1
|
DeAndres J, Dickenson AH, Hayek S, Linninger A, Yaksh TL. A perspective: neuraxial therapeutics in pain management: now and future. FRONTIERS IN PAIN RESEARCH 2024; 5:1505019. [PMID: 39720319 PMCID: PMC11666549 DOI: 10.3389/fpain.2024.1505019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/11/2024] [Indexed: 12/26/2024] Open
Abstract
The neuraxial delivery of drugs for the management of pain and other spinal pathologies is widely employed and is the subject of a large volume of ongoing research with several thousand papers appearing in the past 5 years alone on neuraxial delivery. Several learned texts have been recently published. A number of considerations have contributed to this widespread interest in the development of the use of neuraxial therapeutics to manage pain. In the following section, major topics relevant to spinal encoding and in the use of neuraxial therapeutics are considered by the Frontiers in Pain Research editors of the research topic: "Neuraxial Therapeutics in Pain Management: Now and Future". This paper seeks to serve as a perspective to encourage the submission of manuscripts reflecting research in this exciting area.
Collapse
Affiliation(s)
- Jose DeAndres
- Department of Anesthesia, Valencia University School of Medicine, Valencia, Spain
| | - Anthony H. Dickenson
- Departments of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Salim Hayek
- Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andreas Linninger
- Biomedical Engineering and Neurosurgery, University of Illinois, Chicago, IL, United States
| | - Tony L. Yaksh
- Anesthesiology, University of California, San Diego, CA, United States
| |
Collapse
|
2
|
Deer TR, Hayek SM, Grider JS, Hagedorn JM, McDowell GC, Kim P, Dupoiron D, Goel V, Duarte R, Pilitsis JG, Leong MS, De Andrés J, Perruchoud C, Sukumaran H, Abd-Elsayed A, Saulino M, Patin D, Poree LR, Strand N, Gritsenko K, Osborn JA, Dones I, Bux A, Shah JM, Lindsey BL, Shaw E, Yaksh TL, Levy RM. The Polyanalgesic Consensus Conference (PACC)®: Intrathecal Drug Delivery Guidance on Safety and Therapy Optimization When Treating Chronic Noncancer Pain. Neuromodulation 2024; 27:1107-1139. [PMID: 38752946 DOI: 10.1016/j.neurom.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION The International Neuromodulation Society convened a multispecialty group of physicians and scientists based on expertise with international representation to establish evidence-based guidance on intrathecal drug delivery in treating chronic pain. This Polyanalgesic Consensus Conference (PACC)® project, created more than two decades ago, intends to provide evidence-based guidance for important safety and efficacy issues surrounding intrathecal drug delivery and its impact on the practice of neuromodulation. MATERIALS AND METHODS Authors were chosen on the basis of their clinical expertise, familiarity with the peer-reviewed literature, research productivity, and contributions to the neuromodulation literature. Section leaders supervised literature searches of MEDLINE, BioMed Central, Current Contents Connect, Embase, International Pharmaceutical Abstracts, Web of Science, Google Scholar, and PubMed from 2017 (when PACC® last published guidelines) to the present. Identified studies were graded using the United States Preventive Services Task Force criteria for evidence and certainty of net benefit. Recommendations are based on the strength of evidence or consensus when evidence is scant. RESULTS The PACC® examined the published literature and established evidence- and consensus-based recommendations to guide best practices. Additional guidance will occur as new evidence is developed in future iterations of this process. CONCLUSIONS The PACC® recommends best practices regarding intrathecal drug delivery to improve safety and efficacy. The evidence- and consensus-based recommendations should be used as a guide to assist decision-making when clinically appropriate.
Collapse
Affiliation(s)
- Timothy R Deer
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Salim M Hayek
- Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA.
| | - Jay S Grider
- UKHealthCare Pain Services, Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jonathan M Hagedorn
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Philip Kim
- Christiana Hospital, Newark, DE, USA; Bryn Mawr Hospital, Bryn Mawr, PA, USA
| | - Denis Dupoiron
- Department of Anesthesiology and Pain Medicine, Institut de Cancerologie de L'Ouest, Angers, France
| | - Vasudha Goel
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, USA
| | - Rui Duarte
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Julie G Pilitsis
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | | | - Jose De Andrés
- Anesthesia, Critical Care, and Multidisciplinary Pain Management Department, General University Hospital, València, Spain; Anesthesia Unit, Surgical Specialties Department, Valencia University Medical School, València, Spain
| | | | - Harry Sukumaran
- Department of Anesthesiology, Detroit Medical Center/Wayne State University, Detroit, MI, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Saulino
- Department of Physical Medicine and Rehabilitation, Cooper University Health Care, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Dennis Patin
- University of Miami Health System, Miami, FL, USA
| | - Lawrence R Poree
- Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, CA, USA
| | - Natalie Strand
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Karina Gritsenko
- Department of Anesthesiology, Montefiore Medical Center, Bronx, NY, USA
| | - Jill A Osborn
- St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Ivano Dones
- Department of Neurosurgery, Istituto Nazionale Neurologico "C Besta" of Milan, Milan, Italy
| | - Anjum Bux
- Anesthesia and Chronic Pain Management, Ephraim McDowell Regional Medical Center, Danville, KY, USA
| | - Jay M Shah
- SamWell Institute for Pain Management, Colonia, NJ, USA
| | - Brad L Lindsey
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Erik Shaw
- Shepherd Pain and Spine Institute, Atlanta, GA, USA
| | - Tony L Yaksh
- Anesthesiology and Pharmacology, University of California, San Diego, CA, USA
| | - Robert M Levy
- Neurosurgical Services, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| |
Collapse
|
3
|
Deer TR, Hayek SM, Grider JS, Pope JE, Brogan SE, Gulati A, Hagedorn JM, Strand N, Hah J, Yaksh TL, Staats PS, Perruchoud C, Knezevic NN, Wallace MS, Pilitsis JG, Lamer TJ, Buchser E, Varshney V, Osborn J, Goel V, Simpson BA, Lopez JA, Dupoiron D, Saulino MF, McDowell GC, Piedimonte F, Levy RM. The Polyanalgesic Consensus Conference (PACC)®: Updates on Clinical Pharmacology and Comorbidity Management in Intrathecal Drug Delivery for Cancer Pain. Neuromodulation 2024:S1094-7159(24)00670-6. [PMID: 39297833 DOI: 10.1016/j.neurom.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/29/2024]
Abstract
INTRODUCTION The International Neuromodulation Society convened a multispecialty group of physicians based on expertise with international representation to establish evidence-based guidance on using intrathecal drug delivery in chronic pain treatment. This Polyanalgesic Consensus Conference (PACC)® project's scope is to provide evidence-based guidance for clinical pharmacology and best practices for intrathecal drug delivery for cancer pain. MATERIALS AND METHODS Authors were chosen on the basis of their clinical expertise, familiarity with the peer-reviewed literature, research productivity, and contributions to the neuromodulation literature. Section leaders supervised literature searches using Medline, EMBASE, Cochrane CENTRAL, BioMed Central, Web of Science, Google Scholar, PubMed, Current Contents Connect, Meeting Abstracts, and Scopus from 2017 (when the PACC last published guidelines) to the present. Identified studies were graded using the United States Preventive Services Task Force criteria for evidence and certainty of net benefit. Recommendations were based on the strength of evidence, and when evidence was scant, recommendations were based on expert consensus. RESULTS The PACC evaluated the published literature and established evidence- and consensus-based expert opinion recommendations to guide best practices in treating cancer pain. Additional guidance will occur as new evidence is developed in future iterations of this process. CONCLUSIONS The PACC recommends best practices regarding the use of intrathecal drug delivery in cancer pain, with an emphasis on managing the unique disease and patient characteristics encountered in oncology. These evidence- and consensus-based expert opinion recommendations should be used as a guide to assist decision-making when clinically appropriate.
