1
|
Teckchandani TA, Neary JP, Andrews KL, Maguire KQ, Jamshidi L, Nisbet J, Shields RE, Afifi TO, Sauer-Zavala S, Lix LM, Krakauer RL, Asmundson GJG, Krätzig GP, Carleton RN. Cardioautonomic lability assessed by heart rate variability changes in Royal Canadian Mounted Police cadets during the cadet training program. Front Psychol 2023; 14:1144783. [PMID: 37829079 PMCID: PMC10565660 DOI: 10.3389/fpsyg.2023.1144783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Objective The current study examined variations in cardioautonomic lability during the Royal Canadian Mounted Police (RCMP) Cadet Training Program (CTP) between cadets starting their training who did or did not screen positive for one or more mental health disorders (i.e., posttraumatic stress disorder [PTSD], major depressive disorder [MDD], social anxiety disorder [SAD], generalized anxiety disorder [GAD], panic disorder [PD], alcohol use disorder [AUD]). Methods Electrocardiogram (ECG) signals integrated into Hexoskin garments were used to record ECG and heart rate Over the 26-week CTP. There were 31 heart rate variability (HRV) parameters calculated using Kubios Premium HRV analysis software. Mann-Whitney U-tests were used to perform groupwise comparisons of participant raw values and HRV during the CTP. Results A total of 157 cadets (79% male) were screened for any mental disorder using self-report surveys and then grouped by positive and negative screening. Analyses indicated a statistically significant (p < 0.05) decrease in low frequency (LF): High Frequency (HF) variability during CTP, but only for cadets who endorsed clinically significant anxiety symptoms on the GAD-7 at the start of their training. There were no other statistically significant groupwise differences. Conclusion The results indicate the participants have excellent cardiac health overall and suggest potentially important differences between groups, such that cadets who endorsed clinically significant anxiety symptoms on the GAD-7 showed less variability in the LF:HF ratio over the course of the CTP. The relatively lower variability suggests decreased parasympathetic tone in those without clinically significant anxiety symptoms. The results also have important implications for future investigations of cardioautonomic dysfunction and chronic hypothalamic pituitary adrenal (HPA) axis deviations in policing populations with anxiety disorders; specifically, cardioautonomic inflexibility related to cardiovascular morbidity and mortality. In any case, the current results provide an important baseline for future cardiac research with cadets and serving officers.
Collapse
Affiliation(s)
- Taylor A. Teckchandani
- Canadian Institute for Public Safety Research and Treatment-Institut Canadien de Recherche et de Traitement en Sécurité Publique (CIPSRT-ICRTSP), University of Regina, Regina, SK, Canada
| | - J. Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK, Canada
| | - Katie L. Andrews
- Canadian Institute for Public Safety Research and Treatment-Institut Canadien de Recherche et de Traitement en Sécurité Publique (CIPSRT-ICRTSP), University of Regina, Regina, SK, Canada
| | - Kirby Q. Maguire
- Canadian Institute for Public Safety Research and Treatment-Institut Canadien de Recherche et de Traitement en Sécurité Publique (CIPSRT-ICRTSP), University of Regina, Regina, SK, Canada
| | - Laleh Jamshidi
- Canadian Institute for Public Safety Research and Treatment-Institut Canadien de Recherche et de Traitement en Sécurité Publique (CIPSRT-ICRTSP), University of Regina, Regina, SK, Canada
| | - Jolan Nisbet
- Canadian Institute for Public Safety Research and Treatment-Institut Canadien de Recherche et de Traitement en Sécurité Publique (CIPSRT-ICRTSP), University of Regina, Regina, SK, Canada
| | - Robyn E. Shields
- Canadian Institute for Public Safety Research and Treatment-Institut Canadien de Recherche et de Traitement en Sécurité Publique (CIPSRT-ICRTSP), University of Regina, Regina, SK, Canada
- Anxiety and Illness Behaviours Lab, Department of Psychology, University of Regina, Regina, SK, Canada
| | - Tracie O. Afifi
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Lisa M. Lix
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rachel L. Krakauer
- Anxiety and Illness Behaviours Lab, Department of Psychology, University of Regina, Regina, SK, Canada
| | - Gordon J. G. Asmundson
- Anxiety and Illness Behaviours Lab, Department of Psychology, University of Regina, Regina, SK, Canada
| | | | - R. Nicholas Carleton
- Canadian Institute for Public Safety Research and Treatment-Institut Canadien de Recherche et de Traitement en Sécurité Publique (CIPSRT-ICRTSP), University of Regina, Regina, SK, Canada
- Anxiety and Illness Behaviours Lab, Department of Psychology, University of Regina, Regina, SK, Canada
| |
Collapse
|
2
|
Lin HY, Cathomas F, Li L, Cuttoli RDD, Guevara C, Bayrak CS, Wang Q, Gupta S, Chan KL, Shimo Y, Parise LF, Yuan C, Aubry AV, Chen F, Wong J, Morel C, Huntley GW, Zhang B, Russo SJ, Wang J. Chemokine receptor 5 signaling in PFC mediates stress susceptibility in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553789. [PMID: 37662400 PMCID: PMC10473611 DOI: 10.1101/2023.08.18.553789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Chronic stress induces changes in the periphery and the central nervous system (CNS) that contribute to neuropathology and behavioral abnormalities associated with psychiatric disorders. In this study, we examined the impact of peripheral and central inflammation during chronic social defeat stress (CSDS) in female mice. Compared to male mice, we found that female mice exhibited heightened peripheral inflammatory response and identified C-C motif chemokine ligand 5 (CCL5), as a stress-susceptibility marker in females. Blocking CCL5 signaling in the periphery promoted resilience to CSDS. In the brain, stress-susceptible mice displayed increased expression of C-C chemokine receptor 5 (CCR5), a receptor for CCL5, in microglia in the prefrontal cortex (PFC). This upregulation was associated with microglia morphological changes, their increased migration to the blood vessels, and enhanced phagocytosis of synaptic components and vascular material. These changes coincided with neurophysiological alterations and impaired blood-brain barrier (BBB) integrity. By blocking CCR5 signaling specifically in the PFC were able to prevent stress-induced physiological changes and rescue social avoidance behavior. Our findings are the first to demonstrate that stress-mediated dysregulation of the CCL5-CCR5 axis triggers excessive phagocytosis of synaptic materials and neurovascular components by microglia, resulting in disruptions in neurotransmission, reduced BBB integrity, and increased stress susceptibility. Our study provides new insights into the role of cortical microglia in female stress susceptibility and suggests that the CCL5-CCR5 axis may serve as a novel sex-specific therapeutic target for treating psychiatric disorders in females.
