1
|
Liang C, Guo Y, Xue Zhang R, Yan H. Microtubular and high porosity design of electrospun PEGylated poly (lactic-co-glycolic acid) fibrous implant for ocular multi-route administration and medication. Int J Pharm 2024; 665:124751. [PMID: 39326475 DOI: 10.1016/j.ijpharm.2024.124751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Electrospun fibers have been gaining popularity in ocular drug delivery and cellular therapies. However, most of electrospun fibers are planar-shape membrane with large dimension relative to intraocular space, making difficult to use as therapeutic implants. Herein, fibrous microtubes with a hollow center were fabricated by electrospinning using linear diblock mPEG2000-PLGA. Uniform microfibers with 0.809 μm diameter was tailored using Box-Behnken Design model for electrospinning process optimization. The microtubes were 1 mm long with a 0.386 mm diameter. Their suitability for intraocular administration was demonstrated by both injection via a 22-gauge needle and implant via integration of intraocular lens into the vitreous or anterior chamber of eyes, respectively. Electrospun mPEG2000-PLGA had higher porosity, smaller specific surface area, and smaller water contact angle, than that of PLGA. Macroscopically, mPEG2000-PLGA microfibers can maintain overall geometry upon exposure to aqueous buffer for 12 h while having high water uptake and exhibited good elasticity. Hydrolysis with 90 % polymeric degradation in 10.5 weeks underlied sustained slow release of anti-inflammatory drug dexamethasone. PEGylation of PLGA imparted preferential cell adhesion with markedly higher growth of human retinal epithelial cells than lens epithelial ones. This study highlights the potential utility of implantable electrospun PLGA-based microtubes for multiple intraocular delivery routes.
Collapse
Affiliation(s)
- Chen Liang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, Shaanxi, China
| | - Yexuan Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710068, Shaanxi, China
| | - Rui Xue Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710068, Shaanxi, China.
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, Shaanxi, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710068, Shaanxi, China.
| |
Collapse
|
2
|
Alshaikh RA, Chullipalliyalil K, Waeber C, Ryan KB. Extended siponimod release via low-porosity PLGA fibres: a comprehensive three-month in vitro evaluation for neovascular ocular diseases. Biomater Sci 2024; 12:4823-4844. [PMID: 39157879 DOI: 10.1039/d4bm00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Neovascular ocular diseases are among the most common causes of preventable or treatable vision loss. Their management involves lifelong, intravitreal injections of anti-vascular endothelial growth factor (VEGF) therapeutics to inhibit neovascularization, the key pathological step in these diseases. Anti-VEGF products approved for ocular administration are expensive biological agents with limited stability and short half-life. Additionally, their therapeutic advantages are hindered by high treatment resistance, poor patient compliance and the need for frequent, invasive administration. Herein, we used electrospinning to develop a unique, non-porous, PLGA implant for the ocular delivery of siponimod to improve ocular neovascular disease management. Siponimod is an FDA-approved drug for multiple sclerosis with a novel indication as a potential ocular angiogenesis inhibitor. The electrospinning conditions were optimised to produce a microfibrous, PLGA matte that was cut and rolled into the desired implant size. Physical characterisation techniques (Raman, PXRD, DSC and FTIR) indicated siponimod was distributed uniformly within the electrospun fibres as a stabilised, amorphous, solid dispersion with a character modifying drug-polymer interaction. Siponimod dispersion and drug-polymer interactions contributed to the formation of smooth fibres, with reduced porous structures. The apparent reduced porosity, coupled with the drug's hydrophobic dispersion, afforded resistance to water penetration. This led to a slow, controlled, Higuchi-type drug diffusion, with ∼30% of the siponimod load released over 90 days. The released drug inhibited human retinal microvascular endothelial cell migration and did not affect the cells' metabolic activity at different time points. The electrospun implant was physically stable after incubation under stress conditions for three months. This novel siponimod intravitreal implant broadens the therapeutic possibilities for neovascular ocular diseases, representing a potential alternative to biological, anti-VEGF treatments due to lower financial and stability burdens. Additionally, siponimod interaction with PLGA provides a unique opportunity to sustain the drug release from the electrospun fibres, thereby reducing the frequency of intravitreal injection and improving patient adherence.
Collapse
Affiliation(s)
- Rasha A Alshaikh
- School of Pharmacy, University College Cork, Cork, Ireland.
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Christian Waeber
- School of Pharmacy, University College Cork, Cork, Ireland.
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland.
- SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Doshi A, Prabhakar B, Wairkar S. Prolonged retention of luliconazole nanofibers for topical mycotic condition: development, in vitro characterization and antifungal activity against Candida albicans. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:46. [PMID: 39115576 PMCID: PMC11310262 DOI: 10.1007/s10856-024-06815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/21/2024] [Indexed: 08/11/2024]
Abstract
An antifungal agent, luliconazole, is commercially available in cream or gel form. The major limitation of these conventional formulations is less residence time at the infection site. The primary objective of this work was to develop luliconazole-loaded polyvinyl alcohol (Luz-PVA) nanofibers for mycotic skin conditions with a longer retention. Luz-PVA nanofibers were prepared by plate electrospinning and optimized for polymer concentration and process parameters. The optimized batch (Trial 5) was prepared by 10% PVA, processed at 22.4 kV applied voltage, and 14 cm plate and spinneret distance to yield thick, uniform, and peelable nanofibers film. There was no interaction observed between Luz and PVA in the FTIR study. DSC and XRD analysis showed that luliconazole was loaded into fabricated nanofibers with a reduced crystallinity. FESEM studies confirmed the smooth, defect-free mats of nanofibers. Luz-PVA nanofibers possessed a tensile strength of 21.8 N and a maximum elongation of 10.8%, representing the excellent elasticity of the scaffolds. For Luz-PVA nanofibers, the sustained and complete drug release was observed in 48 h. In antifungal activity using Candida albicans, the Luz-PVA nanofibers showed a greater zone of inhibition (30.55 ± 0.38 mm and 29.27 ± 0.31 mm) than marketed cream (28.06 ± 0.18 mm and 28.47 ± 0.24 mm) and pure drug (27.57 ± 0.17 mm and 27.50 ± 0.47 mm) at 1% concentration in Sabouraud dextrose agar and yeast malt agar, respectively. Therefore, Luz-PVA nanofibers exhibited good mechanical properties, longer retention time, and better antifungal activity than marketed products and, therefore, can be further examined preclinically as a potential treatment option for topical mycotic infection.
Collapse
Affiliation(s)
- Akashkumar Doshi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, Maharashtra, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, Maharashtra, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, Maharashtra, India.
| |
Collapse
|
4
|
Beheshtizadeh N, Mohammadzadeh M, Mostafavi M, Seraji AA, Esmaeili Ranjbar F, Tabatabaei SZ, Ghafelehbashi R, Afzali M, Lolasi F. Improving hemocompatibility in tissue-engineered products employing heparin-loaded nanoplatforms. Pharmacol Res 2024; 206:107260. [PMID: 38906204 DOI: 10.1016/j.phrs.2024.107260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
The enhancement of hemocompatibility through the use of nanoplatforms loaded with heparin represents a highly desirable characteristic in the context of emerging tissue engineering applications. The significance of employing heparin in biological processes is unquestionable, owing to its ability to interact with a diverse range of proteins. It plays a crucial role in numerous biological processes by engaging in interactions with diverse proteins and hydrogels. This review provides a summary of recent endeavors focused on augmenting the hemocompatibility of tissue engineering methods through the utilization of nanoplatforms loaded with heparin. This study also provides a comprehensive review of the various applications of heparin-loaded nanofibers and nanoparticles, as well as the techniques employed for encapsulating heparin within these nanoplatforms. The biological and physical effects resulting from the encapsulation of heparin in nanoplatforms are examined. The potential applications of heparin-based materials in tissue engineering are also discussed, along with future perspectives in this field.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mahsa Mohammadzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada; Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Faezeh Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zoha Tabatabaei
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Robabehbeygom Ghafelehbashi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; Department of Materials and Textile Engineering, College of Engineering, Razi University, Kermanshah, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maede Afzali
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farshad Lolasi
- Department of pharmaceutical biotechnology, Faculty of Pharmacy And Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Taha E, Nour SA, Mamdouh W, Naguib MJ. Investigating the potential of highly porous zopiclone-loaded 3D electrospun nanofibers for brain targeting via the intranasal route. Int J Pharm 2024; 660:124230. [PMID: 38782156 DOI: 10.1016/j.ijpharm.2024.124230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Nanofibers (NFs) have proven to be very attractive tool as drug delivery plateform among the different plethora of nanosystems, owing to their unique features. They exhibit two- and three-dimensional structures some of which mimic structural environment of the body tissues, in addition to being safe, efficacious, and biocompatible drug delivery platform. Thus, this study embarked on fabricating polyvinyl alcohol/chitosan (PVA/CS) electrospun NFs encapsulating zopiclone (ZP) drug for intranasal brain targeted drug delivery. Electrospun NFs were optimized by adopting a three factor-two level full factorial design. The independent variables were: PVA/CS ratio (X1), flow rate (X2), and applied voltage (X3). The measured responses were: fiber diameter (Y1,nm), pore size (Y2,nm) and ultimate tensile strength (UTS,Y3,MPa). The selected optimum formula had resulted in NFs diameter of 215.90 ± 15.46 nm, pore size 7.12 ± 0.27 nm, and tensile strength around 6.64 ± 0.95 MPa. In-vitro biodegradability testing confirmed proper degradation of the NFs within 8 h. Moreover, swellability and breathability assessment revealed good hydrophilicity and permeability of the prepared NFs. Ex-vivo permeability study declared boosted ex-vivo permeation with an enhancement factor of 2.73 compared to ZP suspension. In addition, optimized NFs formula significantly reduced sleep latency and prolonged sleep duration in rats compared to IV ZP drug solution. These findings demonstrate the feasibility of employing the designed NFs as an effective safe platform for intranasal delivery of ZP for insomnia management.
