1
|
Campbell A, Lai T, Wahba AE, Boison D, Gebril HM. Enhancing neurogenesis after traumatic brain injury: The role of adenosine kinase inhibition in promoting neuronal survival and differentiation. Exp Neurol 2024; 381:114930. [PMID: 39173898 DOI: 10.1016/j.expneurol.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Traumatic brain injury (TBI) presents a significant public health challenge, necessitating innovative interventions for effective treatment. Recent studies have challenged conventional perspectives on neurogenesis, unveiling endogenous repair mechanisms within the adult brain following injury. However, the intricate mechanisms governing post-TBI neurogenesis remain unclear. The microenvironment of an injured brain, characterized by astrogliosis, neuroinflammation, and excessive cell death, significantly influences the fate of newly generated neurons. Adenosine kinase (ADK), the key metabolic regulator of adenosine, emerges as a crucial factor in brain development and cell proliferation after TBI. This study investigates the hypothesis that targeting ADK could enhance brain repair, promote neuronal survival, and facilitate differentiation. In a TBI model induced by controlled cortical impact, C57BL/6 male mice received intraperitoneal injections of the small molecule ADK inhibitor 5-iodotubercidin (ITU) for three days following TBI. To trace the fate of TBI-associated proliferative cells, animals received intraperitoneal injections of BrdU for seven days, beginning immediately after TBI. Our results show that ADK inhibition by ITU improved brain repair 14 days after injury as evidenced by a diminished injury size. Additionally, the number of mature neurons generated after TBI was increased in ITU-treated mice. Remarkably, the TBI-associated pathological events including astrogliosis, neuroinflammation, and cell death were arrested in ITU-treated mice. Finally, ADK inhibition modulated cell death by regulating the PERK signaling pathway. Together, these findings demonstrate a novel therapeutic approach to target multiple pathological mechanisms involved in TBI. This research contributes valuable insights into the intricate molecular mechanisms underlying neurogenesis and gliosis after TBT.
Collapse
Affiliation(s)
- Andrea Campbell
- Departement of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14620, USA; Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Tho Lai
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Amir E Wahba
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Chemistry Department, Faculty of Science, Damietta University, New Damietta City 34518, Egypt
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Hoda M Gebril
- Departement of Biomedical Engineering, School of Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Yang Y, Duan Y, Jiang H, Li J, Bai W, Zhang Q, Li J, Shao J. Bioinformatics-driven identification and validation of diagnostic biomarkers for cerebral ischemia reperfusion injury. Heliyon 2024; 10:e28565. [PMID: 38601664 PMCID: PMC11004763 DOI: 10.1016/j.heliyon.2024.e28565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
Objective This article aims to identify genetic features associated with immune cell infiltration in cerebral ischemia-reperfusion injury (CIRI) development through bioinformatics, with the goal of discovering diagnostic biomarkers and potential therapeutic targets. Methods We obtained two datasets from the Gene Expression Omnibus (GEO) database to identify immune-related differentially expressed genes (IRDEGs). These genes' functions were analyzed via Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Tools such as CIBERSORT and ssGSEA assessed immune cell infiltration. The Starbase and miRDB databases predicted miRNAs interacting with hub genes, and Cytoscape software mapped mRNA-miRNA interaction networks. The ENCORI database was employed to predict RNA binding proteins interacting with hub genes. Key genes were identified using a random forest algorithm and constructing a Support Vector Machine (SVM) model. LASSO regression analysis constructed a diagnostic model for hub genes to determine their diagnostic value, and PCR analysis validated their expression in cerebral ischemia-reperfusion. Results We identified 10 IRDEGs (C1qa, Ccl4, Cd74, Cd8a, Cxcl10, Gmfg, Grp, Lgals3bp, Timp1, Vim). The random forest algorithm, and SVM model intersection revealed three key genes (Ccl4, Gmfg, C1qa) as diagnostic biomarkers for CIRI. LASSO regression analysis, further refined this to two key genes (Ccl4 and C1qa), With ROC curve, analysis confirming their diagnostic efficacy (C1qa AUC = 0.75, Ccl4 AUC = 0.939). PCR analysis corroborated these findings. Conclusions Our study elucidates immune and metabolic response mechanisms in CIRI, identifying two immune-related genes as key biomarkers and potential therapeutic targets in response to cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yushan Duan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Huan Jiang
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Junjie Li
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Wenya Bai
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qi Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Junming Li
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jianlin Shao
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Liddle LJ, Huang YG, Kung TFC, Mergenthaler P, Colbourne F, Buchan AM. An Assessment of Physical and N6-Cyclohexyladenosine-Induced Hypothermia in Rodent Distal Focal Ischemic Stroke. Ther Hypothermia Temp Manag 2024; 14:36-45. [PMID: 37339459 DOI: 10.1089/ther.2023.0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Therapeutic hypothermia (TH) mitigates damage in ischemic stroke models. However, safer and easier TH methods (e.g., pharmacological) are needed to circumvent physical cooling complications. This study evaluated systemic and pharmacologically induced TH using the adenosine A1 receptor agonist, N6-cyclohexyladenosine (CHA), with control groups in male Sprague-Dawley rats. CHA was administered intraperitoneally 10 minutes following a 2-hour intraluminal middle cerebral artery occlusion. We used a 1.5 mg/kg induction dose, followed by three 1.0 mg/kg doses every 6 hours for a total of 4 doses, causing 20-24 hours of hypothermia. Animals assigned to physical hypothermia and CHA-hypothermia had similar induction rates and nadir temperatures, but forced cooling lasted ∼6 hours longer compared with CHA-treated animals. The divergence is likely attributable to individual differences in CHA metabolism, which led to varied durations at nadir, whereas physical hypothermia was better regulated. Physical hypothermia significantly reduced infarction (primary endpoint) on day 7 (mean reduction of 36.8 mm3 or 39% reduction; p = 0.021 vs. normothermic animals; Cohen's d = 0.75), whereas CHA-induced hypothermia did not (p = 0.33). Similarly, physical cooling improved neurological function (physical hypothermia median = 0, physical normothermia median = 2; p = 0.008) and CHA-induced cooling did not (p > 0.99). Our findings demonstrate that forced cooling was neuroprotective compared with controls, but prolonged CHA-induced cooling was not neuroprotective.
Collapse
Affiliation(s)
- Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Yi-Ge Huang
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tiffany F C Kung
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Philipp Mergenthaler
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, NeuroCure Clinical Research Center, Berlin, Germany
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alastair M Buchan
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
| |
Collapse
|
4
|
Liu M, Chen H, Huang Y, Liu J, Chen Q, Zuo H, Fang L, Mao C. Enriching adenosine by thymine-rich DNA oligomers. Analyst 2023; 148:1858-1866. [PMID: 36942467 DOI: 10.1039/d3an00297g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Adenosine levels are important in various physiological and pathological activities, but detecting them is difficult because of interference from a complex matrix. This study designed a series of DNA oligomers rich in thymine to enrich adenosine. Their binding affinity (Kd range: 1.25-5.0 mM) to adenosine varied based on the DNA secondary structures, with a clamped hairpin structure showing the highest binding affinity. Compared to other designs, this clamped DNA hairpin underwent the least conformational change during adenosine binding. These DNAs also suppressed the precipitation of supersaturated adenine. Taken together, these results suggest that thymine-rich DNAs could be used to enrich and separate adenosine.
Collapse
Affiliation(s)
- Mingchun Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Huaiqing Chen
- Biological Sciences Research Center, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yuhan Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jian Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qianfeng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Liang Fang
- Department of Oncology, The Ninth Chongqing People's Hospital, Chongqing 400700, China.
