1
|
Du S, Hu X, Menéndez-Arias L, Zhan P, Liu X. Target-based drug design strategies to overcome resistance to antiviral agents: opportunities and challenges. Drug Resist Updat 2024; 73:101053. [PMID: 38301487 DOI: 10.1016/j.drup.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Viral infections have a major impact in human health. Ongoing viral transmission and escalating selective pressure have the potential to favor the emergence of vaccine- and antiviral drug-resistant viruses. Target-based approaches for the design of antiviral drugs can play a pivotal role in combating drug-resistant challenges. Drug design computational tools facilitate the discovery of novel drugs. This review provides a comprehensive overview of current drug design strategies employed in the field of antiviral drug resistance, illustrated through the description of a series of successful applications. These strategies include technologies that enhance compound-target affinity while minimizing interactions with mutated binding pockets. Furthermore, emerging approaches such as virtual screening, targeted protein/RNA degradation, and resistance analysis during drug design have been harnessed to curtail the emergence of drug resistance. Additionally, host targeting antiviral drugs offer a promising avenue for circumventing viral mutation. The widespread adoption of these refined drug design strategies will effectively address the prevailing challenge posed by antiviral drug resistance.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, PR China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
2
|
Virgilio A, Pecoraro A, Benigno D, Russo A, Russo G, Esposito V, Galeone A. Antiproliferative Effects of the Aptamer d(GGGT) 4 and Its Analogues with an Abasic-Site Mimic Loop on Different Cancer Cells. Int J Mol Sci 2022; 23:ijms23115952. [PMID: 35682635 PMCID: PMC9181107 DOI: 10.3390/ijms23115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
In this paper, we study the T30923 antiproliferative potential and the contribution of its loop residues in six different human cancer cell lines by preparing five T30923 variants using the single residue replacement approach of loop thymidine with an abasic site mimic (S). G-rich oligonucleotides (GRO) show interesting anticancer properties because of their capability to adopt G-quadruplex structures (G4s), such as the G4 HIV-1 integrase inhibitor T30923. Considering the multi-targeted effects of G4-aptamers and the limited number of cancer cell lines tested, particularly for T30923, it should be important to find a suitable tumor line, in addition to considering that the effects also strictly depend on G4s. CD, NMR and non-denaturating polyacrylamide gel electrophoresis data clearly show that all modified ODNs closely resemble the dimeric structure of parallel G4s’ parent aptamer, keeping the resistance in biological environments substantially unchanged, as shown by nuclease stability assay. The antiproliferative effects of T30923 and its variants are tried in vitro by MTT assays, showing interesting cytotoxic activity, depending on time and dose, for all G4s, especially in MDA-MB-231 cells with a reduction in cell viability approximately up to 30%. Among all derivatives, QS12 results are the most promising, showing more pronounced cytotoxic effects both in MDA-MB-231 and Hela cells, with a decrease in cell viability from 70% to 60%. In summary, the single loop residue S substitution approach may be useful for designing antiproliferative G4s, considering that most of them, characterized by single residue loops, may be able to bind different targets in several cancer cell pathways. Generally, this approach could be of benefit by revealing some minimal functional structures, stimulating further studies aimed at the development of novel anticancer drugs.
Collapse
|
3
|
Haberland A, Müller J. Aptamers Against COVID-19: An Untested Opportunity. Mini Rev Med Chem 2022; 22:1708-1715. [PMID: 35023454 PMCID: PMC9896377 DOI: 10.2174/1389557522666220112094951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
Given the lack of success in the development of effective drugs to treat COVID-19, which show "game-changing" potential, it is necessary to explore drugs with different modes of action. Single mode-of-action drugs have not been succeeded in curing COVID-19, which is a highly complex disease. This is the case for direct antivirals and anti-inflammatory drugs, both of which treat different phases of the disease. Aptamers are molecules that deliver different modes of action, allowing their effects to be bundled, which, when combined, support their therapeutic efficacy. In this minireview, we summarise the current activities in the development of aptamers for the treatment of COVID-19 and long-COVID. A special emphasis is placed on the capability of their multiple modes of action, which is a promising approach for treating complex diseases such as COVID-19.
Collapse
Affiliation(s)
- Annekathrin Haberland
- Berlin Cures GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany;,Address correspondence to this author at the Berlin Cures GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany; E-mail:
| | - Johannes Müller
- Berlin Cures GmbH, Knesebeckstr. 59-61, 10719 Berlin, Germany
| |
Collapse
|
4
|
Mahboubi-Rabbani M, Abbasi M, Hajimahdi Z, Zarghi A. HIV-1 Reverse Transcriptase/Integrase Dual Inhibitors: A Review of Recent Advances and Structure-activity Relationship Studies. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:333-369. [PMID: 34567166 PMCID: PMC8457747 DOI: 10.22037/ijpr.2021.115446.15370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The significant threat to humanity is HIV infection, and it is uncertain whether a definitive treatment or a safe HIV vaccine is. HIV-1 is continually evolving and resistant to commonly used HIV-resistant medications, presenting significant obstacles to HIV infection management. The drug resistance adds to the need for new anti-HIV drugs; it chooses ingenious approaches to fight the emerging virus. Highly Active Antiretroviral Therapy (HAART), a multi-target approach for specific therapies, has proved effective in AIDS treatment. Therefore, it is a dynamic system with high prescription tension, increased risk of medication reactions, and adverse effects, leading to poor compliance with patients. In the HIV-1 lifecycle, two critical enzymes with high structural and functional analogies are reverse transcriptase (RT) and integrase (IN), which can be interpreted as druggable targets for modern dual-purpose inhibitors. Designed multifunctional ligand (DML) is a new technique that recruited many targets to be achieved by one chemical individual. A single chemical entity that acts for multiple purposes can be much more successful than a complex multidrug program. The production of these multifunctional ligands as antiretroviral drugs is valued with the advantage that the viral-replication process may end in two or more phases. This analysis will discuss the RT-IN dual-inhibitory scaffolds' developments documented so far.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kim TH, Lee SW. Aptamers for Anti-Viral Therapeutics and Diagnostics. Int J Mol Sci 2021; 22:ijms22084168. [PMID: 33920628 PMCID: PMC8074132 DOI: 10.3390/ijms22084168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.
Collapse
Affiliation(s)
- Tae-Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
- Correspondence:
| |
Collapse
|
6
|
Nilavar NM, Raghavan SC. HIV integrase inhibitors that inhibit strand transfer interact with RAG1 and hamper its activities. Int Immunopharmacol 2021; 95:107515. [PMID: 33735713 DOI: 10.1016/j.intimp.2021.107515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Multiple steps of the retroviral infection process have been targeted over the years to develop therapeutic approaches, starting from the entry of the virus into the cell till the viral DNA integration to host genome. Inhibitors against the Human Immunodeficiency Virus (HIV) integrase is the newest among the therapies employed against HIV. Recombination activating gene 1 (RAG1) is an integral protein involved in the generation of diversity of antibodies and T-cell receptors and is one of the partners of the RAG complex. Studies have shown structural and functional similarities between the HIV integrase and RAG1. Recently, we and others have shown that some of the integrase inhibitors can interfere with RAG binding and cleavage, hindering its physiological functions. This mini review focuses on the HIV integrase, integrase inhibitors and their effect on RAG activities.
Collapse
Affiliation(s)
- Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
7
|
Esposito V, Esposito F, Pepe A, Gomez Monterrey I, Tramontano E, Mayol L, Virgilio A, Galeone A. Probing the Importance of the G-Quadruplex Grooves for the Activity of the Anti-HIV-Integrase Aptamer T30923. Int J Mol Sci 2020; 21:ijms21165637. [PMID: 32781637 PMCID: PMC7460552 DOI: 10.3390/ijms21165637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
In this paper, we report studies concerning four variants of the G-quadruplex forming anti-HIV-integrase aptamer T30923, in which specific 2′-deoxyguanosines have been singly replaced by 8-methyl-2′-deoxyguanosine residues, with the aim to exploit the methyl group positioned in the G-quadruplex grooves as a steric probe to investigate the interaction aptamer/target. Although, the various modified aptamers differ in the localization of the methyl group, NMR, circular dichroism (CD), electrophoretic and molecular modeling data suggest that all of them preserve the ability to fold in a stable dimeric parallel G-quadruplex complex resembling that of their natural counterpart T30923. However, the biological data have shown that the T30923 variants are characterized by different efficiencies in inhibiting the HIV-integrase, thus suggesting the involvement of the G-quadruplex grooves in the aptamer/target interaction.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Antonietta Pepe
- Department of Science, University of Basilicata, 85100 Potenza, Italy;
| | - Isabel Gomez Monterrey
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Luciano Mayol
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| |
Collapse
|
8
|
Wu HF, Morris-Natschke SL, Xu XD, Yang MH, Cheng YY, Yu SS, Lee KH. Recent advances in natural anti-HIV triterpenoids and analogs. Med Res Rev 2020; 40:2339-2385. [PMID: 32666531 DOI: 10.1002/med.21708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022]
Abstract
The human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic is one of the world's most serious health challenges. Although combination antiretroviral therapy provides effective viral suppression, current medicines used against HIV cannot completely eradicate the infectious disease and often have associated toxicities and severe side effects in addition to causing drug resistance. Therefore, the continued development of new antiviral agents with diverse structures and novel mechanisms of action remains a vital need for the management of HIV/AIDS. Natural products are an important source of drug discovery, and certain triterpenes and their analogs have demonstrated potential as pharmaceutical precursors for the treatment of HIV. Over the past decade, natural triterpenoids and analogs have been extensively studied to find new anti-HIV drugs. This review discusses the anti-HIV triterpenoids and analogs reported during the period of 2009-2019. The article includes not only a comprehensive review of the recent anti-HIV agent development from the perspective of medicinal chemistry, but also discusses structure-activity relationship analyses of the described triterpenoids.
