1
|
Gautier MK, Kelley CM, Lee SH, Mufson EJ, Ginsberg SD. Maternal choline supplementation rescues early endosome pathology in basal forebrain cholinergic neurons in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Aging 2024; 144:30-42. [PMID: 39265450 PMCID: PMC11490376 DOI: 10.1016/j.neurobiolaging.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Individuals with DS develop Alzheimer's disease (AD) neuropathology, including endosomal-lysosomal system abnormalities and degeneration of basal forebrain cholinergic neurons (BFCNs). We investigated whether maternal choline supplementation (MCS) affects early endosome pathology within BFCNs using the Ts65Dn mouse model of DS/AD. Ts65Dn and disomic (2N) offspring from dams administered MCS were analyzed for endosomal pathology at 3-4 months or 10-12 months. Morphometric analysis of early endosome phenotype was performed on individual BFCNs using Imaris. The effects of MCS on the endosomal interactome were interrogated by relative co-expression (RCE) analysis. MCS effectively reduced age- and genotype-associated increases in early endosome number in Ts65Dn and 2N offspring, and prevented increases in early endosome size in Ts65Dn offspring. RCE revealed a loss of interactome cooperativity among endosome genes in Ts65Dn offspring that was restored by MCS. These findings demonstrate MCS rescues early endosome pathology, a driver of septohippocampal circuit dysfunction. The genotype-independent benefits of MCS on endosomal phenotype indicate translational applicability as an early-life therapy for DS as well as other neurodevelopmental/neurodegenerative disorders involving endosomal pathology.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Granholm ACE, Englund E, Gilmore A, Head E, Yong WH, Perez SE, Guzman SJ, Hamlett ED, Mufson EJ. Neuropathological findings in Down syndrome, Alzheimer's disease and control patients with and without SARS-COV-2: preliminary findings. Acta Neuropathol 2024; 147:92. [PMID: 38801558 PMCID: PMC11130011 DOI: 10.1007/s00401-024-02743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
The SARS-CoV-2 virus that led to COVID-19 is associated with significant and long-lasting neurologic symptoms in many patients, with an increased mortality risk for people with Alzheimer's disease (AD) and/or Down syndrome (DS). However, few studies have evaluated the neuropathological and inflammatory sequelae in postmortem brain tissue obtained from AD and people with DS with severe SARS-CoV-2 infections. We examined tau, beta-amyloid (Aβ), inflammatory markers and SARS-CoV-2 nucleoprotein in DS, AD, and healthy non-demented controls with COVID-19 and compared with non-infected brain tissue from each disease group (total n = 24). A nested ANOVA was used to determine regional effects of the COVID-19 infection on arborization of astrocytes (Sholl analysis) and percent-stained area of Iba-1 and TMEM 119. SARS-CoV-2 antibodies labeled neurons and glial cells in the frontal cortex of all subjects with COVID-19, and in the hippocampus of two of the three DS COVID-19 cases. SARS-CoV-2-related alterations were observed in peri-vascular astrocytes and microglial cells in the gray matter of the frontal cortex, hippocampus, and para-hippocampal gyrus. Bright field microscopy revealed scattered intracellular and diffuse extracellular Aβ deposits in the hippocampus of controls with confirmed SARS-CoV-2 infections. Overall, the present preliminary findings suggest that SARS-CoV-2 infections induce abnormal inflammatory responses in Down syndrome.
Collapse
Affiliation(s)
- Ann-Charlotte E Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Research Complex II, Aurora, CO, USA.
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anah Gilmore
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Research Complex II, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Sylvia E Perez
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Samuel J Guzman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
3
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M. The Role of Oxidative Stress in Trisomy 21 Phenotype. Cell Mol Neurobiol 2023; 43:3943-3963. [PMID: 37819608 PMCID: PMC10661812 DOI: 10.1007/s10571-023-01417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Extensive research has been conducted to gain a deeper understanding of the deregulated metabolic pathways in the development of trisomy 21 (T21) or Down syndrome. This research has shed light on the hypothesis that oxidative stress plays a significant role in the manifestation of the T21 phenotype. Although in vivo studies have shown promising results in mitigating the detrimental effects of oxidative stress, there is currently a lack of introduced antioxidant treatment options targeting cognitive impairments associated with T21. To address this gap, a comprehensive literature review was conducted to provide an updated overview of the involvement of oxidative stress in T21. The review aimed to summarize the insights into the pathogenesis of the Down syndrome phenotype and present the findings of recent innovative research that focuses on improving cognitive function in T21 through various antioxidant interventions. By examining the existing literature, this research seeks to provide a holistic understanding of the role oxidative stress plays in the development of T21 and to explore novel approaches that target multiple aspects of antioxidant intervention to improve cognitive function in individuals with Down syndrome. The guides -base systematic review process (Hutton et al. 2015).
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, ul. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| |
Collapse
|
4
|
Gautier MK, Kelley CM, Lee SH, Alldred MJ, McDaid J, Mufson EJ, Stutzmann GE, Ginsberg SD. Maternal choline supplementation protects against age-associated cholinergic and GABAergic basal forebrain neuron degeneration in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Dis 2023; 188:106332. [PMID: 37890559 PMCID: PMC10752300 DOI: 10.1016/j.nbd.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
6
|
Victorino DB, Faber J, Pinheiro DJLL, Scorza FA, Almeida ACG, Costa ACS, Scorza CA. Toward the Identification of Neurophysiological Biomarkers for Alzheimer's Disease in Down Syndrome: A Potential Role for Cross-Frequency Phase-Amplitude Coupling Analysis. Aging Dis 2023; 14:428-449. [PMID: 37008053 PMCID: PMC10017148 DOI: 10.14336/ad.2022.0906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Cross-frequency coupling (CFC) mechanisms play a central role in brain activity. Pathophysiological mechanisms leading to many brain disorders, such as Alzheimer's disease (AD), may produce unique patterns of brain activity detectable by electroencephalography (EEG). Identifying biomarkers for AD diagnosis is also an ambition among research teams working in Down syndrome (DS), given the increased susceptibility of people with DS to develop early-onset AD (DS-AD). Here, we review accumulating evidence that altered theta-gamma phase-amplitude coupling (PAC) may be one of the earliest EEG signatures of AD, and therefore may serve as an adjuvant tool for detecting cognitive decline in DS-AD. We suggest that this field of research could potentially provide clues to the biophysical mechanisms underlying cognitive dysfunction in DS-AD and generate opportunities for identifying EEG-based biomarkers with diagnostic and prognostic utility in DS-AD.
Collapse
Affiliation(s)
- Daniella B Victorino
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Jean Faber
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Daniel J. L. L Pinheiro
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Fulvio A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Antônio C. G Almeida
- Department of Biosystems Engineering, Federal University of São João Del Rei, Minas Gerais, MG, Brazil.
| | - Alberto C. S Costa
- Division of Psychiatry, Case Western Reserve University, Cleveland, OH, United States.