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Department of Chemistry, Purdue University, West Lafayette 47907, IN, USA.
| |
Collapse
|
5
|
Mottahedin A, Prag HA, Dannhorn A, Mair R, Schmidt C, Yang M, Sorby-Adams A, Lee JJ, Burger N, Kulaveerasingam D, Huang MM, Pluchino S, Peruzzotti-Jametti L, Goodwin R, Frezza C, Murphy MP, Krieg T. Targeting succinate metabolism to decrease brain injury upon mechanical thrombectomy treatment of ischemic stroke. Redox Biol 2023; 59:102600. [PMID: 36630820 PMCID: PMC9841348 DOI: 10.1016/j.redox.2023.102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
Current treatments for acute ischemic stroke aim to reinstate a normal perfusion in the ischemic territory but can also cause significant ischemia-reperfusion (IR) injury. Previous data in experimental models of stroke show that ischemia leads to the accumulation of succinate, and, upon reperfusion, the accumulated succinate is rapidly oxidized by succinate dehydrogenase (SDH) to drive superoxide production at mitochondrial complex I. Despite this process initiating IR injury and causing further tissue damage, the potential of targeting succinate metabolism to minimize IR injury remains unexplored. Using both quantitative and untargeted high-resolution metabolomics, we show a time-dependent accumulation of succinate in both human and mouse brain exposed to ischemia ex vivo. In a mouse model of ischemic stroke/mechanical thrombectomy mass spectrometry imaging (MSI) shows that succinate accumulation is confined to the ischemic region, and that the accumulated succinate is rapidly oxidized upon reperfusion. Targeting succinate oxidation by systemic infusion of the SDH inhibitor malonate upon reperfusion leads to a dose-dependent decrease in acute brain injury. Together these findings support targeting succinate metabolism upon reperfusion to decrease IR injury as a valuable adjunct to mechanical thrombectomy in ischemic stroke.
Collapse
Affiliation(s)
- Amin Mottahedin
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK; Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | - Hiran A Prag
- Department of Medicine, University of Cambridge, Cambridge University Hospitals, Cambridge, UK
| | - Andreas Dannhorn
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R & D, AstraZeneca, Cambridge, UK
| | - Richard Mair
- Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK
| | - Christina Schmidt
- CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Ming Yang
- CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Annabel Sorby-Adams
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Jordan J Lee
- Department of Medicine, University of Cambridge, Cambridge University Hospitals, Cambridge, UK
| | - Nils Burger
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Margaret M Huang
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, UK
| | - Richard Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R & D, AstraZeneca, Cambridge, UK
| | - Christian Frezza
- CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge University Hospitals, Cambridge, UK.
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
6
|
Cerebral Ischemia/Reperfusion Injury and Pharmacologic Preconditioning as a Means to Reduce Stroke-induced Inflammation and Damage. Neurochem Res 2022; 47:3598-3614. [DOI: 10.1007/s11064-022-03789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
7
|
Bova V, Filippone A, Casili G, Lanza M, Campolo M, Capra AP, Repici A, Crupi L, Motta G, Colarossi C, Chisari G, Cuzzocrea S, Esposito E, Paterniti I. Adenosine Targeting as a New Strategy to Decrease Glioblastoma Aggressiveness. Cancers (Basel) 2022; 14:cancers14164032. [PMID: 36011024 PMCID: PMC9406358 DOI: 10.3390/cancers14164032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Given the rising mortality rate caused by GBM, current therapies do not appear to be effective in counteracting tumor progression. The role of adenosine and its interaction with specific receptor subtypes in various physiological functions has been studied for years. Only recently, adenosine has been defined as a tumor-protective target because of its accumulation in the tumor microenvironment. Current knowledge of the adenosine pathway and its involvement in brain tumors would support research in the development of adenosine receptor antagonists that could represent alternative treatments for glioblastoma, used either alone and/or in combination with chemotherapy, immunotherapy, or both. Abstract Glioblastoma is the most commonly malignant and aggressive brain tumor, with a high mortality rate. The role of the purine nucleotide adenosine and its interaction with its four subtypes receptors coupled to the different G proteins, A1, A2A, A2B, and A3, and its different physiological functions in different systems and organs, depending on the active receptor subtype, has been studied for years. Recently, several works have defined extracellular adenosine as a tumoral protector because of its accumulation in the tumor microenvironment. Its presence is due to both the interaction with the A2A receptor subtype and the increase in CD39 and CD73 gene expression induced by the hypoxic state. This fact has fueled preclinical and clinical research into the development of efficacious molecules acting on the adenosine pathway and blocking its accumulation. Given the success of anti-cancer immunotherapy, the new strategy is to develop selective A2A receptor antagonists that could competitively inhibit binding to its endogenous ligand, making them reliable candidates for the therapeutic management of brain tumors. Here, we focused on the efficacy of adenosine receptor antagonists and their enhancement in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Gianmarco Motta
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5208
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
8
|
Sayyah M, Seydyousefi M, Moghanlou AE, Metz GAS, Shamsaei N, Faghfoori MH, Faghfoori Z. Activation of BDNF- and VEGF-mediated Neuroprotection by Treadmill Exercise Training in Experimental Stroke. Metab Brain Dis 2022; 37:1843-1853. [PMID: 35596908 DOI: 10.1007/s11011-022-01003-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Early treatment of ischemic stroke is one of the most effective ways to reduce brains' cell death and promote functional recovery. This study was designed to examine the effect of aerobic exercise on post ischemia/reperfusion injury on concentration and expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) after inducing a neuronal loss in CA1 region of hippocampus in Male Wistar rats. Three experimental groups including sham(S), ischemia/reperfusion-control (IRC) and ischemia/reperfusion exercise (IRE) were used for this purpose. The rats in the IRE group received a bilateral carotid artery occlusion treatment. They ran for 45 minutes on a treadmill five days per week for eight consecutive weeks. Cresyl violet (Nissl), Hematoxylin (H & E) and Eosin staining procedure were used to determine the extent of damage. A ladder rung walking task was used to assess the functional impairments and recovery after the ischemic lesion. ELISA and immunohistochemistry method were employed to measure BDNF and VEGF protein expressions. The result showed that the brain ischemia/reperfusion condition increased the cell death in hippocampal CA1 neurons and impaired motor performance on the ladder rung task whereas the aerobic exercise program significantly decreased the brain cell's death and improved motor skill performance. It was concluded that ischemic brain lesion decreased the BDNF and VEGF expression. It seems that the aerobic exercise following the ischemia/reperfusion potentially promotes neuroprotective mechanisms and neuronal repair and survival mediated partly by BDNF and other pathways.
Collapse
Affiliation(s)
- Mansour Sayyah
- Clinical Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Seydyousefi
- Department of Physical Education and Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | | | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada
| | - Nabi Shamsaei
- Department of Physical Education and Sport Sciences, Ilam University, Ilam, Iran
| | - Mohammad Hasan Faghfoori
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Faghfoori
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran.
- Department of Nutrition, School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
9
|
LI Z, ZHU N, LI J, FENG L, JIANG Y, LI C, LIN L, HUANG X. Effcacy-oriented compatibility for Tianma (), Yanlingcao () and Bingpian () on improving cerebral ischemia stroke by network pharmacology and serum pharmacological methods. J TRADIT CHIN MED 2022; 42:408-416. [PMID: 35610010 PMCID: PMC9924670 DOI: 10.19852/j.cnki.jtcm.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To evaluate the compatibility of Tianma (, TM), Yanlingcao (, YLC) and Bingpian (, BP), and their efficacy in the treatment of cerebral ischemic stroke. METHODS Network pharmacology was used to determine the compatibility of TM, YLC, and BP, and their potential mechanism. The middle cerebral artery occlusion (MCAO) rat model was used to evaluate the curative effect of the six combinations of TM, YLC, and BP (TZB1-TZB6) on cerebral ischemia, by using the weight matching method to form. The potential component changes of TM and YLC in the blood and brains of rats were analyzed using ultra performance liquid chromatography-mass spectrometry. Finally, molecular docking linked the results of animal experiments and network pharmacology, determining the potential component contributors of TM and YLC to treating ischemic stroke. RESULTS TZB reduced the cerebral infarct volume and protected the nerve cells in MCAO rats. The components of TM and YLC were also identified in the blood and brain homogenate, and BP can facilitate the entry of the components of TM and YLC into the blood and brain. Diosgenin, pennogenin, and gastrodin induced effective binding activities with adenosine receptor a1. CONCLUSION We investigate an approach that improves the means of folk prescription combined with multi technology that maybe promote the transformation of Chinese medicinal prescription into component-based Chinese medicine.