Collapse
|
3
|
McMurray KMJ, Sah R. Neuroimmune mechanisms in fear and panic pathophysiology. Front Psychiatry 2022; 13:1015349. [PMID: 36523875 PMCID: PMC9745203 DOI: 10.3389/fpsyt.2022.1015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Panic disorder (PD) is unique among anxiety disorders in that the emotional symptoms (e.g., fear and anxiety) associated with panic are strongly linked to body sensations indicative of threats to physiological homeostasis. For example, panic attacks often present with feelings of suffocation that evoke hyperventilation, breathlessness, or air hunger. Due to the somatic underpinnings of PD, a major focus has been placed on interoceptive signaling and it is recognized that dysfunctional body-to-brain communication pathways promote the initiation and maintenance of PD symptomatology. While body-to-brain signaling can occur via several pathways, immune and humoral pathways play an important role in communicating bodily physiological state to the brain. Accumulating evidence suggests that neuroimmune mediators play a role in fear and panic-associated disorders, although this has not been systematically investigated. Currently, our understanding of the role of immune mechanisms in the etiology and maintenance of PD remains limited. In the current review, we attempt to summarize findings that support a role of immune dysregulation in PD symptomology. We compile evidence from human studies and panic-relevant rodent paradigms that indicate a role of systemic and brain immune signaling in the regulation of fear and panic-relevant behavior and physiology. Specifically, we discuss how immune signaling can contribute to maladaptive body-to-brain communication and conditioned fear that are relevant to spontaneous and conditioned symptoms of PD and identify putative avenues warranting future investigation.
Collapse
Affiliation(s)
- Katherine M. J. McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
4
|
Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat Commun 2022; 13:164. [PMID: 35013188 PMCID: PMC8748803 DOI: 10.1038/s41467-021-27604-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Prevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD.
Collapse
|
5
|
Takayanagi Y, Onaka T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci 2021; 23:ijms23010150. [PMID: 35008574 PMCID: PMC8745417 DOI: 10.3390/ijms23010150] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin has been revealed to work for anxiety suppression and anti-stress as well as for psychosocial behavior and reproductive functions. Oxytocin neurons are activated by various stressful stimuli. The oxytocin receptor is widely distributed within the brain, and oxytocin that is released or diffused affects behavioral and neuroendocrine stress responses. On the other hand, there has been an increasing number of reports on the role of oxytocin in allostasis and resilience. It has been shown that oxytocin maintains homeostasis, shifts the set point for adaptation to a changing environment (allostasis) and contributes to recovery from the shifted set point by inducing active coping responses to stressful stimuli (resilience). Recent studies have suggested that oxytocin is also involved in stress-related disorders, and it has been shown in clinical trials that oxytocin provides therapeutic benefits for patients diagnosed with stress-related disorders. This review includes the latest information on the role of oxytocin in stress responses and adaptation.
Collapse
|
6
|
Meyer HC, Sangha S, Radley JJ, LaLumiere RT, Baratta MV. Environmental certainty influences the neural systems regulating responses to threat and stress. Neurosci Biobehav Rev 2021; 131:1037-1055. [PMID: 34673111 PMCID: PMC8642312 DOI: 10.1016/j.neubiorev.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Flexible calibration of threat responding in accordance with the environment is an adaptive process that allows an animal to avoid harm while also maintaining engagement of other goal-directed actions. This calibration process, referred to as threat response regulation, requires an animal to calculate the probability that a given encounter will result in a threat so they can respond accordingly. Here we review the neural correlates of two highly studied forms of threat response suppression: extinction and safety conditioning. We focus on how relative levels of certainty or uncertainty in the surrounding environment alter the acquisition and application of these processes. We also discuss evidence indicating altered threat response regulation following stress exposure, including enhanced fear conditioning, and disrupted extinction and safety conditioning. To conclude, we discuss research using an animal model of coping that examines the impact of stressor controllability on threat responding, highlighting the potential for previous experiences with control, or other forms of coping, to protect against the effects of future adversity.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA.