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States.
| | - Carla A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Kleschevnikov AM. Enhanced GIRK2 channel signaling in Down syndrome: A feasible role in the development of abnormal nascent neural circuits. Front Genet 2022; 13:1006068. [PMID: 36171878 PMCID: PMC9510977 DOI: 10.3389/fgene.2022.1006068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The most distinctive feature of Down syndrome (DS) is moderate to severe cognitive impairment. Genetic, molecular, and neuronal mechanisms of this complex DS phenotype are currently under intensive investigation. It is becoming increasingly clear that the abnormalities arise from a combination of initial changes caused by triplication of genes on human chromosome 21 (HSA21) and later compensatory adaptations affecting multiple brain systems. Consequently, relatively mild initial cognitive deficits become pronounced with age. This pattern of changes suggests that one approach to improving cognitive function in DS is to target the earliest critical changes, the prevention of which can change the ‘trajectory’ of the brain development and reduce the destructive effects of the secondary alterations. Here, we review the experimental data on the role of KCNJ6 in DS-specific brain abnormalities, focusing on a putative role of this gene in the development of abnormal neural circuits in the hippocampus of genetic mouse models of DS. It is suggested that the prevention of these early abnormalities with pharmacological or genetic means can ameliorate cognitive impairment in DS.
Collapse
|
8
|
Kirstein M, Cambrils A, Segarra A, Melero A, Varea E. Cholinergic Senescence in the Ts65Dn Mouse Model for Down Syndrome. Neurochem Res 2022; 47:3076-3092. [PMID: 35767135 PMCID: PMC9470680 DOI: 10.1007/s11064-022-03659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Down syndrome (DS) induces a variable phenotype including intellectual disabilities and early development of Alzheimer’s disease (AD). Moreover, individuals with DS display accelerated aging that affects diverse organs, among them the brain. The Ts65Dn mouse is the most widely used model to study DS. Progressive loss of cholinergic neurons is one of the hallmarks of AD present in DS and in the Ts65Dn model. In this study, we quantify the number of cholinergic neurons in control and Ts65Dn mice, observing a general reduction in their number with age but in particular, a greater loss in old Ts65Dn mice. Increased expression of the m1 muscarinic receptor in the hippocampus counteracts this loss. Cholinergic neurons in the Ts65Dn mice display overexpression of the early expression gene c-fos and an increase in the expression of β-galactosidase, a marker of senescence. A possible mechanism for senescence induction could be phosphorylation of the transcription factor FOXO1 and its retention in the cytoplasm, which we are able to confirm in the Ts65Dn model. In our study, using Ts65Dn mice, we observe increased cholinergic activity, which induces a process of early senescence that culminates in the loss of these neurons.
Collapse
Affiliation(s)
- Martina Kirstein
- Cell Biology Department, Universitat de València, Dr. Moliner, 50, Burjassot, 46100, València, Spain
| | - Alba Cambrils
- Cell Biology Department, Universitat de València, Dr. Moliner, 50, Burjassot, 46100, València, Spain
| | - Ana Segarra
- Cell Biology Department, Universitat de València, Dr. Moliner, 50, Burjassot, 46100, València, Spain
| | - Ana Melero
- Cell Biology Department, Universitat de València, Dr. Moliner, 50, Burjassot, 46100, València, Spain
| | - Emilio Varea
- Cell Biology Department, Universitat de València, Dr. Moliner, 50, Burjassot, 46100, València, Spain.
| |
Collapse
|
9
|
Tallino S, Winslow W, Bartholomew SK, Velazquez R. Temporal and brain region-specific elevations of soluble Amyloid-β 40-42 in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Aging Cell 2022; 21:e13590. [PMID: 35290711 PMCID: PMC9009111 DOI: 10.1111/acel.13590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/13/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS) is a leading cause of intellectual disability that also results in hallmark Alzheimer's disease (AD) pathologies such as amyloid beta (Aβ) plaques and hyperphosphorylated tau. The Ts65Dn mouse model is commonly used to study DS, as trisomic Ts65Dn mice carry 2/3 of the triplicated gene homologues as occur in human DS. The Ts65Dn strain also allows investigation of mechanisms common to DS and AD pathology, with many of these triplicated genes implicated in AD; for example, trisomic Ts65Dn mice overproduce amyloid precursor protein (APP), which is then processed into soluble Aβ40-42 fragments. Notably, Ts65Dn mice show alterations to the basal forebrain, which parallels the loss of function in this region observed in DS and AD patients early on in disease progression. However, a complete picture of soluble Aβ40-42 accumulation in a region-, age-, and sex-specific manner has not yet been characterized in the Ts65Dn model. Here, we show that trisomic mice accumulate soluble Aβ40-42 in the basal forebrain, frontal cortex, hippocampus, and cerebellum in an age-specific manner, with elevation in the frontal cortex and hippocampus as early as 4 months of age. Furthermore, we detected sex differences in accumulation of Aβ40-42 within the basal forebrain, with females having significantly higher Aβ40-42 at 7-8 months of age. Lastly, we show that APP expression in the basal forebrain and hippocampus inversely correlates with Aβ40-42 levels. This spatial and temporal characterization of soluble Aβ40-42 in the Ts65Dn model allows for further exploration of the role soluble Aβ plays in the progression of other AD-like pathologies in these key brain regions.
Collapse
Affiliation(s)
- Savannah Tallino
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign Institute Arizona State University Tempe Arizona USA
- School of Life Sciences Arizona State University Tempe Arizona USA
| | - Wendy Winslow
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign Institute Arizona State University Tempe Arizona USA
| | - Samantha K. Bartholomew
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign Institute Arizona State University Tempe Arizona USA
| | - Ramon Velazquez
- Arizona State University‐Banner Neurodegenerative Disease Research Center at the Biodesign Institute Arizona State University Tempe Arizona USA
- School of Life Sciences Arizona State University Tempe Arizona USA
- Arizona Alzheimer’s Consortium Phoenix Arizona USA
| |
Collapse
|
10
|
Kleschevnikov A. GIRK2 Channels in Down Syndrome and Alzheimer's Disease. Curr Alzheimer Res 2022; 19:819-829. [PMID: 36567290 DOI: 10.2174/1567205020666221223122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
Cognitive impairment in Down syndrome (DS) results from the abnormal expression of hundreds of genes. However, the impact of KCNJ6, a gene located in the middle of the 'Down syndrome critical region' of chromosome 21, seems to stand out. KCNJ6 encodes GIRK2 (KIR3.2) subunits of G protein-gated inwardly rectifying potassium channels, which serve as effectors for GABAB, m2, 5HT1A, A1, and many other postsynaptic metabotropic receptors. GIRK2 subunits are heavily expressed in neocortex, cerebellum, and hippocampus. By controlling resting membrane potential and neuronal excitability, GIRK2 channels may thus affect both synaptic plasticity and stability of neural circuits in the brain regions important for learning and memory. Here, we discuss recent experimental data regarding the role of KCNJ6/GIRK2 in neuronal abnormalities and cognitive impairment in models of DS and Alzheimer's disease (AD). The results compellingly show that signaling through GIRK2 channels is abnormally enhanced in mouse genetic models of Down syndrome and that partial suppression of GIRK2 channels with pharmacological or genetic means can restore synaptic plasticity and improve impaired cognitive functions. On the other hand, signaling through GIRK2 channels is downregulated in AD models, such as models of early amyloidopathy. In these models, reduced GIRK2 channel signaling promotes neuronal hyperactivity, causing excitatory-inhibitory imbalance and neuronal death. Accordingly, activation of GABAB/GIRK2 signaling by GIRK channel activators or GABAB receptor agonists may reduce Aβ-induced hyperactivity and subsequent neuronal death, thereby exerting a neuroprotective effect in models of AD.