Collapse
Affiliation(s)
- Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA.
| | - Salim M Hayek
- Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Jay S Grider
- UKHealthCare Pain Services, Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Shane E Brogan
- Department of Anesthesiology, Division of Pain Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Amitabh Gulati
- Department of Anesthesiology and Critical Care, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Natalie Strand
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Jennifer Hah
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Palo Alto, CA, USA
| | - Tony L Yaksh
- Anesthesiology and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Peter S Staats
- ElectroCore, Rockaway, NJ, USA; National Spine and Pain Centers, Rockville, MD, USA
| | | | - Nebojsa Nick Knezevic
- Department of Anesthesiology and Surgery at University of Illinois, Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Mark S Wallace
- Division of Pain Management, Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
| | - Julie G Pilitsis
- Department of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Tim J Lamer
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric Buchser
- Department of Anaesthesia and Pain Management, Neuromodulation Centre, Morges, Switzerland
| | - Vishal Varshney
- Providence Health Care, University of British Columbia, British Columbia, Canada
| | - Jill Osborn
- Department of Anesthesiology, Providence Health Care, Vancouver, British Columbia, Canada
| | - Vasudha Goel
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, USA
| | - Brian A Simpson
- Department of Neurosurgery, Cardiff and Vale University Health Board, Cardiff, UK
| | - Jose A Lopez
- Service of Neurosurgery and Pain Clinic, University Hospital "Puerta del Mar," Cadiz, Spain
| | - Denis Dupoiron
- Department of Anesthesiology and Pain Medicine, Institut de Cancerologie de L'Ouset, Angers, France
| | | | | | - Fabian Piedimonte
- Fundaciόn CENIT, University of Buenos Aires, Buenos Aires, Argentina
| | - Robert M Levy
- International Neuromodulation Society and Director of Neurosurgical Services, Director of Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| |
Collapse
|
4
|
Wegeberg AM, Sejersgaard-Jacobsen TH, Brock C, Drewes AM. Prediction of pain using electrocardiographic-derived autonomic measures: A systematic review. Eur J Pain 2024; 28:199-213. [PMID: 37655709 DOI: 10.1002/ejp.2175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Pain is a major clinical challenge, and understanding the pathophysiology is critical for optimal management. The autonomic nervous system reacts to pain stimuli, and autonomic dysfunction may predict pain sensation. The most used assessment of autonomic function is based on electrocardiographic measures, and the ability of such measures to predict pain was investigated. DATABASES AND DATA TREATMENT English articles indexed in PubMed and EMBASE were reviewed for eligibility and included when they reported electrocardiographic-derived measures' ability to predict pain response. The quality in prognostic studies (QUIPS) tool was used to assess the quality of the included articles. RESULTS The search revealed 15 publications, five on experimental pain, five on postoperative pain, and five on longitudinal clinical pain changes, investigating a total of 1069 patients. All studies used electrocardiographically derived parameters to predict pain assessed with pain thresholds using quantitative sensory testing or different scales. Across all study modalities, electrocardiographic measures were able to predict pain. Higher parasympathetic activity predicted decreased experimental, postoperative, and long-term pain in most cases while changes in sympathetic activity did not consistently predict pain. CONCLUSIONS Most studies demonstrated that parasympathetic activity could predict acute and chronic pain intensity. In the clinic, this may be used to identify which patients need more intensive care to prevent, for example postoperative pain and develop personalized chronic pain management. SIGNIFICANCE Pain is a debilitating problem, and the ability to predict occurrence and severity would be a useful clinical tool. Basal autonomic tone has been suggested to influence pain perception. This systematic review investigated electrocardiographic-derived autonomic tone and found that increased parasympathetic tone could predict pain reduction in different types of pain.
Collapse
Affiliation(s)
- Anne-Marie Wegeberg
- Thisted Research Unit, Aalborg University Hospital Thisted, Thisted, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Christina Brock
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Thisted Research Unit, Aalborg University Hospital Thisted, Thisted, Denmark
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| |
Collapse
|
5
|
Hunt MA, Hunt SAC, Edinger K, Steinauer J, Yaksh TL. Refinement of intrathecal catheter design to enhance neuraxial distribution. J Neurosci Methods 2024; 402:110006. [PMID: 37967672 DOI: 10.1016/j.jneumeth.2023.110006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Delivery of therapeutics via indwelling intrathecal catheters is highly efficacious for targeting of pain, spasticity, neuraxial cancer and neurodegenerative disorders. However, current catheter designs have some major limitations. Given limited CSF flow, fixed intrathecal volume and the large distance of the rostro-caudal spinal axis, current intrathecal delivery routes fail to achieve adequate drug distribution. Additionally open catheter systems are plagued with cellular ingrowth and debris accumulation if used intermittently. NEW METHOD RESULTS/COMPARISON WITH EXISTING METHOD(S): High speed imaging showed micro-valve catheters greatly increase fluid exit velocities compared to typical open-ended catheters, which prevents pooling of injectate proximal to the opening. When implanted intrathecally in rats, small injection volumes (7.5 μL) of dye or AAV9-RFP, resulted in an even rostro-caudal distribution along the spinal axis and robust transfection of neurons from cervical to lumbar dorsal root ganglia. In contrast, such injections with an open-ended catheter resulted in localized distribution and transfection proximal to the delivery site. Our poly micro-valve catheter design resulted in equivalent transfection rates of cervical DRG neurons using 100x lower titer of AAV9-RFP. Unlike open port catheters, no debris accumulation was observed in the lumen of implanted catheters, showing potential for long-term intermittent use. CONCLUSIONS This catheter platform, suitable for small animal models is easily scalable for human use and addresses many of the problems observed with common catheter systems.