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jason J Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA.
| |
Collapse
|
7
|
Wu S, Yin Y, Du L. Blood-Brain Barrier Dysfunction in the Pathogenesis of Major Depressive Disorder. Cell Mol Neurobiol 2021; 42:2571-2591. [PMID: 34637015 DOI: 10.1007/s10571-021-01153-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Major depression represents a complex and prevalent psychological disease that is characterized by persistent depressed mood, impaired cognitive function and complicated pathophysiological and neuroendocrine alterations. Despite the multifactorial etiology of depression, one of the most recent factors to be identified as playing a critical role in the development of depression is blood-brain barrier (BBB) disruption. The occurrence of BBB integrity disruption contributes to the disturbance of brain homeostasis and leads to complications of neurological diseases, such as stroke, chronic neurodegenerative disorders, neuroinflammatory disorders. Recently, BBB associated tight junction disruption has been shown to implicate in the pathophysiology of depression and contribute to increased susceptibility to depression. However, the underlying mechanisms and importance of BBB damage in depression remains largely unknown. This review highlights how BBB disruption regulates the depression process and the possible molecular mechanisms involved in development of depression-induced BBB dysfunction. Moreover, insight on promising therapeutic targets for treatment of depression with associated BBB dysfunctions are also discussed.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuye Yin
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
8
|
Minhas S, Patel JR, Malik M, Hana D, Hassan F, Khouzam RN. Mind-Body Connection: Cardiovascular Sequelae of Psychiatric Illness. Curr Probl Cardiol 2021; 47:100959. [PMID: 34358587 DOI: 10.1016/j.cpcardiol.2021.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 11/03/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the world. Mental health disorders are associated with the onset and progression of cardiac disease. The adverse sequelae of this association include worsened quality of life, adverse cardiovascular outcomes, and heightened mortality. The increased prevalence of CVD is partly explained by increased rates of traditional cardiovascular risk factors including hypertension, hyperlipidemia, diabetes mellitus, obesity, and smoking, but mental illness is an independent risk factor for CVD and mortality. Given the association between mental health disorders and poor cardiovascular health, it is vital to have an early and accurate identification and treatment of these disorders. Our review article shares the current literature on the adverse cardiovascular events associated with psychiatric disorders. We present a review on depression, anxiety, bipolar disorder, schizophrenia, type A and D personality disorders, obsessive-compulsive disorder, and stress.
Collapse
Affiliation(s)
| | - Jay R Patel
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Maira Malik
- Department of Internal Medicine, East Tennessee State University, TN
| | - David Hana
- Department of Internal Medicine, West Virginia University, Morgantown, WV
| | - Fatima Hassan
- University of Tennessee Health Science Center, Memphis, TN
| | - Rami N Khouzam
- Interventional Cardiology, University of Tennessee Health Science Center, Memphis, TN; Cardiology Fellowship, University of Tennessee Health Science Center, Memphis, TN; Cardiac Cath Labs, Methodist University Hospital, Memphis, TN
| |
Collapse
|
9
|
Pearson-Leary J, Eacret D, Bhatnagar S. Interleukin-1α in the ventral hippocampus increases stress vulnerability and inflammation-related processes. Stress 2020; 23:308-317. [PMID: 31559913 DOI: 10.1080/10253890.2019.1673360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mechanisms of stress vulnerability remain elusive. Previous research demonstrated that inflammation-related processes in the brain play a role in stress vulnerability. Our previous research showed that inflammatory processes in the ventral hippocampus (vHPC) induced a stress vulnerable phenotype. To further understand neuroinflammatory processes in the vHPC in stressed rats, we determined that protein levels of the pro-inflammatory cytokine interleukin-1-α (IL-1α), but not interleukin-1β (IL-1β), were increased in the vHPC of rats vulnerable to the effects of repeated social defeat compared to rats resilient to its effects. Injections of IL-1α into the vHPC increased stress vulnerability as characterized by increases in passive coping during defeat and subsequent decreased social interactions. Conversely, injections of recombinant IL-1 receptor antagonist (IL1-RA) increased latencies to social defeat and decreased anxiety-like behaviors during social interaction, suggesting an reduction in stress vulnerability. Protein analyses revealed increased FosB expression in the vHPC of IL-1α-injected rats, and increased HPA activation following a social encounter. Further analysis of vHPC of IL1-α-injected rats showed increased density of microglia, increased expression of the pro-inflammatory cytokine HMGB1, and increases in a marker for vascular remodeling. Taken together, these data show increasing IL-1α during stress exposure is sufficient to produce a stress vulnerable phenotype potentially by increasing inflammation-related processes in the vHPC.LAY SUMMARYOur previous research demonstrated that inflammation-related processes in the brain play a role in inducing vulnerability to the effects of repeated social stress in rats. Here we demonstrate that a pro-inflammatory cytokine interleukin-1-α (IL-1α) induces inflammatory processes in the vHPC and behavioral vulnerability in stressed rats, whereas blocking IL receptors produces the opposite effects on behavioral vulnerability. Together, these results identify a substrate in the vHPC that produces vulnerability to stress by increasing inflammation-related processes in the vHPC.