Collapse
Affiliation(s)
- Hai-Feng Wu
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Xu-Dong Xu
- Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Hua Yang
- Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Wang X, Wei Y, Tian WY, Sakharkar MK, Liu Q, Yang X, Zhou YZ, Mou CL, Cai GL, Yang J. Characterization of Nine Compounds Isolated from the Acid Hydrolysate of Lonicera fulvotomentosa Hsu et S. C. Cheng and Evaluation of Their In Vitro Activity towards HIV Protease. Molecules 2019; 24:molecules24244526. [PMID: 31835661 PMCID: PMC6943440 DOI: 10.3390/molecules24244526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, we isolated nine compounds from the acid hydrolysate of the flower buds of Lonicera fulvotomentosa Hsu et S. C. Cheng and characterized their chemical structures using 1H-NMR, 13C-NMR, and electron ionization mass spectroscopy (EI-MS). These compounds were identified as β-sitosterol (1), 5,5′-dibutoxy-2,2′-bifuran (2), nonacosane-10-ol (3), ethyl (3β)-3,23-dihydroxyolean-12-en-28-oate (4), oleanolic acid (5), ethyl caffeate (6), caffeic acid (7), isovanillin (8), and hederagenin (9), with 4 as a new triterpene compound. Inhibitory activity against human immunodeficiency virus (HIV) protease was also evaluated for the compounds, and only ethyl caffeate, caffeic acid, and isovanillin (6, 7, and 8) exhibited inhibitory effects, with IC50 values of 1.0 μM, 1.5 μM, and 3.5 μM, respectively. Molecular docking with energy minimization and subsequent molecular dynamic (MD) simulation showed that ethyl caffeate and caffeic acid bound to the active site of HIV protease, while isovanillin drifted out from the active site and dissociated into bulk water during MD simulations, and most of the binding residues of HIV protease have been previously identified for HIV protease inhibitors. These results suggest that caffeic acid derivatives may possess inhibitory activities towards HIV protease other than previously reported inhibitory activities against HIV integrase, and thus ethyl caffeate and caffeic acid could be used as lead compounds in developing potential HIV protease inhibitors, and possibly even dual-function inhibitors against HIV.
Collapse
Affiliation(s)
- Xia Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, South of Dongqing Road, Guiyang 550025, Guizhou Province, China; (X.W.); (W.-Y.T.); (Q.L.); (X.Y.); (C.-L.M.); (G.-L.C.)
| | - Ying Wei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, South of Dongqing Road, Guiyang 550025, Guizhou Province, China; (X.W.); (W.-Y.T.); (Q.L.); (X.Y.); (C.-L.M.); (G.-L.C.)
- Correspondence: (Y.W.); (J.Y.)
| | - Wei-Yi Tian
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, South of Dongqing Road, Guiyang 550025, Guizhou Province, China; (X.W.); (W.-Y.T.); (Q.L.); (X.Y.); (C.-L.M.); (G.-L.C.)
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Qing Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, South of Dongqing Road, Guiyang 550025, Guizhou Province, China; (X.W.); (W.-Y.T.); (Q.L.); (X.Y.); (C.-L.M.); (G.-L.C.)
| | - Xin Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, South of Dongqing Road, Guiyang 550025, Guizhou Province, China; (X.W.); (W.-Y.T.); (Q.L.); (X.Y.); (C.-L.M.); (G.-L.C.)
| | - Yan-Zi Zhou
- Laboratory of Mesoscopic Chemistry, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, Jiangsu Province, China;
| | - Cheng-Li Mou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, South of Dongqing Road, Guiyang 550025, Guizhou Province, China; (X.W.); (W.-Y.T.); (Q.L.); (X.Y.); (C.-L.M.); (G.-L.C.)
| | - Gui-Lan Cai
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, South of Dongqing Road, Guiyang 550025, Guizhou Province, China; (X.W.); (W.-Y.T.); (Q.L.); (X.Y.); (C.-L.M.); (G.-L.C.)
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
- Correspondence: (Y.W.); (J.Y.)
| |
Collapse
|
10
|
Nici F, Oliviero G, Falanga AP, D'Errico S, Marzano M, Musumeci D, Montesarchio D, Noppen S, Pannecouque C, Piccialli G, Borbone N. Anti-HIV activity of new higher order G-quadruplex aptamers obtained from tetra-end-linked oligonucleotides. Org Biomol Chem 2019. [PMID: 29543291 DOI: 10.1039/c7ob02346d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
By combining the ability of short G-rich oligodeoxyribonucleotides (ODNs) containing the sequence 5'CGGA3' to form higher order G-quadruplex (G4) complexes with the tetra-end-linked (TEL) concept to produce aptamers targeting the HIV envelope glycoprotein 120 (gp120), three new TEL-ODNs (1-3) having the sequence 5'CGGAGG3' were synthesized with the aim of studying the effect of G4 dimerization on their anti-HIV activity. Furthermore, in order to investigate the effect of the groups at the 5' position, the 5' ends of 1-3 were left uncapped (1) or capped with either the lipophilic dimethoxytrityl (DMT) (2) or the hydrophilic glucosyl-4-phosphate (3) moieties. The here reported results demonstrate that only the DMT-substituted TEL-ODN 2 is effective in protecting human MT-4 cell cultures from HIV infection (76% max protection), notwithstanding all the three new aptamers proved to be capable of forming stable higher order dimeric G4s when annealed in K+-containing buffer, thus suggesting that the recognition of a hydrophobic pocket on the target glycoprotein by the aptamers represents a main structural feature for triggering their anti-HIV activity.
Collapse
Affiliation(s)
- F Nici
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - G Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy
| | - A P Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - S D'Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - M Marzano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - D Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - D Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - S Noppen
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - C Pannecouque
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - G Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - N Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|
11
|
McPherson TD, Sobieszczyk ME, Markowitz M. Cabotegravir in the treatment and prevention of Human Immunodeficiency Virus-1. Expert Opin Investig Drugs 2018; 27:413-420. [PMID: 29633869 DOI: 10.1080/13543784.2018.1460357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Human Immunodeficiency Virus (HIV) is a chronic infection that depletes the immune system of essential components causing those infected to be at risk for multiple life-threatening infections. Worldwide, millions live with this infection, the vast majority attributable to HIV-1. Transmission persists with hundreds of thousands of new infections reported yearly. Implementation of combination antiretroviral therapy (cART) has been effective in improving outcomes and decreasing transmission. Newer co-formulated agents have provided simpler medication regimens, fewer side effects, and, in some cases, a higher barrier to the emergence of medication resistance. Areas covered: Here, we review trials of cabotegravir (CAB) as treatment of HIV-1 infection and its potential use as pre-exposure prophylaxis (PrEP) in high risk individuals, including issues around oral lead in and potential resistance emergence. Expert opinion: CAB is efficacious when used in combination therapy orally or given intramuscularly every 4 to 8 weeks. Its availability in a long-acting injectable formulation (CAB-LA) makes it a valuable, novel drug to treat HIV-1 infection when combined with long-acting injectable rilpivirine (RPV-LA). Moreover, pre-clinical and early Phase 2a studies support its testing as monotherapy as PrEP. Studies are underway comparing the efficacy of every 8 week CAB-LA to tenofovir disoproxil fumarate/emtricitabine (TDF/FTC).