Collapse
Affiliation(s)
- Zhiyong LI
- 1 Postdoctoral mobile station of environmental biology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- 2 Center for Analytical Chemistry of Chinese Materia Medica, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Prof. LI Zhiyong, Postdoctoral Mobile Station of Environmental Biology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. ,Telephone: +86-871-65916664
| | - Na ZHU
- 3 Pharmacological Department, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jianliang LI
- 4 Aerosol preparation research center , Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang FENG
- 5 School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yanyan JIANG
- 6 Department of Chinese Materia Medica Chemistry, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Caifeng LI
- 7 Academician work station, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Ling LIN
- 3 Pharmacological Department, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Xiulan HUANG
- 3 Pharmacological Department, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
10
|
Dehqanizadeh B, Mohammadi ZF, Kalani AHT, Mirghani SJ. Effect of Early Exercise on Inflammatory Parameters and Apoptosis in CA1 Area of the Hippocampus Following Cerebral Ischemia-reperfusion in Rats. Brain Res Bull 2022; 182:102-110. [DOI: 10.1016/j.brainresbull.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/28/2022]
|
11
|
Endurance Training and Exogenous Adenosine Infusion Mitigate Hippocampal Inflammation and Cell Death in a Rat Model of Cerebral Ischemia/Reperfusion Injury. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans.119236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Cerebral ischemia can cause irreversible structural and functional damages to the brain, especially to the hippocampus. Preconditioning with endurance training and endogenous adenosine infusion may reduce ischemia-associated damages. Objectives: This study aimed to evaluate the effect of preconditioning with endurance training and endogenous adenosine infusion on cell death in the hippocampal CA1 region following ischemia/reperfusion injuries in a rat model. Methods: Male Wistar rats were divided into five groups: (1) control (n = 8); (2) ischemia (n = 12); (3) endurance training + ischemia (n = 12); (4) adenosine infusion + ischemia (n = 12); and (5) endurance training + adenosine infusion + ischemia (n = 12). The rats in the training groups ran on a treadmill five days per week for eight weeks. In the adenosine infusion groups, the rats were injected 0.1 mg/mL/kg of adenosine intraperitoneally. Also, in the ischemic groups, both common carotid arteries were clamped for 45 minutes. Cresyl violet staining and real-time polymerase chain reaction (PCR) assay were used to evaluate cell death and cytokine gene expression, respectively. Results: Based on the present results, treatments, including endurance training + ischemia, adenosine infusion + ischemia, and endurance training + adenosine infusion + ischemia reduced the level of interleukin-6 (IL-6) and glutamate gene expression, respectively, compared to the group of ischemia only. In contrast, the expression of nerve growth factor (NGF) and adenosine receptor (A2A) genes increased by seven, four, and two folds in the endurance training + ischemia, adenosine infusion + ischemia, and endurance training + adenosine infusion + ischemia groups, respectively, compared to the group of ischemia only. Conclusions: Endurance training on a treadmill and exogenous adenosine infusion synergistically diminished cell death and reduced the expression of pro-inflammatory cytokines, while promoting the neurotrophic factor expression. When endurance training and adenosine infusion were used as stimulants before the induction of cerebral ischemia, they significantly reduced cell death.
Collapse
|
12
|
Role of Purinergic Signalling in Endothelial Dysfunction and Thrombo-Inflammation in Ischaemic Stroke and Cerebral Small Vessel Disease. Biomolecules 2021; 11:biom11070994. [PMID: 34356618 PMCID: PMC8301873 DOI: 10.3390/biom11070994] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The cerebral endothelium is an active interface between blood and the central nervous system. In addition to being a physical barrier between the blood and the brain, the endothelium also actively regulates metabolic homeostasis, vascular tone and permeability, coagulation, and movement of immune cells. Being part of the blood–brain barrier, endothelial cells of the brain have specialized morphology, physiology, and phenotypes due to their unique microenvironment. Known cardiovascular risk factors facilitate cerebral endothelial dysfunction, leading to impaired vasodilation, an aggravated inflammatory response, as well as increased oxidative stress and vascular proliferation. This culminates in the thrombo-inflammatory response, an underlying cause of ischemic stroke and cerebral small vessel disease (CSVD). These events are further exacerbated when blood flow is returned to the brain after a period of ischemia, a phenomenon termed ischemia-reperfusion injury. Purinergic signaling is an endogenous molecular pathway in which the enzymes CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia and CSVD, eATP is released from dying neurons as a damage molecule, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Evidently, therapies that promote adenosine generation or boost CD39 activity at the site of endothelial injury have promising benefits in the context of atherothrombotic stroke and can be extended to current CSVD known pathomechanisms. Here, we have reviewed the rationale and benefits of CD39 and CD39 therapies to treat endothelial dysfunction in the brain.
Collapse
|
13
|
Garcia-Gil M, Camici M, Allegrini S, Pesi R, Tozzi MG. Metabolic Aspects of Adenosine Functions in the Brain. Front Pharmacol 2021; 12:672182. [PMID: 34054547 PMCID: PMC8160517 DOI: 10.3389/fphar.2021.672182] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adenosine, acting both through G-protein coupled adenosine receptors and intracellularly, plays a complex role in multiple physiological and pathophysiological processes by modulating neuronal plasticity, astrocytic activity, learning and memory, motor function, feeding, control of sleep and aging. Adenosine is involved in stroke, epilepsy and neurodegenerative pathologies. Extracellular concentration of adenosine in the brain is tightly regulated. Adenosine may be generated intracellularly in the central nervous system from degradation of AMP or from the hydrolysis of S-adenosyl homocysteine, and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. Inactivation of extracellular adenosine occurs by transport into neurons or neighboring cells, followed by either phosphorylation to AMP by adenosine kinase or deamination to inosine by adenosine deaminase. Modulation of the nucleoside transporters or of the enzymatic activities involved in the metabolism of adenosine, by affecting the levels of this nucleoside and the activity of adenosine receptors, could have a role in the onset or the development of central nervous system disorders, and can also be target of drugs for their treatment. In this review, we focus on the contribution of 5'-nucleotidases, adenosine kinase, adenosine deaminase, AMP deaminase, AMP-activated protein kinase and nucleoside transporters in epilepsy, cognition, and neurodegenerative diseases with a particular attention on amyotrophic lateral sclerosis and Huntington's disease. We include several examples of the involvement of components of the adenosine metabolism in learning and of the possible use of modulators of enzymes involved in adenosine metabolism or nucleoside transporters in the amelioration of cognition deficits.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Marcella Camici
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Simone Allegrini
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Rossana Pesi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Alwjwaj M, Kadir RRA, Bayraktutan U. The secretome of endothelial progenitor cells: a potential therapeutic strategy for ischemic stroke. Neural Regen Res 2021; 16:1483-1489. [PMID: 33433461 PMCID: PMC8323700 DOI: 10.4103/1673-5374.303012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke continues to be a leading cause of mortality and morbidity in the world. Despite recent advances in the field of stroke medicine, thrombolysis with recombinant tissue plasminogen activator remains as the only pharmacological therapy for stroke patients. However, due to short therapeutic window (4.5 hours of stroke onset) and increased risk of hemorrhage beyond this point, each year globally less than 1% of stroke patients receive this therapy which necessitate the discovery of safe and efficacious therapeutics that can be used beyond the acute phase of stroke. Accumulating evidence indicates that endothelial progenitor cells (EPCs), equipped with an inherent capacity to migrate, proliferate and differentiate, may be one such therapeutics. However, the limited availability of EPCs in peripheral blood and early senescence of few isolated cells in culture conditions adversely affect their application as effective therapeutics. Given that much of the EPC-mediated reparative effects on neurovasculature is realized by a wide range of biologically active substances released by these cells, it is possible that EPC-secretome may serve as an important therapeutic after an ischemic stroke. In light of this assumption, this review paper firstly discusses the main constituents of EPC-secretome that may exert the beneficial effects of EPCs on neurovasculature, and then reviews the currently scant literature that focuses on its therapeutic capacity.