Collapse
Affiliation(s)
- Matthew A Hunt
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, 9500, Gilman Drive, La Jolla, CA 92093, United States; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Sara A C Hunt
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, 9500, Gilman Drive, La Jolla, CA 92093, United States; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Kelly Edinger
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, 9500, Gilman Drive, La Jolla, CA 92093, United States; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Joanne Steinauer
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, 9500, Gilman Drive, La Jolla, CA 92093, United States; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Tony L Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, 9500, Gilman Drive, La Jolla, CA 92093, United States; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
6
|
Melin E, Pripp AH, Eide PK, Ringstad G. In vivo distribution of cerebrospinal fluid tracer in human upper spinal cord and brain stem. JCI Insight 2023; 8:e173276. [PMID: 38063195 PMCID: PMC10795833 DOI: 10.1172/jci.insight.173276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUNDIntrathecal injection is an attractive route through which drugs can be administered and directed to the spinal cord, restricted by the blood-spinal cord barrier. However, in vivo data on the distribution of cerebrospinal fluid (CSF) substances in the human spinal cord are lacking. We conducted this study to assess the enrichment of a CSF tracer in the upper cervical spinal cord and the brain stem.METHODSAfter lumbar intrathecal injection of a magnetic resonance imaging (MRI) contrast agent, gadobutrol, repeated blood samples and MRI of the upper cervical spinal cord, brain stem, and adjacent subarachnoid spaces (SAS) were obtained through 48 hours. The MRI scans were then analyzed for tracer distribution in the different regions and correlated to age, disease, and amounts of tracer in the blood to determine CSF-to-blood clearance.RESULTSThe study included 26 reference individuals and 35 patients with the dementia subtype idiopathic normal pressure hydrocephalus (iNPH). The tracer enriched all analyzed regions. Moreover, tracer enrichment in parenchyma was associated with tracer enrichment in the adjacent SAS and with CSF-to-blood clearance. Clearance from the CSF was delayed in patients with iNPH compared with younger reference patients.CONCLUSIONA CSF tracer substance administered to the lumbar thecal sac can access the parenchyma of the upper cervical spinal cord and brain stem. Since CSF-to-blood clearance is highly individual and is associated with tracer level in CSF, clearance assessment may be used to tailor intrathecal treatment regimes.FUNDINGSouth-Eastern Norway Regional Health and Østfold Hospital Trust supported the research and publication of this work.
Collapse
Affiliation(s)
- Erik Melin
- Department of Radiology, Østfold Hospital Trust, Grålum, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo, Norway
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery and
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
7
|
Yaksh TL, Santos GGD, Borges Paes Lemes J, Malange K. Neuraxial drug delivery in pain management: An overview of past, present, and future. Best Pract Res Clin Anaesthesiol 2023; 37:243-265. [PMID: 37321769 DOI: 10.1016/j.bpa.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Activation of neuraxial nociceptive linkages leads to a high level of encoding of the message that is transmitted to the brain and that can initiate a pain state with its attendant emotive covariates. As we review here, the encoding of this message is subject to a profound regulation by pharmacological targeting of dorsal root ganglion and dorsal horn systems. Though first shown with the robust and selective modulation by spinal opiates, subsequent work has revealed the pharmacological and biological complexity of these neuraxial systems and points to several regulatory targets. Novel therapeutic delivery platforms, such as viral transfection, antisense and targeted neurotoxins, point to disease-modifying approaches that can selectively address the acute and chronic pain phenotype. Further developments are called for in delivery devices to enhance local distribution and to minimize concentration gradients, as frequently occurs with the poorly mixed intrathecal space. The field has advanced remarkably since the mid-1970s, but these advances must always address the issues of safety and tolerability of neuraxial therapy.
Collapse
Affiliation(s)
- Tony L Yaksh
- Department of Anesthesiology University of California, San Diego, San Diego CA, 92103, USA.
| | | | | | - Kaue Malange
- Department of Anesthesiology University of California, San Diego, San Diego CA, 92103, USA
| |
Collapse
|
8
|
Monaco F, Coluccia S, Cuomo A, Nocerino D, Schiavo D, Pasta G, Bifulco F, Buonanno P, Riccio V, Leonardi M, Perri F, Ottaiano A, Sabbatino F, Vittori A, Cascella M. Bibliometric and Visual Analysis of the Scientific Literature on Percutaneous Electrical Nerve Stimulation (PENS) for Pain Treatment. APPLIED SCIENCES 2023; 13:636. [DOI: 10.3390/app13010636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background: Percutaneous electrical nerve stimulation (PENS) is a minimally invasive peripheral neuromodulation approach implemented against chronic neuropathic and mixed pain. This bibliometric study aims to quantitatively evaluate the output of PENS for pain treatment in the scientific literature. The main purpose is to stimulate research in the field and bridge potential scientific gaps. Methods: Articles were retrieved from the Web of Science (WOS) database. The search key term was “percutaneous electrical nerve stimulation (All Fields) and pain (All Fields)”. Year of publication, journal metrics (impact factor and quartile, Q), title, document type, topic, and citations were extracted. The join-point regression was implemented to assess differences in time points for the publication output. The software tool VOSviewer (version 1.6.17) was used for the visual analysis. Results: One thousand three hundred and eighteen articles were included in the knowledge visualization process. A linear upward trend for annual new publications was found. Almost two-thirds of the documents were published in top-ranked journals (Q1 and Q2). The topic “efficacy” was prevalent (12.81%). Concerning article type, the search strategy yielded 307 clinical investigations (23.3%). Articles were cited 36,610 times with a mean of 42.4 citations per article. Approximately one-half of the articles were cited less than 23 times in a range of 21 years. The semantic network analysis for keywords found eight clusters. The analysis of collaborative efforts among researchers showed five thematic clusters including 102 authors with a minimum of five documents produced in collaborations. Most partnerships involved the United States, England, and Germany. Conclusions: despite the upward trend in the number of publications on the subject and the publication of articles in top-ranked journals, there is a need to increase scientific collaborations between researchers and institutions from different countries.