Collapse
Affiliation(s)
- Tristan D McPherson
- a Division of Infectious Diseases , Columbia University Medical Center, New York Presbyterian Hospital , New York , NY , USA
| | - Magdalena E Sobieszczyk
- a Division of Infectious Diseases , Columbia University Medical Center, New York Presbyterian Hospital , New York , NY , USA
| | | |
Collapse
|
12
|
Alimi Livani Z, Safakish M, Hajimahdi Z, Soleymani S, Zabihollahi R, Aghasadeghi MR, Alipour E, Zarghi A. Design, Synthesis, Molecular Modeling, In Silico ADME Studies and Anti-HIV-1 Assay of New Diazocoumarin Derivatives. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:65-77. [PMID: 31011343 PMCID: PMC6447871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Some new diazo incorporated coumarin compounds were designed and synthesized to evaluate their anti-HIV activity. Overall, compounds were active against HIV at 100 μM. Additionally, no cytotoxic effect was observed at this concentration. The compound with 4-chlorobenzyl group indicated the best anti-HIV activity (52%). Docking studies using the later crystallographic data available for PFV integrase showed similar binding modes to HIV-1 integrase inhibitors. On the basis of these data, nitrogen atoms of 1,3,4-oxadiazole ring have been involved in the Mg2+ chelation and 4-chlorobenzyl group occupies the same position as 4-flourobenzyl group of raltegravir in the active site. In addition, in silico ADME assay demonstrated favorable physicochemical properties for the new designed compounds. Thus, synthesized structures could be introduced as a novel template for designing safe anti-HIV compounds with integrase inhibitory potential.
Collapse
Affiliation(s)
- Zeynab Alimi Livani
- Department of Organic Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Safakish
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sepehr Soleymani
- Hepatitis and AIDS department, Pasteur institute of Iran, Tehran, Iran.
| | | | | | - Eskandanr Alipour
- Department of Organic Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding author: E-mail:
| |
Collapse
|
13
|
Cheng X, Gao P, Sun L, Tian Y, Zhan P, Liu X. Identification of spirocyclic or phosphate substituted quinolizine derivatives as novel HIV-1 integrase inhibitors: a patent evaluation of WO2016094197A1, WO2016094198A1 and WO2016154527A1. Expert Opin Ther Pat 2017; 27:1277-1286. [PMID: 28749251 DOI: 10.1080/13543776.2017.1360283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Highly active antiretroviral therapy (HAART) has been widely adopted to control the HIV-1 infection successfully. HIV-1 integrase (IN) inhibitors are primary drugs in HAART regimens targeting integration step in the HIV-1 life cycle. However, due to the emergence of viral resistance and cross-resistance amongst drugs, there is a pressing need for new and potent IN inhibitors. This review covers the three patents describing spirocyclic and phosphate substituted quinolizine derivatives as novel HIV-1 IN inhibitors for the discovery of new anti-HIV-1 drug candidates. Areas covered: This review is focused on spirocyclic and phosphate substituted quinolizine derivatives bearing the same metal chelation scaffold as novel HIV-1 IN inhibitors. Expert opinion: Generally, privileged structure-based optimizations have emerged as an effective approach to discover newly antiviral agents. More generally, due to the similar Mg2+ catalytic active centers of endoribonucleases, some divalent metal ion chelators were found to be versatile binders targeting multiple metalloenzymes. Therefore, privileged structure-based scaffold re-evolution is an important tactic to identify new chemotypes, to explore unknown biological activities, or to provide effective ligands for multiple targets by modifying the existing active compounds.
Collapse
Affiliation(s)
- Xiqiang Cheng
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Ping Gao
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Lin Sun
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Ye Tian
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| |
Collapse
|
14
|
Nishana M, Nilavar NM, Kumari R, Pandey M, Raghavan SC. HIV integrase inhibitor, Elvitegravir, impairs RAG functions and inhibits V(D)J recombination. Cell Death Dis 2017; 8:e2852. [PMID: 28569776 PMCID: PMC5520896 DOI: 10.1038/cddis.2017.237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022]
Abstract
Integrase inhibitors are a class of antiretroviral drugs used for the treatment of AIDS that target HIV integrase, an enzyme responsible for integration of viral cDNA into host genome. RAG1, a critical enzyme involved in V(D)J recombination exhibits structural similarity to HIV integrase. We find that two integrase inhibitors, Raltegravir and Elvitegravir, interfered with the physiological functions of RAGs such as binding, cleavage and hairpin formation at the recombination signal sequence (RSS), though the effect of Raltegravir was limited. Circular dichroism studies demonstrated a distinct change in the secondary structure of RAG1 central domain (RAG1 shares DDE motif amino acids with integrases), and when incubated with Elvitegravir, an equilibrium dissociation constant (Kd) of 32.53±2.9 μM was determined by Biolayer interferometry, leading to inhibition of its binding to DNA. Besides, using extrachromosomal assays, we show that Elvitegravir inhibited both coding and signal joint formation in pre-B cells. Importantly, treatment with Elvitegravir resulted in significant reduction of mature B lymphocytes in 70% of mice studied. Thus, our study suggests a potential risk associated with the use of Elvitegravir as an antiretroviral drug, considering the evolutionary and structural similarities between HIV integrase and RAGs.
Collapse
Affiliation(s)
| | - Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Monica Pandey
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
15
|
Platella C, Riccardi C, Montesarchio D, Roviello GN, Musumeci D. G-quadruplex-based aptamers against protein targets in therapy and diagnostics. Biochim Biophys Acta Gen Subj 2017; 1861:1429-1447. [PMID: 27865995 PMCID: PMC7117017 DOI: 10.1016/j.bbagen.2016.11.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules identified to recognize with high affinity specific targets including proteins, small molecules, ions, whole cells and even entire organisms, such as viruses or bacteria. They can be identified from combinatorial libraries of DNA or RNA oligonucleotides by SELEX technology, an in vitro iterative selection procedure consisting of binding (capture), partitioning and amplification steps. Remarkably, many of the aptamers selected against biologically relevant protein targets are G-rich sequences that can fold into stable G-quadruplex (G4) structures. Aiming at disseminating novel inspiring ideas within the scientific community in the field of G4-structures, the emphasis of this review is placed on: 1) recent advancements in SELEX technology for the efficient and rapid identification of new candidate aptamers (introduction of microfluidic systems and next generation sequencing); 2) recurrence of G4 structures in aptamers selected by SELEX against biologically relevant protein targets; 3) discovery of several G4-forming motifs in important regulatory regions of the human or viral genome bound by endogenous proteins, which per se can result into potential aptamers; 4) an updated overview of G4-based aptamers with therapeutic potential and 5) a discussion on the most attractive G4-based aptamers for diagnostic applications. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | | | - Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy; Institute of Biostructures and Bioimages, CNR, Napoli, Italy.
| |
Collapse
|
16
|
González VM, Martín ME, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals (Basel) 2016; 9:ph9040078. [PMID: 27999271 PMCID: PMC5198053 DOI: 10.3390/ph9040078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers' properties as a real tool for viral infection detection and treatment.
Collapse
Affiliation(s)
- Víctor M González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - M Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Gerónimo Fernández
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana García-Sacristán
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
17
|
Métifiot M, Johnson BC, Kiselev E, Marler L, Zhao XZ, Burke TR, Marchand C, Hughes SH, Pommier Y. Selectivity for strand-transfer over 3'-processing and susceptibility to clinical resistance of HIV-1 integrase inhibitors are driven by key enzyme-DNA interactions in the active site. Nucleic Acids Res 2016; 44:6896-906. [PMID: 27369381 PMCID: PMC5001616 DOI: 10.1093/nar/gkw592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/21/2016] [Indexed: 12/23/2022] Open
Abstract
Integrase strand transfer inhibitors (INSTIs) are highly effective against HIV infections. Co-crystal structures of the prototype foamy virus intasome have shown that all three FDA-approved drugs, raltegravir (RAL), elvitegravir and dolutegravir (DTG), act as interfacial inhibitors during the strand transfer (ST) integration step. However, these structures give only a partial sense for the limited inhibition of the 3′-processing reaction by INSTIs and how INSTIs can be modified to overcome drug resistance, notably against the G140S-Q148H double mutation. Based on biochemical experiments with modified oligonucleotides, we demonstrate that both the viral DNA +1 and −1 bases, which flank the 3′-processing site, play a critical role for 3′-processing efficiency and inhibition by RAL and DTG. In addition, the G140S-Q148H (SH) mutant integrase, which has a reduced 3′-processing activity, becomes more active and more resistant to inhibition of 3′-processing by RAL and DTG in the absence of the −1 and +1 bases. Molecular modeling of HIV-1 integrase, together with biochemical data, indicate that the conserved residue Q146 in the flexible loop of HIV-1 integrase is critical for productive viral DNA binding through specific contacts with the virus DNA ends in the 3′-processing and ST reactions. The potency of integrase inhibitors against 3′-processing and their ability to overcome resistance is discussed.