Collapse
Affiliation(s)
- Esraa Taha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Samia A Nour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| | - Marianne J Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
6
|
Chakraborty P, Ramamurthy J. Fabrication and Characterization of Electrospun Ocimum sanctum and Curcumin-Loaded Nanofiber Membrane for the Management of Periodontal Disease: An In Vitro Study. Cureus 2024; 16:e63678. [PMID: 39092342 PMCID: PMC11293482 DOI: 10.7759/cureus.63678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background Periodontal disease is a chronic inflammatory condition that gradually deteriorates the supportive tissues of teeth, eventually leading to tooth loss. Mechanical debridement stands as the gold standard method for treating periodontitis. However, antimicrobial therapy is recommended for optimal results when used alongside mechanical debridement. Numerous studies have investigated local drug delivery as an adjunct to mechanical debridement of affected tooth surfaces. Ocimum sanctum exhibits anti-inflammatory, antioxidant, and antimicrobial properties. Similarly, curcumin, as documented in the literature, demonstrates a broad spectrum of anti-inflammatory and antimicrobial effects. Electrospinning has demonstrated itself to be a highly effective method for fabricating drug-loaded fibers. Electrospun nanofibers containing Ocimum sanctum and curcumin are expected to exhibit greater efficacy due to their increased surface area, facilitating the dispersion of larger quantities of drugs, and their ability to control drug release when employed as a local drug delivery system. This study aims to fabricate and characterize the properties of nanofiber membranes loaded with Ocimum sanctum and curcumin using the electrospinning technique. Methods About 50 mg each of Ocimum sanctum and curcumin were blended with 15% polyvinyl alcohol and 2% chitosan polymer in a 4:1 ratio and left to stir overnight. A 10 mL syringe was filled with this solution, and an 18 G blunt-end needle charged at 15.9 kV was used for extrusion. Continuous fibers were collected onto a collector plate positioned 12 cm from the center of the needle tip, at a flow rate of 0.005 mL/min. The morphology of the fabricated membrane was assessed through scanning electron microscopy (SEM), the strength of the material was assessed through tensile strength analysis using INSTRON, an Electropuls E3000 Universal Testing Machine (INSTRON, Norwood, MA), and the drug release pattern was analyzed using Jasco V-730 UV-visible spectrophotometer (Jasco, Easton, MD). Results The morphology of this nanofiber showed a random distribution of fibers with no bead formation. The average diameter of the membrane was 383±102 nm, and the tensile strength of this material was 1.87 MPa. The drug release pattern showed an initial burst release of Ocimum sanctum, followed by a controlled release in subsequent hours. However, curcumin showed very little drug release because of its solubility. Conclusion In summary, the Ocimum sanctum and curcumin-loaded nanofibers exhibited robust tensile strength, a controlled drug release profile, and uniform drug distribution within the nanofiber membrane. Consequently, it can be concluded that curcumin nanofibers and electrospun Ocimum sanctum serve as valuable agents for local drug delivery in the treatment of periodontitis.
Collapse
Affiliation(s)
- Poulami Chakraborty
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, IND
| | - Jaiganesh Ramamurthy
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, IND
| |
Collapse
|
7
|
Kim D, Heo J, Song B, Lee G, Hong C, Jiang Z, Lee S, Lee K, Kim M, Park MH. 3D in vitro synovial hyperplasia model on polycaprolactone-micropatterned nanofibrous microwells for screening disease-modifying anti-rheumatic drugs. Mater Today Bio 2024; 26:101061. [PMID: 38711937 PMCID: PMC11070697 DOI: 10.1016/j.mtbio.2024.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/10/2024] [Accepted: 04/13/2024] [Indexed: 05/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is known to be caused by autoimmune disorders and can be partially alleviated through Disease-Modifying Antirheumatic Drugs (DMARDs) therapy. However, due to significant variations in the physical environment and condition of each RA patient, the types and doses of DMARDs prescribed can differ greatly. Consequently, there is a need for a platform based on patient-derived cells to determine the effectiveness of specific DMARDs for individual patient. In this study, we established an RA three-dimensional (3D) spheroid that mimics the human body's 3D environment, enabling high-throughput assays by culturing patient-derived synovial cells on a macroscale-patterned polycaprolactone (PCL) scaffold. Fibroblast-like synoviocytes (FLSs) from patient and human umbilical vein endothelial cells (HUVECs) were co-cultured to simulate vascular delivery. Additionally, RA characteristics were identified at both the genetic and cytokine levels using real-time polymerase chain reaction (RT-qPCR) and dot blot assay. The similarities in junctions and adhesion were demonstrated in both actual RA patient tissues and 3D spheroids. The 3D RA spheroid was treated with representative DMARDs, observing changes in reactive oxygen species (ROS) levels, lactate dehydrogenase (LDH) levels, and inflammatory cytokine responses to confirm the varying cell reactions depending on the DMARDs used. This study underscores the significance of the 3D drug screening platform, which can be applied to diverse inflammatory disease treatments as a personalized drug screening system. We anticipate that this platform will become an indispensable tool for advancing and developing personalized DMARD treatment strategies.
Collapse
Affiliation(s)
- Dongwoo Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jiyeon Heo
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Boa Song
- THEDONEE Inc., Research Center, Seoul, Republic of Korea
| | - Gyubok Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Changgi Hong
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Zhuomin Jiang
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sohui Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Research Institute for Convergence Science, 145, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Min Hee Park
- THEDONEE Inc., Research Center, Seoul, Republic of Korea
| |
Collapse
|
8
|
Moghaddam A, Nejaddehbashi F, Orazizadeh M. Resveratrol-coated chitosan mats promote angiogenesis for enhanced wound healing in animal model. Artif Organs 2024. [PMID: 38778763 DOI: 10.1111/aor.14759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Growing incidences of chronic wounds recommend the development of optimal therapeutic wound dressings. Electrospun nanofibers have been considered to show potential wound healing properties when accompanied by other wound dressing materials. This study aimed to explore the potential role of Chitosan (CS) nanofibrous mats coated with resveratrol (RS) as an antioxidant and pro-angiogenic agent in rat models of skin wound healing. METHODS Electrospun chitosan/polyethylene oxide (PEO) nanofibers were prepared using electrospinning technology and coated by 0.05 and 0.1 mg.ml resveratrol named as (CS/RS 0.05) and (CS/RS 0.1), respectively. The scaffolds were characterized physiochemically such as in vitro release study, TGA, FTIR spectroscopy analysis, biodegradability, and human dermal fibroblast seeding assay. The scaffold was subsequently used in vivo as a skin substitute on a rat skin wound model. RESULTS In vitro tests revealed that all scaffolds promoted cell adhesion and proliferation. However, more cell viability was observed in CS/RS 0.1 scaffold. The biocompatibility of the scaffolds was validated by MTT assay, and the results did not show any toxic effects on human dermal fibroblasts. It was observed that RS-coated scaffolds had the ability to release RS in a controlled manner. In in vivo tests CS/RS 0.1 scaffold had the greatest impact on the healing process by improving the neodermis formation and modulated inflammation in wound granulation tissue. Histological analysis revealed enhanced vascular endothelial growth factor expression, epithelialization and increased depth of wound granulation tissue. CONCLUSIONS The RS-coated CS/PEO nanofibrous scaffold accelerates wound healing and may be useful as a dressing for cell transfer and clinical skin regeneration.
Collapse
Affiliation(s)
- Asma Moghaddam
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Lee S, Lee J, Choi S, Kim E, Kwon H, Lee J, Kim SM, Shin H. Biofabrication of 3D adipose tissue via assembly of composite stem cell spheroids containing adipo-inductive dual-signal delivery nanofibers. Biofabrication 2024; 16:035018. [PMID: 38739412 DOI: 10.1088/1758-5090/ad4a67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Reconstruction of large 3D tissues based on assembly of micro-sized multi-cellular spheroids has gained attention in tissue engineering. However, formation of 3D adipose tissue from spheroids has been challenging due to the limited adhesion capability and restricted cell mobility of adipocytes in culture media. In this study, we addressed this problem by developing adipo-inductive nanofibers enabling dual delivery of indomethacin and insulin. These nanofibers were introduced into composite spheroids comprising human adipose-derived stem cells (hADSCs). This approach led to a significant enhancement in the formation of uniform lipid droplets, as evidenced by the significantly increased Oil red O-stained area in spheroids incorporating indomethacin and insulin dual delivery nanofibers (56.9 ± 4.6%) compared to the control (15.6 ± 3.5%) with significantly greater gene expression associated with adipogenesis (C/EBPA, PPARG, FABP4, and adiponectin) of hADSCs. Furthermore, we investigated the influence of culture media on the migration and merging of spheroids and observed significant decrease in migration and merging of spheroids in adipogenic differentiation media. Conversely, the presence of adipo-inductive nanofibers promoted spheroid fusion, allowing the formation of macroscopic 3D adipose tissue in the absence of adipogenic supplements while facilitating homogeneous adipogenesis of hADSCs. The approach described here holds promise for the generation of 3D adipose tissue constructs by scaffold-free assembly of stem cell spheroids with potential applications in clinical and organ models.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeongbok Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
| | - Soomi Choi
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunseok Kwon
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sung Min Kim
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
- Major in Sport Science, Collage of Performing Arts and Sport, Hanyang University, Seoul 04763, Republic of Korea
- Center for Artificial Intelligence Muscle, Hanyang University, Seoul 04743, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
10
|
M R H Mostafa A, Petrai O, Poot AA, Prakash J. Polymeric nanofiber leveraged co-delivery of anti-stromal PAK1 inhibitor and paclitaxel enhances therapeutic effects in stroma-rich 3D spheroid models. Int J Pharm 2024; 656:124078. [PMID: 38569978 DOI: 10.1016/j.ijpharm.2024.124078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
The role of tumor stroma in solid tumors has been widely recognized in cancer progression, metastasis and chemoresistance. Cancer-associated fibroblasts (CAFs) play a crucial role in matrix remodeling and promoting cancer cell stemness and resistance via reciprocal crosstalk. Residual tumor tissue after surgical removal as well as unresectable tumors face therapeutic challenges to achieve curable outcome. In this study, we propose to develop a dual delivery approach by combining p21-activated kinase 1 (PAK1) inhibitor (FRAX597) to inhibit tumor stroma and chemotherapeutic agent paclitaxel (PTX) to kill cancer cells using electrospun nanofibers. First, the role of the PAK1 pathway was established in CAF differentiation, migration and contraction using relevant in vitro models. Second, polycaprolactone polymer-based nanofibers were fabricated using a uniaxial electrospinning technique to incorporate FRAX597 and/or PTX, which showed a uniform texture and a prolonged release of both drugs for 16 days. To test nanofibers, stroma-rich 3D heterospheroid models were set up which showed high resistance to PTX nanofibers compared to stroma-free homospheroids. Interestingly, nanofibers containing PTX and FRAX597 showed strong anti-tumor effects on heterospheroids by reducing the growth and viability by > 90 % compared to either of single drug-loaded nanofibers. These effects were reflected by reduced intra-spheroidal expression levels of collagen 1 and α-smooth muscle actin (α-SMA). Overall, this study provides a new therapeutic strategy to inhibit the tumor stroma using PAK1 inhibitor and thereby enhance the efficacy of chemotherapy using nanofibers as a local delivery system for unresectable or residual tumor. Use of 3D models to evaluate nanofibers highlights these models as advanced in vitro tools to study the effect of controlled release local drug delivery systems before animal studies.