Collapse
|
11
|
Moreno DG, Utagawa EC, Arva NC, Schafernak KT, Mufson EJ, Perez SE. Postnatal Cytoarchitecture and Neurochemical Hippocampal Dysfunction in Down Syndrome. J Clin Med 2021; 10:jcm10153414. [PMID: 34362198 PMCID: PMC8347520 DOI: 10.3390/jcm10153414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Although the prenatal hippocampus displays deficits in cellular proliferation/migration and volume, which are later associated with memory deficits, little is known about the effects of trisomy 21 on postnatal hippocampal cellular development in Down syndrome (DS). We examined postnatal hippocampal neuronal profiles from autopsies of DS and neurotypical (NTD) neonates born at 38-weeks’-gestation up to children 3 years of age using antibodies against non-phosphorylated (SMI-32) and phosphorylated (SMI-34) neurofilament, calbindin D-28k (Calb), calretinin (Calr), parvalbumin (Parv), doublecortin (DCX) and Ki-67, as well as amyloid precursor protein (APP), amyloid beta (Aβ) and phosphorylated tau (p-tau). Although the distribution of SMI-32-immunoreactive (-ir) hippocampal neurons was similar at all ages in both groups, pyramidal cell apical and basal dendrites were intensely stained in NTD cases. A greater reduction in the number of DCX-ir cells was observed in the hippocampal granule cell layer in DS. Although the distribution of Calb-ir neurons was similar between the youngest and oldest NTD and DS cases, Parv-ir was not detected. Conversely, Calr-ir cells and fibers were observed at all ages in DS, while NTD cases displayed mainly Calr-ir fibers. Hippocampal APP/Aβ-ir diffuse-like plaques were seen in DS and NTD. By contrast, no Aβ1–42 or p-tau profiles were observed. These findings suggest that deficits in hippocampal neurogenesis and pyramidal cell maturation and increased Calr immunoreactivity during early postnatal life contribute to cognitive impairment in DS.
Collapse
Affiliation(s)
- David G. Moreno
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
| | - Emma C. Utagawa
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
| | - Nicoleta C. Arva
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Kristian T. Schafernak
- Department of Pathology and Laboratory Medicine, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA;
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
| | - Sylvia E. Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
- Correspondence: ; Tel.: +6-02-406-3342
| |
Collapse
|
12
|
Martinez JL, Zammit MD, West NR, Christian BT, Bhattacharyya A. Basal Forebrain Cholinergic Neurons: Linking Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:703876. [PMID: 34322015 PMCID: PMC8311593 DOI: 10.3389/fnagi.2021.703876] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS, trisomy 21) is characterized by intellectual impairment at birth and Alzheimer's disease (AD) pathology in middle age. As individuals with DS age, their cognitive functions decline as they develop AD pathology. The susceptibility to degeneration of a subset of neurons, known as basal forebrain cholinergic neurons (BFCNs), in DS and AD is a critical link between cognitive impairment and neurodegeneration in both disorders. BFCNs are the primary source of cholinergic innervation to the cerebral cortex and hippocampus, as well as the amygdala. They play a critical role in the processing of information related to cognitive function and are directly engaged in regulating circuits of attention and memory throughout the lifespan. Given the importance of BFCNs in attention and memory, it is not surprising that these neurons contribute to dysfunctional neuronal circuitry in DS and are vulnerable in adults with DS and AD, where their degeneration leads to memory loss and disturbance in language. BFCNs are thus a relevant cell target for therapeutics for both DS and AD but, despite some success, efforts in this area have waned. There are gaps in our knowledge of BFCN vulnerability that preclude our ability to effectively design interventions. Here, we review the role of BFCN function and degeneration in AD and DS and identify under-studied aspects of BFCN biology. The current gaps in BFCN relevant imaging studies, therapeutics, and human models limit our insight into the mechanistic vulnerability of BFCNs in individuals with DS and AD.
Collapse
Affiliation(s)
- Jose L. Martinez
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Matthew D. Zammit
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Nicole R. West
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Bradley T. Christian
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
13
|
Maciejewska K, Czarnecka K, Szymański P. A review of the mechanisms underlying selected comorbidities in Alzheimer's disease. Pharmacol Rep 2021; 73:1565-1581. [PMID: 34121170 PMCID: PMC8599320 DOI: 10.1007/s43440-021-00293-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the central nervous system (CNS) leading to mental deterioration and devastation, and eventually a fatal outcome. AD affects mostly the elderly. AD is frequently accompanied by hypercholesterolemia, hypertension, atherosclerosis, and diabetes mellitus, and these are significant risk factors of AD. Other conditions triggered by the progression of AD include psychosis, sleep disorders, epilepsy, and depression. One important comorbidity is Down’s syndrome, which directly contributes to the severity and rapid progression of AD. The development of new therapeutic strategies for AD includes the repurposing of drugs currently used for the treatment of comorbidities. A better understanding of the influence of comorbidities on the pathogenesis of AD, and the medications used in its treatment, might allow better control of disease progression, and more effective pharmacotherapy.
Collapse
Affiliation(s)
- Karolina Maciejewska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland.
| |
Collapse
|
14
|
Hendrix JA, Amon A, Abbeduto L, Agiovlasitis S, Alsaied T, Anderson HA, Bain LJ, Baumer N, Bhattacharyya A, Bogunovic D, Botteron KN, Capone G, Chandan P, Chase I, Chicoine B, Cieuta-Walti C, DeRuisseau LR, Durand S, Esbensen A, Fortea J, Giménez S, Granholm AC, Hahn LJ, Head E, Hillerstrom H, Jacola LM, Janicki MP, Jasien JM, Kamer AR, Kent RD, Khor B, Lawrence JB, Lemonnier C, Lewanda AF, Mobley W, Moore PE, Nelson LP, Oreskovic NM, Osorio RS, Patterson D, Rasmussen SA, Reeves RH, Roizen N, Santoro S, Sherman SL, Talib N, Tapia IE, Walsh KM, Warren SF, White AN, Wong GW, Yi JS. Opportunities, barriers, and recommendations in down syndrome research. TRANSLATIONAL SCIENCE OF RARE DISEASES 2021; 5:99-129. [PMID: 34268067 PMCID: PMC8279178 DOI: 10.3233/trd-200090] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent advances in medical care have increased life expectancy and improved the quality of life for people with Down syndrome (DS). These advances are the result of both pre-clinical and clinical research but much about DS is still poorly understood. In 2020, the NIH announced their plan to update their DS research plan and requested input from the scientific and advocacy community. OBJECTIVE The National Down Syndrome Society (NDSS) and the LuMind IDSC Foundation worked together with scientific and medical experts to develop recommendations for the NIH research plan. METHODS NDSS and LuMind IDSC assembled over 50 experts across multiple disciplines and organized them in eleven working groups focused on specific issues for people with DS. RESULTS This review article summarizes the research gaps and recommendations that have the potential to improve the health and quality of life for people with DS within the next decade. CONCLUSIONS This review highlights many of the scientific gaps that exist in DS research. Based on these gaps, a multidisciplinary group of DS experts has made recommendations to advance DS research. This paper may also aid policymakers and the DS community to build a comprehensive national DS research strategy.