Collapse
Affiliation(s)
- Mathieu Métifiot
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Barry C Johnson
- HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Center for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Evgeny Kiselev
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Laura Marler
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, National Cancer Institute at Frederick, Center for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, National Cancer Institute at Frederick, Center for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Center for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Lou Y, Buchanan AM, Chen S, Ford SL, Gould E, Margolis D, Spreen WR, Patel P. Effect of Cabotegravir on Cardiac Repolarization in Healthy Subjects. Clin Pharmacol Drug Dev 2016; 5:509-516. [PMID: 27162089 PMCID: PMC5132079 DOI: 10.1002/cpdd.272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 11/17/2022]
Abstract
A randomized, partial‐blind, repeat‐dose, 3‐period crossover study (NCT02027454) assessed the effect of cabotegravir on QT interval in healthy subjects. To achieve a supratherapeutic dose, each subject received cabotegravir 150 mg (30 mg × 5 tablets) every 12 hours for a total of 3 doses over 2 days, matching placebo (every 12 hours) over 2 days, or a single open‐label 400‐mg dose of the positive control moxifloxacin, with a 21‐day washout between treatments. Blood samples for pharmacokinetic analyses were collected up to 24 hours after the third dose on day 2. QT interval data were obtained by continuous Holter monitoring for approximately 24 hours at baseline (day ‐1) and from 2 hours before to 24 hours after the third dose on day 2. Plasma cabotegravir exposure was approximately 3‐fold above clinically relevant doses. After 3 doses of 150 mg of cabotegravir administered every 12 hours, all upper limits of 2‐sided 90% confidence intervals for ΔΔQTcF (difference in time‐matched change from baseline for QTcF between cabotegravir and placebo) were <10 milliseconds. There was no relationship between cabotegravir plasma concentrations and ΔΔQTcF. No subject receiving cabotegravir had a QTcF value > 450 milliseconds. There were no serious or grade 3 or 4 adverse events or clinically significant changes in laboratory values, vital signs, or electrocardiogram results. These data demonstrate that cabotegravir at a supratherapeutic dose had no effect on cardiac repolarization.
Collapse
Affiliation(s)
- Yu Lou
- Parexel International, Research Triangle Park, Durham, NC, USA
| | - Ann M Buchanan
- ViiV Healthcare, Research Triangle Park, Durham, NC, USA
| | | | - Susan L Ford
- Parexel International, Research Triangle Park, Durham, NC, USA
| | | | - David Margolis
- ViiV Healthcare, Research Triangle Park, Durham, NC, USA
| | | | - Parul Patel
- ViiV Healthcare, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
19
|
Wu B, Tang J, Wilson DJ, Huber AD, Casey MC, Ji J, Kankanala J, Xie J, Sarafianos SG, Wang Z. 3-Hydroxypyrimidine-2,4-dione-5-N-benzylcarboxamides Potently Inhibit HIV-1 Integrase and RNase H. J Med Chem 2016; 59:6136-48. [PMID: 27283261 DOI: 10.1021/acs.jmedchem.6b00040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resistance selection by human immunodeficiency virus (HIV) toward known drug regimens necessitates the discovery of structurally novel antivirals with a distinct resistance profile. On the basis of our previously reported 3-hydroxypyrimidine-2,4-dione (HPD) core, we have designed and synthesized a new integrase strand transfer (INST) inhibitor type featuring a 5-N-benzylcarboxamide moiety. Significantly, the 6-alkylamino variant of this new chemotype consistently conferred low nanomolar inhibitory activity against HIV-1. Extended antiviral testing against a few raltegravir-resistant HIV-1 clones revealed a resistance profile similar to that of the second generation INST inhibitor (INSTI) dolutegravir. Although biochemical testing and molecular modeling also strongly corroborate the inhibition of INST as the antiviral mechanism of action, selected antiviral analogues also potently inhibited reverse transcriptase (RT) associated RNase H, implying potential dual target inhibition. In vitro ADME assays demonstrated that this novel chemotype possesses largely favorable physicochemical properties suitable for further development.
Collapse
Affiliation(s)
- Bulan Wu
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Jing Tang
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Andrew D Huber
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Juan Ji
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Jayakanth Kankanala
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Musumeci D, Riccardi C, Montesarchio D. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents. Molecules 2015; 20:17511-32. [PMID: 26402662 PMCID: PMC6332060 DOI: 10.3390/molecules200917511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
Abstract
Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.
Collapse
Affiliation(s)
- Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| |
Collapse
|
21
|
Araújo AR, Ribeiro AJM, Fernandes PA, Ramos MJ. Catalytic Mechanism of Retroviral Integrase for the Strand Transfer Reaction Explored by QM/MM Calculations. J Chem Theory Comput 2014; 10:5458-66. [DOI: 10.1021/ct500570g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ana R. Araújo
- REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - António J. M. Ribeiro
- REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
22
|
Métifiot M, Amrane S, Litvak S, Andreola ML. G-quadruplexes in viruses: function and potential therapeutic applications. Nucleic Acids Res 2014; 42:12352-66. [PMID: 25332402 PMCID: PMC4227801 DOI: 10.1093/nar/gku999] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/26/2014] [Accepted: 10/06/2014] [Indexed: 12/15/2022] Open
Abstract
G-rich nucleic acids can form non-canonical G-quadruplex structures (G4s) in which four guanines fold in a planar arrangement through Hoogsteen hydrogen bonds. Although many biochemical and structural studies have focused on DNA sequences containing successive, adjacent guanines that spontaneously fold into G4s, evidence for their in vivo relevance has recently begun to accumulate. Complete sequencing of the human genome highlighted the presence of ∼300,000 sequences that can potentially form G4s. Likewise, the presence of putative G4-sequences has been reported in various viruses genomes [e.g., Human immunodeficiency virus (HIV-1), Epstein-Barr virus (EBV), papillomavirus (HPV)]. Many studies have focused on telomeric G4s and how their dynamics are regulated to enable telomere synthesis. Moreover, a role for G4s has been proposed in cellular and viral replication, recombination and gene expression control. In parallel, DNA aptamers that form G4s have been described as inhibitors and diagnostic tools to detect viruses [e.g., hepatitis A virus (HAV), EBV, cauliflower mosaic virus (CaMV), severe acute respiratory syndrome virus (SARS), simian virus 40 (SV40)]. Here, special emphasis will be given to the possible role of these structures in a virus life cycle as well as the use of G4-forming oligonucleotides as potential antiviral agents and innovative tools.
Collapse
Affiliation(s)
- Mathieu Métifiot
- CNRS UMR-5234, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Samir Amrane
- INSERM, U869, IECB, ARNA laboratory, Université de Bordeaux, 2 Rue Robert Escarpit 33600 Pessac, France
| | - Simon Litvak
- CNRS UMR-5234, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Marie-Line Andreola
- CNRS UMR-5234, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
23
|
El Hage K, Piquemal JP, Hobaika Z, Maroun RG, Gresh N. Substituent-Modulated Affinities of Halobenzene Derivatives to the HIV-1 Integrase Recognition Site. Analyses of the Interaction Energies by Parallel Quantum Chemical and Polarizable Molecular Mechanics. J Phys Chem A 2014; 118:9772-82. [DOI: 10.1021/jp5079899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krystel El Hage
- Chemistry and Biology, Nucleo(s)tides and Immunology
for Therapy (CBNIT), UMR 8601 CNRS, UFR Biomédicale, Paris 75006, France
- Centre d’Analyses et de Recherche, UR EGFEM,
LSIM, Faculté des Sciences, Saint Joseph University of Beirut, B.P. 11-514 Riad El Solh, Beirut 1107 2050, Lebanon
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, UMR 7616 CNRS,
UPMC, Sorbonne Universités, Paris 75005, France
| | - Zeina Hobaika
- Centre d’Analyses et de Recherche, UR EGFEM,
LSIM, Faculté des Sciences, Saint Joseph University of Beirut, B.P. 11-514 Riad El Solh, Beirut 1107 2050, Lebanon
| | - Richard G. Maroun
- Centre d’Analyses et de Recherche, UR EGFEM,
LSIM, Faculté des Sciences, Saint Joseph University of Beirut, B.P. 11-514 Riad El Solh, Beirut 1107 2050, Lebanon
| | - Nohad Gresh
- Chemistry and Biology, Nucleo(s)tides and Immunology
for Therapy (CBNIT), UMR 8601 CNRS, UFR Biomédicale, Paris 75006, France
- Laboratoire de Chimie Théorique, UMR 7616 CNRS,
UPMC, Sorbonne Universités, Paris 75005, France
| |
Collapse
|
24
|
Zhao XZ, Smith SJ, Métifiot M, Marchand C, Boyer PL, Pommier Y, Hughes SH, Burke TR. 4-amino-1-hydroxy-2-oxo-1,8-naphthyridine-containing compounds having high potency against raltegravir-resistant integrase mutants of HIV-1. J Med Chem 2014; 57:5190-202. [PMID: 24901667 PMCID: PMC4216207 DOI: 10.1021/jm5001908] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
There
are currently three HIV-1 integrase (IN) strand transfer
inhibitors (INSTIs) approved by the FDA for the treatment of AIDS.