Collapse
Affiliation(s)
- Ahmed M R H Mostafa
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Ornela Petrai
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - André A Poot
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Jai Prakash
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
11
|
Falanga A, Bellavita R, Braccia S, Galdiero S. Hydrophobicity: The door to drug delivery. J Pept Sci 2024; 30:e3558. [PMID: 38115215 DOI: 10.1002/psc.3558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
The engineering of intracellular delivery systems with the goal of achieving personalized medicine has been encouraged by advances in nanomaterial science as well as a greater understanding of diseases and of the biochemical pathways implicated in many disorders. The development of vectors able to transport the drug to a target location and release it only on demand is undoubtedly the primary issue. From a molecular perspective, the topography of drug carrier surfaces is directly related to the design of an effective drug carrier because it provides a physical hint to modifying its interactions with biological systems. For instance, the initial ratio of hydrophilic to hydrophobic surfaces and the changes brought about by external factors enable the release or encapsulation of a therapeutic molecule and the ability of the nanosystem to cross biological barriers and reach its target without causing systemic toxicity. The first step in creating new materials with enhanced functionality is to comprehend and characterize the interplay between hydrophilic and hydrophobic molecules at the molecular level. Therefore, the focus of this review is on the function of hydrophobicity, which is essential for matching the complexity of biological environments with the intended functionality.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
- CiRPEB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Rosa Bellavita
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Simone Braccia
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Stefania Galdiero
- CiRPEB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
12
|
Wildy M, Wei W, Xu K, Schossig J, Hu X, la Cruz DSD, Hyun DC, Lu P. Exploring temperature-responsive drug delivery with biocompatible fatty acids as phase change materials in ethyl cellulose nanofibers. Int J Biol Macromol 2024; 266:131187. [PMID: 38552686 DOI: 10.1016/j.ijbiomac.2024.131187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
This study introduces a novel temperature-responsive drug delivery system using ethyl cellulose (EC) nanofibers encapsulating a eutectic mixture of lauric acid/stearic acid (LA/SA) as phase change materials (PCMs) and Rhodamine B (RhB) as a model drug. Employing blend electrospinning, the nanofibers achieved controlled drug release responsive to temperature changes. The peak shift of the carbonyl group in FTIR analysis confirmed drug-polymer compatibility, while the absence of RhB peaks in the XRD and DSC assessments revealed RhB's amorphous distribution within the fibers. Our findings demonstrate that RhB release is dependent on its loading, with a slow initial release (<2 %) for 1 % and 5 % RhB loadings and a burst release (~12 %) for 10 % loading. Notably, the release rate was tunable at 37 °C by adjusting LA/SA concentration. The optimal LA/SA loading for temperature-responsive release is identified as 10 %. Over 240 h, there is a 32 % increase in RhB release at 37 °C, and an additional 8 % increase at 40 °C, compared to 25 °C. This research illustrates the potential of PCM-integrated nanofibers in smart drug delivery, particularly for chemotherapy, antibiotics, and anti-inflammatory drugs, showcasing an innovative approach to improving therapeutic efficiency while reducing side effects.
Collapse
Affiliation(s)
- Michael Wildy
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Wanying Wei
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Kai Xu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - John Schossig
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, United States
| | - David Salas-de la Cruz
- Department of Chemistry, Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, United States
| | - Dong Choon Hyun
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
13
|
Zhang S, Yang W, Gong W, Lu Y, Yu DG, Liu P. Recent progress of electrospun nanofibers as burning dressings. RSC Adv 2024; 14:14374-14391. [PMID: 38694552 PMCID: PMC11061782 DOI: 10.1039/d4ra01514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024] Open
Abstract
Burns are a global public health problem, which brings great challenges to public health and the economy. Severe burns often lead to systemic infection, shock, multiple organ failure, and even death. With the increasing demand for the therapeutic effect of burn wounds, traditional dressings have been unable to meet people's needs due to their single function and many side effects. In this context, electrospinning shows a great prospect on the way to open up advanced wound dressings that promote wound repairing and prevent infection. With its large specific surface area, high porosity, and similar to natural extracellular matrix (ECM), electrospun nanofibers can load drugs and accelerate wound healing. It provides a promising solution for the treatment and management of burn wounds. This review article introduces the concept of burn and the types of electrospun nanofibers, then summarizes the polymers used in electrospun nanofiber dressings. Finally, the drugs (plant extracts, small molecule drugs and nanoparticles) loaded with electrospun burn dressings are summarized. Some promising aspects for developing commercial electrospun burn dressings are proposed.
Collapse
Affiliation(s)
- Shengwei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Wei Yang
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology Shanghai 200443 China
| | - Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuhang Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology Shanghai 200443 China
| |
Collapse
|
14
|
Sokač K, Miloloža M, Kučić Grgić D, Žižek K. Polymeric Amorphous Solid Dispersions of Dasatinib: Formulation and Ecotoxicological Assessment. Pharmaceutics 2024; 16:551. [PMID: 38675212 PMCID: PMC11053848 DOI: 10.3390/pharmaceutics16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Dasatinib (DAS), a potent anticancer drug, has been subjected to formulation enhancements due to challenges such as significant first-pass metabolism, poor absorption, and limited oral bioavailability. To improve its release profile, DAS was embedded in a matrix of the hydrophilic polymer polyvinylpyrrolidone (PVP). Drug amorphization was induced in a planetary ball mill by solvent-free co-grinding, facilitating mechanochemical activation. This process resulted in the formation of amorphous solid dispersions (ASDs). The ASD capsules exhibited a notable enhancement in the release rate of DAS compared to capsules containing the initial drug. Given that anticancer drugs often undergo limited metabolism in the body with unchanged excretion, the ecotoxicological effect of the native form of DAS was investigated as well, considering its potential accumulation in the environment. The highest ecotoxicological effect was observed on the bacteria Vibrio fischeri, while other test organisms (bacteria Pseudomonas putida, microalgae Chlorella sp., and duckweed Lemna minor) exhibited negligible effects. The enhanced drug release not only contributes to improved oral absorption but also has the potential to reduce the proportion of DAS that enters the environment through human excretion. This comprehensive approach highlights the significance of integrating advances in drug development while considering its environmental implications.
Collapse
Affiliation(s)
- Katarina Sokač
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.K.G.); (K.Ž.)
| | - Martina Miloloža
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.K.G.); (K.Ž.)
| | | | | |
Collapse
|
15
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancements in Hybrid Cellulose-Based Films: Innovations and Applications in 2D Nano-Delivery Systems. J Funct Biomater 2024; 15:93. [PMID: 38667550 PMCID: PMC11051498 DOI: 10.3390/jfb15040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
This review paper delves into the realm of hybrid cellulose-based materials and their applications in 2D nano-delivery systems. Cellulose, recognized for its biocompatibility, versatility, and renewability, serves as the core matrix for these nanomaterials. The paper offers a comprehensive overview of the latest advancements in the creation, analysis, and application of these materials, emphasizing their significance in nanotechnology and biomedical domains. It further illuminates the integration of nanomaterials and advanced synthesis techniques that have significantly improved the mechanical, chemical, and biological properties of hybrid cellulose-based materials.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
16
|
Botsula I, Sсhavikin J, Heinämäki J, Laidmäe I, Mazur M, Raal A, Koshovyi O, Kireyev I, Chebanov V. Application of nanofiber-based drug delivery systems in improving anxiolytic effect of new 1,2,3-triazolo-1,4-benzodiazepine derivatives. Eur J Pharm Sci 2024; 195:106712. [PMID: 38290611 DOI: 10.1016/j.ejps.2024.106712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
Anxiety disorders are highly prevalent worldwide and can affect people of all ages, genders and backgrounds. Much efforts and resources have been directed at finding new anxiolytic agents and drug delivery systems (DDSs) especially for cancer patients to enhance targeted drug delivery, reduce drug adverse effects, and provide an analgesic effect. The aim of this study was (1) to design and develop novel nanofiber-based DDSs intended for the oral administration of new 1,2,3-triazolo-1,4-benzodiazepines derivatives, (2) to investigate the physical solid-state properties of such drug-loaded nanofibers, and (3) to gain knowledge of the anxiolytic activity of the present new benzodiazepines in rodents in vivo. The nanofibers loaded with 1,2,3-triazolo-1,4-benzodiazepine derivatives were prepared by means of electrospinning (ES). Field-emission scanning electron microscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used for the physicochemical characterization of nanofibers. The anxiolytic activity of new derivatives and drug-loaded nanofibers was studied with an elevated plus maze test and light-dark box test. New 1,2,3-triazolo-1,4-benzodiazepine derivatives showed a promising anxiolytic effect in mice with clear changes in behavioral reactions in both tests. The nanofiber-based DDS was found to be feasible in the oral delivery of the present benzodiazepine derivatives. The nanofibers generated by means of ES presented the diameter in a nanoscale, uniform fiber structure, capacity for drug loading, and the absence of defects. The present findings provide new insights in the drug treatment of anxiety disorders with new benzodiazepine derivatives.
Collapse
Affiliation(s)
| | - Johannes Sсhavikin
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia.
| | - Ivo Laidmäe
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Maryna Mazur
- Division of Chemistry of Functional Materials, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Oleh Koshovyi
- National University of Pharmacy, Kharkiv, Ukraine; Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Igor Kireyev
- National University of Pharmacy, Kharkiv, Ukraine
| | - Valentyn Chebanov
- Division of Chemistry of Functional Materials, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Kharkiv, Ukraine; Department of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
17
|
Vargas-Osorio Z, González Castillo EI, Mutlu N, Vidomanová E, Michálek M, Galusek D, Boccaccini AR. Tailorable mechanical and degradation properties of KCl-reticulated and BDDE-crosslinked PCL/chitosan/κ-carrageenan electrospun fibers for biomedical applications: Effect of the crosslinking-reticulation synergy. Int J Biol Macromol 2024; 265:130647. [PMID: 38460627 DOI: 10.1016/j.ijbiomac.2024.130647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The development of intricated and interconnected porous mats is desired for many applications in biomedicine and other relevant fields. The mats that comprise the use of natural, bioactive, and biodegradable polymers are the focus of current research activities. In the present work, crosslinked fibers with improved characteristics were produced by incorporating 1,4-butanediol diglycidyl ether (BDDE) into a polymer formulation containing polycaprolactone (PCL), chitosan (CS), and κappa-carrageenan (κ-C). A slight variation of formic acid (FA)/acetic acid (AA) ratio used as a solvent system, significantly affected the characteristics of the produced fiber mats. Both polysaccharides and BDDE played a major role in tailoring mechanical properties when fibrous scaffolds were reticulated under KCl-mediated basic conditions for determined periods of time at 50 °C. In vitro biological assessment of the electrospun fiber mats revealed proliferation of MC3T3-E1 cells when incubated for 1 and 7 days. After staining the cells with 4',6-diamidino-2-phenylindole (DAPI)/rhodamine phalloidin an autofluorescence response was observed by fluorescence microscopy in the scaffold manufactured using a solvent with higher FA/AA ratio due to the formation of microfibers. The results demonstrated the potential of the BDDE-crosslinked PCL/CS/κ-C electrospun fibers as promising materials for biomedical applications that may include soft and bone tissue regeneration.
Collapse
Affiliation(s)
- Zulema Vargas-Osorio
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany.
| | - Eduin I González Castillo
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Nurshen Mutlu
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany
| | - Eva Vidomanová
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Martin Michálek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Dušan Galusek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Joint Glass Centre of the IIC SAS, TnUAD, FChPT STU, Študentská 2, 911 50 Trenčín, Slovakia
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany.
| |
Collapse
|
18
|
Alotaibi B, Khan AK, Kharaba Z, Yasin H, Yasmin R, Ijaz M, Khan M, Murtaza G. Development of Poly(vinyl alcohol)-Chitosan Composite Nanofibers for Dual Drug Therapy of Wounds. ACS OMEGA 2024; 9:12825-12834. [PMID: 38524467 PMCID: PMC10955599 DOI: 10.1021/acsomega.3c08856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Current trends in localized drug delivery are emphasizing the development of dual drug-loaded electrospun nanofibers (NFs) for an improved therapeutic effect on wounds, especially infected skin wounds. The objective of this study was to formulate a new healing therapy for an infected skin wound. To achieve this goal, this study involved the development and characterization of poly(vinyl alcohol) (PVA)/chitosan nanofibers loaded with ciprofloxacin and rutin hydrate. Polymers and drugs were used in different ratios. Nanofiber morphology was studied by scanning electron microscopy, thermal stability by thermogravimetric analysis, structural determination by the X-ray diffraction method, and integrity by Fourier transform infrared spectroscopy. Dissolution studies were performed to check the drug release behavior of the formulations. Antibacterial studies were performed against Staphylococcus aureus and Pseudomonas aeruginosa. The wound healing efficiency of dual drug-loaded nanofibers was measured by a full-thickness excisional wound model of rabbits. The fabricated nanofibers were smooth in morphology. According to FTIR findings, the drugs remained intact in the nanofibers. The results of swelling ratio and porosity revealed that the pore size was increased as the amount of chitosan was increased up to 30% but a further increase in chitosan concentration reduced the swelling ratio and porosity. Drug release studies of nanofibers depicted an initial burst effect and afterward controlled drug release behavior. Drug-loaded nanofibers showed better activity against S. aureus than P. aeruginosa. The antibacterial efficacy of rutin hydrate with ciprofloxacin was improved compared to that of the formulation having rutin hydrate only, likely due to the additive effect in activity. Based on wound healing studies, nanofibrous membranes acted as a promising wound dressing material as compared to the commercial wound healing formulation. Drug-loaded polymeric nanofibers were successfully fabricated by using an electrospinning method. These nanofibers showed an efficient ability to deliver drugs and treat infected wounds.