Collapse
|
9
|
López-Córdoba G, Martínez-Lorenzana G, Lozano-Cuenca J, Condés-Lara M, González-Hernández A. The differential in vivo contribution of spinal α 2A- and α 2C-adrenoceptors in tonic and acute evoked nociception in the rat. Front Pharmacol 2022; 13:1023611. [PMID: 36506544 PMCID: PMC9727263 DOI: 10.3389/fphar.2022.1023611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Spinal α2-adrenoceptor induces analgesia by neuronal inhibition of primary afferent fibers. This family receptor coupled to G i/o proteins can be subdivided into three functional subtypes: α2A, α2B, and α2C-adrenoceptors, and current evidence on spinal analgesia supports the relevance of α2A and seems to exclude the role of α2B, but the functional contribution of α2C-adrenoceptors remains elusive. The present study was designed to pharmacologically dissect the contribution of spinal α2-adrenoceptor subtypes modulating tonic or acute peripheral nociception. Using male Wistar rats, we analyzed the effect of spinal clonidine (a non-selective α2A/α2B/α2C-adrenoceptor agonist) and/or selective subtype α2-adrenoceptor antagonists on: 1) tonic nociception induced by subcutaneous formalin (flinching behavior) or 2) acute nociception induced by peripheral electrical stimulus in in vivo extracellular recordings of spinal dorsal horn second-order wide dynamic range (WDR) neurons. Clonidine inhibited the nocifensive behavior induced by formalin, an effect blocked by BRL 44408 (α2A-adrenoceptor antagonist) but not by imiloxan (α2B-adrenoceptor antagonist) or JP 1302 (α2C-adrenoceptor antagonist). Similarly, spinal BRL 44408 reversed the clonidine-induced inhibition of nociceptive WDR activity. Interestingly, spinal JP 1302 per se produced behavioral antinociception (an effect blocked by bicuculline, a preferent GABAA channel blocker), but no correlation was found with the electrophysiological experiments. These data imply that, at the spinal level, 1) presynaptic α2A-adrenoceptor activation produces antinociception during acute or tonic nociceptive stimuli; and 2) under tonic nociceptive (inflammatory) input, spinal α2C-adrenoceptors are pronociceptive, probably by the inactivation of GABAergic transmission. This result supports a differential role of α2A and α2C-adrenoceptors modulating nociception.
Collapse
Affiliation(s)
- Gustavo López-Córdoba
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Jair Lozano-Cuenca
- Departamento de Biología Celular, Secretaría de Salud, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Abimael González-Hernández
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico,*Correspondence: Abimael González-Hernández,
| |
Collapse
|
10
|
The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022; 21:763-779. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.
Collapse
|
11
|
De Andres J, Hayek S, Perruchoud C, Lawrence MM, Reina MA, De Andres-Serrano C, Rubio-Haro R, Hunt M, Yaksh TL. Intrathecal Drug Delivery: Advances and Applications in the Management of Chronic Pain Patient. FRONTIERS IN PAIN RESEARCH 2022; 3:900566. [PMID: 35782225 PMCID: PMC9246706 DOI: 10.3389/fpain.2022.900566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in our understanding of the biology of spinal systems in organizing and defining the content of exteroceptive information upon which higher centers define the state of the organism and its role in the regulation of somatic and automatic output, defining the motor response of the organism, along with the unique biology and spatial organization of this space, have resulted in an increased focus on therapeutics targeted at this extracranial neuraxial space. Intrathecal (IT) drug delivery systems (IDDS) are well-established as an effective therapeutic approach to patients with chronic non-malignant or malignant pain and as a tool for management of patients with severe spasticity and to deliver therapeutics that address a myriad of spinal pathologies. The risk to benefit ratio of IDD makes it a useful interventional approach. While not without risks, this approach has a significant therapeutic safety margin when employed using drugs with a validated safety profile and by skilled practioners. The present review addresses current advances in our understanding of the biology and dynamics of the intrathecal space, therapeutic platforms, novel therapeutics, delivery technology, issues of safety and rational implementation of its therapy, with a particular emphasis upon the management of pain.
Collapse
Affiliation(s)
- Jose De Andres
- Surgical Specialties Department, Valencia University Medical School, Valencia, Spain
- Anesthesia Critical Care and Pain Management Department, Valencia, Spain
- *Correspondence: Jose De Andres
| | - Salim Hayek
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christophe Perruchoud
- Pain Center and Department of Anesthesia, La Tour Hospital, Geneva, Switzerland
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melinda M. Lawrence
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Miguel Angel Reina
- Department of Anesthesiology, Montepríncipe University Hospital, Madrid, Spain
- CEU-San-Pablo University School of Medicine, Madrid, Spain
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
- Facultad de Ciencias de la Salud Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Ruben Rubio-Haro
- Anesthesia and Pain Management Department, Provincial Hospital, Castellon, Spain
- Multidisciplinary Pain Clinic, Vithas Virgen del Consuelo Hospital, Valencia, Spain
| | - Mathew Hunt
- Department of Physiology, Karolinska Institute, Stockholm, Sweden
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
12
|
Shinu P, Morsy MA, Nair AB, Mouslem AKA, Venugopala KN, Goyal M, Bansal M, Jacob S, Deb PK. Novel Therapies for the Treatment of Neuropathic Pain: Potential and Pitfalls. J Clin Med 2022; 11:3002. [PMID: 35683390 PMCID: PMC9181614 DOI: 10.3390/jcm11113002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain affects more than one million people across the globe. The quality of life of people suffering from neuropathic pain has been considerably declining due to the unavailability of appropriate therapeutics. Currently, available treatment options can only treat patients symptomatically, but they are associated with severe adverse side effects and the development of tolerance over prolonged use. In the past decade, researchers were able to gain a better understanding of the mechanisms involved in neuropathic pain; thus, continuous efforts are evident, aiming to develop novel interventions with better efficacy instead of symptomatic treatment. The current review discusses the latest interventional strategies used in the treatment and management of neuropathic pain. This review also provides insights into the present scenario of pain research, particularly various interventional techniques such as spinal cord stimulation, steroid injection, neural blockade, transcranial/epidural stimulation, deep brain stimulation, percutaneous electrical nerve stimulation, neuroablative procedures, opto/chemogenetics, gene therapy, etc. In a nutshell, most of the above techniques are at preclinical stage and facing difficulty in translation to clinical studies due to the non-availability of appropriate methodologies. Therefore, continuing research on these interventional strategies may help in the development of promising novel therapies that can improve the quality of life of patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| |
Collapse
|
13
|
Ling HQ, Chen ZH, He L, Feng F, Weng CG, Cheng SJ, Rong LM, Xie PG. Comparative Efficacy and Safety of 11 Drugs as Therapies for Adults With Neuropathic Pain After Spinal Cord Injury: A Bayesian Network Analysis Based on 20 Randomized Controlled Trials. Front Neurol 2022; 13:818522. [PMID: 35386408 PMCID: PMC8977449 DOI: 10.3389/fneur.2022.818522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Objective To provide an updated analysis of the efficacy and safety of drugs for the management of neuropathic pain (NP) after spinal cord injury (SCI) based on Bayesian network analysis. Methods A Bayesian network meta-analysis of literature searches within PubMed, Cochrane Library, Embase, and Web of Science databases from their inception to February 21 2021 was conducted without language restrictions. Paired and network meta-analyses of random effects were used to estimate the total standardized mean deviations (SMDs) and odds ratios (ORs). Results A total of 1,133 citations were identified and 20 RCTs (including 1,198 patients) involving 11 drugs and placebos for post-SCI NP selected. The 5 outcomes from all 11 drugs and placebos had no inconsistencies after Bayesian network analysis. BTX-A gave the most effective pain relief for the 4 weeks, following a primary outcome. No significant differences were found among drugs with regard to adverse events of the primary outcome. Gabapentin, BTX-A, and pregabalin were found to be the most helpful in relieving secondary outcomes of mental or sleep-related symptoms with differences in SMDs, ranging from −0.63 to −0.86. Tramadol triggered more serious adverse events than any of the other drugs with differences in ORs ranging from 0.09 to 0.11. Conclusion BTX-A, gabapentin, pregabalin, amitriptyline, ketamine, lamotrigine, and duloxetine were all effective for NP management following SCI. Lamotrigine and gabapentin caused fewer side effects and had better efficacy in relieving mental or sleep-related symptoms caused by SCI-related NP. Tramadol, levetiracetam, carbamazepine, and cannabinoids could not be recommended due to inferior safety or efficacy. Systematic Review Registration [https://inplasy.com/inplasy-2020-7-0061/], identifier [INPLASY202070061].