Collapse
Affiliation(s)
| | - Angelika Amon
- Deceased. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | | | - Tarek Alsaied
- Heart Institute Department of Pediatrics Cincinnati Children’s Hospital Medical Center University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Nicole Baumer
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA; Down Syndrome Program, Developmental Medicine Center, Boston Children’s Hospital, Boston, MA, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mt. Sinai, New York, NY; Precision Immunology Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Kelly N. Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Priya Chandan
- Department of Neurosurgery, Division of Physical Medicine and Rehabilitation, University of Louisville School of Medicine, Louisville, KY, USA
| | - Isabelle Chase
- Department of Pediatric Dentistry, Boston Children’s Hospital, Boston, MA, USA
| | - Brian Chicoine
- Advocate Medical Group Adult Down Syndrome Center, Park Ridge, IL, USA
| | | | | | | | - Anna Esbensen
- Department of Pediatrics, University of Cincinnati College of Medicine & Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Juan Fortea
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Sandra Giménez
- Multidisciplinary Sleep Unit, Respiratory Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Laura J. Hahn
- Department of Speech and Hearing Science, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, UC Irvine School of Medicine, Orange, CA, USA
| | | | - Lisa M. Jacola
- Department of Psychology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Joan M. Jasien
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA
| | - Angela R. Kamer
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, NY, USA
| | - Raymond D. Kent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Bernard Khor
- Benaroy Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jeanne B. Lawrence
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Amy Feldman Lewanda
- Children s National Rare Disease Institute, Children’s National Health System, Washington, DC., USA
| | - William Mobley
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Paul E. Moore
- Division of Allergy, Immunology, and Pulmonology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nicolas M. Oreskovic
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ricardo S. Osorio
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - David Patterson
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
- Eleanor Roosevelt Institute, University of Denver, Denver, CO, USA; Department of Biological Sciences, University of Denver, Denver, CO, USA; Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| | - Sonja A. Rasmussen
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL; Department of Epidemiology, University of Florida College of Public Health and Health Professions and College of Medicine, Gainesville, FL
| | - Roger H. Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nancy Roizen
- Department of Pediatrics, UH/Rainbow Babies and Children’s Hospital and Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie Santoro
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie L. Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nasreen Talib
- Division of General Pediatrics, Children’s Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Ignacio E. Tapia
- Sleep Center, Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle M. Walsh
- Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Steven F. Warren
- Institute for Life Span Studies, University of Kansas, Lawrence, KS, USA
| | - A. Nicole White
- Research Foundation, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Guang William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John S. Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
15
|
Lanzillotta C, Tramutola A, Di Giacomo G, Marini F, Butterfield DA, Di Domenico F, Perluigi M, Barone E. Insulin resistance, oxidative stress and mitochondrial defects in Ts65dn mice brain: A harmful synergistic path in down syndrome. Free Radic Biol Med 2021; 165:152-170. [PMID: 33516914 DOI: 10.1016/j.freeradbiomed.2021.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Dysregulation of brain insulin signaling with reduced downstream neuronal survival and plasticity mechanisms are fundamental abnormalities observed in Alzheimer disease (AD). This phenomenon, known as brain insulin resistance, is associated with poor cognitive performance and is driven by the inhibition of IRS1. Since Down syndrome (DS) and AD neuropathology share many common features, we investigated metabolic aspects of neurodegeneration in DS and whether they contribute to early onset AD in DS. We evaluated levels and activation of proteins belonging to the insulin signaling pathway (IR, IRS1, BVR-A, MAPK, PTEN, Akt, GSK3β, PKCζ, AS160, GLUT4) in the frontal cortex of Ts65dn (DS model) (n = 5-6/group) and euploid mice (n = 6/group) at different ages (1, 3, 9 and 18 months). Furthermore, we analyzed whether changes of brain insulin signaling were associated with alterations of: (i) proteins regulating brain energy metabolism (mitochondrial complexes, hexokinase-II, Sirt1); (ii) oxidative stress (OS) markers (iii) APP cleavage; and (iv) proteins mediating synaptic plasticity mechanisms (PSD95, syntaxin-1 and BDNF). Ts65dn mice showed an overall impairment of the above-mentioned pathways, mainly characterized by defects of proteins activation state. Such alterations start early in life (at 1 month, during brain maturation). In particular, accumulation of inhibited IRS1, together with the uncoupling among the proteins downstream from IRS1 (brain insulin resistance), characterize Ts65dn mice. Furthermore, reduced levels of mitochondrial complexes and Sirt1, as well as increased indices of OS also were observed. These alterations precede the accumulation of APP-C99 in Ts65dn mice. Tellingly, oxidative stress levels were negatively associated with IR, IRS1 and AS160 activation as well as mitochondrial complexes levels in Ts65dn mice, suggesting a role for oxidative stress in the observed alterations. We propose that a close link exists among brain insulin resistance, mitochondrial defects and OS that contributes to brain dysfunctions observed in DS, likely favoring the development of AD in DS.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Graziella Di Giacomo
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy.
| |
Collapse
|
16
|
Sumien N, Wells MS, Sidhu A, Wong JM, Forster MJ, Zheng QX, Kelleher-Andersson JA. Novel pharmacotherapy: NNI-362, an allosteric p70S6 kinase stimulator, reverses cognitive and neural regenerative deficits in models of aging and disease. Stem Cell Res Ther 2021; 12:59. [PMID: 33436007 PMCID: PMC7805132 DOI: 10.1186/s13287-020-02126-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
Aging is known to slow the neurogenic capacity of the hippocampus, one of only two mammalian adult neurogenic niches. The reduction of adult-born neurons with age may initiate cognitive decline progression which is exacerbated in chronic neurodegenerative disorders, e.g., Alzheimer's disease (AD). With physiologic neurogenesis diminished, but still viable in aging, non-invasive therapeutic modulation of this neuron regeneration process remains possible. The discovery of truly novel neuron regenerative therapies could be identified through phenotypic screening of small molecules that promote adult-born neurons from human neural progenitor cells (hNPCs). By identifying neuron-generating therapeutics and potentially novel mechanism of actions, therapeutic benefit could be confirmed through in vivo proof-of-concept studies. The key aging and longevity mTOR/p70S6 kinase axis, a commonly targeted pathway, is substrate for potential selective kinase modulators to promote new hippocampal neurons from NPCs. The highly regulated downstream substrate of mTOR, p70S6 kinase, directly controls pleiotropic cellular activities, including translation and cell growth. Stimulating this kinase, selectively in an adult neurogenic niche, should promote NPC proliferation, and cell growth and survival in the hippocampus. Studies of kinase profiling and immunocytochemistry of human progenitor neurogenesis suggest that the novel small molecule NNI-362 stimulates p70S6 kinase phosphorylation, which, in turn, promotes proliferation and differentiation of NPCs to neurons. NNI-362 promoted the associative reversal of age- and disease-related cognitive deficits in aged mice and Down syndrome-modeled mice. This oral, allosteric modulator may ultimately be beneficial for age-related neurodegenerative disorders involving hippocampal-dependent cognitive impairment, specifically AD, by promoting endogenous hippocampal regeneration.
Collapse
Affiliation(s)
- Nathalie Sumien
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA
| | - Matthew S Wells
- Neuronascent, Inc., 15601 Crabbs Branch Way, Rockville, MD, 20855, USA
- Novavax, 21 Firstfield Rd., Gaithersburg, MD, 20878, USA
| | - Akram Sidhu
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA
| | - Jessica M Wong
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA
| | - Michael J Forster
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA
| | - Qiao-Xi Zheng
- Neuronascent, Inc., 15601 Crabbs Branch Way, Rockville, MD, 20855, USA
| | | |
Collapse
|
17
|
Shekari A, Fahnestock M. Cholinergic neurodegeneration in Alzheimer disease mouse models. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:191-209. [PMID: 34266592 DOI: 10.1016/b978-0-12-819973-2.00013-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cholinergic signaling is critical for cognitive function. The basal forebrain is the major cholinergic output of the central nervous system. Degeneration of basal forebrain cholinergic neurons is a hallmark of Alzheimer's disease (AD). Mouse models are invaluable tools in disease research and have been used to study AD for over 25 years. However, animal models of AD vary greatly with respect to the degree of cholinergic degeneration observed. The following review will outline the most influential animal models of AD with an emphasis on the basal forebrain cholinergic system.