Collapse
Affiliation(s)
- Jiah Pearson-Leary
- Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Darrell Eacret
- Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Seema Bhatnagar
- Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry 2020; 25:1068-1079. [PMID: 30833676 DOI: 10.1038/s41380-019-0380-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
Chronic exposure to stress is associated with increased incidence of depression, generalized anxiety, and PTSD. However, stress induces vulnerability to such disorders only in a sub-population of individuals, as others remain resilient. Inflammation has emerged as a putative mechanism for promoting stress vulnerability. Using a rodent model of social defeat, we have previously shown that rats with short-defeat latencies (SL/vulnerable rats) show increased anxiety- and depression-like behaviors, and these behaviors are mediated by inflammation in the ventral hippocampus. The other half of socially defeated rats show long-latencies to defeat (LL/resilient) and are similar to controls. Because gut microbiota are important activators of inflammatory substances, we assessed the role of the gut microbiome in mediating vulnerability to repeated social defeat stress. We analyzed the fecal microbiome of control, SL/vulnerable, and LL/resilient rats using shotgun metagenome sequencing and observed increased expression of immune-modulating microbiota, such as Clostridia, in SL/vulnerable rats. We then tested the importance of gut microbiota to the SL/vulnerable phenotype. In otherwise naive rats treated with microbiota from SL/vulnerable rats, there was higher microglial density and IL-1β expression in the vHPC, and higher depression-like behaviors relative to rats that received microbiota from LL/resilient rats, non-stressed control rats, or vehicle-treated rats. However, anxiety-like behavior during social interaction was not altered by transplant of the microbiome of SL/vulnerable rats into non-stressed rats. Taken together, the results suggest the gut microbiome contributes to the depression-like behavior and inflammatory processes in the vHPC of stress vulnerable individuals.
Collapse
|
11
|
Zhang Y, Lu W, Wang Z, Zhang R, Xie Y, Guo S, Jiao L, Hong Y, Di Z, Wang G, Aa J. Reduced Neuronal cAMP in the Nucleus Accumbens Damages Blood-Brain Barrier Integrity and Promotes Stress Vulnerability. Biol Psychiatry 2020; 87:526-537. [PMID: 31812254 DOI: 10.1016/j.biopsych.2019.09.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Studies have suggested that chronic social stress specifically downregulates endothelial tight junction protein expression in the nucleus accumbens (NAc), thus increasing blood-brain barrier (BBB) permeability and promoting depression-like behaviors. However, the molecular mechanism underlying the reduction in tight junction protein, particularly in the NAc, is largely uncharacterized. METHODS We performed comparative metabolomic profiling of the nucleus accumbens, prefrontal cortex, and hippocampus of social defeat-stressed mice to identify the molecular events that mediate BBB breakdown. RESULTS We identified the levels of cyclic adenosine monophosphate (cAMP) that were specifically reduced in the NAc and positively correlated with the degree of social avoidance. Replenishing cAMP in the NAc was sufficient to improve BBB integrity and depression-like behaviors. We further found that cAMP levels were markedly decreased in neurons of the NAc, rather than in endothelial cells, astrocytes, or microglia. RNA-sequencing data showed that adenylate cyclase 5 (Adcy5), an enzyme responsible for the synthesis of cAMP from adenosine triphosphate (ATP), was predominantly expressed in the NAc; it also resided exclusively in neurons. Endogenous modulation of cAMP synthesis in neurons through the knockdown of Adcy5 in the NAc regulated the sensitivity to social stress. Moreover, deficient neuronal cAMP production in the NAc decreased the expression of reelin, while supplementary injection of exogenous reelin into the NAc promoted BBB integrity and ameliorated depression-like behaviors. CONCLUSIONS Chronic social stress diminished cAMP synthesis in neurons, thus damaging BBB integrity in the NAc and promoting stress vulnerability. These results characterize neuron-produced cAMP in the NAc as a biological mechanism of neurovascular pathology in social stress.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wuhuan Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zibin Wang
- Analytical and Testing Center, Nanjing Medical University, Nanjing, China
| | - Ran Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Suhan Guo
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Li Jiao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu Hong
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zizhen Di
- Liaoning Provincial Academy of Traditional Chinese Medicine, Shenyang, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
12
|
McNeal N, Watanasriyakul WT, Normann MC, Akinbo OI, Dagner A, Ihm E, Wardwell J, Grippo AJ. The negative effects of social bond disruption are partially ameliorated by sertraline administration in prairie voles. Auton Neurosci 2019; 219:5-18. [PMID: 31122602 PMCID: PMC6540807 DOI: 10.1016/j.autneu.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Negative social experiences influence both depression and cardiovascular dysfunction. Many individuals who experience negative mood states or cardiovascular conditions have limited social support. Therefore, investigation of drug treatments that may protect against the consequences of social stress will aid in designing effective treatment strategies. The current study used an animal model to evaluate the protective effect of sertraline administration on behavioral and cardiovascular consequences of social stress. Specifically, male prairie voles (Microtus ochrogaster), which are socially monogamous rodents that share several behavioral and physiological characteristics with humans, were isolated from a socially-bonded female partner, and treated with sertraline (16 mg/kg/day, ip) or vehicle during isolation. Unexpectedly, sertraline did not protect against depression-relevant behaviors, and it was associated with increased short- and long-term heart rate responses. However, sertraline administration improved heart rate variability recovery following a behavioral stressor, including increased parasympathetic regulation, and altered long-term neuronal activity in brain regions that modulate autonomic control and stress reactivity. These results indicate that sertraline may partially protect against the consequences of social stressors, and suggest a mechanism through which sertraline may beneficially influence neurobiological control of cardiac function.