Collapse
Affiliation(s)
- Hai-Qian Ling
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.,Department of Orthopedics, Longgang Orthopedics Hospital of Shenzhen, Shenzhen, China
| | - Zi-Hao Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Lei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Feng Feng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Chuang-Gui Weng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Si-Jin Cheng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Li-Min Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Pei-Gen Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| |
Collapse
|
14
|
Blomqvist KJ, Skogster MOB, Kurkela MJ, Rosenholm MP, Ahlström FHG, Airavaara MT, Backman JT, Rauhala PV, Kalso EA, Lilius TO. Systemic hypertonic saline enhances glymphatic spinal cord delivery of lumbar intrathecal morphine. J Control Release 2022; 344:214-224. [PMID: 35301056 DOI: 10.1016/j.jconrel.2022.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier significantly limits effective drug delivery to central nervous system (CNS) targets. The recently characterized glymphatic system offers a perivascular highway for intrathecally (i.t.) administered drugs to reach deep brain structures. Although periarterial cerebrospinal fluid (CSF) influx and concomitant brain drug delivery can be enhanced by pharmacological or hyperosmotic interventions, their effects on drug delivery to the spinal cord, an important target for many drugs, have not been addressed. Hence, we studied in rats whether enhancement of periarterial flow by systemic hypertonic solution might be utilized to enhance spinal delivery and efficacy of i.t. morphine. We also studied whether the hyperosmolar intervention affects brain or cerebrospinal fluid drug concentrations after systemic administration. Periarterial CSF influx was enhanced by intraperitoneal injection of hypertonic saline (HTS, 5.8%, 20 ml/kg, 40 mOsm/kg). The antinociceptive effects of morphine were characterized, using tail flick, hot plate and paw pressure tests. Drug concentrations in serum, tissue and microdialysis samples were determined by liquid chromatography-tandem mass spectrometry. Compared with isotonic solution, HTS increased concentrations of spinal i.t. administered morphine by 240% at the administration level (T13-L1) at 60 min and increased the antinociceptive effect of morphine in tail flick, hot plate, and paw pressure tests. HTS also independently increased hot plate and paw pressure latencies but had no effect in the tail flick test. HTS transiently increased the penetration of intravenous morphine into the lateral ventricle, but not into the hippocampus. In conclusion, acute systemic hyperosmolality is a promising intervention for enhanced spinal delivery of i.t. administered morphine. The relevance of this intervention should be expanded to other i.t. drugs and brought to clinical trials.
Collapse
Affiliation(s)
- Kim J Blomqvist
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Moritz O B Skogster
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mika J Kurkela
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marko P Rosenholm
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik H G Ahlström
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko T Airavaara
- Faculty of Pharmacy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Janne T Backman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pekka V Rauhala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eija A Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Finland; SleepWell Research Programme, Faculty of Medicine, University of Helsinki, Finland
| | - Tuomas O Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Comparison of bromazepam and ibuprofen influence on tooth pulp-evoked potentials in humans. SRP ARK CELOK LEK 2022. [DOI: 10.2298/sarh220131047v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction/Objective Somatosensory evoked potentials are a
neurophysiological tool for testing the effects of drugs in humans and
animals. The aim of this study was to estimate the way that bromazepam and
ibuprofen had on tooth pulp-evoked potentials (TPEPs) after non-painful
stimuli, as well as to detect possible differences in this activity.
Methods Sixty young healthy subjects were included in the study. They were
arranged into three groups: ibuprofen, bromazepam and placebo. To record
TPEPs response, dental pulp was electrically stimulated through intact
enamel with non-painful stimuli. For stimulation and registration, we used
Xltek Protektor 32 system, software EPWorks, version 5.0. The experiment
consisted of two testing sessions. Five recordings were performed in each
session. The first test session was before, and the second was 45 minutes
after administration of a single dose of the ibuprofen (400 mg), bromazepam
(1.5 mg) or placebo. Results The results of the present study exhibit that
both ibuprofen and bromazepam significantly increased all the latencies;
ibuprofen decreased amplitudes of all the waves except the first one (p <
0.05), and bromazepam decreased amplitudes of all the waves except the first
one (p < 0.05); placebo did not modified TPEPs waves (p > 0.05).
Additionally, there were no significant differences in influence on TPEPs
between bromazepam and ibuprofen (p > 0.05). Conclusion Our study showed
that both bromazepam and ibuprofen had the same influence on TPEPs after
non-painful stimuli. That indicates that anxiolytic dose of bromazepam
affects neurotransmission in the same manner as non-opioid analgesics
ibuprofen.