However, the emergence of drug-resistant mutants emphasizes the need
to develop additional agents that have improved efficacies against
the existent resistant mutants. As reported herein, we modified our
recently disclosed 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides
IN inhibitors to develop compounds that have improved efficacies against
recombinant IN in biochemical assays. These new compounds show single-digit
nanomolar antiviral potencies against HIV vectors that carry wild-type
(WT) IN in a single round replication assay and have improved potency
against vectors harboring the major forms of drug resistant IN mutants.
These compounds also have low toxicity for cultured cells, which in
several cases, results in selectivity indices (CC50/EC50) of greater than 10000. The compounds have the potential,
with additional structural modifications, to yield clinical agents
that are effective against the known strains of resistant viruses.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, and ‡HIV Drug Resistance Program, Center for Cancer Research, NCI at Frederick, National Institutes of Health , Building 376, Boyles Street, P.O. Box B, Frederick, Maryland 21702, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao XZ, Smith SJ, Métifiot M, Johnson BC, Marchand C, Pommier Y, Hughes SH, Burke TR. Bicyclic 1-hydroxy-2-oxo-1,2-dihydropyridine-3-carboxamide-containing HIV-1 integrase inhibitors having high antiviral potency against cells harboring raltegravir-resistant integrase mutants. J Med Chem 2014; 57:1573-82. [PMID: 24471816 PMCID: PMC3983366 DOI: 10.1021/jm401902n] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Integrase
(IN) inhibitors are the newest class of antiretroviral
agents developed for the treatment of HIV-1 infections. Merck’s
Raltegravir (RAL) (October 2007) and Gilead’s Elvitegravir
(EVG) (August 2012), which act as IN strand transfer inhibitors (INSTIs),
were the first anti-IN drugs to be approved by the FDA. However, the
virus develops resistance to both RAL and EVG, and there is extensive
cross-resistance to these two drugs. New “2nd-generation”
INSTIs are needed that will have greater efficacy against RAL- and
EVG-resistant strains of IN. The FDA has recently approved the first
second generation INSTI, GSK’s Dolutegravir (DTG) (August 2013).
Our current article describes the design, synthesis, and evaluation
of a series of 1,8-dihydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamides,
1,4-dihydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides,
and 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides.
This resulted in the identification of noncytotoxic inhibitors that
exhibited single digit nanomolar EC50 values against HIV-1
vectors harboring wild-type IN in cell-based assays. Importantly,
some of these new inhibitors retain greater antiviral efficacy compared
to that of RAL when tested against a panel of IN mutants that included
Y143R, N155H, G140S/Q148H, G118R, and E138K/Q148K.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health , Frederick, Maryland 21702, United States
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Specific features of HIV-1 integrase inhibition by bisphosphonate derivatives. Eur J Med Chem 2014; 73:73-82. [DOI: 10.1016/j.ejmech.2013.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 12/31/2022]
|
27
|
Chen Q, Buolamwini JK, Smith JC, Li A, Xu Q, Cheng X, Wei D. Impact of resistance mutations on inhibitor binding to HIV-1 integrase. J Chem Inf Model 2013; 53:3297-307. [PMID: 24205814 DOI: 10.1021/ci400537n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
HIV-1 integrase (IN) is essential for HIV-1 replication, catalyzing two key reaction steps termed 3' processing and strand transfer. Therefore, IN has become an important target for antiviral drug discovery. However, mutants have emerged, such as E92Q/N155H and G140S/Q148H, which confer resistance to raltegravir (RAL), the first IN strand transfer inhibitor (INSTI) approved by the FDA, and to the recently approved elvitegravir (EVG). To gain insights into the molecular mechanisms of ligand binding and drug resistance, we performed molecular dynamics (MD) simulations of homology models of the HIV-1 IN and four relevant mutants complexed with viral DNA and RAL. The results show that the structure and dynamics of the 140s' loop, comprising residues 140 to 149, are strongly influenced by the IN mutations. In the simulation of the G140S/Q148H double mutant, we observe spontaneous dissociation of RAL from the active site, followed by an intrahelical swing-back of the 3'-OH group of nucleotide A17, consistent with the experimental observation that the G140S/Q148H mutant exhibits the highest resistance to RAL compared to other IN mutants. An important hydrogen bond between residues 145 and 148 is present in the wild-type IN but not in the G140S/Q148H mutant, accounting for the structural and dynamical differences of the 140s' loop and ultimately impairing RAL binding in the double mutant. End-point free energy calculations that broadly capture the experimentally known RAL binding profiles elucidate the contributions of the 140s' loop to RAL binding free energies and suggest possible approaches to overcoming drug resistance.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Microbial Metabolism and College of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Miri L, Bouvier G, Kettani A, Mikou A, Wakrim L, Nilges M, Malliavin TE. Stabilization of the integrase-DNA complex by Mg2+ions and prediction of key residues for binding HIV-1 integrase inhibitors. Proteins 2013; 82:466-78. [DOI: 10.1002/prot.24412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/18/2013] [Accepted: 08/14/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Lamia Miri
- Laboratoire de Virologie; Institut Pasteur du Maroc; Casablanca 20360 Morocco
- Unité de modélisation moléculaire et d'ingénierie des biomolécules, Laboratoire de recherche sur les lipoprotéines et l'athérosclérose; Unité Associée au CNRST-URAC34, Faculté des Sciences Ben M'Sik; Casablanca Morocco
| | - Guillaume Bouvier
- Unité de Bioinformatique Structurale; UMR 3528 CNRS, Institut Pasteur; Paris 75724 France
| | - Anass Kettani
- Unité de modélisation moléculaire et d'ingénierie des biomolécules, Laboratoire de recherche sur les lipoprotéines et l'athérosclérose; Unité Associée au CNRST-URAC34, Faculté des Sciences Ben M'Sik; Casablanca Morocco
| | - Afaf Mikou
- Laboratoire de Catalyse et environnement; Faculté des Sciences Ain Chock; Casablanca Morocco
| | - Lahcen Wakrim
- Laboratoire de Virologie; Institut Pasteur du Maroc; Casablanca 20360 Morocco
| | - Michael Nilges
- Unité de Bioinformatique Structurale; UMR 3528 CNRS, Institut Pasteur; Paris 75724 France
| | - Thérèse E. Malliavin
- Unité de Bioinformatique Structurale; UMR 3528 CNRS, Institut Pasteur; Paris 75724 France
| |
Collapse
|
29
|
Yu S, Sanchez TW, Liu Y, Yin Y, Neamati N, Zhao G. Design and synthesis of novel pyrimidone analogues as HIV-1 integrase inhibitors. Bioorg Med Chem Lett 2013; 23:6134-7. [PMID: 24084160 DOI: 10.1016/j.bmcl.2013.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 08/14/2013] [Accepted: 09/05/2013] [Indexed: 01/22/2023]
Abstract
A series of novel pyrimidone analogues have been designed and synthesized as HIV-1 integrase (IN) inhibitors. This study demonstrated that introducing a substituent in the N1-position of the pyrimidone scaffold does not significantly influence IN inhibitory activity. Molecular docking studies showed these compounds could occupy the IN active site and form pi-pi interactions with viral DNA nucleotides DC16 and DA17 to displace reactive viral DNA 3'OH and block intasome activity.
Collapse
Affiliation(s)
- Shenghui Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | | | | | | | | | | |
Collapse
|
30
|
Smidt W. Potential elucidation of a novel CTL epitope in HIV-1 protease by the protease inhibitor resistance mutation L90M. PLoS One 2013; 8:e71888. [PMID: 24015196 PMCID: PMC3756051 DOI: 10.1371/journal.pone.0071888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/09/2013] [Indexed: 11/25/2022] Open
Abstract
The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1) infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS). Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89–97 and PR 90–99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease.