Collapse
Affiliation(s)
- Arman Shekari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
18
|
Zuliani I, Lanzillotta C, Tramutola A, Francioso A, Pagnotta S, Barone E, Perluigi M, Di Domenico F. The Dysregulation of OGT/OGA Cycle Mediates Tau and APP Neuropathology in Down Syndrome. Neurotherapeutics 2021; 18:340-363. [PMID: 33258073 PMCID: PMC8116370 DOI: 10.1007/s13311-020-00978-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Protein O-GlcNAcylation is a nutrient-related post-translational modification that, since its discovery some 30 years ago, has been associated with the development of neurodegenerative diseases. As reported in Alzheimer's disease (AD), flaws in the cerebral glucose uptake translate into reduced hexosamine biosynthetic pathway flux and subsequently lead to aberrant protein O-GlcNAcylation. Notably, the reduction of O-GlcNAcylated proteins involves also tau and APP, thus promoting their aberrant phosphorylation in AD brain and the onset of AD pathological markers. Down syndrome (DS) individuals are characterized by the early development of AD by the age of 60 and, although the two conditions present the same pathological hallmarks and share the alteration of many molecular mechanisms driving brain degeneration, no evidence has been sought on the implication of O-GlcNAcylation in DS pathology. Our study aimed to unravel for the first time the role of protein O-GlcNacylation in DS brain alterations positing the attention of potential trisomy-related mechanisms triggering the aberrant regulation of OGT/OGA cycle. We demonstrate the disruption of O-GlcNAcylation homeostasis, as an effect of altered OGT and OGA regulatory mechanism, and confirm the relevance of O-GlcNAcylation in the appearance of AD hallmarks in the brain of a murine model of DS. Furthermore, we provide evidence for the neuroprotective effects of brain-targeted OGA inhibition. Indeed, the rescue of OGA activity was able to restore protein O-GlcNAcylation, and reduce AD-related hallmarks and decreased protein nitration, possibly as effect of induced autophagy.
Collapse
Affiliation(s)
- Ilaria Zuliani
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Francioso
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
19
|
Gomes AR, Sangani NB, Fernandes TG, Diogo MM, Curfs LMG, Reutelingsperger CP. Extracellular Vesicles in CNS Developmental Disorders. Int J Mol Sci 2020; 21:E9428. [PMID: 33322331 PMCID: PMC7763819 DOI: 10.3390/ijms21249428] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) is the most complex structure in the body, consisting of multiple cell types with distinct morphology and function. Development of the neuronal circuit and its function rely on a continuous crosstalk between neurons and non-neural cells. It has been widely accepted that extracellular vesicles (EVs), mainly exosomes, are effective entities responsible for intercellular CNS communication. They contain membrane and cytoplasmic proteins, lipids, non-coding RNAs, microRNAs and mRNAs. Their cargo modulates gene and protein expression in recipient cells. Several lines of evidence indicate that EVs play a role in modifying signal transduction with subsequent physiological changes in neurogenesis, gliogenesis, synaptogenesis and network circuit formation and activity, as well as synaptic pruning and myelination. Several studies demonstrate that neural and non-neural EVs play an important role in physiological and pathological neurodevelopment. The present review discusses the role of EVs in various neurodevelopmental disorders and the prospects of using EVs as disease biomarkers and therapeutics.
Collapse
Affiliation(s)
- Ana Rita Gomes
- Department of Bioengineering and IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (M.M.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Biochemistry, Maastricht University, Cardiovascular Research Institute Maastricht, 6200 MD Maastricht, The Netherlands;
- GKC-Rett Expertise Centre, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands;
| | - Nasim Bahram Sangani
- Department of Biochemistry, Maastricht University, Cardiovascular Research Institute Maastricht, 6200 MD Maastricht, The Netherlands;
- GKC-Rett Expertise Centre, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands;
| | - Tiago G. Fernandes
- Department of Bioengineering and IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (M.M.D.)
| | - M. Margarida Diogo
- Department of Bioengineering and IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (M.M.D.)
| | - Leopold M. G. Curfs
- GKC-Rett Expertise Centre, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands;
| | - Chris P. Reutelingsperger
- Department of Biochemistry, Maastricht University, Cardiovascular Research Institute Maastricht, 6200 MD Maastricht, The Netherlands;
- GKC-Rett Expertise Centre, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
20
|
Fisher EMC, Bannerman DM. Mouse models of neurodegeneration: Know your question, know your mouse. Sci Transl Med 2020; 11:11/493/eaaq1818. [PMID: 31118292 DOI: 10.1126/scitranslmed.aaq1818] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/26/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Many mutant mouse strains have been developed as models to investigate neurodegenerative disease in humans. However, variability in results among studies using these mouse strains has led to questions about the value of these models. Here, we appraise various mouse models for dissecting neurodegenerative disease mechanisms and emphasize the importance of asking appropriate research questions. In therapeutic studies, we suggest that understanding variability among and within mouse models is crucial for preventing translational failures in human patients.
Collapse
Affiliation(s)
- Elizabeth M C Fisher
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
21
|
Hamlett ED, Hjorth E, Ledreux A, Gilmore A, Schultzberg M, Granholm AC. RvE1 treatment prevents memory loss and neuroinflammation in the Ts65Dn mouse model of Down syndrome. Glia 2020; 68:1347-1360. [PMID: 31944407 DOI: 10.1002/glia.23779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022]
Abstract
Inflammation can be resolved by pro-homeostatic lipids called specialized pro-resolving mediators (SPMs) upon activation of their receptors. Dysfunctional inflammatory resolution is now considered as a driver of chronic neuroinflammation and Alzheimer's disease (AD) pathogenesis. We have previously shown that SPM levels were reduced and also that SPM-binding receptors were increased in patients with AD compared to age-matched controls. Individuals with Down syndrome (DS) exhibit accelerated acquisition of AD neuropathology, dementia, and neuroinflammation at an earlier age than the general population. Beneficial effects of inducing resolution in DS have not been investigated previously. The effects of the SPM resolvin E1 (RvE1) in a DS mouse model (Ts65Dn) were investigated with regard to inflammation, neurodegeneration, and memory deficits. A moderate dose of RvE1 for 4 weeks in middle-aged Ts65Dn mice elicited a significant reduction in memory loss, along with reduced levels of serum pro-inflammatory cytokines, and reduced microglial activation in the hippocampus of Ts65Dn mice but had no effects in age-matched normosomic mice. There were no observable adverse side effects in Ts65Dn or in normosomic mice. These findings suggest that SPMs may represent a novel drug target for individuals with DS and others at risk of developing AD.