Collapse
Affiliation(s)
- Badriyah
S Alotaibi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abida Kalsoom Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Zelal Kharaba
- Department
of Clinical Pharmacy, College of Pharmacy, AlAin University, Abu Dhabi Campus,Abu Dhabi 112612, United Arab Emirates
| | - Haya Yasin
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Rehana Yasmin
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Munaza Ijaz
- Department
of Microbiology, University of Central Punjab, Lahore 54000, Pakistan
| | - Madiha Khan
- Department
of Microbiology, University of Central Punjab, Lahore 54000, Pakistan
| | - Ghulam Murtaza
- Department
of Pharmacy, COMSATS University Islamabad, Lahore Campus,Lahore 54000, Pakistan
| |
Collapse
|
19
|
Azhari Rad R, Naghdi Y, Majidi Jamalabadi M, Masoumi S, Rezakhani L, Alizadeh M. Tissue Engineering Scaffolds Loaded With a Variety of Plant Extracts: Novel Model in Breast Cancer Therapy. Breast Cancer (Auckl) 2024; 18:11782234241236358. [PMID: 38476474 PMCID: PMC10929036 DOI: 10.1177/11782234241236358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Despite recent improvements in detecting and managing breast cancer (BC), it continues to be a major worldwide health concern that annually affects millions of people. Exploring the anti-BC potentials of natural compounds has received a lot of scientific attention due to their multi-target mode of action and good safety profiles because of these unmet needs. Drugs made from herbs are secure and have a lot fewer negative effects than those made from synthetic materials. Early stage patients benefit from breast-conserving surgery, but the risk of local recurrence remains, necessitating implanted scaffolds. These scaffolds provide residual cancer cell killing and tailored drug delivery. This review looks at plant extract-infused tissue engineering scaffolds, which provide a novel approach to treating BC. By offering patient individualized, safer treatments, these scaffolds could completely change how BC is treated.
Collapse
Affiliation(s)
- Reyhaneh Azhari Rad
- Student Research Committee, School of Paramedicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Yasaman Naghdi
- Student Research Committee, School of Paramedicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mobina Majidi Jamalabadi
- Student Research Committee, School of Nursing and Midwifery, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sima Masoumi
- Graduate of Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
20
|
Broadwin M, Imarhia F, Oh A, Stone CR, Sellke FW, Bhowmick S, Abid MR. Exploring Electrospun Scaffold Innovations in Cardiovascular Therapy: A Review of Electrospinning in Cardiovascular Disease. Bioengineering (Basel) 2024; 11:218. [PMID: 38534492 DOI: 10.3390/bioengineering11030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. In particular, patients who suffer from ischemic heart disease (IHD) that is not amenable to surgical or percutaneous revascularization techniques have limited treatment options. Furthermore, after revascularization is successfully implemented, there are a number of pathophysiological changes to the myocardium, including but not limited to ischemia-reperfusion injury, necrosis, altered inflammation, tissue remodeling, and dyskinetic wall motion. Electrospinning, a nanofiber scaffold fabrication technique, has recently emerged as an attractive option as a potential therapeutic platform for the treatment of cardiovascular disease. Electrospun scaffolds made of biocompatible materials have the ability to mimic the native extracellular matrix and are compatible with drug delivery. These inherent properties, combined with ease of customization and a low cost of production, have made electrospun scaffolds an active area of research for the treatment of cardiovascular disease. In this review, we aim to discuss the current state of electrospinning from the fundamentals of scaffold creation to the current role of electrospun materials as both bioengineered extracellular matrices and drug delivery vehicles in the treatment of CVD, with a special emphasis on the potential clinical applications in myocardial ischemia.
Collapse
Affiliation(s)
- Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frances Imarhia
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Amy Oh
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Christopher R Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Sankha Bhowmick
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
21
|
Papezhuk MV, Ivanin SN, Yakupov RP, Buz’ko VY, Sukhno IV, Gneush AN, Petriev IS. Obtaining Polyvinylpyrrolidone Fibers Using the Electroforming Method with the Inclusion of Microcrystalline High-Temperature Phosphates. Int J Mol Sci 2024; 25:2298. [PMID: 38396975 PMCID: PMC10888835 DOI: 10.3390/ijms25042298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The results of the synthesis of microcrystalline calcium phosphates such as hydroxoapatite, pyrophosphate, and tricalcium phosphate are presented herein. The influence of the addition of polyvinylpyrrolidone (PVP) on the phase characteristics of the resulting high-temperature ceramic sample is considered. The X-ray results show that hydroxyapatite (HAp) consists of a Ca5(PO4)3(OH) phase, while the sample with the addition of polyvinylpyrrolidone contains β-Ca3(PO4)2 (65.5%) and β-Ca2P2O7 (34.5%) phases calcium phosphates (CPs). IR spectroscopy was used to characterize the compositions of the samples. An important characteristic of the obtained samples is the elemental Ca/P ratio, which was determined via energy-dispersive analysis. The data obtained are consistent with the composition of dental enamel apatites, namely, in the CPs (1.27) and HAp (1.40). SEM was used to study the morphology of the surfaces of hydroxyapatite particles. Polyvinylpyrrolidone polymer fibers were obtained using the electroforming method with the inclusion of CPs in the composition. The fibers were oriented randomly, and nanoscale hydroxyapatite particles were incorporated into the fiber structure. Solubility data of the HAp, CPs, and Fibers in a physiological solution at room temperature and human body temperature were obtained. The solubility of the resulting HAp turned out to be higher than the solubility of the CPs. In turn, the concentration of Ca2+ in a physiological solution of PVP composite fibers with the inclusion of CPs was lower than that in powdered CPs.
Collapse
Affiliation(s)
- Marina Vladimirovna Papezhuk
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (M.V.P.); (S.N.I.); (R.P.Y.); (V.Y.B.)
| | - Sergei Nikolaevich Ivanin
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (M.V.P.); (S.N.I.); (R.P.Y.); (V.Y.B.)
- Laboratory of Advanced Nanobiotechnologies, Kuban State Agricultural University, 350044 Krasnodar, Russia; (I.V.S.); (A.N.G.)
| | - Roman Pavlovich Yakupov
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (M.V.P.); (S.N.I.); (R.P.Y.); (V.Y.B.)
- Laboratory of Advanced Nanobiotechnologies, Kuban State Agricultural University, 350044 Krasnodar, Russia; (I.V.S.); (A.N.G.)
| | - Vladimir Yurievich Buz’ko
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (M.V.P.); (S.N.I.); (R.P.Y.); (V.Y.B.)
- Laboratory of Advanced Nanobiotechnologies, Kuban State Agricultural University, 350044 Krasnodar, Russia; (I.V.S.); (A.N.G.)
| | - Igor Vladimirovich Sukhno
- Laboratory of Advanced Nanobiotechnologies, Kuban State Agricultural University, 350044 Krasnodar, Russia; (I.V.S.); (A.N.G.)
| | - Anna Nikolaevna Gneush
- Laboratory of Advanced Nanobiotechnologies, Kuban State Agricultural University, 350044 Krasnodar, Russia; (I.V.S.); (A.N.G.)
| | - Iliya Sergeevich Petriev
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (M.V.P.); (S.N.I.); (R.P.Y.); (V.Y.B.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Centre of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia
| |
Collapse
|
22
|
Vinţeler N, Feurdean CN, Petkes R, Barabas R, Boşca BA, Muntean A, Feștilă D, Ilea A. Biomaterials Functionalized with Inflammasome Inhibitors-Premises and Perspectives. J Funct Biomater 2024; 15:32. [PMID: 38391885 PMCID: PMC10889089 DOI: 10.3390/jfb15020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
This review aimed at searching literature for data regarding the inflammasomes' involvement in the pathogenesis of oral diseases (mainly periodontitis) and general pathologies, including approaches to control inflammasome-related pathogenic mechanisms. The inflammasomes are part of the innate immune response that activates inflammatory caspases by canonical and noncanonical pathways, to control the activity of Gasdermin D. Once an inflammasome is activated, pro-inflammatory cytokines, such as interleukins, are released. Thus, inflammasomes are involved in inflammatory, autoimmune and autoinflammatory diseases. The review also investigated novel therapies based on the use of phytochemicals and pharmaceutical substances for inhibiting inflammasome activity. Pharmaceutical substances can control the inflammasomes by three mechanisms: inhibiting the intracellular signaling pathways (Allopurinol and SS-31), blocking inflammasome components (VX-765, Emricasan and VX-740), and inhibiting cytokines mediated by the inflammasomes (Canakinumab, Anakinra and Rilonacept). Moreover, phytochemicals inhibit the inflammasomes by neutralizing reactive oxygen species. Biomaterials functionalized by the adsorption of therapeutic agents onto different nanomaterials could represent future research directions to facilitate multimodal and sequential treatment in oral pathologies.