Collapse
Affiliation(s)
- Werner Smidt
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
- * E-mail:
| |
Collapse
|
31
|
Computational design of a full-length model of HIV-1 integrase: modeling of new inhibitors and comparison of their calculated binding energies with those previously studied. J Mol Model 2013; 19:4349-68. [PMID: 23907552 DOI: 10.1007/s00894-013-1943-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/11/2013] [Indexed: 12/28/2022]
Abstract
A full-length model of integrase (IN) of the human immunodeficiency virus type 1 (HIV-1) was constructed based on the distinctly resolved X-ray crystal structures of its three domains, named N-terminal, catalytic core and C-terminal. Thirty-one already known inhibitors with varieties of structural differences as well as nine newly tested ones were docked into the catalytic core. The molecular dynamic (MD) and binding properties of these complexes were obtained by MD calculations. The binding energies calculated by molecular mechanic/Poisson Boltzmann solvation area were significantly correlationed with available IC50. Four inhibitors including two newly designed were also docked into the full-length model and their MD behaviors and binding properties were calculated. It was found that one of the newly designed compounds forms a better complex with HIV-1 IN compared to the rest including raltegravir. MD calculations were performed with AMBER suite of programs using ff99SB force field for the proteins and the general Amber force field for the ligands. In conclusion, the results have produced a promising standpoint not only in the construction of the full-length model but also in development of new drugs against it. However, the role of multimer formation and the involvement of DNAs, and their subsequent effect on the complexation and inhibition, are required to arrive at a conclusive decision.
Collapse
|
32
|
Arora R, de Beauchene IC, Polanski J, Laine E, Tchertanov L. Raltegravir flexibility and its impact on recognition by the HIV-1 IN targets. J Mol Recognit 2013; 26:383-401. [PMID: 23836466 DOI: 10.1002/jmr.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 04/04/2013] [Accepted: 04/07/2013] [Indexed: 01/10/2023]
Abstract
HIV-1 IN is a pertinent target for the development of AIDS chemotherapy. The first IN-specific inhibitor approved for the treatment of HIV/AIDS, RAL, was designed to block the ST reaction. We characterized the structural and conformational features of RAL and its recognition by putative HIV-1 targets - the unbound IN, the vDNA, and the IN•vDNA complex - mimicking the IN states over the integration process. RAL binding to the targets was studied by performing an extensive sampling of the inhibitor conformational landscape and by using four different docking algorithms: Glide, Autodock, VINA, and SurFlex. The obtained data evidenced that: (i) a large binding pocket delineated by the active site and an extended loop in the unbound IN accommodates RAL in distinct conformational states all lacking specific interactions with the target; (ii) a well-defined cavity formed by the active site, the vDNA, and the shortened loop in the IN•vDNA complex provide a more optimized inhibitor binding site in which RAL chelates Mg(2+) cations; (iii) a specific recognition between RAL and the unpaired cytosine of the processed DNA is governed by a pair of strong H-bonds similar to those observed in DNA base pair G-C. The identified RAL pose at the cleaved vDNA shed light on a putative step of RAL inhibition mechanism. This modeling study indicates that the inhibition process may include as a first step RAL recognition by the processed vDNA bound to a transient intermediate IN state, and thus provides a potentially promising route to the design of IN inhibitors with improved affinity and selectivity.
Collapse
Affiliation(s)
- Rohit Arora
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliquée (LBPA-CNRS), Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235, Cachan, France
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Métifiot M, Maddali K, Johnson BC, Hare S, Smith SJ, Zhao X, Marchand C, Burke TR, Hughes SH, Cherepanov P, Pommier Y. Activities, crystal structures, and molecular dynamics of dihydro-1H-isoindole derivatives, inhibitors of HIV-1 integrase. ACS Chem Biol 2013; 8:209-17. [PMID: 23075516 PMCID: PMC3548936 DOI: 10.1021/cb300471n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
On the basis of a series of lactam and phthalimide derivatives that inhibit HIV-1 integrase, we developed a new molecule, XZ-259, with biochemical and antiviral activities comparable to raltegravir. We determined the crystal structures of XZ-259 and four other derivatives in complex with the prototype foamy virus intasome. The compounds bind at the integrase-Mg(2+)-DNA interface of the integrase active site. In biochemical and antiviral assays, XZ-259 inhibits raltegravir-resistant HIV-1 integrases harboring the Y143R mutation. Molecular modeling is also presented suggesting that XZ-259 can bind in the HIV-1 intasome with its dimethyl sulfonamide group adopting two opposite orientations. Molecular dynamics analyses of the HIV-1 intasome highlight the importance of the viral DNA in drug potency.
Collapse
Affiliation(s)
| | | | - Barry C. Johnson
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Stephen Hare
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Steven J. Smith
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - XueZhi Zhao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Terrence R. Burke
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Stephen H. Hughes
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Peter Cherepanov
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| |
Collapse
|
35
|
Van der Borght K, Verheyen A, Feyaerts M, Van Wesenbeeck L, Verlinden Y, Van Craenenbroeck E, van Vlijmen H. Quantitative prediction of integrase inhibitor resistance from genotype through consensus linear regression modeling. Virol J 2013; 10:8. [PMID: 23282253 PMCID: PMC3551713 DOI: 10.1186/1743-422x-10-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 12/28/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Integrase inhibitors (INI) form a new drug class in the treatment of HIV-1 patients. We developed a linear regression modeling approach to make a quantitative raltegravir (RAL) resistance phenotype prediction, as Fold Change in IC50 against a wild type virus, from mutations in the integrase genotype. METHODS We developed a clonal genotype-phenotype database with 991 clones from 153 clinical isolates of INI naïve and RAL treated patients, and 28 site-directed mutants.We did the development of the RAL linear regression model in two stages, employing a genetic algorithm (GA) to select integrase mutations by consensus. First, we ran multiple GAs to generate first order linear regression models (GA models) that were stochastically optimized to reach a goal R2 accuracy, and consisted of a fixed-length subset of integrase mutations to estimate INI resistance. Secondly, we derived a consensus linear regression model in a forward stepwise regression procedure, considering integrase mutations or mutation pairs by descending prevalence in the GA models. RESULTS The most frequently occurring mutations in the GA models were 92Q, 97A, 143R and 155H (all 100%), 143G (90%), 148H/R (89%), 148K (88%), 151I (81%), 121Y (75%), 143C (72%), and 74M (69%). The RAL second order model contained 30 single mutations and five mutation pairs (p < 0.01): 143C/R&97A, 155H&97A/151I and 74M&151I. The R2 performance of this model on the clonal training data was 0.97, and 0.78 on an unseen population genotype-phenotype dataset of 171 clinical isolates from RAL treated and INI naïve patients. CONCLUSIONS We describe a systematic approach to derive a model for predicting INI resistance from a limited amount of clonal samples. Our RAL second order model is made available as an Additional file for calculating a resistance phenotype as the sum of integrase mutations and mutation pairs.
Collapse
|
36
|
Xue W, Jin X, Ning L, Wang M, Liu H, Yao X. Exploring the Molecular Mechanism of Cross-Resistance to HIV-1 Integrase Strand Transfer Inhibitors by Molecular Dynamics Simulation and Residue Interaction Network Analysis. J Chem Inf Model 2012; 53:210-22. [DOI: 10.1021/ci300541c] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Weiwei Xue
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xiaojie Jin
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Lulu Ning
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Meixia Wang
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
37
|
Balaraju T, Kumar A, Bal C, Chattopadhyay D, Jena N, Bal NC, Sharon A. Aromatic interaction profile to understand the molecular basis of raltegravir resistance. Struct Chem 2012. [DOI: 10.1007/s11224-012-0181-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Zhao XZ, Maddali K, Smith SJ, Métifiot M, Johnson BC, Marchand C, Hughes SH, Pommier Y, Burke TR. 6,7-Dihydroxy-1-oxoisoindoline-4-sulfonamide-containing HIV-1 integrase inhibitors. Bioorg Med Chem Lett 2012; 22:7309-13. [PMID: 23149229 PMCID: PMC3523327 DOI: 10.1016/j.bmcl.2012.10.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/22/2022]
Abstract
Although an extensive body of scientific and patent literature exists describing the development of HIV-1 integrase (IN) inhibitors, Merck's raltegravir and Gilead's elvitegravir remain the only IN inhibitors FDA-approved for the treatment of AIDS. The emergence of raltegravir-resistant strains of HIV-1 containing mutated forms of IN underlies the need for continued efforts to enhance the efficacy of IN inhibitors against resistant mutants. We have previously described bicyclic 6,7-dihydroxyoxoisoindolin-1-ones that show good IN inhibitory potency. This report describes the effects of introducing substituents into the 4- and 5-positions of the parent 6,7-dihydroxyoxoisoindolin-1-one platform. We have developed several sulfonamide-containing analogs that enhance potency in cell-based HIV assays by more than two orders-of-magnitude and we describe several compounds that are more potent than raltegravir against the clinically relevant Y143R IN mutant.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Kasthuraiah Maddali
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Steven J. Smith
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Mathieu Métifiot
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Barry C. Johnson
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Stephen H. Hughes
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| |
Collapse
|
39
|
Structural modifications of 5,6-dihydroxypyrimidines with anti-HIV activity. Bioorg Med Chem Lett 2012; 22:7114-8. [DOI: 10.1016/j.bmcl.2012.09.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/03/2012] [Accepted: 09/21/2012] [Indexed: 12/14/2022]
|
40
|
Sgobba M, Olubiyi O, Ke S, Haider S. Molecular dynamics of HIV1-integrase in complex with 93del - a structural perspective on the mechanism of inhibition. J Biomol Struct Dyn 2012; 29:863-77. [PMID: 22292948 DOI: 10.1080/07391102.2012.10507418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV1 integrase is an important target for the antiviral therapy. Guanine-rich quadruplex, such as 93del, have been shown to be potent inhibitors of this enzyme and thus representing a new class of antiviral agents. Although X-ray and NMR structures of HIV1 integrase and 93del have been reported, there is no structural information of the complex and the mechanism of inhibition still remains unexplored. A number of computational methods including automated protein-DNA docking and molecular dynamics simulation in explicit solvent were used to model the binding of 93del to HIV1 integrase. Analysis of the dynamic behaviour of the complex using principal components analysis and elastic network modelling techniques allow us to understand how the binding of 93del aptamer and its interactions with key residues affect the intrinsic motions of the catalytic loops by stabilising them in catalytically inactive conformations. Such insights into the structural mechanism of inhibition can aid in improving the design of anti-HIV aptamers.