Collapse
Affiliation(s)
- Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Erik Hjorth
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging and the Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging and the Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ann Charlotte Granholm
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Knoebel Institute for Healthy Aging and the Department of Biological Sciences, University of Denver, Denver, Colorado
| |
Collapse
|
22
|
Hamlett ED, Ledreux A, Gilmore A, Vazey EM, Aston-Jones G, Boger HA, Paredes D, Granholm ACE. Inhibitory designer receptors aggravate memory loss in a mouse model of down syndrome. Neurobiol Dis 2019; 134:104616. [PMID: 31678403 DOI: 10.1016/j.nbd.2019.104616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/06/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
The pontine nucleus locus coeruleus (LC) is the primary source of noradrenergic (NE) projections to the brain and is important for working memory, attention, and cognitive flexibility. Individuals with Down syndrome (DS) develop Alzheimer's disease (AD) with high penetrance and often exhibit working memory deficits coupled with degeneration of LC-NE neurons early in the progression of AD pathology. Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools that allow targeted manipulation of discrete neuronal populations in the brain without the confounds of off-target effects. We utilized male Ts65Dn mice (a mouse model for DS), and male normosomic (NS) controls to examine the effects of inhibitory DREADDs delivered via an AAV vector under translational control of the synthetic PRSx8, dopamine β hydroxylase (DβH) promoter. This chemogenetic tool allowed LC inhibition upon administration of the inert DREADD ligand, clozapine-N-oxide (CNO). DREADD-mediated LC inhibition impaired performance in a novel object recognition task and reversal learning in a spatial task. DREADD-mediated LC inhibition gave rise to an elevation of α-adrenoreceptors both in NS and in Ts65Dn mice. Further, microglial markers showed that the inhibitory DREADD stimulation led to increased microglial activation in the hippocampus in Ts65Dn but not in NS mice. These findings strongly suggest that LC signaling is important for intact memory and learning in Ts65Dn mice and disruption of these neurons leads to increased inflammation and dysregulation of adrenergic receptors.
Collapse
Affiliation(s)
- Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA
| | - Elena M Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gary Aston-Jones
- Rutgers Brain Health Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Heather A Boger
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel Paredes
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA
| | | |
Collapse
|
23
|
Hamlett ED, LaRosa A, Mufson EJ, Fortea J, Ledreux A, Granholm AC. Exosome release and cargo in Down syndrome. Dev Neurobiol 2019; 79:639-655. [PMID: 31347291 DOI: 10.1002/dneu.22712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS) is a multisystem disorder affecting 1 in 800 births worldwide. Advancing technology, medical treatment, and social intervention have dramatically increased life expectancy, yet there are many etiologies of this disorder that are in need of further research. The advent of the ability to capture extracellular vesicles (EVs) in blood from specific cell types allows for the investigation of novel intracellular processes. Exosomes are one type of EVs that have demonstrated great potential in uncovering new biomarkers of neurodegeneration and disease, and also that appear to be intricately involved in the transsynaptic spread of pathogenic factors underlying Alzheimer's disease and other neurological diseases. Exosomes are nanosized vesicles, generated in endosomal multivesicular bodies (MVBs) and secreted by most cells in the body. Since exosomes are important mediators of intercellular communication and genetic exchange, they have emerged as a major research focus and have revealed novel biological sequelae involved in conditions afflicting the DS population. This review summarizes current knowledge on exosome biology in individuals with DS, both early in life and in aging individuals. Collectively these studies have demonstrated that complex multicellular processes underlying DS etiologies may include abnormal formation and secretion of extracellular vesicles such as exosomes.
Collapse
Affiliation(s)
- Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Angela LaRosa
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, CIBERNED, Universitat Autònoma de Barcelona, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Aurélie Ledreux
- Department of Biological Sciences and the Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado
| | - Ann-Charlotte Granholm
- Department of Biological Sciences and the Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado
| |
Collapse
|
24
|
Alldred MJ, Chao HM, Lee SH, Beilin J, Powers BE, Petkova E, Strupp BJ, Ginsberg SD. Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. FASEB J 2019; 33:9871-9884. [PMID: 31180719 DOI: 10.1096/fj.201802669rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Choline is critical for normative function of 3 major pathways in the brain, including acetylcholine biosynthesis, being a key mediator of epigenetic regulation, and serving as the primary substrate for the phosphatidylethanolamine N-methyltransferase pathway. Sufficient intake of dietary choline is critical for proper brain function and neurodevelopment. This is especially important for brain development during the perinatal period. Current dietary recommendations for choline intake were undertaken without critical evaluation of maternal choline levels. As such, recommended levels may be insufficient for both mother and fetus. Herein, we examined the impact of perinatal maternal choline supplementation (MCS) in a mouse model of Down syndrome and Alzheimer's disease, the Ts65Dn mouse relative to normal disomic littermates, to examine the effects on gene expression within adult offspring at ∼6 and 11 mo of age. We found MCS produces significant changes in offspring gene expression levels that supersede age-related and genotypic gene expression changes. Alterations due to MCS impact every gene ontology category queried, including GABAergic neurotransmission, the endosomal-lysosomal pathway and autophagy, and neurotrophins, highlighting the importance of proper choline intake during the perinatal period, especially when the fetus is known to have a neurodevelopmental disorder such as trisomy.-Alldred, M. J., Chao, H. M., Lee, S. H., Beilin, J., Powers, B. E., Petkova, E., Strupp, B. J., Ginsberg, S. D. Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, (NYU) Langone Medical Center, New York, New York, USA
| | - Helen M Chao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, (NYU) Langone Medical Center, New York, New York, USA
| | - Sang Han Lee
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, New York, USA.,Department Neuroscience and Physiology, (NYU) Langone Medical Center, New York, New York, USA
| | - Judah Beilin
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA
| | - Brian E Powers
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Eva Petkova
- Child Psychiatry, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Child and Adolescent Psychiatry, (NYU) Langone Medical Center, New York, New York, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.,Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, (NYU) Langone Medical Center, New York, New York, USA.,Department Neuroscience and Physiology, (NYU) Langone Medical Center, New York, New York, USA.,New York University (NYU) Neuroscience Institute, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
25
|
Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated by APP-βCTF (C99). J Neurosci 2019; 39:5255-5268. [PMID: 31043483 DOI: 10.1523/jneurosci.0578-19.2019] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Lysosomal failure underlies pathogenesis of numerous congenital neurodegenerative disorders and is an early and progressive feature of Alzheimer's disease (AD) pathogenesis. Here, we report that lysosomal dysfunction in Down ayndrome (trisomy 21), a neurodevelopmental disorder and form of early onset AD, requires the extra gene copy of amyloid precursor protein (APP) and is specifically mediated by the β cleaved carboxy terminal fragment of APP (APP-βCTF, C99). In primary fibroblasts from individuals with DS, lysosomal degradation of autophagic and endocytic substrates is selectively impaired, causing them to accumulate in enlarged autolysosomes/lysosomes. Direct measurements of lysosomal pH uncovered a significant elevation (0.6 units) as a basis for slowed LC3 turnover and the inactivation of cathepsin D and other lysosomal hydrolases known to be unstable or less active when lysosomal pH is persistently elevated. Normalizing lysosome pH by delivering acidic nanoparticles to lysosomes ameliorated lysosomal deficits, whereas RNA sequencing analysis excluded a transcriptional contribution to hydrolase declines. Cortical neurons cultured from the Ts2 mouse model of DS exhibited lysosomal deficits similar to those in DS cells. Lowering APP expression with siRNA or BACE1 inhibition reversed cathepsin deficits in both fibroblasts and neurons. Deleting one Bace1 allele from adult Ts2 mice had similar rescue effects in vivo The modest elevation of endogenous APP-βCTF needed to disrupt lysosomal function in DS is relevant to sporadic AD where APP-βCTF, but not APP, is also elevated. Our results extend evidence that impaired lysosomal acidification drives progressive lysosomal failure in multiple forms of AD.SIGNIFICANCE STATEMENT Down syndrome (trisomy 21) (DS) is a neurodevelopmental disorder invariably leading to early-onset Alzheimer's disease (AD). We showed in cells from DS individuals and neurons of DS models that one extra copy of a normal amyloid precursor protein (APP) gene impairs lysosomal acidification, thereby depressing lysosomal hydrolytic activities and turnover of autophagic and endocytic substrates, processes vital to neuronal survival. These deficits, which were reversible by correcting lysosomal pH, are mediated by elevated levels of endogenous β-cleaved carboxy-terminal fragment of APP (APP-βCTF). Notably, similar endosomal-lysosomal pathobiology emerges early in sporadic AD, where neuronal APP-βCTF is also elevated, underscoring its importance as a therapeutic target and underscoring the functional and pathogenic interrelationships between the endosomal-lysosomal pathway and genes causing AD.