Collapse
|
16
|
Abstract
Neuraxial drug administration, i.e., the injection of drugs into the epidural or intrathecal space to produce anesthesia or analgesia, is a technique developed more than 120 years ago. Today, it still is widely used in daily practice in anesthesiology and in acute and chronic pain therapy. A multitude of different drugs have been introduced for neuraxial injection, only a part of which have obtained official approval for that indication. A broad understanding of the pharmacology of those agents is essential to the clinician to utilize them in a safe and efficient manner. In the present narrative review, we summarize current knowledge on neuraxial anatomy relevant to clinical practice, including pediatric anatomy. Then, we delineate the general pharmacology of neuraxial drug administration, with particular attention to specific aspects of epidural and intrathecal pharmacokinetics and pharmacodynamics. Furthermore, we describe the most common clinical indications for neuraxial drug administration, including the perioperative setting, obstetrics, and chronic pain. Then, we discuss possible neurotoxic effects of neuraxial drugs, and moreover, we detail the specific properties of the most commonly used neuraxial drugs that are relevant to clinicians who employ epidural or intrathecal drug administration, in order to ensure adequate treatment and patient safety in these techniques. Finally, we give a brief overview on new developments in neuraxial drug therapy.
Collapse
|
17
|
Lukacova N, Kisucka A, Kiss Bimbova K, Bacova M, Ileninova M, Kuruc T, Galik J. Glial-Neuronal Interactions in Pathogenesis and Treatment of Spinal Cord Injury. Int J Mol Sci 2021; 22:13577. [PMID: 34948371 PMCID: PMC8708227 DOI: 10.3390/ijms222413577] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic spinal cord injury (SCI) elicits an acute inflammatory response which comprises numerous cell populations. It is driven by the immediate response of macrophages and microglia, which triggers activation of genes responsible for the dysregulated microenvironment within the lesion site and in the spinal cord parenchyma immediately adjacent to the lesion. Recently published data indicate that microglia induces astrocyte activation and determines the fate of astrocytes. Conversely, astrocytes have the potency to trigger microglial activation and control their cellular functions. Here we review current information about the release of diverse signaling molecules (pro-inflammatory vs. anti-inflammatory) in individual cell phenotypes (microglia, astrocytes, blood inflammatory cells) in acute and subacute SCI stages, and how they contribute to delayed neuronal death in the surrounding spinal cord tissue which is spared and functional but reactive. In addition, temporal correlation in progressive degeneration of neurons and astrocytes and their functional interactions after SCI are discussed. Finally, the review highlights the time-dependent transformation of reactive microglia and astrocytes into their neuroprotective phenotypes (M2a, M2c and A2) which are crucial for spontaneous post-SCI locomotor recovery. We also provide suggestions on how to modulate the inflammation and discuss key therapeutic approaches leading to better functional outcome after SCI.
Collapse
Affiliation(s)
- Nadezda Lukacova
- Institute of Neurobiology, Biomedical Research Centre, Slovak Academy of Sciences, Soltesovej 4–6, 040 01 Kosice, Slovakia; (A.K.); (K.K.B.); (M.B.); (M.I.); (T.K.); (J.G.)
| | | | | | | | | | | | | |
Collapse
|
18
|
Iadarola MJ, Brown DC, Nahama A, Sapio MR, Mannes AJ. Pain Treatment in the Companion Canine Model to Validate Rodent Results and Incentivize the Transition to Human Clinical Trials. Front Pharmacol 2021; 12:705743. [PMID: 34421597 PMCID: PMC8375595 DOI: 10.3389/fphar.2021.705743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
One of the biggest challenges for analgesic drug development is how to decide if a potential analgesic candidate will work in humans. What preclinical data are the most convincing, incentivizing and most predictive of success? Such a predicament is not unique to analgesics, and the pain field has certain advantages over drug development efforts in areas like neuropsychiatry where the etiological origins are either unknown or difficult to ascertain. For pain, the origin of the problem frequently is known, and the causative peripheral tissue insult might be observable. The main conundrum centers around evaluation of translational cell- and rodent-based results. While cell and rodent models are undeniably important first steps for screening, probing mechanism of action, and understanding factors of adsorption, distribution metabolism and excretion, two questions arise from such studies. First, are they reliable indicators of analgesic performance of a candidate drug in human acute and chronic pain? Second, what additional model systems might be capable of increasing translational confidence? We address this second question by assessing, primarily, the companion canine model, which can provide particularly strong predictive information for candidate analgesic agents in humans. This statement is mainly derived from our studies with resiniferatoxin (RTX) a potent TRPV1 agonist but also from protein therapeutics using a conjugate of Substance P and saporin. Our experience, to date, is that rodent models might be very well suited for acute pain translation, but companion canine models, and other large animal studies, can augment initial discovery research using rodent models for neuropathic or chronic pain. The larger animal models also provide strong translational predictive capacity for analgesic performance in humans, better predict dosing parameters for human trials and provide insight into behavior changes (bladder, bowel, mood, etc.) that are not readily assessed in laboratory animals. They are, however, not without problems that can be encountered with any experimental drug treatment or clinical trial. It also is important to recognize that pain treatment is a major veterinary concern and is an intrinsically worthwhile endeavor for animals as well as humans.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | | | | | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| |
Collapse
|
19
|
Leino T, Viitamaa T, Salonen JS, Pesonen U, Haapalinna A. Effects of fadolmidine, an α 2 -adrenoceptor agonist, as an adjuvant to spinal bupivacaine on antinociception and motor function in rats and dogs. Pharmacol Res Perspect 2021; 9:e00830. [PMID: 34302721 PMCID: PMC8308519 DOI: 10.1002/prp2.830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/06/2022] Open
Abstract
α2 -Adrenoceptor agonists such as clonidine and dexmedetomidine are used as adjuvants to local anesthetics in regional anesthesia. Fadolmidine is an α2 -adrenoceptor agonist developed especially as a spinal analgesic. The current studies investigate the effects of intrathecally administered fadolmidine with a local anesthetic, bupivacaine, on antinociception and motor block in conscious rats and dogs. The antinociceptive effects of intrathecal fadolmidine and bupivacaine alone or in combination were tested in the rat tail-flick and the dog's skin twitch models. The durations of motor block in rats and in dogs were also assessed. In addition, the effects on sedation, mean arterial blood pressure, heart rate, respiratory rate and body temperature were evaluated in telemetrized dogs. Concentrations of fadolmidine in plasma and spinal cord were determined after intrathecal and intravenous administration in rats. Co-administration of intrathecal fadolmidine with bupivacaine increased the magnitude and duration of the antinociceptive effects and prolonged motor block without hypotension. The interaction of the antinociceptive effect was synergistic in its nature in rats. Concentration of fadolmidine in plasma was very low after intrathecal dosing. Taken together, these studies show that fadolmidine as an adjuvant to intrathecal bupivacaine provides enhanced sensory-motor block and enables a reduction of the doses of both drugs. The results indicate that co-administration of fadolmidine with intrathecal bupivacaine was able to achieve an enhanced antinociceptive effect without hypotension and could thus represent a suitable combination for spinal anesthesia.