Collapse
Affiliation(s)
- Norina Vinţeler
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Claudia Nicoleta Feurdean
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Regina Petkes
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Reka Barabas
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Bianca Adina Boşca
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandrina Muntean
- Department of Paediatric, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Dana Feștilă
- Department of Orthodontics, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Erdoğan N, Şen Karaman D, Yıldız Ö, Özdemir GD, Ercan UK. Mesoporous silica nanoparticles accommodating electrospun nanofibers as implantable local drug delivery system processed by cold atmospheric plasma and spin coating approaches. Biomed Mater 2024; 19:025015. [PMID: 38181435 DOI: 10.1088/1748-605x/ad1bb1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Nanofibers (NF) and nanoparticles are attractive for drug delivery to improve the drug bioavailability and administration. Easy manipulation of NF as macroscopic bulk material give rise to potential usages as implantable local drug delivery systems (LLDS) to overcome the failures of systemic drug delivery systems such as unmet personalized needs, side effects, suboptimal dosage. In this study, poly(ethylene glycol) polyethyleneimine (mPEG:PEI) copolymer blended polyϵ-caprolactone NFs, NFblendaccommodating mesoporous silica nanoparticles (MSN) as the implantable LLDS was achieved by employing spin coating and cold atmospheric plasma (CAP) as the post-process for accommodation on NFblend. The macroporous morphology, mechanical properties, wettability, andin vitrocytocompatibility of NFblendensured their potential as an implantable LLDS and superior features compared to neat NF. The electron microscopy images affirmed of NFblendrandom fiber (average diameter 832 ± 321 nm) alignments and accessible macropores before and after MSN@Cur accommodation. The blending of polymers improved the elongation of NF and the tensile strength which is attributed as beneficial for implantable LLDS. CAP treatment could significantly improve the wettability of NF observed by the contact angle changes from ∼126° to ∼50° which is critical for the accommodation of curcumin-loaded MSN (MSN@Cur) andin vitrocytocompatibility of NF. The combined CAP and spin coating as the post-processes was employed for accommodating MSN@Cur on NFblendwithout interfering with the electrospinning process. The post-processing aided fine-tuning of curcumin dosing (∼3 µg to ∼15 µg) per dose unit and sustained zero-order drug release profile could be achieved. Introducing of MSN@Cur to cells via LLDS promoted the cell proliferation compared to MSN@Cur suspension treatments and assigned as the elimination of adverse effects by nanocarriers by the dosage form integration. All in all, NFblend-MSN@Cur was shown to have high potential to be employed as an implantable LLDS. To the best of our knowledge, this is the first study in which mPEG:PEI copolymer blend NF are united with CAP and spin coating for accommodating nano-drug carriers, which allows for NF both tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Nursu Erdoğan
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Didem Şen Karaman
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
| | - Özlem Yıldız
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Gizem Dilara Özdemir
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
24
|
Yu DG, Xu L. Impact Evaluations of Articles in Current Drug Delivery based on Web of Science. Curr Drug Deliv 2024; 21:360-367. [PMID: 37157193 DOI: 10.2174/1567201820666230508115356] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
A total of 1534 and 308 articles were published in the journal Current Drug Delivery (CDD), from 2004 and 2019 to 2021, respectively. In this commentary, their impacts were analyzed based on search data about citation times in the Web of Science. These publications were categorized from different standpoints and evaluated in terms of their citations, particularly in the year 2021. The thematic, contemporary, and local features of these articles, as well as the article types and publication formats, were interpreted. Results demonstrated that CDD should be loyal to the contents about drug delivery, particularly nano-drug delivery systems and nano-pharmaceutical technologies. Publications from the developing and developed countries and regions showed no remarkable differences; therefore, submissions are similarly welcomed. Research articles and review articles are the main stream of CDD. The ratio of review papers is about 30%, which is reasonable but should not be further extended. Moreover, open publications with an article processing charge always have a high impact than those with subscription.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
25
|
Astaneh ME, Fereydouni N. A focused review on hyaluronic acid contained nanofiber formulations for diabetic wound healing. Int J Biol Macromol 2023; 253:127607. [PMID: 37871723 DOI: 10.1016/j.ijbiomac.2023.127607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The significant clinical challenge presented by diabetic wounds is due to their impaired healing process and increased risk of complications. It is estimated that a foot ulcer will develop at some point in the lives of 15-25 % of diabetic patients. Serious complications, including infection and amputation, are often led to by these wounds. In the field of tissue engineering and regenerative medicine, nanofiber-based wound dressings have emerged in recent years as promising therapeutic strategies for diabetic wound healing. Hyaluronic acid (HA), among various nanofiber materials, has gained considerable attention due to its unique properties, including biocompatibility, biodegradability, and excellent moisture retention capacity. By promoting skin hydration and controlling inflammation, a crucial role in wound healing is played by HA. Wounds are also helped to heal faster by HA through the regulation of inflammation levels and signaling the body to build more blood vessels in the damaged area. Great potential in various applications, including wound healing, has been shown by the development and use of nanofiber formulations in medicine. However, challenges and limitations associated with nanofibers in medicine exist, such as reproducibility, proper characterization, and biological evaluation. By providing a biomimetic environment that enhances re-epithelialization and facilitates the delivery of active substances, nanofibers promote wound healing. In accelerating wound healing, promising results have been shown by HA-contained nanofiber formulations in diabetic wounds. Key strategies employed by these formulations include revascularization, modulation of the inflammation microenvironment, delivery of active substances, photothermal nanofibers, and nanoparticle-loaded fabrics. Particularly crucial is revascularization as it restores blood flow to the wound area, promoting healing. Wound healing can also be enhanced by modulating the inflammation microenvironment through controlling inflammation levels. Future perspectives in this field involve addressing the current challenges and limitations of nanofiber technology and further optimizing HA-contained nanofiber formulations for improved efficacy in diabetic wound healing. This includes exploring new fabrication techniques, enhancing the biocompatibility and biodegradability of nanofibers, and developing multifunctional nanofibers for targeted drug delivery. Not only does writing a review in the field of nanofiber-based wound dressings, particularly those containing hyaluronic acid, allow us to consolidate our current knowledge and understanding but also broadens our horizons. An opportunity is provided to delve deeper into the intricacies of this innovative therapeutic strategy, explore its potential and limitations, and envision future directions. By doing so, a contribution can be made to the ongoing advancements in tissue engineering and regenerative medicine, ultimately improving the quality of life for patients with diabetic wounds.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
26
|
Zięba M, Sikorska W, Musioł M, Janeczek H, Włodarczyk J, Pastusiak M, Gupta A, Radecka I, Parati M, Tylko G, Kowalczuk M, Adamus G. Designing of Drug Delivery Systems to Improve the Antimicrobial Efficacy in the Periodontal Pocket Based on Biodegradable Polyesters. Int J Mol Sci 2023; 25:503. [PMID: 38203673 PMCID: PMC10778800 DOI: 10.3390/ijms25010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Delivery systems for biologically active substances such as proanthocyanidins (PCANs), produced in the form of electrospun nonwoven through the electrospinning method, were designed using a polymeric blend of poly(L-lactide-co-glycolide) (PLGA)and poly[(R,S)-3-hydroxybutyrate] ((R,S)-PHB). The studies involved the structural and thermal characteristics of the developed electrospun three-dimensional fibre matrices unloaded and loaded with PCANs. In the next step, the hydrolytic degradation tests of these systems were performed. The release profile of PCANs from the electrospun nonwoven was determined with the aid of UV-VIS spectroscopy. Approximately 30% of the PCANs were released from the tested electrospun nonwoven during the initial 15-20 days of incubation. The chemical structure of water-soluble oligomers that were formed after the hydrolytic degradation of the developed delivery system was identified through electrospray ionization mass spectrometry. Oligomers of lactic acid and OLAGA oligocopolyester, as well as oligo-3-hydroxybutyrate terminated with hydroxyl and carboxyl end groups, were recognized as degradation products released into the water during the incubation time. It was also demonstrated that variations in the degradation rate of individual mat components influenced the degradation pattern and the number of formed oligomers. The obtained results suggest that the incorporation of proanthocyanidins into the system slowed down the hydrolytic degradation process of the poly(L-lactide-co-glycolide)/poly[(R,S)-3-hydroxybutyrate] three-dimensional fibre matrix. In addition, in vitro cytotoxicity and antimicrobial studies advocate the use of PCANs for biomedical applications with promising antimicrobial activity.
Collapse
Affiliation(s)
- Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
- Department of Optoelectronics, Silesian University of Technology, B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Abhishek Gupta
- Faculty of Science and Engineering, School of Pharmacy, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| | - Iza Radecka
- Faculty of Science and Engineering, Wolverhampton School of Life Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (I.R.); (M.P.)
| | - Mattia Parati
- Faculty of Science and Engineering, Wolverhampton School of Life Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (I.R.); (M.P.)
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland;
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| |
Collapse
|
27
|
Zhang C, Jahan SA, Zhang J, Bianchi MB, Volpe-Zanutto F, Baviskar SM, Rodriguez-Abetxuko A, Mishra D, Magee E, Gilmore BF, Singh TRR, Donnelly RF, Larrañeta E, Paredes AJ. Curcumin nanocrystals-in-nanofibres as a promising platform for the management of periodontal disease. Int J Pharm 2023; 648:123585. [PMID: 37952560 DOI: 10.1016/j.ijpharm.2023.123585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
It is estimated that nearly a half of the world's population over 30 years old suffer from some kind of periodontal disease (PD). Although preventable, PD can pose a significant health burden to patients, causing from pain and discomfort to disfigurement and death. The management of PD often requires surgical procedures accompanied of systemic antibiotic and anti-inflammatory treatments. Curcumin (CUR), a potent anti-inflammatory and antimicrobial active, has shown great promise in the management of PD; however, its effects are often limited by its low bioavailability. In this work, we report the development of electrospun nanofibres (NFs) loaded with CUR nanocrystals (NCs) for the management of PD. NCs of 100 nm were obtained by media milling and loaded into dissolving polyvinyl alcohol NFs using electrospinning. The resultant NCs-in-NFs dissolved in water spontaneously, releasing NCs with a particle size of ∼120 nm. The physiochemical characterisation of the systems indicated the absence of chemical interactions between drug and polymer, and nanofibres with an amorphous nature. In vitro release profiles demonstrated that the NCs had a significantly higher dissolution rate (∼100 % at day 40) than the control group (approximately 6 % at day 40), which consisted of NFs containing a physical mixture of the drug and stabiliser. Finally, mucosal deposition studies demonstrated a 10-fold higher capacity of the novel NCs-in-NFs system to deposit CUR ex vivo using excised neonatal porcine mucosal tissue, when compared to the control group.
Collapse
Affiliation(s)
- Chunyang Zhang
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Subrin A Jahan
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jingru Zhang
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Maria Beatrice Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shubhamkumar M Baviskar
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Erin Magee
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thakur Raghu Raj Singh
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
28
|
Rahmani Del Bakhshayesh A, Saghebasl S, Asadi N, Kashani E, Mehdipour A, Nezami Asl A, Akbarzadeh A. Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1882. [PMID: 36815236 DOI: 10.1002/wnan.1882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Afsharipour S, Kavianipoor S, Ranjbar M, Bagheri AM, Lari Najafi M, Banat IM, Ohadi M, Dehghannoudeh G. Fabrication and characterization of lipopeptide biosurfactant-based electrospun nanofibers for use in tissue engineering. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:968-976. [PMID: 37633459 DOI: 10.1016/j.pharma.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanofibers are a class of nanomaterial with specific physicochemical properties and characteristics making them quite sought after and investigated by researchers. Lipopeptide biosurfactant (LPB) formulation properties were previously established in wound healing. LPB were isolated from in vitro culture of Acinetobacter junii B6 and loaded on nanofibers formulation produced by electrospinning method with different ratios of carboxymethylcellulose (CMC), polyvinyl alcohol (PVA), and Poloxamer. Numerous experimental control tests were carried out on formulations, including physicochemical properties which were evaluated by using dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), morphology study by scanning electron microscopy (SEM), and thermal stability. The best nanofibers formulation was obtained by the electrospinning method, with a voltage of 19.8 volts, a discharge capacity of 1cm/h, a cylindrical rotating velocity of 100rpm, and a needle interval of 7cm from the cylinder, which continued for 7hours. The formulation contained 2% (w/v) CMC, 10% (w/v) poloxamer, 9% (w/v) PVA, and 5% (w/v) LPB. This formula had desirable physicochemical properties including spreadability, stability, and uniformity with the particle size of about 590nm.