Collapse
|
26
|
Navarro-Romero A, Vázquez-Oliver A, Gomis-González M, Garzón-Montesinos C, Falcón-Moya R, Pastor A, Martín-García E, Pizarro N, Busquets-Garcia A, Revest JM, Piazza PV, Bosch F, Dierssen M, de la Torre R, Rodríguez-Moreno A, Maldonado R, Ozaita A. Cannabinoid type-1 receptor blockade restores neurological phenotypes in two models for Down syndrome. Neurobiol Dis 2019; 125:92-106. [PMID: 30685352 DOI: 10.1016/j.nbd.2019.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/24/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Intellectual disability is the most limiting hallmark of Down syndrome, for which there is no gold-standard clinical treatment yet. The endocannabinoid system is a widespread neuromodulatory system involved in multiple functions including learning and memory processes. Alterations of this system contribute to the pathogenesis of several neurological and neurodevelopmental disorders. However, the involvement of the endocannabinoid system in the pathogenesis of Down syndrome has not been explored before. We used the best-characterized preclinical model of Down syndrome, the segmentally trisomic Ts65Dn model. In male Ts65Dn mice, cannabinoid type-1 receptor (CB1R) expression was enhanced and its function increased in hippocampal excitatory terminals. Knockdown of CB1R in the hippocampus of male Ts65Dn mice restored hippocampal-dependent memory. Concomitant with this result, pharmacological inhibition of CB1R restored memory deficits, hippocampal synaptic plasticity and adult neurogenesis in the subgranular zone of the dentate gyrus. Notably, the blockade of CB1R also normalized hippocampal-dependent memory in female Ts65Dn mice. To further investigate the mechanisms involved, we used a second transgenic mouse model overexpressing a single gene candidate for Down syndrome cognitive phenotypes, the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A). CB1R pharmacological blockade similarly improved cognitive performance, synaptic plasticity and neurogenesis in transgenic male Dyrk1A mice. Our results identify CB1R as a novel druggable target potentially relevant for the improvement of cognitive deficits associated with Down syndrome.
Collapse
Affiliation(s)
- Alba Navarro-Romero
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Anna Vázquez-Oliver
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Maria Gomis-González
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Carlos Garzón-Montesinos
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013 Seville, Spain
| | - Rafael Falcón-Moya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013 Seville, Spain
| | - Antoni Pastor
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain; CIBER Pathophysiology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Nieves Pizarro
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
| | - Arnau Busquets-Garcia
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Jean-Michel Revest
- INSERM U1215, Neurocentre Magendie, Physiopathology and Therapeutic Approaches of Stress-Related Diseases, 33077 Bordeaux, France
| | - Pier-Vincenzo Piazza
- INSERM U1215, Neurocentre Magendie, Physiopathology and Therapeutic Approaches of Stress-Related Diseases, 33077 Bordeaux, France
| | - Fátima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain; Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; CIBER Diabetes and Associated Metabolic Disorders (CIBERDEM), 08017 Madrid, Spain
| | - Mara Dierssen
- Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; CIBER Rare Disorders (CIBERER), Spain; Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain; CIBER Pathophysiology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013 Seville, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Andrés Ozaita
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
27
|
Duval N, Vacano GN, Patterson D. Rapamycin Treatment Ameliorates Age-Related Accumulation of Toxic Metabolic Intermediates in Brains of the Ts65Dn Mouse Model of Down Syndrome and Aging. Front Aging Neurosci 2018; 10:263. [PMID: 30237765 PMCID: PMC6135881 DOI: 10.3389/fnagi.2018.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is the most common genetic cause of intellectual disability. Individuals with DS exhibit changes in neurochemistry and neuroanatomy that worsen with age, neurological delay in learning and memory, and predisposition to Alzheimer's disease. The Ts65Dn mouse is the best characterized model of DS and has many features reminiscent of DS, including developmental anomalies and age-related neurodegeneration. The mouse carries a partial triplication of mouse chromosome 16 containing roughly 100 genes syntenic to human chromosome 21 genes. We hypothesized that there would be differences in brain metabolites with trisomy and age, and that long-term treatment with rapamycin, mechanistic target of rapamycin (mTOR) inhibitor and immunosuppressant, would correct these differences. Using HPLC coupled with electrochemical detection, we identified differences in levels of metabolites involved in dopaminergic, serotonergic, and kynurenine pathways in trisomic mice that are exacerbated with age. These include homovanillic acid, norepinephrine, and kynurenine. In addition, we demonstrate that prolonged treatment with rapamycin reduces accumulation of toxic metabolites (such as 6-hydroxymelatonin and 3-hydroxykynurenine) in aged mice.
Collapse
Affiliation(s)
- Nathan Duval
- Department of Biological Sciences, Knoebel Institute for Healthy Aging, and Eleanor Roosevelt Institute, University of Denver, Denver, CO, United States
| | | | | |
Collapse
|
28
|
Herault Y, Delabar JM, Fisher EMC, Tybulewicz VLJ, Yu E, Brault V. Rodent models in Down syndrome research: impact and future opportunities. Dis Model Mech 2018; 10:1165-1186. [PMID: 28993310 PMCID: PMC5665454 DOI: 10.1242/dmm.029728] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. Summary: Mouse models have boosted therapeutic options for Down syndrome, and improved models are being developed to better understand the pathophysiology of this genetic condition.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France.,T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris
| | - Jean M Delabar
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, 75205 Paris, France.,INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICM, 75013 Paris, France.,Brain and Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, 75013 Paris, France
| | - Elizabeth M C Fisher
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, WC1N 3BG, UK.,LonDownS Consortium, London, W1T 7NF UK
| | - Victor L J Tybulewicz
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,LonDownS Consortium, London, W1T 7NF UK.,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Eugene Yu
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Department of Cellular and Molecular Biology, Roswell Park Division of Graduate School, Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14263, USA
| | - Veronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
29
|
Gauthier SA, Pérez-González R, Sharma A, Huang FK, Alldred MJ, Pawlik M, Kaur G, Ginsberg SD, Neubert TA, Levy E. Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities. Acta Neuropathol Commun 2017; 5:65. [PMID: 28851452 PMCID: PMC5576289 DOI: 10.1186/s40478-017-0466-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is compromised. Supporting this, we found that exosome secretion is enhanced in the brains of DS patients and a mouse model of the disease, and by DS fibroblasts. Furthermore, increased levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Importantly, CD63 knockdown diminished exosome release and worsened endosomal pathology in DS fibroblasts. Taken together, these data suggest that increased CD63 expression enhances exosome release as an endogenous mechanism mitigating endosomal abnormalities in DS. Thus, the upregulation of exosome release represents a potential therapeutic goal for neurodegenerative disorders with endosomal pathology.