Collapse
Affiliation(s)
- Miriam Sgobba
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, 97 Lisburn Road, BT9 7BL, Belfast, UK.
| | | | | | | |
Collapse
|
41
|
Abstract
Integrase (IN) is a clinically validated target for the treatment of human immunodeficiency virus infections and raltegravir exhibits remarkable clinical activity. The next most advanced IN inhibitor is elvitegravir. However, mutant viruses lead to treatment failure and mutations within the IN coding sequence appear to confer cross-resistance. The characterization of those mutations is critical for the development of second generation IN inhibitors to overcome resistance. This review focuses on IN resistance based on structural and biochemical data, and on the role of the IN flexible loop i.e., between residues G140-G149 in drug action and resistance.
Collapse
Affiliation(s)
| | | | | | - Yves Pommier
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-496-5944; Fax: +1-301-402-0752
| |
Collapse
|
42
|
Moody IS, Verde SC, Overstreet CM, Edward Robinson W, Weiss GA. In vitro evolution of an HIV integrase binding protein from a library of C-terminal domain γS-crystallin variants. Bioorg Med Chem Lett 2012; 22:5584-9. [PMID: 22858140 DOI: 10.1016/j.bmcl.2012.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/01/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
A protein without natural binding functions was engineered to bind HIV-1 integrase. Phage display selections applied a library of variants based on the C-terminal domain of the eye lens protein human γS-crystallin. Multiple loop regions were altered to encode libraries with ≈3.6 × 10(11) different variants. A crystallin variant, termed integrase binding protein-10 (IBP-10), inhibits integrase catalysis with nanomolar K(i) values. IBP-10 interacts with the integrase C-terminal domain and inhibits integrase substrate affinity. This allosteric mechanism allows IBP-10 to inhibit drug-resistant integrase variants. The results demonstrate the applicability of the crystallin scaffold for the discovery of binding partners and enzyme inhibitors.
Collapse
Affiliation(s)
- Issa S Moody
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697-3900, USA
| | | | | | | | | |
Collapse
|
43
|
da Silva FA, Li M, Rato S, Maia S, Malhó R, Warren K, Harrich D, Craigie R, Barbas C, Goncalves J. Recombinant rabbit single-chain antibodies bind to the catalytic and C-terminal domains of HIV-1 integrase protein and strongly inhibit HIV-1 replication. Biotechnol Appl Biochem 2012; 59:353-66. [PMID: 23586912 PMCID: PMC3917493 DOI: 10.1002/bab.1034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/26/2012] [Indexed: 11/11/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein plays an important role during the early stages of the retroviral life cycle and therefore is an attractive target for therapeutic intervention. We immunized rabbits with HIV-1 IN protein and developed a combinatorial single-chain variable fragment (scFv) library against IN. Five different scFv antibodies with high binding activity and specificity for IN were identified. These scFvs recognize the catalytic and C-terminal domains of IN and block the strand-transfer process. Cells expressing anti-IN-scFvs were highly resistant to HIV-1 replication due to an inhibition of the integration process itself. These results provide proof-of-concept that rabbit anti-IN-scFv intrabodies can be designed to block the early stages of HIV-1 replication without causing cellular toxicity. Therefore, these anti-IN-scFvs may be useful agents for "intracellular immunization"-based gene therapy strategies. Furthermore, because of their epitope binding characteristics, these scFvs can be used also as new tools to study the structure and function of HIV-1 IN protein.
Collapse
Affiliation(s)
- Frederico Aires da Silva
- URIA—Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- IMM—Instituto de Medicina Molecular, Lisbon, Portugal
| | - Min Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sylvie Rato
- URIA—Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- IMM—Instituto de Medicina Molecular, Lisbon, Portugal
| | - Sara Maia
- URIA—Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- IMM—Instituto de Medicina Molecular, Lisbon, Portugal
| | - Rui Malhó
- Faculdade de Ciências de Lisboa, Universidade de Lisboa, BioFIG, Lisbon, Portugal
| | - Kylie Warren
- Division of Immunology and Infectious Disease, Queensland Institute of Medical Research, Brisbane, Australia
| | - David Harrich
- Division of Immunology and Infectious Disease, Queensland Institute of Medical Research, Brisbane, Australia
| | - Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carlos Barbas
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joao Goncalves
- URIA—Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- IMM—Instituto de Medicina Molecular, Lisbon, Portugal
| |
Collapse
|
44
|
Ammar FF, Abdel-Azeim S, Zargarian L, Hobaika Z, Maroun RG, Fermandjian S. Unprocessed viral DNA could be the primary target of the HIV-1 integrase inhibitor raltegravir. PLoS One 2012; 7:e40223. [PMID: 22768342 PMCID: PMC3388078 DOI: 10.1371/journal.pone.0040223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/02/2012] [Indexed: 12/18/2022] Open
Abstract
Integration of HIV DNA into host chromosome requires a 3'-processing (3'-P) and a strand transfer (ST) reactions catalyzed by virus integrase (IN). Raltegravir (RAL), commonly used in AIDS therapy, belongs to the family of IN ST inhibitors (INSTIs) acting on IN-viral DNA complexes (intasomes). However, studies show that RAL fails to bind IN alone, but nothing has been reported on the behaviour of RAL toward free viral DNA. Here, we assessed whether free viral DNA could be a primary target for RAL, assuming that the DNA molecule is a receptor for a huge number of pharmacological agents. Optical spectroscopy, molecular dynamics and free energy calculations, showed that RAL is a tight binder of both processed and unprocessed LTR (long terminal repeat) ends. Complex formation involved mainly van der Waals forces and was enthalpy driven. Dissociation constants (Kds) revealed that RAL affinity for unbound LTRs was stronger than for bound LTRs. Moreover, Kd value for binding of RAL to LTRs and IC50 value (half concentration for inhibition) were in same range, suggesting that RAL binding to DNA and ST inhibition are correlated events. Accommodation of RAL into terminal base-pairs of unprocessed LTR is facilitated by an extensive end fraying that lowers the RAL binding energy barrier. The RAL binding entails a weak damping of fraying and correlatively of 3'-P inhibition. Noteworthy, present calculated RAL structures bound to free viral DNA resemble those found in RAL-intasome crystals, especially concerning the contacts between the fluorobenzyl group and the conserved 5'C(4)pA(3)3' step. We propose that RAL inhibits IN, in binding first unprocessed DNA. Similarly to anticancer drug poisons acting on topoisomerases, its interaction with DNA does not alter the cut, but blocks the subsequent joining reaction. We also speculate that INSTIs having viral DNA rather IN as main target could induce less resistance.