Collapse
Affiliation(s)
- Tiina Leino
- Orion Corporation Orion PharmaR&DTurkuFinland
| | | | | | - Ullamari Pesonen
- Integrative Physiology and Pharmacology Research UnitInstitute of BiomedicineFaculty of MedicineUniversity of TurkuTurkuFinland
| | | |
Collapse
|
20
|
D'Arcy Y, Mantyh P, Yaksh T, Donevan S, Hall J, Sadrarhami M, Viktrup L. Treating osteoarthritis pain: mechanisms of action of acetaminophen, nonsteroidal anti-inflammatory drugs, opioids, and nerve growth factor antibodies. Postgrad Med 2021; 133:879-894. [PMID: 34252357 DOI: 10.1080/00325481.2021.1949199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a common difficult-to-treat condition where the goal, in the absence of disease-modifying treatments, is to alleviate symptoms such as pain and loss of function. Acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs), and opioids are common pharmacologic treatments for OA. Antibodies directed against nerve growth factor (NGF-Abs) are a new class of agents under clinical investigation for the treatment of OA. This narrative review describes (and uses schematics to visualize) nociceptive signaling, chronification of pain, and the mechanisms of action (MOAs) of these different analgesics in the context of OA-related pain pathophysiology. Further, the varying levels of efficacy and safety of these agents observed in patients with OA is examined, based on an overview of published clinical data and/or treatment guidelines (when available), in the context of differences in their MOAs.
Collapse
Affiliation(s)
- Yvonne D'Arcy
- Independent Nurse Practitioner, Ponte Vedra Beach, FL, USA
| | - Patrick Mantyh
- Department of Pharmacology and Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Tony Yaksh
- Department of Anesthesiology and Pharmacology, University of California at San Diego, San Diego, CA, USA
| | | | - Jerry Hall
- Lilly Biomedicines, US/Global Medical Affairs, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Lars Viktrup
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
21
|
Pilitsis JG. Grand Challenges in Neuromodulatory Interventions. FRONTIERS IN PAIN RESEARCH 2021; 2:700552. [PMID: 35295459 PMCID: PMC8915660 DOI: 10.3389/fpain.2021.700552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 11/25/2022] Open
|
22
|
Yaksh TL. Frontiers in Pain Research: A Scope of Its Focus and Content. FRONTIERS IN PAIN RESEARCH 2020; 1:601528. [PMID: 35295691 PMCID: PMC8915630 DOI: 10.3389/fpain.2020.601528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
|
23
|
Role of neuraxial drug delivery in cancer pain therapy. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2019-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Opioids have long been the mainstay of cancer pain treatment and have been used without any consideration for their effect on cancer growth and long-term prognosis. There is now growing evidence that the continued use of opioids for this indication should be reviewed and even reconsidered. Although current evidence and literature covering this subject is mixed and does not yet allow for a clear determination to be made about safety, there is enough data to support the search for new treatment paradigms, beginning with anesthesia for oncologic surgery and management of cancer pain over the disease course.
Collapse
|
24
|
Scarpati G, Baldassarre D, Oliva F, Pascale G, Piazza O. Ionized or Total Magnesium levels, what should we measure in critical ill patients? Transl Med UniSa 2020; 23:68-76. [PMID: 34447718 PMCID: PMC8370522 DOI: 10.37825/2239-9747.1015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Monitoring and measuring magnesium (Mg) values are essential to prevent the development of numerous complications in perioperative medicine and critically ill patients. Although previous studies suggest that measuring free ionized magnesium (iMg) is more useful for estimating Mg status, clinicians currently rely on measurement of total serum magnesium to determine if supplemental magnesium is needed. In this review, we analyzed the recent literature to decide whether it is better to measure ionized serum Mg or total serum Mg when assessing magnesium status, whether iMg predicts clinical outcome, and what are the difficulties in measuring serum iMg levels in intensive care patients and perioperative medicine.
Collapse
|
25
|
Tangen K, Nestorov I, Verma A, Sullivan J, Holt RW, Linninger AA. In Vivo Intrathecal Tracer Dispersion in Cynomolgus Monkey Validates Wide Biodistribution Along Neuraxis. IEEE Trans Biomed Eng 2020; 67:1122-1132. [DOI: 10.1109/tbme.2019.2930451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Leino T, Yaksh T, Horais K, Haapalinna A. Pharmacodynamics of intrathecal and epidural fadolmidine, an α 2-adrenoceptor agonist, after bolus and infusion in dogs-comparison with clonidine. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1459-1473. [PMID: 32179953 DOI: 10.1007/s00210-020-01850-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/06/2020] [Indexed: 01/09/2023]
Abstract
An α2-adrenoceptor agonist, clonidine, is extensively used in both anesthesia and intensive care medicine. However, clonidine may produce pronounced hemodynamic side effects such as hypotension and bradycardia which may limit its usefulness in certain conditions. Fadolmidine is a potent α2-adrenoceptor agonist with different physicochemical properties than clonidine. Here, the effects of fadolmidine and clonidine on analgesia (an increase in thermal skin twitch response latency), sedation, blood pressure, heart rate, respiratory rate, and body temperature were evaluated either up to 8 h after either intrathecal or epidural bolus injections or during a 24-h continuous intrathecal infusion at equipotent analgesic doses in non-anesthetized Beagle dogs. Fadolmidine and clonidine produced a dose-dependent and equipotent maximal antinociception after intrathecal bolus injection (ED50: 67 μg and 78 μg, respectively), but the duration of action of fadolmidine was more long-lasting. During the intrathecal infusion, fadolmidine achieved a good analgesic effect without evoking cardiovascular side effects, e.g., hypotension; these were evident during clonidine infusion. Epidurally, the antinociceptive potency of fadolmidine was weaker (ED50: 128 μg) than when intrathecally administered and weaker than that of epidural clonidine (ED50: 51 μg). At analgesic doses, fadolmidine injection induced moderate initial hypertension concomitantly with a decrease in heart rate whereas clonidine evoked hypotension and bradycardia. These results suggest that especially when non-opioid long-term pain relief is needed, an intrathecal infusion of fadolmidine can provide long-term antinociception with less of the known use-limiting adverse effects associated with clonidine.