Collapse
Affiliation(s)
- Mansour Alwjwaj
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Rais Reskiawan A Kadir
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| |
Collapse
|
15
|
Nanomedicine for Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21207600. [PMID: 33066616 PMCID: PMC7590220 DOI: 10.3390/ijms21207600] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is a severe brain disease leading to disability and death. Ischemic stroke dominates in stroke cases, and there are no effective therapies in clinic, partly due to the challenges in delivering therapeutics to ischemic sites in the brain. This review is focused on the current knowledge of pathogenesis in ischemic stroke, and its potential therapies and diagnosis. Furthermore, we present recent advances in developments of nanoparticle-based therapeutics for improved treatment of ischemic stroke using polymeric NPs, liposomes and cell-derived nanovesicles. We also address several critical questions in ischemic stroke, such as understanding how nanoparticles cross the blood brain barrier and developing in vivo imaging technologies to address this critical question. Finally, we discuss new opportunities in developing novel therapeutics by targeting activated brain endothelium and inflammatory neutrophils to improve the current therapies for ischemic stroke.
Collapse
|
16
|
Yazdanian M, Moazzami M, Shabani M, Cheragh Birjandi S. The Effect of Eight-Week Aerobic Exercise before Cerebral Ischemia on the Expression of NT-3 and TrkC Genes in Male Rats. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.5.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
17
|
Wang Y, Copeland J, Shin M, Chang Y, Venton BJ. CD73 or CD39 Deletion Reveals Different Mechanisms of Formation for Spontaneous and Mechanically Stimulated Adenosine and Sex Specific Compensations in ATP Degradation. ACS Chem Neurosci 2020; 11:919-928. [PMID: 32083837 DOI: 10.1021/acschemneuro.9b00620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenosine is important for local neuromodulation, and rapid adenosine signaling can occur spontaneously or after mechanical stimulation, but little is known about how adenosine is formed in the extracellular space for those stimulations. Here, we studied mechanically stimulated and spontaneous adenosine to determine if rapid adenosine is formed by extracellular breakdown of adenosine triphosphate (ATP) using mice globally deficient in extracellular breakdown enzymes, either CD39 (nucleoside triphosphate diphosphohydrolase 1, NTPDase1) or CD73 (ecto-5'-nucleotidase). CD39 knockout (KO) mice have a lower frequency of spontaneous adenosine events than wild-type (WT, C57BL/6). Surprisingly, CD73KO mice demonstrate sex differences in spontaneous adenosine; males maintain similar event frequencies as WT, but females have significantly fewer events and lower concentrations. Examining the mRNA expression of other enzymes that metabolize ATP revealed tissue nonspecific alkaline phosphatase (TNAP) was upregulated in male CD73KO mice, but not secreted prostatic acid phosphatase (PAP) or transmembrane PAP. Thus, TNAP upregulation compensates for CD73 loss in males but not in females. These sex differences highlight that spontaneous adenosine is formed by metabolism of extracellular ATP by many enzymes. For mechanically stimulated adenosine, CD39KO or CD73KO did not change stimulation frequency, concentration, or t1/2. Thus, the mechanism of formation for mechanically stimulated adenosine is likely direct release of adenosine, different than spontaneous adenosine. Understanding these different mechanisms of rapid adenosine formation will help to develop pharmacological treatments that differentially target modes of rapid adenosine signaling, and all treatments should be studied in both sexes, given possible differences in extracellular ATP degradation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jeffrey Copeland
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Biology, Eastern Mennonite University, Harrisonburg, Virginia 22802, United States
| | - Mimi Shin
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yuanyu Chang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
18
|
Yazdanian M, Moazami M, Shabani M, Cheragh Birjandi S. Effects of Exercise Preconditioning on Neurotrophin-4 and Tropomyosin Receptor Kinase B Expression in the Hippocampal CA1 Region Following Transient Global Cerebral Ischemia/Reperfusion in Wistar Rats. MEDICAL LABORATORY JOURNAL 2019. [DOI: 10.29252/mlj.13.6.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
19
|
Wake-up stroke: From pathophysiology to management. Sleep Med Rev 2019; 48:101212. [PMID: 31600679 DOI: 10.1016/j.smrv.2019.101212] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/01/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
Wake-up strokes (WUS) are strokes with unknown exact time of onset as they are noted on awakening by the patients. They represent 20% of all ischemic strokes. The chronobiological pattern of ischemic stroke onset, with higher frequency in the first morning hours, is likely to be associated with circadian fluctuations in blood pressure, heart rate, hemostatic processes, and the occurrence of atrial fibrillation episodes. The modulation of stroke onset time also involves the sleep-wake cycle as there is an increased risk associated with rapid-eye-movement sleep. Furthermore, sleep may have an impact on the expression and perception of stroke symptoms by patients, but also on brain tissue ischemia processes via a neuroprotective effect. Obstructive sleep apnea syndrome is particularly prevalent in WUS patients. Until recently, WUS was considered as a contra-indication to reperfusion therapy because of the unknown onset time and the potential cerebral bleeding risk associated with thrombolytic treatment. A renewed interest in WUS has been observed over the past few years related to an improved radiological evaluation of WUS patients and the recent demonstration of the clinical efficacy of reperfusion in selected patients when the presence of salvageable brain tissue on advanced cerebral imaging is demonstrated.
Collapse
|
20
|
Seydyousefi M, Moghanlou AE, Metz GAS, Gursoy R, Faghfoori MH, Mirghani SJ, Faghfoori Z. Exogenous adenosine facilitates neuroprotection and functional recovery following cerebral ischemia in rats. Brain Res Bull 2019; 153:250-256. [PMID: 31545998 DOI: 10.1016/j.brainresbull.2019.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION & OBJECTIVE Cerebral ischemia causes physiological and biochemical cellular changes that ultimately result in structural and functional damage to hippocampal neurons. Ischemia also raises endogenous adenosine release that in turn has neuroprotective effects. The purpose of this study was to evaluate the effect of exogenous adenosine on mitigating neuronal lesions to the CA1 region of hippocampus and A2A protein expression following cerebral I/R in rats. METHODS Male Wistar rats were randomly assigned to three experimental groups (sham, ischemia + control, and ischemia + adenosine). A daily dose of adenosine (0.1 mg/ml/kg, i.p.) was administered starting 24 h post-ischemia for 7 days. Ischemia was induced by occlusion of both common carotid arteries for 45 min. Cresyl violet and Hematoxylin Eosin staining were used to assess lesion extent and location. To investigate the expression and protein levels, immunohistochemistry and enzyme-linked immunosorbent assay method was used. RESULTS The cerebral ischemia caused neuronal loss in the CA1 region and reduced sensorimotor functions in lesion animals. Injection of adenosine significantly diminished cell death and improved sensorimotor functional recovery. Moreover, the expression and concentration of A2A protein was significantly greater in the adenosine group compared to the ischemia group. CONCLUSION This study showed that the administration of exogenous adenosine promotes protection against cell death and supports functional recovery following ischemic injury.
Collapse
Affiliation(s)
- Mehdi Seydyousefi
- Department of Physical Education and Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
| | | | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Recep Gursoy
- Faculty of Sports Sciences, Mugla Sitki Kocman University, Mugla, Turkey.