Collapse
Affiliation(s)
- Sepehr Afsharipour
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Samane Kavianipoor
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Mohammad Bagheri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ibrahim M Banat
- Pharmaceutical Research Group, School of Biomedical Sciences, Ulster University, Coleraine BT51 1SA, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
30
|
Demir D, Bolgen N, Vaseashta A. Electrospun Nanofibers for Biomedical, Sensing, and Energy Harvesting Functions. Polymers (Basel) 2023; 15:4253. [PMID: 37959933 PMCID: PMC10648854 DOI: 10.3390/polym15214253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The process of electrospinning is over a century old, yet novel material and method achievements, and later the addition of nanomaterials in polymeric solutions, have spurred a significant increase in research innovations with several unique applications. Significant improvements have been achieved in the development of electrospun nanofibrous matrices, which include tailoring compositions of polymers with active agents, surface functionalization with nanoparticles, and encapsulation of functional materials within the nanofibers. Recently, sequentially combining fabrication of nanofibers with 3D printing was reported by our group and the synergistic process offers fiber membrane functionalities having the mechanical strength offered by 3D printed scaffolds. Recent developments in electrospun nanofibers are enumerated here with special emphasis on biomedical technologies, chemical and biological sensing, and energy harvesting aspects in the context of e-textile and tactile sensing. Energy harvesting offers significant advantages in many applications, such as biomedical technologies and critical infrastructure protection by using the concept of finite state machines and edge computing. Many other uses of devices using electrospun nanofibers, either as standalone or conjoined with 3D printed materials, are envisaged. The focus of this review is to highlight selected novel applications in biomedical technologies, chem.-bio sensing, and broadly in energy harvesting for use in internet of things (IoT) devices. The article concludes with a brief projection of the future direction of electrospun nanofibers, limitations, and how synergetic combination of the two processes will open pathways for future discoveries.
Collapse
Affiliation(s)
- Didem Demir
- Chemistry and Chemical Process Technologies Department, Mersin Tarsus Organized Industrial Zone Technical Sciences Vocational School, Tarsus University, Mersin 33100, Türkiye;
| | - Nimet Bolgen
- Chemical Engineering Department, Faculty of Engineering, Mersin University, Mersin 33110, Türkiye;
| | - Ashok Vaseashta
- Applied Research, International Clean Water Institute, Manassas, VA 20110, USA
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, LV 1048 Riga, Latvia
| |
Collapse
|
31
|
Alotaibi B, Khan AK, Ijaz M, Yasin H, Nawazish S, Sadiq S, Kaleem S, Murtaza G. Development, Characterization, and Burn Wound-Healing Potential of Neomycin-Loaded Clay-Reinforced Nanofibers. ACS OMEGA 2023; 8:39014-39022. [PMID: 37901515 PMCID: PMC10601437 DOI: 10.1021/acsomega.3c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Background: Skin wounds affect millions of individuals around the world, and their treatment is expensive. Objective: The purpose of this study was to make neomycin-loaded CG/PVA/PAN (NCPP) nanofibers to improve wound healing. Methods: The NCPP nanofibers were characterized by using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and X-ray diffraction. Drug solubility, dissolution, swelling ratio, erosion, and antibacterial studies were performed. The in vivo wound healing study of nanofibers was performed in a rabbit model and was supported by % age wound closure and histopathology. Results: The results of SEM showed some sort of agglomeration on the surface of fibers, while TGA showed 10% more stability for drug-loaded nanofibers. The drug permeation study indicated that the formulation with 15% PVA showed a controlled release profile of the drug. The NCPP nanofibers had an appreciable water retention capability. The NCPP nanofibers showed appreciable antibacterial activity against Enterococcus faecalis (Gram-positive bacteria) and Klebsiella pneumonia (Gram-negative bacteria). The wound healing study showed the better healing properties of NCPP nanofibers within 15 days. Conclusion: The findings helped us to conclude that the NCPP nanofibers were successfully fabricated and found to have a promising role in infected wound healing.
Collapse
Affiliation(s)
- Badriyah
Shadid Alotaibi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abida Kalsoom Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Munaza Ijaz
- Department
of Microbiology, University of Central Punjab, Lahore 54000, Pakistan
| | - Haya Yasin
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Shamyla Nawazish
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Shazma Sadiq
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Saba Kaleem
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ghulam Murtaza
- Department
of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
32
|
Zahra FT, Quick Q, Mu R. Electrospun PVA Fibers for Drug Delivery: A Review. Polymers (Basel) 2023; 15:3837. [PMID: 37765691 PMCID: PMC10536586 DOI: 10.3390/polym15183837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Innovation in biomedical science is always a field of interest for researchers. Drug delivery, being one of the key areas of biomedical science, has gained considerable significance. The utilization of simple yet effective techniques such as electrospinning has undergone significant development in the field of drug delivery. Various polymers such as PEG (polyethylene glycol), PLGA (Poly(lactic-co-glycolic acid)), PLA(Polylactic acid), and PCA (poly(methacrylate citric acid)) have been utilized to prepare electrospinning-based drug delivery systems (DDSs). Polyvinyl alcohol (PVA) has recently gained attention because of its biocompatibility, biodegradability, non-toxicity, and ideal mechanical properties as these are the key factors in developing DDSs. Moreover, it has shown promising results in developing DDSs individually and when combined with natural and synthetic polymers such as chitosan and polycaprolactone (PCL). Considering the outstanding properties of PVA, the aim of this review paper was therefore to summarize these recent advances by highlighting the potential of electrospun PVA for drug delivery systems.
Collapse
Affiliation(s)
- Fatima T. Zahra
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA
| | - Quincy Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Richard Mu
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
33
|
Mishra D, Gade S, Pathak V, Vora LK, Mcloughlin K, Medina R, Donnelly RF, Raghu Raj Singh T. Ocular application of electrospun materials for drug delivery and cellular therapies. Drug Discov Today 2023; 28:103676. [PMID: 37343817 DOI: 10.1016/j.drudis.2023.103676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The constraints of delivering conventional drugs, biologics and cell-based therapeutics to target ocular sites necessitate the fabrication of novel drug delivery systems to treat diverse ocular diseases. Conventional ocular drug delivery approaches are prone to low bioavailability, poor penetration and degradation of therapeutics, including cell-based therapies, leading to the need for frequent topical applications or intraocular injections. However, owing to their exceptional structural properties, nanofibrous and microfibrous electrospun materials have gained significant interest in ocular drug delivery and biomaterial applications. This review covers the recent developments of electrospun fibers for the delivery of drugs, biologics, cells, growth factors and tissue regeneration in treating ocular diseases. The insights from this review can provide a thorough understanding of the selection of materials for the fabrication of nano- and/or micro-fibrous systems for ocular applications, with a particular interest in achieving controlled drug release and cell therapy. A detailed modality for fabricating different types of nano- and micro-fibers produced from electrospinning and factors influencing generation are also discussed.
Collapse
Affiliation(s)
- Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Shilpkala Gade
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Varun Pathak
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Kiran Mcloughlin
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Reinhold Medina
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | | |
Collapse
|
34
|
Filatova K, Domincova Bergerova E, Kazantseva N, Masar M, Suly P, Sopik T, Cisar J, Durpekova S, Sedlarik V. Design and Fabrication of Electrospun PLA-Based Silica-Modified Composite Nanofibers with Antibacterial Properties for Perspective Wound Treatment. Polymers (Basel) 2023; 15:3500. [PMID: 37688125 PMCID: PMC10490196 DOI: 10.3390/polym15173500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to develop a novel amikacin (AMI) delivery system with prolonged release based on composite electrospun nanofibers of PLA supplemented with AMI-loaded Si nanoparticles of different morphology. The resultant materials were characterized in terms of their physical properties (scanning electron microscopy, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, water contact angle). High-Performance Liquid Chromatography was used to determine the AMI content in the liquid fractions obtained from the release study. The results show that nanofibers of fumed silica exhibited an aggregated, highly porous structure, whereas nanofibers of mesoporous silica had a spherical morphology. Both silica nanoparticles had a significant effect on the hydrophilic properties of PLA nanofiber surfaces. The liquid fractions were investigated to gauge the encapsulation efficiency (EE) and loading efficiency (LE) of AMI, demonstrating 66% EE and 52% LE for nanofibers of fumed silica compared to nanofibers of mesoporous silica nanoparticles (52% EE and 12.7% LE). The antibacterial activity of the AMI-loaded nanofibers was determined by the Kirby-Bauer Method. These results demonstrated that the PLA-based silica nanofibers effectively enhanced the antibacterial properties against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Kateryna Filatova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
- Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 76001 Zlin, Czech Republic
| | - Eva Domincova Bergerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Natalia Kazantseva
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Milan Masar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Pavol Suly
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Tomas Sopik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Jaroslav Cisar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Silvie Durpekova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| |
Collapse
|
35
|
Yau A, Jogdand A, Chen Y. Blood-brain-barrier modeling with tissue chips for research applications in space and on Earth. FRONTIERS IN SPACE TECHNOLOGIES 2023; 4:1176943. [PMID: 38915909 PMCID: PMC11195916 DOI: 10.3389/frspt.2023.1176943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Tissue chip technology has revolutionized biomedical applications and the medical science field for the past few decades. Currently, tissue chips are one of the most powerful research tools aiding in in vitro work to accurately predict the outcome of studies when compared to monolayer two-dimensional (2D) cell cultures. While 2D cell cultures held prominence for a long time, their lack of biomimicry has resulted in a transition to 3D cell cultures, including tissue chips technology, to overcome the discrepancies often seen in in vitro studies. Due to their wide range of applications, different organ systems have been studied over the years, one of which is the blood brain barrier (BBB) which is discussed in this review. The BBB is an incredible protective unit of the body, keeping out pathogens from entering the brain through vasculature. However, there are some microbes and certain diseases that disrupt the function of this barrier which can lead to detrimental outcomes. Over the past few years, various designs of the BBB have been proposed and modeled to study drug delivery and disease modeling on Earth. More recently, researchers have started to utilize tissue chips in space to study the effects of microgravity on human health. BBB tissue chips in space can be a tool to understand function mechanisms and therapeutics. This review addresses the limitations of monolayer cell culture which could be overcome with utilizing tissue chips technology. Current BBB models on Earth and how they are fabricated as well as what influences the BBB cell culture in tissue chips are discussed. Then, this article reviews how application of these technologies together with incorporating biosensors in space would be beneficial to help in predicting a more accurate physiological response in specific tissue or organ chips. Finally, the current platforms used in space and some solutions to overcome some shortcomings for future BBB tissue chip research are also discussed.
Collapse
Affiliation(s)
| | | | - Yupeng Chen
- Nanomedicine Lab, Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
36
|
Solis-Rios D, Villarreal-Gómez LJ, Goyes CE, Fonthal Rico F, Cornejo-Bravo JM, Fong-Mata MB, Calderón Arenas JM, Martínez Rincón HA, Mejía-Medina DA. A Neural Network Approach to Reducing the Costs of Parameter-Setting in the Production of Polyethylene Oxide Nanofibers. MICROMACHINES 2023; 14:1410. [PMID: 37512721 PMCID: PMC10386166 DOI: 10.3390/mi14071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Nanofibers, which are formed by the electrospinning process, are used in a variety of applications. For this purpose, a specific diameter suited for each application is required, which is achieved by varying a set of parameters. This parameter adjustment process is empirical and works by trial and error, causing high input costs and wasting time and financial resources. In this work, an artificial neural network model is presented to predict the diameter of polyethylene nanofibers, based on the adjustment of 15 parameters. The model was trained from 105 records from data obtained from the literature and was then validated with nine nanofibers that were obtained and measured in the laboratory. The average error between the actual results was 2.29%. This result differs from those taken in an evaluation of the dataset. Therefore, the importance of increasing the dataset and the validation using independent data is highlighted.