Collapse
Affiliation(s)
- Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | | | - Marigny C Normann
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Oreoluwa I Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Ashley Dagner
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Elliott Ihm
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Joshua Wardwell
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA.
| |
Collapse
|
13
|
Finnell JE, Wood SK. Putative Inflammatory Sensitive Mechanisms Underlying Risk or Resilience to Social Stress. Front Behav Neurosci 2018; 12:240. [PMID: 30416436 PMCID: PMC6212591 DOI: 10.3389/fnbeh.2018.00240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022] Open
Abstract
It has been well recognized that exposure to stress can lead to the onset of psychosocial disorders such as depression. While there are a number of antidepressant therapies currently available and despite producing immediate neurochemical alterations, they require weeks of continuous use in order to exhibit antidepressant efficacy. Moreover, up to 30% of patients do not respond to typical antidepressants, suggesting that our understanding of the pathophysiology underlying stress-induced depression is still limited. In recent years inflammation has become a major focus in the study of depression as several clinical and preclinical studies have demonstrated that peripheral and central inflammatory mediators, including interleukin (IL)-1β, are elevated in depressed patients. Moreover, it has been suggested that inflammation and particularly neuroinflammation may be a direct and immediate link in the emergence of stress-induced depression due to the broad neural and glial effects that are elicited by proinflammatory cytokines. Importantly, individual differences in inflammatory reactivity may further explain why certain individuals exhibit differing susceptibility to the consequences of stress. In this review article, we discuss sources of individual differences such as age, sex and coping mechanisms that are likely sources of distinct changes in stress-induced neuroimmune factors and highlight putative sources of exaggerated neuroinflammation in susceptible individuals. Furthermore, we review the current literature of specific neural and glial mechanisms that are regulated by stress and inflammation including mitochondrial function, oxidative stress and mechanisms of glutamate excitotoxicity. Taken together, the impetus for this review is to move towards a better understanding of mechanisms regulated by inflammatory cytokines and chemokines that are capable of contributing to the emergence of depressive-like behaviors in susceptible individuals.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.,WJB Dorn Veterans Administration Medical Center, Columbia, SC, United States
| |
Collapse
|
14
|
Carnevali L, Statello R, Sgoifo A. The Utility of Rodent Models of Stress for Disentangling Individual Vulnerability to Depression and Cardiovascular Comorbidity. Curr Cardiol Rep 2018; 20:111. [DOI: 10.1007/s11886-018-1064-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Finnell JE, Muniz BL, Padi AR, Lombard CM, Moffitt CM, Wood CS, Wilson LB, Reagan LP, Wilson MA, Wood SK. Essential Role of Ovarian Hormones in Susceptibility to the Consequences of Witnessing Social Defeat in Female Rats. Biol Psychiatry 2018; 84:372-382. [PMID: 29544773 PMCID: PMC6067999 DOI: 10.1016/j.biopsych.2018.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Women are at greater risk than men of developing depression and comorbid disorders such as cardiovascular disease. This enhanced risk begins at puberty and ends following menopause, suggesting a role for ovarian hormones in this sensitivity. Here we used a model of psychosocial witness stress in female rats to determine the stress-induced neurobiological adaptations that underlie stress susceptibility in an ovarian hormone-dependent manner. METHODS Intact or ovariectomized (OVX) female rats were exposed to five daily 15-minute witness-stress exposures. Witness-stress-evoked burying, behavioral despair, and anhedonia were measured. Cardiovascular telemetry was combined with plasma measurements of inflammation, epinephrine, and corticosterone as indices of cardiovascular dysfunction. Finally, levels of interleukin-1β and corticotropin-releasing factor were assessed in the central amygdala. RESULTS Witness stress produced anxiety-like burying, depressive-like anhedonia, and behavioral despair selectively in intact female rats, which was associated with enhanced sympathetic responses during stress, including increased blood pressure, heart rate, and arrhythmias. Moreover, intact female rats exhibited increases in 12-hour resting systolic pressure and heart rate and reductions in heart rate variability. Notably, OVX female rats remained resilient. Moreover, intact, but not OVX, female rats exposed to witness stress exhibited a sensitized cytokine and epinephrine response to stress and distinct increases in levels of corticotropin-releasing factor and interleukin-1β in the central amygdala. CONCLUSIONS Together these data suggest that ovarian hormones play a critical role in the behavioral, inflammatory, and cardiovascular susceptibility to social stress in female rats and reveal putative systems that are sensitized to stress in an ovarian hormone-dependent manner.