| | - Mohammad Hasan Faghfoori
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | | - Zeinab Faghfoori
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran; Department of Nutrition, School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
21
|
Liu ZH, Liu CH, Tu PH, Yip PK, Chen CC, Wang YC, Chen NY, Lin YS. Prior Antiplatelet Therapy, Excluding Phosphodiesterase Inhibitor Is Associated with Poor Outcome in Patients with Spontaneous Intracerebral Haemorrhage. Transl Stroke Res 2019; 11:185-194. [PMID: 31446619 DOI: 10.1007/s12975-019-00722-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
There is conflicting results on whether prior antiplatelet therapy (APT) is associated with poor outcome in spontaneous intracerebral haemorrhage (ICH) patients. To determine whether prior APT is associated with spontaneous ICH, and whether there is a difference between the different types of APT, including cyclooxygenase inhibitor (COX-I), adenosine diphosphate receptor inhibitor (ADP-I) and phosphodiesterase inhibitor (PDE-I). A retrospective study of patients with ICH diagnosed between 2001 and 2013 in the National Health Insurance Research Database. Baseline unbalance between APT and non-APT groups was solved by multivariable adjustment (primary analysis) and propensity score matching (sensitivity analysis). Patients with prior APT had a higher rate of in-hospital death (odds ratio [OR], 1.16; 95% confidence interval [CI], 1.09-1.23) compared to non-APT group. Compared to non-APT group, there was a greater rate of in-hospital death with spontaneous ICH with ADP-I (OR, 1.49; 95% CI, 1.24-1.79) and COX-I (OR, 1.17; 95% CI, 1.09-1.25). PDE-I exhibited no difference in in-hospital death with spontaneous ICH (OR, 1.03; 95% CI, 0.91-1.16) compared to non-APT group. Remarkably, the in-hospital mortality rate was significantly higher in the ADP-I group than in the PDE-I group (hazard ratio, 1.45; 95% CI, 1.17-1.80). In this study, ADP-I and COX-1, but not PDE-I, are the most likely contributors to the association of APT with poor outcome with spontaneous ICH patients. These findings suggest that the complexity of the different mechanism of actions of prior APT can alter the outcome in spontaneous ICH.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan City, Taiwan
| | - Chi-Hung Liu
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan City, Taiwan
| | - Po-Hsun Tu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan City, Taiwan
| | - Ping K Yip
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Ching-Chang Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan City, Taiwan
| | - Yu-Chi Wang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan City, Taiwan
| | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan City, Taiwan
| | - Yu-Sheng Lin
- Department of Internal Medicine, Division of Cardiology at Chiayi, Chang Gung Memorial Hospital, Chang Gung Medical College and University, 6, Sec. West Chai-Pu Road, Pu-TZ City, Chaiyi County, Taiwan.
| |
Collapse
|
22
|
Wang Y, Venton BJ. Caffeine Modulates Spontaneous Adenosine and Oxygen Changes during Ischemia and Reperfusion. ACS Chem Neurosci 2019; 10:1941-1949. [PMID: 30252436 PMCID: PMC7003050 DOI: 10.1021/acschemneuro.8b00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Adenosine is an endogenous neuroprotectant that modulates vasodilation in the central nervous system. Oxygen changes occur when there is an increase in local cerebral blood flow and thus are a measure of vasodilation. Transient oxygen events following rapid adenosine events have been recently discovered, but the relationship between adenosine and blood flow change during ischemia/reperfusion (I/R) has not been characterized. Caffeine is a nonselective adenosine receptor antagonist that can modulate the effects of adenosine in the brain, but how it affects adenosine and oxygen levels during I/R is also unknown. In this study, extracellular changes in adenosine and oxygen were simultaneously monitored using fast-scan cyclic voltammetry during bilateral common carotid artery occlusion (BCCAO) and the effects of a specific A2A antagonist, SCH 442416, or general antagonist, caffeine, were studied. Measurements were made in the caudate-putamen for 1 h of normoxia, followed by 30 min of BCCAO and 30 min of reperfusion. The frequency and number of both adenosine and oxygen transient events significantly increased during I/R. The specific A2A antagonist, SCH 442416 (3 mg/kg, i.p.), eliminated the increase in adenosine and oxygen events caused by I/R. The general adenosine receptor antagonist, caffeine (100 mg/kg, i.p.), decreased the frequency of adenosine and oxygen transient events during I/R. These results demonstrate that, during BCCAO, there are more rapid release events of the neuromodulator adenosine and correlated local oxygen changes, and these rapid, local effects are dampened by caffeine and other A2A antagonists.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - B Jill Venton
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| |
Collapse
|
23
|
Mura S, Fattal E, Nicolas J. From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines. J Drug Target 2019; 27:470-501. [PMID: 30720372 DOI: 10.1080/1061186x.2019.1579822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article covers the most important steps of the pioneering work of Patrick Couvreur and tries to shed light on his outstanding career that has been a source of inspiration for many decades. His discovery of biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) has opened large perspectives in nanomedicine. Indeed, NPs made from various types of alkyl cyanoacrylate monomers have been used in different applications, such as the treatment of intracellular infections or the treatment of multidrug resistant hepatocarcinoma. This latest application led to the Phase III clinical trial of Livatag®, a PACA nanoparticulate formulation of doxorubicin. Despite the success of PACA NPs, the development of a novel type of NP with higher drug loadings and lower burst release was tackled by the discovery of squalene-based nanomedicines where the drug is covalently linked to the lipid derivative and the resulting conjugate is self-assembled into NPs. This pioneering work was accompanied by a wide range of novel applications which mainly dealt with the management of unmet medical needs (e.g. pancreatic cancer, brain ischaemia and spinal cord injury).
Collapse
Affiliation(s)
- Simona Mura
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| | - Elias Fattal
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| | - Julien Nicolas
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| |
Collapse
|
24
|
Ganesana M, Venton BJ. Early changes in transient adenosine during cerebral ischemia and reperfusion injury. PLoS One 2018; 13:e0196932. [PMID: 29799858 PMCID: PMC5969733 DOI: 10.1371/journal.pone.0196932] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Adenosine is an important neuromodulator in the central nervous system, and tissue adenosine levels increase during ischemic events, attenuating excitotoxic neuronal injury. Recently, our lab developed an electrochemical fast-scan cyclic voltammetry (FSCV) method that identified rapid, spontaneous changes in adenosine concentrations that last only about 3 seconds. Here, we investigated the effects of cerebral ischemia and reperfusion on the concentration and frequency of transient adenosine release in the caudate-putamen. In anesthetized rats, data were collected for four hours: two hours of normoxia, 30 min of cerebral ischemia induced by bilateral common carotid artery occlusion, and 90 min of reperfusion. Transient adenosine release was increased during the cerebral ischemia period and remained elevated during reperfusion. The total number of adenosine transients increased by 52% during cerebral ischemia and reperfusion compared to normoxia. The concentration of adenosine per event did not increase but the cumulative adenosine concentration during cerebral ischemia and reperfusion increased by 53% because of the higher frequency of events. Further, we evaluated the role of A2A antagonist, SCH442416, a putative neuroprotective agent to affect adenosine transients. SCH442416 significantly decreased the transient frequency during cerebral ischemia-reperfusion by 27% and the cumulative concentration by 31%. Our results demonstrate that this mode of rapid adenosine release increases during early cerebral ischemia-reperfusion injury. Rapid adenosine release could provide fast, local neuromodulation and neuroprotection during cerebral ischemia.
Collapse
Affiliation(s)
| | - B Jill Venton
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States of America
| |
Collapse
|
25
|
Abstract
Stroke still represents one of the most common causes of death and disability worldwide. Acute ischemic stroke (AIS), caused by brain arterial occlusion resulting from a thrombus or embolus, is the most common form of stroke. However, current therapies in AIS are inadequate, and the only US FDA approved treatment is the thrombolytic drug Alteplase. Therefore, establishing effective therapeutic strategies for AIS is urgently needed. Using nanoparticle-based technologies to deliver neuroprotective agents to the ischemic area has attracted increasing attention of late. In this review, the important molecular pathological mechanisms in cerebral ischemia are briefly summarized, the potential of nanoparticulate drug-delivery systems for AIS intervention and recovery are introduced and problems in the medical application of nanoparticles will also be discussed.
Collapse
|
26
|
Bharadwaj VN, Nguyen DT, Kodibagkar VD, Stabenfeldt SE. Nanoparticle-Based Therapeutics for Brain Injury. Adv Healthc Mater 2018; 7:10.1002/adhm.201700668. [PMID: 29034608 PMCID: PMC5903677 DOI: 10.1002/adhm.201700668] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Indexed: 12/18/2022]
Abstract
Brain injuries affect a large patient population with major physical and emotional suffering for patients and their relatives; at a significant cost to the society. Effective diagnostic and therapeutic options available for brain injuries are limited by the complex brain injury pathology involving blood-brain barrier (BBB). Brain injuries, including ischemic stroke and brain trauma, initiate BBB opening for a short period of time, which is followed by a second reopening for an extended time. The leaky BBB and/or the alterations in the receptor expression on BBB may provide opportunities for therapeutic delivery via nanoparticles (NPs). The approaches for therapeutic interventions via NP delivery are aimed at salvaging the pericontusional/penumbra area for possible neuroprotection and neurovascular unit preservation. The focus of this progress report is to provide a survey of NP strategies employed in cerebral ischemia and brain trauma and finally provide insights for improved NP-based diagnostic/treatment approaches.