Collapse
Affiliation(s)
- Daniel Solis-Rios
- Grupo de Investigación en Ingeniería Biomédica, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico
| | - Clara Eugenia Goyes
- Grupo de Investigación en Ingeniería Biomédica, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Faruk Fonthal Rico
- Grupo de Investigación en Ingeniería Biomédica, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico
| | - María Berenice Fong-Mata
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico
| | | | | | - David Abdel Mejía-Medina
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico
| |
Collapse
|
37
|
Farkas NI, Marincaș L, Barbu-Tudoran L, Barabás R, Turdean GL. Investigation of the Real-Time Release of Doxycycline from PLA-Based Nanofibers. J Funct Biomater 2023; 14:331. [PMID: 37367295 DOI: 10.3390/jfb14060331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
Electrospun mats of PLA and PLA/Hap nanofibers produced by electrospinning were loaded with doxycycline (Doxy) through physical adsorption from a solution with initial concentrations of 3 g/L, 7 g/L, and 12 g/L, respectively. The morphological characterization of the produced material was performed using scanning electron microscopy (SEM). The release profiles of Doxy were studied in situ using the differential pulse voltammetry (DPV) electrochemical method on a glassy carbon electrode (GCE) and validated through UV-VIS spectrophotometric measurements. The DPV method has been shown to be a simple, rapid, and advantageous analytical technique for real-time measurements, allowing accurate kinetics to be established. The kinetics of the release profiles were compared using model-dependent and model-independent analyses. The diffusion-controlled mechanism of Doxy release from both types of fibers was confirmed by a good fit to the Korsmeyer-Peppas model.
Collapse
Affiliation(s)
- Noémi-Izabella Farkas
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Laura Marincaș
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 Mihail Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Réka Barabás
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Graziella Liana Turdean
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| |
Collapse
|
38
|
Mahmood R, Mananquil T, Scenna R, Dennis ES, Castillo-Rodriguez J, Koivisto BD. Light-Driven Energy and Charge Transfer Processes between Additives within Electrospun Nanofibres. Molecules 2023; 28:4857. [PMID: 37375412 DOI: 10.3390/molecules28124857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Electrospinning is a cost-effective and efficient method of producing polymeric nanofibre films. The resulting nanofibres can be produced in a variety of structures, including monoaxial, coaxial (core@shell), and Janus (side-by-side). The resulting fibres can also act as a matrix for various light-harvesting components such as dye molecules, nanoparticles, and quantum dots. The addition of these light-harvesting materials allows for various photo-driven processes to occur within the films. This review discusses the process of electrospinning as well as the effect of spinning parameters on resulting fibres. Building on this, we discuss energy transfer processes that have been explored in nanofibre films, such as Förster resonance energy transfer (FRET), metal-enhanced fluorescence (MEF), and upconversion. A charge transfer process, photoinduced electron transfer (PET), is also discussed. This review highlights various candidate molecules that have been used for photo-responsive processes in electrospun films.
Collapse
Affiliation(s)
- Reeda Mahmood
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Tristan Mananquil
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Rebecca Scenna
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Emma S Dennis
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Judith Castillo-Rodriguez
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Bryan D Koivisto
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| |
Collapse
|
39
|
Ahmadipour Z, Seyed Dorraji MS, Ashjari HR, Dodangeh F, Rasoulifard MH. Applying in-situ visible photopolymerization for fabrication of electrospun nanofibrous carrier for meloxicam delivery. Sci Rep 2023; 13:9741. [PMID: 37328688 PMCID: PMC10275867 DOI: 10.1038/s41598-023-36893-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Despite meloxicam's many benefits, it will cause many drawbacks if the meloxicam release rate is not controlled. Accordingly, we introduced a technique based on the electrospinning process to control the release rate and also to reduce side effects. For this purpose, different nanofibers were used as drug couriers. Nanofibers were prepared using polyurethane, polyethylene glycol, and light curable poly (ethylene glycol) diacrylate (PEGDA) by electrospinning. In fact, light curable poly (ethylene glycol) diacrylate (PEGDA) was synthesized as a hydrophilic functional group. Next, PEGDA and polyurethane were used simultaneously to fabricate the drug carrier nanofiber in a single processing step, and the electrospinning apparatus was equipped with a blue light source for in-situ photopolymerization during the electrospinning process. The molecular structures of nanofibers and PEGDA were investigated by FT-IR, 1H NMR, 13C NMR, SEM, TEM, XRD, and DSC analyses. Finally, we reduced in vitro drug release to 44% within ten hours, while the minimum release of meloxicam from the tablet was 98%.
Collapse
Affiliation(s)
- Z Ahmadipour
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - M S Seyed Dorraji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - H R Ashjari
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - F Dodangeh
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - M H Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| |
Collapse
|
40
|
Hashemi SS, Mohammadi AA, Rajabi SS, Sanati P, Rafati A, Kian M, Zarei Z. Preparation and evaluation of a polycaprolactone/chitosan/propolis fibrous nanocomposite scaffold as a tissue engineering skin substitute. BIOIMPACTS : BI 2023; 13:275-287. [PMID: 37645024 PMCID: PMC10460768 DOI: 10.34172/bi.2023.26317] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 08/31/2023]
Abstract
Introduction Recently, the application of nanofibrous mats for dressing skin wounds has received great attention. In this study, we aimed to fabricate and characterize an electrospun nanofibrous mat containing polycaprolactone (PCL), chitosan (CTS), and propolis for use as a tissue-engineered skin substitute. Methods Raw propolis was extracted, and its phenolic and flavonoid contents were measured. The physiochemical and biological properties of the fabricated mats, including PCL, PCL/CTS, and PCL/CTS/Propolis were evaluated by scanning electron microscopy (SEM), atomic force microscopy (AFM), mechanical analysis, swelling and degradation behaviors, contact angle measurement, cell attachment, DAPI staining, and MTT assay. On the other hand, the drug release pattern of propolis from the PCL/CTS/Propolis scaffold was determined. A deep second-degree burn wound model was induced in rats to investigate wound healing using macroscopical and histopathological evaluations. Results The results revealed that the propolis extract contained high amounts of phenolic and flavonoid compounds. The fabricated scaffold had suitable physicochemical and mechanical properties. Uniform, bead-free, and well-branched fibers were observed in SEM images of mats. AFM analysis indicated that the addition of CTS and propolis to PCL elevated the surface roughness. MTT results revealed that the electrospun PCL/CTS/Propolis mat was biocompatible. The presence of fibroblast cells on the PCL/CTS/Propolis mats was confirmed by DAPI staining and SEM images. Also, propolis was sustainably released from the PCL/CTS/Propolis mat. The animal study revealed that addition of propolis significantly improved wound healing. Conclusion The nanofibrous PCL/CTS/Propolis mat can be applied as a tissue-engineered skin substitute for healing cutaneous wounds, such as burn wounds.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ali Akbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Seyedeh-Somayeh Rajabi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Parisa Sanati
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Iran National Elite Foundation, Tehran, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Fars, Iran
| | - Mehdi Kian
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Zahra Zarei
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
41
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
42
|
Doolaanea A, Latif N, Singh S, Kumar M, Safa'at MF, Alfatama M, Edros R, Bhatia A. A Review on Physicochemical Properties of Polymers Used as Filaments in 3D-Printed Tablets. AAPS PharmSciTech 2023; 24:116. [PMID: 37160772 DOI: 10.1208/s12249-023-02570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Three-dimensional (3D) printing technology has presently been explored widely in the field of pharmaceutical research to produce various conventional as well as novel dosage forms such as tablets, capsules, oral films, pellets, subcutaneous implants, scaffolds, and vaginal rings. The use of this innovative method is a good choice for its advanced technologies and the ability to make tailored medicine specifically for individual patient. There are many 3D printing systems that are used to print tablets, implants, and vaginal rings. Among the available systems, the fused deposition modeling (FDM) is widely utilized. The FDM has been regarded as the best choice of printer as it shows high potential in the production of tablets as a unit dose in 3D printing medicine manufacturing. In order to design a 3D-printed tablet or other dosage forms, the physicochemical properties of polymers play a vital role. One should have proper knowledge about the polymer's properties so that one can select appropriate polymers in order to design 3D-printed dosage form. This review highlighted the various physicochemical properties of polymers that are currently used as filaments in 3D printing. In this manuscript, the authors also discussed various systems that are currently adopted in the 3D printing.
Collapse
Affiliation(s)
- AbdAlmonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia.
- IKOP SdnBhd, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia.
| | - NurFaezah Latif
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia
| | - Shubham Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | | | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Besut, Terengganu, Malaysia
| | - Raihana Edros
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
43
|
Kikionis S, Papakyriakopoulou P, Mavrogiorgis P, Vasileva EA, Mishchenko NP, Fedoreyev SA, Valsami G, Ioannou E, Roussis V. Development of Novel Pharmaceutical Forms of the Marine Bioactive Pigment Echinochrome A Enabling Alternative Routes of Administration. Mar Drugs 2023; 21:md21040250. [PMID: 37103389 PMCID: PMC10147083 DOI: 10.3390/md21040250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Echinochrome A (EchA), a marine bioactive pigment isolated from various sea urchin species, is the active agent of the clinically approved drug Histochrome®. EchA is currently only available in the form of an isotonic solution of its di- and tri-sodium salts due to its poor water solubility and sensitivity to oxidation. Electrospun polymeric nanofibers have lately emerged as promising drug carriers capable of improving the dissolution and bioavailability of drugs with limited water solubility. In the current study, EchA isolated from sea urchins of the genus Diadema collected at the island of Kastellorizo was incorporated in electrospun micro-/nanofibrous matrices composed of polycaprolactone and polyvinylpyrrolidone in various combinations. The physicochemical properties of the micro-/nanofibers were characterized using SEM, FT-IR, TGA and DSC analyses. The fabricated matrices exhibited variable dissolution/release profiles of EchA, as evidenced in in vitro experiments using gastrointestinal-like fluids (pH 1.2, 4.5 and 6.8). Ex vivo permeability studies using the EchA-loaded micro-/nanofibrous matrices showed an increased permeation of EchA across the duodenum barrier. The results of our study clearly show that electrospun polymeric micro-/nanofibers represent promising carriers for the development of new pharmaceutical formulations with controlled release, as well as increased stability and solubility of EchA, suitable for oral administration, while offering the potential for targeted delivery.