Collapse
Affiliation(s)
- Julie E. Finnell
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Brandon L. Muniz
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Akhila R. Padi
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Calliandra M. Lombard
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Casey M. Moffitt
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Christopher S. Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - L. Britt Wilson
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Lawrence P. Reagan
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209,WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Marlene A. Wilson
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209,WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Susan K. Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209,WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| |
Collapse
|
16
|
Malik VA, Di Benedetto B. The Blood-Brain Barrier and the EphR/Ephrin System: Perspectives on a Link Between Neurovascular and Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:127. [PMID: 29706868 PMCID: PMC5906525 DOI: 10.3389/fnmol.2018.00127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2018] [Indexed: 01/06/2023] Open
Abstract
Interactions among endothelial cells (EC) forming blood vessels and their surrounding cell types are essential to establish the blood-brain barrier (BBB), an integral part of the neurovascular unit (NVU). Research on the NVU has recently seen a renaissance to especially understand the neurobiology of vascular and brain pathologies and their frequently occurring comorbidities. Diverse signaling molecules activated in the near proximity of blood vessels trigger paracellular pathways which regulate the formation and stabilization of tight junctions (TJ) between EC and thereby influence BBB permeability. Among regulatory molecules, the erythropoietin-producing-hepatocellular carcinoma receptors (EphR) and their Eph receptor-interacting signals (ephrins) play a pivotal role in EC differentiation, angiogenesis and BBB integrity. Multiple EphR-ligand interactions between EC and other cell types influence different aspects of angiogenesis and BBB formation. Such interactions additionally control BBB sealing properties and thus the penetration of substances into the brain parenchyma. Thus, they play critical roles in the healthy brain and during the pathogenesis of brain disorders. In this mini-review article, we aim at integrating the constantly growing literature about the functional roles of the EphR/ephrin system for the development of the vascular system and the BBB and in the pathogenesis of neurovascular and neuropsychiatric disorders. We suggest the hypothesis that a disrupted EphR/ephrin signaling at the BBB might represent an underappreciated molecular hub of disease comorbidity. Finally, we propose the possibility that the EphR/ephrin system bears the potential of becoming a novel target for the development of alternative therapeutic treatments, focusing on such comorbidities.
Collapse
Affiliation(s)
- Victoria A Malik
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
McDonnell-Dowling K, Miczek KA. Alcohol, psychomotor-stimulants and behaviour: methodological considerations in preclinical models of early-life stress. Psychopharmacology (Berl) 2018; 235:909-933. [PMID: 29511806 DOI: 10.1007/s00213-018-4852-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 02/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND In order to assess the risk associated with early-life stress, there has been an increase in the amount of preclinical studies investigating early-life stress. There are many challenges associated with investigating early-life stress in animal models and ensuring that such models are appropriate and clinically relevant. OBJECTIVES The purpose of this review is to highlight the methodological considerations in the design of preclinical studies investigating the effects of early-life stress on alcohol and psychomotor-stimulant intake and behaviour. METHODS The protocols employed for exploring early-life stress were investigated and summarised. Experimental variables include animals, stress models, and endpoints employed. RESULTS The findings in this paper suggest that there is little consistency among these studies and so the interpretation of these results may not be as clinically relevant as previously thought. CONCLUSION The standardisation of these simple stress procedures means that results will be more comparable between studies and that results generated will give us a more robust understanding of what can and may be happening in the human and veterinary clinic.
Collapse
Affiliation(s)
| | - Klaus A Miczek
- Department of Psychology, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA
| |
Collapse
|
18
|
Wellman LL, Fitzpatrick ME, Sutton AM, Williams BL, Machida M, Sanford LD. Antagonism of corticotropin releasing factor in the basolateral amygdala of resilient and vulnerable rats: Effects on fear-conditioned sleep, temperature and freezing. Horm Behav 2018; 100:20-28. [PMID: 29501756 PMCID: PMC5949089 DOI: 10.1016/j.yhbeh.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
The basolateral nucleus of the amygdala (BLA) plays a significant role in mediating individual differences in the effects of fear memory on sleep. Here, we assessed the effects of antagonizing corticotropin releasing factor receptor 1 (CRFR1) after shock training (ST) on fear-conditioned behaviors and sleep. Outbred Wistar rats were surgically implanted with electrodes for recording EEG and EMG and with bilateral guide cannulae directed at BLA. Data loggers were placed intraperitoneally to record core body temperature. The CRFR1 antagonist, antalarmin (ANT; 4.82 mM) was microinjected into BLA after shock training (ST: 20 footshocks, 0.8 mA, 0.5 s duration, 60 s interstimulus interval), and the effects on sleep, freezing and the stress response (stress-induced hyperthermia, SIH) were examined after ST and fearful context re-exposure alone at 7 days (CTX1) and 21 days (CTX2) post-ST. EEG and EMG recordings were scored for non-rapid eye movement sleep (NREM), rapid eye movement sleep (REM) and wakefulness. The rats were separated into 4 groups: Vehicle-vulnerable (Veh-Vul; n = 10), Veh-resilient (Veh-Res; n = 11), ANT-vulnerable (ANT-Vul; n = 8) and ANT-resilient (ANT-Res; n = 8) based on whether, compared to baseline, the rats showed a decrease or no change/increase in REM during the first 4 h following ST. Post-ST ANT microinjected into BLA attenuated the fear-conditioned reduction in REM in ANT-Vul rats on CTX1, but did not significantly alter REM in ANT-Res rats. However, compared to Veh treated rats, REM was reduced in ANT treated rats on CTX2. There were no group differences in freezing or SIH across conditions. Therefore, CRFR1 in BLA plays a role in mediating individual differences in sleep responses to stress and in the extinction of fear conditioned changes in sleep.