Collapse
Affiliation(s)
- Vimala N. Bharadwaj
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, United States
| | - Duong T. Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, United States
| | - Vikram D. Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, United States
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, United States
| |
Collapse
|
27
|
Pincherle A, Pace M, Sarasso S, Facchin L, Dreier JP, Bassetti CL. Sleep, Preconditioning and Stroke. Stroke 2017; 48:3400-3407. [DOI: 10.1161/strokeaha.117.018796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Alessandro Pincherle
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Marta Pace
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Simone Sarasso
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Laura Facchin
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Jens P. Dreier
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Claudio L. Bassetti
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| |
Collapse
|
28
|
Xu Y, Wang Y, Yan S, Yang Q, Zhou Y, Zeng X, Liu Z, An X, Toque HA, Dong Z, Jiang X, Fulton DJ, Weintraub NL, Li Q, Bagi Z, Hong M, Boison D, Wu C, Huo Y. Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nat Commun 2017; 8:943. [PMID: 29038540 PMCID: PMC5643397 DOI: 10.1038/s41467-017-00986-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/10/2017] [Indexed: 02/08/2023] Open
Abstract
The molecular mechanisms underlying vascular inflammation and associated inflammatory vascular diseases are not well defined. Here we show that endothelial intracellular adenosine and its key regulator adenosine kinase (ADK) play important roles in vascular inflammation. Pro-inflammatory stimuli lead to endothelial inflammation by increasing endothelial ADK expression, reducing the level of intracellular adenosine in endothelial cells, and activating the transmethylation pathway through increasing the association of ADK with S-adenosylhomocysteine (SAH) hydrolase (SAHH). Increasing intracellular adenosine by genetic ADK knockdown or exogenous adenosine reduces activation of the transmethylation pathway and attenuates the endothelial inflammatory response. In addition, loss of endothelial ADK in mice leads to reduced atherosclerosis and affords protection against ischemia/reperfusion injury of the cerebral cortex. Taken together, these results demonstrate that intracellular adenosine, which is controlled by the key molecular regulator ADK, influences endothelial inflammation and vascular inflammatory diseases. The molecular mechanisms underlying vascular inflammation are unclear. Here the authors show that pro-inflammatory stimuli lead to endothelial inflammation by increasing adenosine kinase expression, and that its knockdown in endothelial cells inhibits atherosclerosis and cerebral ischemic injury in mice.
Collapse
Affiliation(s)
- Yiming Xu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yong Wang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Siyuan Yan
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China
| | - Qiuhua Yang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yaqi Zhou
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xianqiu Zeng
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiping Liu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiaofei An
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China
| | - David J Fulton
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Qinkai Li
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zsolt Bagi
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mei Hong
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Detlev Boison
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, 97232, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, 77840, USA
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
29
|
Faller KME, Leach J, Johnston P, Holmes WM, Macrae IM, Frenguelli BG. Proof of concept and feasibility studies examining the influence of combination ribose, adenine and allopurinol treatment on stroke outcome in the rat. Brain Neurosci Adv 2017; 1:2398212817717112. [PMID: 32166133 PMCID: PMC7058219 DOI: 10.1177/2398212817717112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/31/2017] [Indexed: 01/21/2023] Open
Abstract
Background Cerebral ischaemia results in a rapid and profound depletion of adenosine triphosphate (ATP), the energy currency of the cell. This depletion leads to disruption of cellular homeostasis and cell death. Early replenishment of ATP levels might therefore have a neuroprotective effect in the injured brain. We have previously shown that the ATP precursors, D-ribose and adenine (RibAde), restored the reduced ATP levels in rat brain slices to values similar to those measured in the intact rodent brain. The aim of this study was to assess whether RibAde, either alone or in combination with the xanthine oxidase inhibitor allopurinol (RibAdeAll; to further increase the availability of ATP precursors), could improve outcome in an in vivo rodent model of transient cerebral ischaemia. Methods After 60 min occlusion of the middle cerebral artery, and upon reperfusion, rats were administered saline, RibAde, or RibAdeAll for 6 h. Baseline lesion volume was determined by diffusion-weighted MRI prior to reperfusion and final infarct volume determined by T2-weighted MRI at Day 7. Neurological function was assessed at Days 1, 3 and 7. Results Ischaemic lesion volume decreased between Days 1 and 7: a 50% reduction was observed for the RibAdeAll group, 38% for the RibAde group and 18% in the animals that received saline. Reductions in lesion size in treatment groups were accompanied by a trend for faster functional recovery. Conclusion These data support the potential use of ribose, adenine and allopurinol in the treatment of cerebral ischaemic injury, especially since all compounds have been used in man.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Joshua Leach
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pamela Johnston
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William M Holmes
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - I Mhairi Macrae
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
30
|
Yang Q, Guo M, Wang X, Zhao Y, Zhao Q, Ding H, Dong Q, Cui M. Ischemic preconditioning with a ketogenic diet improves brain ischemic tolerance through increased extracellular adenosine levels and hypoxia-inducible factors. Brain Res 2017; 1667:11-18. [DOI: 10.1016/j.brainres.2017.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/18/2017] [Accepted: 04/15/2017] [Indexed: 02/07/2023]
|
31
|
Pace M, Adamantidis A, Facchin L, Bassetti C. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia. PLoS One 2017; 12:e0168430. [PMID: 28061506 PMCID: PMC5218733 DOI: 10.1371/journal.pone.0168430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
STUDY OBJECTIVES Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD) before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH) and orexin/hypocretin (OX) systems. This study aims to 1) assess the relationship between sleep and recovery; 2) test the association between MCH and OX systems with the pathological mechanisms of stroke. METHODS Sprague-Dawley rats were assigned to four experimental groups: (i) SD_IS: SD performed before ischemia; (ii) IS: ischemia; (iii) SD_Sham: SD performed before sham surgery; (iv) Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR. RESULTS A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group. CONCLUSIONS Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke.