Collapse
Affiliation(s)
- Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Panagiotis Mavrogiorgis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Elena A Vasileva
- Laboratory of the Chemistry of Natural Quinonoid Compounds of the G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, 690022 Vladivostok, Russia
| | - Natalia P Mishchenko
- Laboratory of the Chemistry of Natural Quinonoid Compounds of the G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, 690022 Vladivostok, Russia
| | - Sergey A Fedoreyev
- Laboratory of the Chemistry of Natural Quinonoid Compounds of the G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, 690022 Vladivostok, Russia
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
44
|
Schoeller J, Wuertz-Kozak K, Ferguson SJ, Rottmar M, Avaro J, Elbs-Glatz Y, Chung M, Rossi RM. Ibuprofen-loaded electrospun poly(ethylene- co-vinyl alcohol) nanofibers for wound dressing applications. NANOSCALE ADVANCES 2023; 5:2261-2270. [PMID: 37056625 PMCID: PMC10089083 DOI: 10.1039/d3na00102d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Chronic wounds are characterized by a prolonged inflammation phase preventing the normal processes of wound healing and natural regeneration of the skin. To tackle this issue, electrospun nanofibers, inherently possessing a high surface-to-volume ratio and high porosity, are promising candidates for the design of anti-inflammatory drug delivery systems. In this study, we evaluated the ability of poly(ethylene-co-vinyl alcohol) nanofibers of various chemical compositions to release ibuprofen for the potential treatment of chronic wounds. First, the electrospinning of poly(ethylene-co-vinyl alcohol) copolymers with different ethylene contents (32, 38 and 44 mol%) was optimized in DMSO. The morphology and surface properties of the membranes were investigated via state-of-the-art techniques and the influence of the ethylene content on the mechanical and thermal properties of each membrane was evaluated. Furthermore, the release kinetics of ibuprofen from the nanofibers in a physiological temperature range revealed that more ibuprofen was released at 37.5 °C than at 25 °C regardless of the ethylene content. Additionally, at 25 °C less drug was released when the ethylene content of the membranes increased. Finally, the scaffolds showed no cytotoxicity to normal human fibroblasts collectively paving the way for the design of electrospun based patches for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles 9014 St. Gallen Switzerland
- ETH Zürich, Institute for Biomechanics 8093 Zürich Switzerland
| | - Karin Wuertz-Kozak
- Rochester Institute of Technology (RIT), Department of Biomedical Engineering Rochester NY 14623 USA
| | | | - Markus Rottmar
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces 9014 St. Gallen Switzerland
| | - Jonathan Avaro
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics 8600 Dübendorf Switzerland
| | - Yvonne Elbs-Glatz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics 8600 Dübendorf Switzerland
| | - Michael Chung
- School of Engineering, The University of Edinburgh King's Buildings EH9 3JL Edinburgh UK
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles 9014 St. Gallen Switzerland
| |
Collapse
|
45
|
Mirek A, Grzeczkowicz M, Belaid H, Bartkowiak A, Barranger F, Abid M, Wasyłeczko M, Pogorielov M, Bechelany M, Lewińska D. Electrospun UV-cross-linked polyvinylpyrrolidone fibers modified with polycaprolactone/polyethersulfone microspheres for drug delivery. BIOMATERIALS ADVANCES 2023; 147:213330. [PMID: 36773381 DOI: 10.1016/j.bioadv.2023.213330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Electrospun fibers, often used as drug delivery systems, have two drawbacks - in the first stage of their action a sudden active substance burst release occurs and they have a relatively small capacity for a drug. In this work the fibers are modified by the addition of drug-loaded microspheres acting as micro-containers for the drug and increasing the total drug capacity of the system. Its release from such a structure is slowed down by placing the microspheres inside the fibers so they are covered with an outer layer of fiber-forming polymer. The work presents a new method (microsphere suspension electrospinning) of obtaining polyvinylpyrrolidone fibers cross-linked with UV light modified with polycaprolactone/polyethersulphone microspheres loaded with active substance - rhodamine 640 as a marker or ampicillin as a drug example. The influence of UV-cross-linking time and the microspheres addition on the degradation, mechanical strength and transport properties of fibrous mats was investigated. The mats were insoluble in water, in some cases mechanically stronger, their drug capacity was increased and the burst effect was eliminated. The antibacterial properties of ampicillin-loaded mats were confirmed. The product of proposed suspension electrospinning process has application potential as a drug delivery system.
Collapse
Affiliation(s)
- Adam Mirek
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland; Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - Marcin Grzeczkowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Habib Belaid
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Aleksandra Bartkowiak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Fanny Barranger
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Mahmoud Abid
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Monika Wasyłeczko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Maksym Pogorielov
- Sumy State University, Medical Institute, 40018 Sumy, Ukraine; NanoPrime, 32-900 Dębica, Poland
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Dorota Lewińska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| |
Collapse
|
46
|
Alves D, Araújo JC, Fangueiro R, Ferreira DP. Localized Therapeutic Approaches Based on Micro/Nanofibers for Cancer Treatment. Molecules 2023; 28:molecules28073053. [PMID: 37049815 PMCID: PMC10096407 DOI: 10.3390/molecules28073053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer remains one of the most challenging health problems worldwide, and localized therapeutic approaches based on micro/nanofibers have shown potential for its treatment. Micro/nanofibers offer several advantages as a drug delivery system, such as high surface area, tunable pore size, and sustained release properties, which can improve drug efficacy and reduce side effects. In addition, functionalization of these fibers with nanoparticles can enhance their targeting and therapeutic capabilities. Localized delivery of drugs and/or other therapeutic agents via micro/nanofibers can also help to overcome the limitations of systemic administration, such as poor bioavailability and off-target effects. Several studies have shown promising results in preclinical models of cancer, including inhibition of tumor growth and improved survival rates. However, more research is needed to overcome technical and regulatory challenges to bring these approaches to clinical use. Localized therapeutic approaches based on micro/nanofibers hold great promise for the future of cancer treatment, providing a targeted, effective, and minimally invasive alternative to traditional treatments. The main focus of this review is to explore the current treatments utilizing micro/nanofibers, as well as localized drug delivery systems that rely on fibrous structures to deliver and release drugs for the treatment of cancer in a specific area.
Collapse
|
47
|
Chen CH, Chen SH, Chen SH, Chuang ADC, T G D, Chen JP. Hyaluronic acid/platelet rich plasma-infused core-shell nanofiber membrane to prevent postoperative tendon adhesion and promote tendon healing. Int J Biol Macromol 2023; 231:123312. [PMID: 36669628 DOI: 10.1016/j.ijbiomac.2023.123312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
An anti-adhesive barrier membrane incorporating hyaluronic acid (HA) can reduce fibroblasts attachment and impart lubrication effect for smooth tendon gliding during management of post-surgical tendon adhesion. On the other hand, as numerous growth factors are required during tendon recovery, growth factors released by platelets in platelet-rich plasma (PRP) can provide beneficial therapeutic effects to facilitate tendon recovery post tendon injury. Furthermore, PRP is reported to be associated with anti-inflammatory properties for suppressing postoperative adhesion. Toward this end, we fabricate core-shell nanofiber membranes (NFM) with HA/PRP-infused core and polycaprolactone shell in this study. Different NFM with 100 % (H-P), 75 % (HP31-P), 50 % (HP11-P) and 25 % (H31-P) HA in the core was fabricated through coaxial electrospinning and analyzed through microscopic, pore size, mechanical, as well as HA and growth factor release studies. In vitro study with fibroblasts indicates the NFM can act as a barrier to prevent cell penetration and reduce cell attachment/focal adhesion, in addition to promoting tenocyte migration in tendon healing. In vivo studies in a rabbit flexor tendon rupture model indicates the HP11-P NFM shows improved efficacy over H-P NFM and control in reducing tendon adhesion formation and inflammation, while promoting tendon healing, from functional assays and histological analysis.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan
| | - Shih-Hsien Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Shih-Heng Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan
| | - Andy Deng-Chi Chuang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan
| | - Darshan T G
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan; Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
48
|
Phytochemical-Based Nanomaterials against Antibiotic-Resistant Bacteria: An Updated Review. Polymers (Basel) 2023; 15:polym15061392. [PMID: 36987172 PMCID: PMC10058650 DOI: 10.3390/polym15061392] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Antibiotic-resistant bacteria (ARB) is a growing global health threat, leading to the search for alternative strategies to combat bacterial infections. Phytochemicals, which are naturally occurring compounds found in plants, have shown potential as antimicrobial agents; however, therapy with these agents has certain limitations. The use of nanotechnology combined with antibacterial phytochemicals could help achieve greater antibacterial capacity against ARB by providing improved mechanical, physicochemical, biopharmaceutical, bioavailability, morphological or release properties. This review aims to provide an updated overview of the current state of research on the use of phytochemical-based nanomaterials for the treatment against ARB, with a special focus on polymeric nanofibers and nanoparticles. The review discusses the various types of phytochemicals that have been incorporated into different nanomaterials, the methods used to synthesize these materials, and the results of studies evaluating their antimicrobial activity. The challenges and limitations of using phytochemical-based nanomaterials, as well as future directions for research in this field, are also considered here. Overall, this review highlights the potential of phytochemical-based nanomaterials as a promising strategy for the treatment against ARB, but also stresses the need for further studies to fully understand their mechanisms of action and optimize their use in clinical settings.
Collapse
|
49
|
Gaydhane MK, Sharma CS, Majumdar S. Electrospun nanofibres in drug delivery: advances in controlled release strategies. RSC Adv 2023; 13:7312-7328. [PMID: 36891485 PMCID: PMC9987416 DOI: 10.1039/d2ra06023j] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 03/08/2023] Open
Abstract
Emerging drug-delivery systems demand a controlled or programmable or sustained release of drug molecules to improve therapeutic efficacy and patient compliance. Such systems have been heavily investigated as they offer safe, accurate, and quality treatment for numerous diseases. Amongst newly developed drug-delivery systems, electrospun nanofibres have emerged as promising drug excipients and are coming up as promising biomaterials. The inimitable characteristics of electrospun nanofibres in terms of their high surface-to-volume ratio, high porosity, easy drug encapsulation, and programmable release make them an astounding drug-delivery vehicle.
Collapse
Affiliation(s)
- Mrunalini K Gaydhane
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| | - Chandra Shekhar Sharma
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| | - Saptarshi Majumdar
- Poly-Nano-Bio Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| |
Collapse
|
50
|
Hsu YH, Yu YH, Chou YC, Lu CJ, Lin YT, Ueng SWN, Liu SJ. Sustained Release of Antifungal and Antibacterial Agents from Novel Hybrid Degradable Nanofibers for the Treatment of Polymicrobial Osteomyelitis. Int J Mol Sci 2023; 24:ijms24043254. [PMID: 36834663 PMCID: PMC9966905 DOI: 10.3390/ijms24043254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
This study aimed to develop a drug delivery system with hybrid biodegradable antifungal and antibacterial agents incorporated into poly lactic-co-glycolic acid (PLGA) nanofibers, facilitating an extended release of fluconazole, vancomycin, and ceftazidime to treat polymicrobial osteomyelitis. The nanofibers were assessed using scanning electron microscopy, tensile testing, water contact angle analysis, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. The in vitro release of the antimicrobial agents was assessed using an elution method and a high-performance liquid chromatography assay. The in vivo elution pattern of nanofibrous mats was assessed using a rat femoral model. The experimental results demonstrated that the antimicrobial agent-loaded nanofibers released high levels of fluconazole, vancomycin, and ceftazidime for 30 and 56 days in vitro and in vivo, respectively. Histological assays revealed no notable tissue inflammation. Therefore, hybrid biodegradable PLGA nanofibers with a sustainable release of antifungal and antibacterial agents may be employed for the treatment of polymicrobial osteomyelitis.
Collapse
Affiliation(s)
- Yung-Heng Hsu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Yi-Hsun Yu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Ying-Chao Chou
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Chia-Jung Lu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Yu-Ting Lin
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Steve Wen-Neng Ueng
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
- Correspondence: (S.W.-N.U.); (S.-J.L.)
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
- Correspondence: (S.W.-N.U.); (S.-J.L.)
| |
Collapse
|