Collapse
Affiliation(s)
- Laurie L Wellman
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Mairen E Fitzpatrick
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Amy M Sutton
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Brook L Williams
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Mayumi Machida
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
19
|
Kowalczyk AS, Davila RF, Trainor BC. Effects of social defeat on paternal behavior and pair bonding behavior in male California mice (Peromyscus californicus). Horm Behav 2018; 98:88-95. [PMID: 29289657 PMCID: PMC5828991 DOI: 10.1016/j.yhbeh.2017.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/11/2017] [Accepted: 12/23/2017] [Indexed: 12/22/2022]
Abstract
Male parental care is an important social behavior for several mammalian species. Psychosocial stress is usually found to inhibit maternal behavior, but effects on paternal behavior have been less consistent. We tested the effects of social defeat stress on pair bond formation and paternal behavior in the monogamous California mouse (Peromyscus californicus). Social defeat reduced time spent in a chamber with a stranger female during a partner preference test conducted 24h after pairing, but increased latency to the first litter. In 10min partner preference tests conducted after the birth of pups, both control and stressed males exhibited selective aggression towards stranger females. Unlike prairie voles, side by side contact was not observed in either partner preference test. Stressed male California mice engaged in more paternal behavior than controls and had reduced anxiety-like responses in the open-field test. Defeat stress enhanced prodynorphin and KOR expression in the medial preoptic area (MPOA) but not PVN. Increased KOR signaling has been linked to increased selective aggression in prairie voles. Together the results show that defeat stress enhances behaviors related to parental care and pair bonding in male California mice.
Collapse
Affiliation(s)
- Alex S Kowalczyk
- Department of Psychology, University of California, Davis, United States
| | - Randy F Davila
- Department of Psychology, University of California, Davis, United States
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, United States.
| |
Collapse
|
20
|
Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, Takahashi A, Flanigan ME, Aleyasin H, LeClair KB, Janssen WG, Labonté B, Parise EM, Lorsch ZS, Golden SA, Heshmati M, Tamminga C, Turecki G, Campbell M, Fayad ZA, Tang CY, Merad M, Russo SJ. Social stress induces neurovascular pathology promoting depression. Nat Neurosci 2017; 20:1752-1760. [PMID: 29184215 PMCID: PMC5726568 DOI: 10.1038/s41593-017-0010-3] [Citation(s) in RCA: 579] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Studies suggest that heightened peripheral inflammation contributes to the pathogenesis of major depressive disorder. We investigated the effect of chronic social defeat stress, a mouse model of depression, on blood-brain barrier (BBB) permeability and infiltration of peripheral immune signals. We found reduced expression of the endothelial cell tight junction protein claudin-5 (Cldn5) and abnormal blood vessel morphology in nucleus accumbens (NAc) of stress-susceptible but not resilient mice. CLDN5 expression was also decreased in NAc of depressed patients. Cldn5 downregulation was sufficient to induce depression-like behaviors following subthreshold social stress whereas chronic antidepressant treatment rescued Cldn5 loss and promoted resilience. Reduced BBB integrity in NAc of stress-susceptible or mice injected with adeno-associated virus expressing shRNA against Cldn5 caused infiltration of the peripheral cytokine interleukin-6 (IL-6) into brain parenchyma and subsequent expression of depression-like behaviors. These findings suggest that chronic social stress alters BBB integrity through loss of tight junction protein Cldn5, promoting peripheral IL-6 passage across the BBB and depression.