Collapse
Affiliation(s)
- Marta Pace
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy
- * E-mail:
| | - Antoine Adamantidis
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Laura Facchin
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Claudio Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
- Division of Cognitive and Restorative Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
32
|
Wang P, He Y, Li D, Han R, Liu G, Kong D, Hao J. Class I PI3K inhibitor ZSTK474 mediates a shift in microglial/macrophage phenotype and inhibits inflammatory response in mice with cerebral ischemia/reperfusion injury. J Neuroinflammation 2016; 13:192. [PMID: 27549161 PMCID: PMC4994222 DOI: 10.1186/s12974-016-0660-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 07/14/2016] [Indexed: 01/21/2023] Open
Abstract
Background Microglia/macrophages play a critical role in the inflammatory and immune processes of cerebral ischemia/reperfusion injury. Since microglia/macrophages can reversibly shift their phenotype toward either a “detrimental” or a “restorative” state in the injured central nervous system (CNS), compounds mediate that shift which could inhibit inflammation and restore the ability to alleviate cerebral ischemia/reperfusion injury would have therapeutic potential. Methods Transient middle cerebral artery occlusion was induced in male C57BL/6 mice. Mice were randomly separated into a sham-operated group, a control group, and a ZSTK474-treated group. We investigated the effect of ZSTK474 by assessing neurological deficits, infarct volume, and histopathological changes. We then determined the potential mechanism by immunofluorescent staining, quantitative real-time polymerase chain reaction (PCR), and Western blot analysis. The Tukey’s test or Mann–Whitney U test was used to compare differences among the groups. Results ZSTK474 alleviated neurological deficits and reduced infarct volume in the cerebral ischemia/reperfusion injury model. Presumably, ZSTK474 shifted the phenotype of microglia/macrophages to a restorative state, since this treatment decreased the secretion of pro-inflammatory factors and advanced the secretion of anti-inflammatory factors. These neuroprotective properties of ZSTK474 may be mediated by the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin complex 1 (mTORC1) pathway. Conclusions ZSTK474 can mediate a shift in microglia/macrophage phenotype and inhibit the inflammatory response in cerebral ischemia reperfusion injury of mice. These effects appeared to ensue via the PI3K/AKT/mTORC1 pathway. Therefore, ZSTK474 may represent a therapeutic intervention with potential for circumventing the catastrophic aftermath of ischemic stroke. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0660-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Po Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, 014000, China
| | - Yating He
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Daojing Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ranran Han
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Guiyou Liu
- Genome Analysis Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300000, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Junwei Hao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
33
|
Stephen TKL, Guillemette KL, Green TK. Analysis of Trinitrophenylated Adenosine and Inosine by Capillary Electrophoresis and γ-Cyclodextrin-Enhanced Fluorescence Detection. Anal Chem 2016; 88:7777-85. [PMID: 27314490 DOI: 10.1021/acs.analchem.6b01796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Monitoring molecules such as adenosine (Ado) and inosine (Ino) in the central nervous system has enabled the field of neuroscience to correlate molecular concentrations dynamics to neurological function, behavior, and disease. In vivo sampling techniques are commonly used to monitor these dynamics; however, many techniques are limited by the sensitivity and sample volume requirements of currently available detection methods. Here, we present a novel capillary electrophoresis-laser-induced fluorescence detection (CE-LIF) method that analyzes Ado and Ino by derivatization with 2,4,6-trinitrobenzenesulfonic acid to form fluorescent trinitrophenylated complexes of Ado (TNP-Ado) and Ino (TNP-Ino). These complexes exhibit ∼25-fold fluorescence enhancement upon the formation of inclusion complexes with γ-cyclodextrin (γ-CD). Association constants were determined as 4600 M(-1) for Ado and 1000 M(-1) for Ino by CE-LIF. The structure of the TNP-Ado:γ-CD complex was determined by 2D nuclear magnetic resonance (NMR) spectroscopy. Optimal trinitrophenylation reaction conditions and CE-LIF parameters were determined and resulted in the limit of detection of 1.6 μM for Ado and 4 μM for Ino. Ado and Ino were simultaneously quantified in homogenized rat forebrain samples to illustrate application of the technique. Simulated biological samples, desalted by ultrafiltration in the presence γ-CD, were concentrated on-capillary by large-volume sample stacking (LVSS) to achieve detection limits of 32 and 38 nM for TNP-Ado and TNP-Ino, respectively.
Collapse
Affiliation(s)
- Terilyn K L Stephen
- Department of Chemistry and Biochemistry and ‡Institute of Arctic Biology, University of Alaska Fairbanks , Fairbanks, Alaska 99775, United States
| | - Katherine L Guillemette
- Department of Chemistry and Biochemistry and ‡Institute of Arctic Biology, University of Alaska Fairbanks , Fairbanks, Alaska 99775, United States
| | - Thomas K Green
- Department of Chemistry and Biochemistry and ‡Institute of Arctic Biology, University of Alaska Fairbanks , Fairbanks, Alaska 99775, United States
| |
Collapse
|
34
|
Burnstock G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology 2015; 104:4-17. [PMID: 26056033 DOI: 10.1016/j.neuropharm.2015.05.031] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022]
Abstract
Purinergic signalling appears to play important roles in neurodegeneration, neuroprotection and neuroregeneration. Initially there is a brief summary of the background of purinergic signalling, including release of purines and pyrimidines from neural and non-neural cells and their ectoenzymatic degradation, and the current characterisation of P1 (adenosine), and P2X (ion channel) and P2Y (G protein-coupled) nucleotide receptor subtypes. There is also coverage of the localization and roles of purinoceptors in the healthy central nervous system. The focus is then on the roles of purinergic signalling in trauma, ischaemia, stroke and in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, as well as multiple sclerosis and amyotrophic lateral sclerosis. Neuroprotective mechanisms involving purinergic signalling are considered and its involvement in neuroregeneration, including the role of adult neural stem/progenitor cells. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Australia.
| |
Collapse
|
35
|
Gaudin A, Yemisci M, Eroglu H, Lepêtre-Mouelhi S, Turkoglu OF, Dönmez-Demir B, Caban S, Fevzi Sargon M, Garcia-Argote S, Pieters G, Loreau O, Rousseau B, Tagit O, Hildebrandt N, Le Dantec Y, Mougin J, Valetti S, Chacun H, Nicolas V, Desmaële D, Andrieux K, Capan Y, Dalkara T, Couvreur P. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. NATURE NANOTECHNOLOGY 2014; 9:1054-1062. [PMID: 25420034 PMCID: PMC4351925 DOI: 10.1038/nnano.2014.274] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/21/2014] [Indexed: 05/19/2023]
Abstract
There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.
Collapse
Affiliation(s)
- Alice Gaudin
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud XI, 92296 Châtenay-Malabry, France
| | - Müge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara 06100, Turkey
| | - Hakan Eroglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Sinda Lepêtre-Mouelhi
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud XI, 92296 Châtenay-Malabry, France
| | - Omer Faruk Turkoglu
- Department of Neurosurgery, Ankara Ataturk Research & Education Hospital, 06800 Bilkent Ankara, Turkey
| | - Buket Dönmez-Demir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara 06100, Turkey
| | - Seçil Caban
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Mustafa Fevzi Sargon
- Department of Anatomy, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Grégory Pieters
- CEA Saclay, iBiTecS-S/SCBM, Labex LERMIT, 91191 Gif-sur-Yvette, France
| | - Olivier Loreau
- CEA Saclay, iBiTecS-S/SCBM, Labex LERMIT, 91191 Gif-sur-Yvette, France
| | - Bernard Rousseau
- CEA Saclay, iBiTecS-S/SCBM, Labex LERMIT, 91191 Gif-sur-Yvette, France
| | - Oya Tagit
- NanoBioPhotonics, Institut d’Electronique Fondamentale, University of Paris-Sud XI, 91405, Orsay Cedex, France
| | - Niko Hildebrandt
- NanoBioPhotonics, Institut d’Electronique Fondamentale, University of Paris-Sud XI, 91405, Orsay Cedex, France
| | - Yannick Le Dantec
- EA3544, Faculty of Pharmacy, University of Paris-Sud XI, 92296 Châtenay-Malabry, France
| | - Julie Mougin
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud XI, 92296 Châtenay-Malabry, France
| | - Sabrina Valetti
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud XI, 92296 Châtenay-Malabry, France
| | - Hélène Chacun
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud XI, 92296 Châtenay-Malabry, France
| | - Valérie Nicolas
- Institut d’Innovation Thérapeutique, IFR141 ITFM, Faculty of Pharmacy, University of Paris-Sud XI, 92296 Châtenay-Malabry, France
| | - Didier Desmaële
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud XI, 92296 Châtenay-Malabry, France
| | - Karine Andrieux
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud XI, 92296 Châtenay-Malabry, France
- Correspondence and requests for materials should be adressed to P.C. and K.A. ,
| | - Yilmaz Capan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara 06100, Turkey
| | - Patrick Couvreur
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud XI, 92296 Châtenay-Malabry, France
- Correspondence and requests for materials should be adressed to P.C. and K.A. ,
| |
Collapse
|
36
|
Mishina M, Ishiwata K. Adenosine Receptor PET Imaging in Human Brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:51-69. [DOI: 10.1016/b978-0-12-801022-8.00002-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Tsentsevitsky A, Kovyazina I, Nikolsky E, Bukharaeva E, Giniatullin R. Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction. Neuroscience 2013; 248:699-707. [PMID: 23806718 DOI: 10.1016/j.neuroscience.2013.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 12/20/2022]
Abstract
The kinetics of neurotransmitter release was recognized recently as an important contributor to synaptic efficiency. Since adenosine is the ubiquitous modulator of presynaptic release in peripheral and central synapses, in the current project we studied the action of this purine on the timing of acetylcholine quantal release from motor nerve terminals in the skeletal muscle. Using extracellular recording from frog neuromuscular junction we tested the action of adenosine on the latencies of single quantal events in the pro-oxidant and antioxidant conditions. We found that adenosine, in addition to previously known inhibitory action on release probability, also synchronized release by removing quantal events with long latencies. This action of adenosine on release timing was abolished by oxidants whereas in the presence of the antioxidant the synchronizing action of adenosine was further enhanced. Interestingly, unlike the timing of release, the inhibitory action of adenosine on release probability was redox-independent. Modulation of release timing by adenosine was mediated by purinergic A1 receptors as it was eliminated by the specific A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by the specific A1 agonist N(6)-cyclopentyl-adenosine. Consistent with data obtained from dispersion of single quantal events, adenosine also reduced the rise-time of multiquantal synaptic currents. The latter effect was reproduced in the model based on synchronizing effect of adenosine on release timing. Thus, adenosine which is generated at the neuromuscular junction from the breakdown of the co-transmitter ATP induces the synchronization of quantal events. The effect of adenosine on release timing should preserve the fidelity of synaptic transmission via "cost-effective" use of less transmitter quanta. Our findings also revealed important crosstalk between purinergic and redox modulation of synaptic processes which could take place in the elderly or in neuromuscular diseases associated with oxidative stress like lateral amyotrophic sclerosis.