Collapse
Affiliation(s)
- Farah F. Ammar
- LBPA, UMR8113 du CNRS, Ecole Normale Supérieure de Cachan, Cedex, Cachan, France
- Unité de Biochimie, Département SVT, Faculté des Sciences, Université Saint-Joseph, CST-Mar Roukoz, Beyrouth, Liban
| | - Safwat Abdel-Azeim
- LBPA, UMR8113 du CNRS, Ecole Normale Supérieure de Cachan, Cedex, Cachan, France
| | - Loussinée Zargarian
- LBPA, UMR8113 du CNRS, Ecole Normale Supérieure de Cachan, Cedex, Cachan, France
| | - Zeina Hobaika
- Unité de Biochimie, Département SVT, Faculté des Sciences, Université Saint-Joseph, CST-Mar Roukoz, Beyrouth, Liban
| | - Richard G. Maroun
- Unité de Biochimie, Département SVT, Faculté des Sciences, Université Saint-Joseph, CST-Mar Roukoz, Beyrouth, Liban
| | - Serge Fermandjian
- LBPA, UMR8113 du CNRS, Ecole Normale Supérieure de Cachan, Cedex, Cachan, France
- * E-mail:
| |
Collapse
|
45
|
Hare S, Maertens GN, Cherepanov P. 3'-processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J 2012; 31:3020-8. [PMID: 22580823 PMCID: PMC3395085 DOI: 10.1038/emboj.2012.118] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 04/02/2012] [Indexed: 12/19/2022] Open
Abstract
Structures of a prototype integrase bound to viral cDNA offer insights into the early steps of retroviral host genome integration, and into the mechanisms of action of viral DNA strand transfer inhibitor (INSTI) drugs. Retroviral integrase (IN) is responsible for two consecutive reactions, which lead to insertion of a viral DNA copy into a host cell chromosome. Initially, the enzyme removes di- or trinucleotides from viral DNA ends to expose 3′-hydroxyls attached to the invariant CA dinucleotides (3′-processing reaction). Second, it inserts the processed 3′-viral DNA ends into host chromosomal DNA (strand transfer). Herein, we report a crystal structure of prototype foamy virus IN bound to viral DNA prior to 3′-processing. Furthermore, taking advantage of its dependence on divalent metal ion cofactors, we were able to freeze trap the viral enzyme in its ground states containing all the components necessary for 3′-processing or strand transfer. Our results shed light on the mechanics of retroviral DNA integration and explain why HIV IN strand transfer inhibitors are ineffective against the 3′-processing step of integration. The ground state structures moreover highlight a striking substrate mimicry utilized by the inhibitors in their binding to the IN active site and suggest ways to improve upon this clinically relevant class of small molecules.
Collapse
Affiliation(s)
- Stephen Hare
- Division of Infectious Diseases, Imperial College London, London, UK
| | | | | |
Collapse
|
46
|
Hare S, Maertens GN, Cherepanov P. 3'-processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J 2012. [PMID: 22580823 DOI: 10.1038/emboj.2012.118emboj2012118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Retroviral integrase (IN) is responsible for two consecutive reactions, which lead to insertion of a viral DNA copy into a host cell chromosome. Initially, the enzyme removes di- or trinucleotides from viral DNA ends to expose 3'-hydroxyls attached to the invariant CA dinucleotides (3'-processing reaction). Second, it inserts the processed 3'-viral DNA ends into host chromosomal DNA (strand transfer). Herein, we report a crystal structure of prototype foamy virus IN bound to viral DNA prior to 3'-processing. Furthermore, taking advantage of its dependence on divalent metal ion cofactors, we were able to freeze trap the viral enzyme in its ground states containing all the components necessary for 3'-processing or strand transfer. Our results shed light on the mechanics of retroviral DNA integration and explain why HIV IN strand transfer inhibitors are ineffective against the 3'-processing step of integration. The ground state structures moreover highlight a striking substrate mimicry utilized by the inhibitors in their binding to the IN active site and suggest ways to improve upon this clinically relevant class of small molecules.
Collapse
Affiliation(s)
- Stephen Hare
- Division of Infectious Diseases, Imperial College London, London, UK
| | | | | |
Collapse
|
47
|
Han YS, Quashie P, Mesplede T, Xu H, Mekhssian K, Fenwick C, Wainberg MA. A high-throughput assay for HIV-1 integrase 3'-processing activity using time-resolved fluorescence. J Virol Methods 2012; 184:34-40. [PMID: 22584270 DOI: 10.1016/j.jviromet.2012.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 04/26/2012] [Accepted: 05/03/2012] [Indexed: 01/08/2023]
Abstract
HIV-1 integrase (HIV-1 IN), a well-validated antiviral drug target, catalyzes multistep reactions to incorporate viral DNA into the genome of the host cell; these include both a 3'-processing (3'P) reaction and a strand transfer reaction. These enzymatic activities can be measured in vitro with short DNA oligonucleotides that mimic a single viral LTR DNA end and purified IN. A highly sensitive and reproducible time-resolved fluorescence (TRF)-based assay for HIV-1 IN 3'P activity is now reported. This assay was optimized with respect to time and concentrations of metal ions, substrate and enzyme. The assay has now been used successfully to measure HIV-1 IN 3'P activity and has been shown to detect the anti-IN activity of several known 3'P inhibition compounds accurately. This assay, which is amenable to high-throughput screening, will be useful for identification of additional HIV-1 IN 3'P inhibitors.
Collapse
Affiliation(s)
- Ying-Shan Han
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Chen S, Min SS, Peppercorn A, Borland J, Lou Y, Song I, Fujiwara T, Piscitelli SC. Effect of a Single Supratherapeutic Dose of Dolutegravir on Cardiac Repolarization. Pharmacotherapy 2012; 32:333-9. [DOI: 10.1002/j.1875-9114.2012.01033.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/09/2011] [Accepted: 09/30/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Shuguang Chen
- Infectious Diseases Medicines Discovery and Development; GlaxoSmithKline; Research Triangle Park; North Carolina
| | - Sherene S. Min
- Infectious Diseases Medicines Discovery and Development; GlaxoSmithKline; Research Triangle Park; North Carolina
| | - Amanda Peppercorn
- Infectious Diseases Medicines Discovery and Development; GlaxoSmithKline; Research Triangle Park; North Carolina
| | - Julie Borland
- Infectious Diseases Medicines Discovery and Development; GlaxoSmithKline; Research Triangle Park; North Carolina
| | - Yu Lou
- Infectious Diseases Medicines Discovery and Development; GlaxoSmithKline; Research Triangle Park; North Carolina
| | - Ivy Song
- Infectious Diseases Medicines Discovery and Development; GlaxoSmithKline; Research Triangle Park; North Carolina
| | - Tamio Fujiwara
- Pharmaceutical Development Division; Shionogi & Co., Ltd.; Osaka; Japan
| | - Stephen C. Piscitelli
- Infectious Diseases Medicines Discovery and Development; GlaxoSmithKline; Research Triangle Park; North Carolina
| |
Collapse
|
49
|
Abstract
A series of HIV integrase (HIV-1 IN) inhibitors were synthesized to evaluate the role of the metal-binding group (MBG) in this class of metalloenzyme inhibitors. A total of 21 different raltegravir-chelator derivative (RCD) compounds were prepared that differed only in the nature of the MBG. These IN strand-transfer inhibitors (INSTIs) were evaluated in vitro in cell-free enzyme activity assays, and the in vitro results were further validated in cell culture experiments. All of the active compounds showed selective inhibition of the strand-transfer reaction over 3'-processing, suggesting a common mode of action with raltegravir. The results of the in vitro activity suggest that the nature of the MBG donor atoms, the overall MBG structure, and the specific arrangement of the MBG donor atom triad are essential for obtaining maximal HIV-1 IN inhibition. At least two compounds (RCD-4, RCD-5) containing a hydroxypyrone MBG were found to display superior strand-transfer inhibition when compared to an abbreviated analogue of raltegravir (RCD-1). By isolating and examining the role of the MBG in a series of INSTIs, we have identified a scaffold (hydroxypyrones) that may provide access to a unique class of HIV-1 IN inhibitors, and may help overcome rising raltegravir resistance.
Collapse
|
50
|
Yu S, Zhang L, Yan S, Wang P, Sanchez T, Christ F, Debyser Z, Neamati N, Zhao G. Nitrogen-containing polyhydroxylated aromatics as HIV-1 integrase inhibitors: synthesis, structure-activity relationship analysis, and biological activity. J Enzyme Inhib Med Chem 2012; 27:628-40. [DOI: 10.3109/14756366.2011.604851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shenghui Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University,
Jinan, Shandong, PR China
| | - Linna Zhang
- Qilu Hospital of Shandong University,
Jinan, Shandong, PR China
| | - Shifeng Yan
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University,
Jinan, Shandong, PR China
| | - Peng Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University,
Jinan, Shandong, PR China
| | - Tino Sanchez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California,
Los Angeles, CA, USA
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Molecular and Cellular Medicine IRC KULAK and KULeuven,
Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Molecular and Cellular Medicine IRC KULAK and KULeuven,
Leuven, Flanders, Belgium
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California,
Los Angeles, CA, USA
| | - Guisen Zhao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University,
Jinan, Shandong, PR China
| |
Collapse
|