Collapse
Affiliation(s)
- Caroline Menard
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Département de psychiatrie et neurosciences, Faculté de médecine and CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Madeline L Pfau
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgia E Hodes
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Veronika Kana
- Department of Oncological Sciences, Tisch Cancer Institute and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria X Wang
- Department of Radiology, Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Sylvain Bouchard
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aki Takahashi
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- University of Tsukuba, Tsukuba, Japan
| | - Meghan E Flanigan
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hossein Aleyasin
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine B LeClair
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G Janssen
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benoit Labonté
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary S Lorsch
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sam A Golden
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mitra Heshmati
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gustavo Turecki
- Douglas Mental Health University Institute and McGill University, Montreal, QC, Canada
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Zahi A Fayad
- Department of Radiology, Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Cheuk Ying Tang
- Department of Radiology, Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress. Transl Psychiatry 2017; 7:e1160. [PMID: 28654094 PMCID: PMC5537643 DOI: 10.1038/tp.2017.122] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022] Open
Abstract
During exposure to chronic stress, some individuals engage in active coping behaviors that promote resiliency to stress. Other individuals engage in passive coping that is associated with vulnerability to stress and with anxiety and depression. In an effort to identify novel molecular mechanisms that underlie vulnerability or resilience to stress, we used nonbiased analyses of microRNAs in the ventral hippocampus (vHPC) to identify those miRNAs differentially expressed in active (long-latency (LL)/resilient) or passive (short-latency (SL)/vulnerable) rats following chronic social defeat. In the vHPC of active coping rats, miR-455-3p level was increased, while miR-30e-3p level was increased in the vHPC of passive coping rats. Pathway analyses identified inflammatory and vascular remodeling pathways as enriched by genes targeted by these microRNAs. Utilizing several independent markers for blood vessels, inflammatory processes and neural activity in the vHPC, we found that SL/vulnerable rats exhibit increased neural activity, vascular remodeling and inflammatory processes that include both increased blood-brain barrier permeability and increased number of microglia in the vHPC relative to control and resilient rats. To test the relevance of these changes for the development of the vulnerable phenotype, we used pharmacological approaches to determine the contribution of inflammatory processes in mediating vulnerability and resiliency. Administration of the pro-inflammatory cytokine vascular endothelial growth factor-164 increased vulnerability to stress, while the non-steroidal anti-inflammatory drug meloxicam attenuated vulnerability. Collectively, these results show that vulnerability to stress is determined by a re-designed neurovascular unit characterized by increased neural activity, vascular remodeling and pro-inflammatory mechanisms in the vHPC. These results suggest that dampening inflammatory processes by administering anti-inflammatory agents reduces vulnerability to stress. These results have translational relevance as they suggest that administration of anti-inflammatory agents may reduce the impact of stress or trauma in vulnerable individuals.
Collapse
|
22
|
Carnevali L, Montano N, Statello R, Sgoifo A. Rodent models of depression-cardiovascular comorbidity: Bridging the known to the new. Neurosci Biobehav Rev 2017; 76:144-153. [DOI: 10.1016/j.neubiorev.2016.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
|
23
|
de Boer SF, Buwalda B, Koolhaas JM. Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility. Neurosci Biobehav Rev 2017; 74:401-422. [DOI: 10.1016/j.neubiorev.2016.07.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/23/2023]
|
24
|
Zitnik GA. Control of arousal through neuropeptide afferents of the locus coeruleus. Brain Res 2016; 1641:338-50. [DOI: 10.1016/j.brainres.2015.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
|
25
|
Wolter DK. Depressionen im höheren Lebensalter, Teil 2. Z Gerontol Geriatr 2016; 49:437-52. [DOI: 10.1007/s00391-016-1022-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/11/2015] [Indexed: 11/28/2022]
|
26
|
Cohen BE, Edmondson D, Kronish IM. State of the Art Review: Depression, Stress, Anxiety, and Cardiovascular Disease. Am J Hypertens 2015; 28:1295-302. [PMID: 25911639 DOI: 10.1093/ajh/hpv047] [Citation(s) in RCA: 525] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022] Open
Abstract
The notion that psychological states can influence physical health is hardly new, and perhaps nowhere has the mind-body connection been better studied than in cardiovascular disease (CVD). Recently, large prospective epidemiologic studies and smaller basic science studies have firmly established a connection between CVD and several psychological conditions, including depression, chronic psychological stress, posttraumatic stress disorder (PTSD), and anxiety. In addition, numerous clinical trials have been conducted to attempt to prevent or lessen the impact of these conditions on cardiovascular health. In this article, we review studies connecting depression, stress/PTSD, and anxiety to CVD, focusing on findings from the last 5 years. For each mental health condition, we first examine the epidemiologic evidence establishing a link with CVD. We then describe studies of potential underlying mechanisms and finally discuss treatment trials and directions for future research.
Collapse
Affiliation(s)
- Beth E Cohen
- Department of Medicine, University of California, San Francisco, California, USA; General Internal Medicine, San Francisco VA Medical Center, San Francisco, California, USA;
| | - Donald Edmondson
- Center for Behavioral Cardiovascular Health, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Ian M Kronish
- Center for Behavioral Cardiovascular Health, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
27
|
Enman NM, Sabban EL, McGonigle P, Van Bockstaele EJ. Targeting the Neuropeptide Y System in Stress-related Psychiatric Disorders. Neurobiol Stress 2015; 1:33-43. [PMID: 25506604 PMCID: PMC4260418 DOI: 10.1016/j.ynstr.2014.09.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Repeated, extreme, or traumatic stressors can elicit pathological effects leading to many negative physical and psychological outcomes. Stressors can precipitate the onset of psychiatric diseases, or exacerbate pre-existing disorders including various anxiety and mood disorders. As stressors can negatively impact human psychiatric health, it is essential to identify neurochemicals that may confer protection from the negative sequelae of repeated or extreme stress exposure. Elucidating the neurobiological underpinnings of stress resilience will enhance our ability to promote resilience to, or recovery from, stress-related psychiatric disease. Herein, we will review the evidence for neuropeptide Y as an endogenous mediator of resilience and its potential relevance for the treatment of stress-related psychiatric diseases. Overview of neuropeptide Y and receptor subtypes in the central nervous system. Alterations of neuropeptide Y in human stress-related psychiatric disorders. Evidence for neuropeptide Y in resilience to stress-related emotionality in rodent behavioral models. Pharmacotherapeutic implications for neuropeptide Y in the treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Nicole M Enman
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Paul McGonigle
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | | |
Collapse
|