Collapse
Affiliation(s)
- A Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | | | | | | | | |
Collapse
|
38
|
HOFER M, POSPÍŠIL M, DUŠEK L, HOFEROVÁ Z, WEITEROVÁ L, KOMŮRKOVÁ D. Erythropoiesis- and Thrombopoiesis-Characterizing Parameters in Adenosine A3 Receptor Knock-Out Mice. Physiol Res 2013; 62:305-11. [DOI: 10.33549/physiolres.932489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Influence of the regulatory system mediated by adenosine A3 receptors on the functioning of erythropoiesis and thrombopoiesis was studied by means of evaluation of the numbers and attributes of peripheral blood erythrocytes and platelets, as well as of erythroid bone marrow progenitor cells in adenosine A3 receptor knock-out (Adora3tm1Jbsn/Adora3tm1Jbsn, A3AR(-/-)) mice and their wild-type C57BL/6 counterparts, both males and females. Minor but statistically significant disturbances in the properties of erythrocytes, namely in the parameters of mean erythrocyte volume and mean erythrocyte hemoglobin were observed in A3AR(-/-) mice. In addition, adenosine A3 receptor knock-out mice were found to exhibit an expressive, statistically significant decrease of their blood platelet count, amounting to 17 % and 21 % in males and females, respectively. This decrease in platelet levels was accompanied by a significant 17 % decline in the plateletcrit in both sexes. The obtained data can help to define therapeutic applications based on the principle of adenosine receptor signaling.
Collapse
Affiliation(s)
- M. HOFER
- Laboratory of Experimental Hematology, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5'-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically.
Collapse
Affiliation(s)
- Detlev Boison
- Legacy Research Institute, 1225 NE 16th Ave, Portland, OR 97202, USA.
| |
Collapse
|
40
|
Chauhan NK, Young AMJ, Gibson CL, Davidson C. Inhibition of pre-ischeamic conditioning in the mouse caudate brain slice by NMDA- or adenosine A1 receptor antagonists. Eur J Pharmacol 2012; 698:322-9. [PMID: 23099254 PMCID: PMC3556740 DOI: 10.1016/j.ejphar.2012.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/01/2012] [Accepted: 10/13/2012] [Indexed: 12/16/2022]
Abstract
Evidence suggests that pre-ischeamic conditioning (PIC) offers protection against a subsequent ischeamic event. Although some brain areas such as the hippocampus have received much attention, the receptor mechanisms of PIC in other brain regions are unknown. We have previously shown that 10 min oxygen and glucose deprivation (OGD) evokes tolerance to a second OGD event in the caudate. Here we further examine the effect of length of conditioning event on the second OGD event. Caudate mouse brain slices were superfused with artificial cerebro-spinal fluid (aCSF) bubbled with 95%O2/5%CO2. OGD was achieved by reducing the aCSF glucose concentration and by bubbling with 95%N2/5%CO2. After approximately 5 min OGD a large dopamine efflux was observed, presumably caused by anoxic depolarisation. On applying a second OGD event, 60 min later, dopamine efflux was delayed and reduced. We first examined the effect of varying the length of the conditioning event from 5 to 40 min and found tolerance to PIC increased with increasing duration of conditioning. We then examined the receptor mechanism(s) underlying PIC. We found that pre-incubation with either MK-801 or 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) reduced tolerance to the second OGD event. These data suggest that either N-methyl-d-aspartate (NMDA) or adenosine A1 receptor activation evokes PIC in the mouse caudate.
Collapse
Affiliation(s)
- Nikky K Chauhan
- School of Psychology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | |
Collapse
|
41
|
Intracerebroventricular injection of human prostatic acid phosphatase has potent neuroprotective effects against transient focal cerebral ischemia in rats. Neurosci Lett 2011; 504:321-4. [PMID: 21982807 DOI: 10.1016/j.neulet.2011.09.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 09/01/2011] [Accepted: 09/22/2011] [Indexed: 01/05/2023]
Abstract
Though the potential use of adenosine as a neuroprotective agent has long been realized, there are currently no adenosine-based therapies for the prevention or treatment of cerebral ischemia and reperfusion injury. Prostatic acid phosphatase (PAP), an enzyme that has long served as a diagnostic marker for prostate cancer, has been recently demonstrated to exhibit ecto-5'-nucleotidase activity, and dephosphorylate endogenous extracellular AMP to adenosine. We therefore tested the hypothesis that PAP has sustained and potent neuroprotective effects against cerebral ischemia in the rat model of middle cerebral artery occlusion. We found that hPAP produced significant neuroprotection against focal cerebral ischemia, as evident from significant reduction in cerebral infarction and neurological deficits. The therapeutic time window for hPAP in rat focal cerebral ischemia model was limited from 6 h before ischemia to 1.5 h after reperfusion. The present study suggested that PAP is a potential candidate for the prevention and treatment of cerebral ischemic injury, especially during perioperative period.
Collapse
|
42
|
Han Q, Li B, Feng H, Xiao Z, Chen B, Zhao Y, Huang J, Dai J. The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF. Biomaterials 2011; 32:5077-85. [DOI: 10.1016/j.biomaterials.2011.03.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
|
43
|
Zhao Y, Rempe DA. Targeting astrocytes for stroke therapy. Neurotherapeutics 2010; 7:439-51. [PMID: 20880507 PMCID: PMC5084305 DOI: 10.1016/j.nurt.2010.07.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/01/2010] [Accepted: 07/26/2010] [Indexed: 12/12/2022] Open
Abstract
Stroke remains a major health problem and is a leading cause of death and disability. Past research and neurotherapeutic clinical trials have targeted the molecular mechanisms of neuronal cell death during stroke, but this approach has uniformly failed to reduce stroke-induced damage or to improve functional recovery. Beyond the intrinsic molecular mechanisms inducing neuronal death during ischemia, survival and function of astrocytes is absolutely required for neuronal survival and for functional recovery after stroke. Many functions of astrocytes likely improve neuronal viability during stroke. For example, uptake of glutamate and release of neurotrophins enhances neuronal viability during ischemia. Under certain conditions, however, astrocyte function may compromise neuronal viability. For example, astrocytes may produce inflammatory cytokines or toxic mediators, or may release glutamate. The only clinical neurotherapeutic trial for stroke that specifically targeted astrocyte function focused on reducing release of S-100β from astrocytes, which becomes a neurotoxin when present at high levels. Recent work also suggests that astrocytes, beyond their influence on cell survival, also contribute to angiogenesis, neuronal plasticity, and functional recovery in the several days to weeks after stroke. If these delayed functions of astrocytes could be targeted for enhancing stroke recovery, it could contribute importantly to improving stroke recovery. This review focuses on both the positive and the negative influences of astrocytes during stroke, especially as they may be targeted for translation to human trials.
Collapse
Affiliation(s)
- Yanxin Zhao
- grid.16416.340000000419369174Department of Neurology in the Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, 14642 Rochester, New York
| | - David A. Rempe
- grid.16416.340000000419369174Department of Neurology in the Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, 14642 Rochester, New York
| |
Collapse
|