transport mitochondria destined for elimination. Existing data also demonstrate that many aspects of mitochondrial dynamics, morphology, regulation and intracellular organization can be cell type-/tissue-specific. In many cells like neurons, pancreatic cells, HL-1 cells, etc., complex dynamics of mitochondria include fission, fusion, small oscillatory movements of mitochondria, larger movements like filament extension, retraction, fast branching in the mitochondrial network and rapid long-distance intracellular translocation of single mitochondria. Alternatively, mitochondria can be rather fixed in other cells and tissues like adult cardiomyocytes or skeletal muscles with a very regular organelle organization between myofibrils, providing the bioenergetic basis for contraction. Adult cardiac cells show no displacement of mitochondria with only very small-amplitude rapid vibrations, demonstrating remarkable, cell type-dependent differences in the dynamics and spatial arrangement of mitochondria. These variations and the cell-type specificity of mitochondrial dynamics could be related to specific cellular functions and demands, also indicating a significant role of integrations of mitochondria with other intracellular systems like the cytoskeleton, nucleus and endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Daniel Swarovski Research Laboratory, Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University (IMU), Innrain 66, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
45
|
Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, Rizzuto R. Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:335-44. [PMID: 19268425 DOI: 10.1016/j.bbabio.2009.02.021] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 12/17/2022]
Abstract
Mitochondrial Ca(2+) accumulation is a tightly controlled process, in turn regulating functions as diverse as aerobic metabolism and induction of cell death. The link between Ca(2+) (dys)regulation, mitochondria and cellular derangement is particularly evident in neurodegenerative disorders, in which genetic models and environmental factors allowed to identify common traits in the pathogenic routes. We will here summarize: i) the current view of mechanisms and functions of mitochondrial Ca(2+) homeostasis, ii) the basic principles of organelle Ca(2+) transport, iii) the role of Ca(2+) in neuronal cell death, and iv) the new information on the pathogenesis of Alzheimer's, Huntington's and Parkinson's diseases, highlighting the role of Ca(2+) and mitochondria.
Collapse
Affiliation(s)
- Fulvio Celsi
- Department of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Jezek P, Plecitá-Hlavatá L. Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia. Int J Biochem Cell Biol 2009; 41:1790-804. [PMID: 19703650 DOI: 10.1016/j.biocel.2009.02.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 02/03/2023]
Abstract
A single mitochondrial network in the cell undergoes constant fission and fusion primarily depending on the local GTP gradients and the mitochondrial energetics. Here we overview the main properties and regulation of pro-fusion and pro-fission mitodynamins, i.e. dynamins-related GTPases responsible for mitochondrial shape-forming, such as pro-fusion mitofusins MFN1, MFN2, and the inner membrane-residing long OPA1 isoforms, and pro-fission mitodynamins FIS1, MFF, and DRP1 multimers required for scission. Notably, the OPA1 cleavage into non-functional short isoforms at a diminished ATP level (collapsed membrane potential) and the DRP1 recruitment upon phosphorylation by various kinases are overviewed. Possible responses of mitodynamins to the oxidative stress, hypoxia, and concomitant mtDNA mutations are also discussed. We hypothesize that the increased GTP formation within the Krebs cycle followed by the GTP export via the ADP/ATP carrier shift the balance between fission and fusion towards fusion by activating the GTPase domain of OPA1 located in the peripheral intermembrane space (PIMS). Since the protein milieu of PIMS is kept at the prevailing oxidized redox potential by the TOM, MIA40 and ALR/Erv1 import-redox trapping system, redox regulations shift the protein environment of PIMS to a more reduced state due to the higher substrate load and increased respiration. A higher cytochrome c turnover rate may prevent electron transfer from ALR/Erv1 to cytochrome c. Nevertheless, the putative links between the mitodynamin responses, mitochondrial morphology and the changes in the mitochondrial bioenergetics, superoxide production, and hypoxia are yet to be elucidated, including the precise basis for signaling by the mitochondrion-derived vesicles.
Collapse
Affiliation(s)
- Petr Jezek
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, Vídenská 1083, CZ 14220 Prague, Czech Republic.
| | | |
Collapse
|
47
|
|
48
|
Grandemange S, Herzig S, Martinou JC. Mitochondrial dynamics and cancer. Semin Cancer Biol 2009; 19:50-6. [DOI: 10.1016/j.semcancer.2008.12.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 12/13/2008] [Indexed: 01/15/2023]
|
49
|
Willems PHGM, Smeitink JAM, Koopman WJH. Mitochondrial dynamics in human NADH:ubiquinone oxidoreductase deficiency. Int J Biochem Cell Biol 2009; 41:1773-82. [PMID: 19703648 DOI: 10.1016/j.biocel.2009.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/12/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Mitochondrial NADH:ubiquinone oxidoreductase or complex I (CI) is a frequently affected enzyme in cases of mitochondrial disorders. However, the cytopathological mechanism of the associated pediatric syndromes is poorly understood. Evidence in the literature suggests a connection between mitochondrial metabolism and morphology. Previous quantitative analysis of mitochondrial structure in cultured fibroblasts of 14 patients revealed that mitochondria were fragmented and/or less branched in patients with severe CI deficiency. These patient cells also displayed greatly increased levels of reactive oxygen species (ROS) and marked aberrations in mitochondrial and cellular Ca(2+)/ATP handling upon hormone stimulation. Here, we discuss the interrelationship between these parameters and demonstrate that the hormone-induced increase in mitochondrial Ca(2+) and ATP concentration, as well as the rate of cytosolic Ca(2+) removal, are not related to mitochondrial length and/or degree of branching, but decrease as a function of the number of mitochondria per cell. This suggests that the amount of mitochondria, and not their shape, is important for Ca(2+)-induced stimulation of mitochondrial ATP generation to feed cytosolic ATP-demanding processes.
Collapse
Affiliation(s)
- Peter H G M Willems
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
50
|
Molina AJA, Shirihai OS. Monitoring mitochondrial dynamics with photoactivatable [corrected] green fluorescent protein. Methods Enzymol 2009; 457:289-304. [PMID: 19426874 DOI: 10.1016/s0076-6879(09)05016-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mitochondria are dynamic organelles that undergo continuous cycles of fusion and fission. Monitoring and quantification of mitochondrial dynamics has proved to be challenging because these processes are distinctly different from movement and apposition. While the majority of contact events do not lead to fusion, fission can occur without translocation, leaving the two mitochondria juxtaposed. The advent of photoactivatable fluorescent proteins has enabled researchers to distinguish mitochondrial fusion and fission. These genetically encoded fluorophores can be targeted to the mitochondrial compartments of interest to visualize how these intermix and segregate between dynamic mitochondria over time. The PAGFPmt-based mitochondrial dynamics assay has proved to be a powerful technique for revealing the treatments and cellular processes that affect fusion and fission. By using this technique in combination with other parameters, such as measurements of mitochondrial membrane potential, we have begun to understand the processes that control fusion and fission as well as the significance of mitochondrial dynamics.
Collapse
|