Collapse
|
30
|
Powers BE, Kelley CM, Velazquez R, Ash JA, Strawderman MS, Alldred MJ, Ginsberg SD, Mufson EJ, Strupp BJ. Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring. Neuroscience 2017; 340:501-514. [PMID: 27840230 PMCID: PMC5177989 DOI: 10.1016/j.neuroscience.2016.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023]
Abstract
The Ts65Dn mouse model of Down syndrome (DS) and Alzheimer's disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12-17months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NBM/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD.
Collapse
Affiliation(s)
- Brian E Powers
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Christy M Kelley
- Division of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ramon Velazquez
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Jessica A Ash
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Myla S Strawderman
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10962, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Elliott J Mufson
- Division of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Plant polyphenols as natural drugs for the management of Down syndrome and related disorders. Neurosci Biobehav Rev 2016; 71:865-877. [DOI: 10.1016/j.neubiorev.2016.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 01/11/2023]
|
32
|
Kelley CM, Ash JA, Powers BE, Velazquez R, Alldred MJ, Ikonomovic MD, Ginsberg SD, Strupp BJ, Mufson EJ. Effects of Maternal Choline Supplementation on the Septohippocampal Cholinergic System in the Ts65Dn Mouse Model of Down Syndrome. Curr Alzheimer Res 2016; 13:84-96. [PMID: 26391045 DOI: 10.2174/1567205012666150921100515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/01/2015] [Accepted: 09/10/2015] [Indexed: 01/07/2023]
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is marked by intellectual disability (ID) and early onset of Alzheimer's disease (AD) neuropathology including hippocampal cholinergic projection system degeneration. Here we determined the effects of age and maternal choline supplementation (MCS) on hippocampal cholinergic deficits in Ts65Dn mice compared to 2N mice sacrificed at 6-8 and 14-18 months of age. Ts65Dn mice and disomic (2N) littermates sacrificed at ages 6-8 and 14-18 mos were used for an aging study and Ts65Dn and 2N mice derived from Ts65Dn dams were maintained on either a choline-supplemented or a choline-controlled diet (conception to weaning) and examined at 14-18 mos for MCS studies. In the latter, mice were behaviorally tested on the radial arm Morris water maze (RAWM) and hippocampal tissue was examined for intensity of choline acetyltransferase (ChAT) immunoreactivity. Hippocampal ChAT activity was evaluated in a separate cohort. ChAT-positive fiber innervation was significantly higher in the hippocampus and dentate gyrus in Ts65Dn mice compared with 2N mice, independent of age or maternal diet. Similarly, hippocampal ChAT activity was significantly elevated in Ts65Dn mice compared to 2N mice, independent of maternal diet. A significant increase with age was seen in hippocampal cholinergic innervation of 2N mice, but not Ts65Dn mice. Degree of ChAT intensity correlated negatively with spatial memory ability in unsupplemented 2N and Ts65Dn mice, but positively in MCS 2N mice. The increased innervation produced by MCS appears to improve hippocampal function, making this a therapy that may be exploited for future translational approaches in human DS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Elliott J Mufson
- Barrow Neurological Institute, Dept. Neurobiology, Phoenix, AZ 85031, USA.
| |
Collapse
|
33
|
Parisotto EB, Vidal V, García-Cerro S, Lantigua S, Wilhelm Filho D, Sanchez-Barceló EJ, Martínez-Cué C, Rueda N. Chronic Melatonin Administration Reduced Oxidative Damage and Cellular Senescence in the Hippocampus of a Mouse Model of Down Syndrome. Neurochem Res 2016; 41:2904-2913. [PMID: 27450081 DOI: 10.1007/s11064-016-2008-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 01/23/2023]
Abstract
Previous studies have demonstrated that melatonin administration improves spatial learning and memory and hippocampal long-term potentiation in the adult Ts65Dn (TS) mouse, a model of Down syndrome (DS). This functional benefit of melatonin was accompanied by protection from cholinergic neurodegeneration and the attenuation of several hippocampal neuromorphological alterations in TS mice. Because oxidative stress contributes to the progression of cognitive deficits and neurodegeneration in DS, this study evaluates the antioxidant effects of melatonin in the brains of TS mice. Melatonin was administered to TS and control mice from 6 to 12 months of age and its effects on the oxidative state and levels of cellular senescence were evaluated. Melatonin treatment induced antioxidant and antiaging effects in the hippocampus of adult TS mice. Although melatonin administration did not regulate the activities of the main antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in the cortex or hippocampus, melatonin decreased protein and lipid oxidative damage by reducing the thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC) levels in the TS hippocampus due to its ability to act as a free radical scavenger. Consistent with this reduction in oxidative stress, melatonin also decreased hippocampal senescence in TS animals by normalizing the density of senescence-associated β-galactosidase positive cells in the hippocampus. These results showed that this treatment attenuated the oxidative damage and cellular senescence in the brain of TS mice and support the use of melatonin as a potential therapeutic agent for age-related cognitive deficits and neurodegeneration in adults with DS.
Collapse
Affiliation(s)
- Eduardo B Parisotto
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Verónica Vidal
- Laboratory of Neurobiology of Learning, Department of Physiology and Pharmacology, Faculty of Medicine, School of Medicine, University of Cantabria, c/Cardenal Herrera Oria, s/n, 39011, Santander, Spain
| | - Susana García-Cerro
- Laboratory of Neurobiology of Learning, Department of Physiology and Pharmacology, Faculty of Medicine, School of Medicine, University of Cantabria, c/Cardenal Herrera Oria, s/n, 39011, Santander, Spain
| | - Sara Lantigua
- Laboratory of Neurobiology of Learning, Department of Physiology and Pharmacology, Faculty of Medicine, School of Medicine, University of Cantabria, c/Cardenal Herrera Oria, s/n, 39011, Santander, Spain
| | - Danilo Wilhelm Filho
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Emilio J Sanchez-Barceló
- Laboratory of Neurobiology of Learning, Department of Physiology and Pharmacology, Faculty of Medicine, School of Medicine, University of Cantabria, c/Cardenal Herrera Oria, s/n, 39011, Santander, Spain
| | - Carmen Martínez-Cué
- Laboratory of Neurobiology of Learning, Department of Physiology and Pharmacology, Faculty of Medicine, School of Medicine, University of Cantabria, c/Cardenal Herrera Oria, s/n, 39011, Santander, Spain
| | - Noemí Rueda
- Laboratory of Neurobiology of Learning, Department of Physiology and Pharmacology, Faculty of Medicine, School of Medicine, University of Cantabria, c/Cardenal Herrera Oria, s/n, 39011, Santander, Spain.
| |
Collapse
|
34
|
Salehi A, Ashford JW, Mufson EJ. The Link between Alzheimer's Disease and Down Syndrome. A Historical Perspective. Curr Alzheimer Res 2016; 13:2-6. [PMID: 26487155 PMCID: PMC6368451 DOI: 10.2174/1567205012999151021102914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Elliott J Mufson
- Barrow Neurological Institute, Dept. Neurobiology, Phoenix, AZ 85031, USA.
| |
Collapse
|