Collapse
Affiliation(s)
- Tiina Leino
- Research and Development, Orion Corporation Orion Pharma, P.O.Box 425, 20101, Turku, Finland.
| | - Tony Yaksh
- Department of Anesthesiology, University of California, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Kjersti Horais
- Department of Anesthesiology, University of California, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Antti Haapalinna
- Research and Development, Orion Corporation Orion Pharma, P.O.Box 425, 20101, Turku, Finland
| |
Collapse
|
27
|
Woller SA, Choi SH, An EJ, Low H, Schneider DA, Ramachandran R, Kim J, Bae YS, Sviridov D, Corr M, Yaksh TL, Miller YI. Inhibition of Neuroinflammation by AIBP: Spinal Effects upon Facilitated Pain States. Cell Rep 2019; 23:2667-2677. [PMID: 29847797 DOI: 10.1016/j.celrep.2018.04.110] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/02/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Apolipoprotein A-I binding protein (AIBP) reduces lipid raft abundance by augmenting the removal of excess cholesterol from the plasma membrane. Here, we report that AIBP prevents and reverses processes associated with neuroinflammatory-mediated spinal nociceptive processing. The mechanism involves AIBP binding to Toll-like receptor-4 (TLR4) and increased binding of AIBP to activated microglia, which mediates selective regulation of lipid rafts in inflammatory cells. AIBP-mediated lipid raft reductions downregulate LPS-induced TLR4 dimerization, inflammatory signaling, and expression of cytokines in microglia. In mice, intrathecal injections of AIBP reduce spinal myeloid cell lipid rafts, TLR4 dimerization, neuroinflammation, and glial activation. Intrathecal AIBP reverses established allodynia in mice in which pain states were induced by the chemotherapeutic cisplatin, intraplantar formalin, or intrathecal LPS, all of which are pro-nociceptive interventions known to be regulated by TLR4 signaling. These findings demonstrate a mechanism by which AIBP regulates neuroinflammation and suggest the therapeutic potential of AIBP in treating preexisting pain states.
Collapse
Affiliation(s)
- Sarah A Woller
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eun Jung An
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Hann Low
- Department of Lipoproteins and Atherosclerosis, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Dina A Schneider
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Roshni Ramachandran
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Dmitri Sviridov
- Department of Lipoproteins and Atherosclerosis, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Kokubu S, Eddinger KA, Nguyen TMD, Huerta-Esquivel LL, Yamaguchi S, Schiller PW, Yaksh TL. Characterization of the antinociceptive effects of intrathecal DALDA peptides following bolus intrathecal delivery. Scand J Pain 2019; 19:193-206. [PMID: 30367811 DOI: 10.1515/sjpain-2018-0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/19/2018] [Indexed: 12/25/2022]
Abstract
Background and aims We systematically characterized the potency and side effect profile of a series of small opioid peptides with high affinity for the mu opioid receptor. Methods Male Sprague Dawley rats were prepared with intrathecal (IT) catheters, assessed with hind paw thermal escape and evaluated for side effects including Straub tail, truncal rigidity, and pinnae and corneal reflexes. In these studies, DMT-DALDA (dDAL) (H-Dmt-D-Arg-Phe-Lys-NH2 MW=981), dDALc (H-Dmt-Cit-Phe-Lys-NH2 MW=868), dDALcn (H-Dmt-D-Cit-Phe-Nle-NH2 MW=739), TAPP (H-Tyr-D-Ala-Phe-Phe-NH2 MW=659), dDAL-TICP ([Dmt1]DALDA-(CH2)2-NH-TICP[psi]; MW=1519), and dDAL-TIPP (H-Dmt-D-Arg-Phe-Lys(Nε-TIPP)-NH2 were examined. In separate studies, the effects of approximately equiactive doses of IT DMT DALDA (10 pmol), morphine (30 nmol) and fentanyl (1 nmol) were examined on formalin-induced flinching at different pretreatment intervals (15 min - 24 h). Results (1) All agents resulted in a dose-dependent reversible effect upon motor function (Straub Tail>Truncal rigidity). (2) The ordering of analgesic activity (%MPE) at the highest dose lacking reliable motor signs after bolus delivery was: DMT-DALDA (80%±6/3 pmol); dDALc (75%±8/1 pmol); dDALcn (84%±10/300 pmol); TAPP (56%±12/10 nmol); dDAL-TICP (52%±27/300 pmol). (3) All analgesic effects were reversed by systemic (IP) naloxone (1 mg/kg). Naltrindole (3 mg/kg, IP) had no significant effect upon the maximum usable peptide dose. (4) Tolerance and cross-tolerance development after 5 daily boluses of DMT-DALDA (3 pmol) and morphine (30 nmol) revealed that both agents displayed a progressive decline over 5 days. (5) Cross-tolerance assessed at day 5 revealed a reduction in response to morphine in DMT-DALDA treated animal but not DMT-DALDA in the morphine treated animal, indicating an asymmetric cross-tolerance. (6) IT DMT-DALDA, morphine and fentanyl resulted in significant reductions in phase 1 and phase 2 flinching. With a 15 min pretreatment all drugs resulted in comparable reductions in flinching. However, at 6 h, the reduction in flinching after DMT-DALDA and morphine were comparably reduced while fentanyl was not different from vehicle. All effects on flinching were lost by 24 h. Conclusions These results emphasize the potent mu agonist properties of the DALDA peptidic structure series, their persistence similar to morphine and their propensity to produce tolerance. The asymmetric cross-tolerance between equiactive doses may reflect the relative intrinsic activity of morphine and DMT-DALDA. Implications These results suggest that the DALDA peptides with their potency and duration of action after intrathecal delivery suggest their potential utility for their further development as a spinal therapeutic to manage pain.
Collapse
Affiliation(s)
- Shinichi Kokubu
- Department of Anesthesiology, University of California, La Jolla, CA, USA.,Department of Anesthesiology, Dokkyo Medical University, Tochigi, Japan
| | - Kelly A Eddinger
- Department of Anesthesiology, University of California, La Jolla, CA, USA
| | - Thi M-D Nguyen
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, Canada
| | - Lena Libertad Huerta-Esquivel
- Department of Anesthesiology, University of California, La Jolla, CA, USA.,Université de Strasbourg, Alsacia, France.,Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Shigeki Yamaguchi
- Department of Anesthesiology, Dokkyo Medical University, Tochigi, Japan
| | - Peter W Schiller
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, Canada.,Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA, Phone: +(619) 543-3597, Fax: +(619) 543-6070
| |
Collapse
|
29
|
Yaksh TL, Eddinger KA, Kokubu S, Wang Z, DiNardo A, Ramachandran R, Zhu Y, He Y, Weren F, Quang D, Malkmus SA, Lansu K, Kroeze WK, Eliceiri B, Steinauer JJ, Schiller PW, Gmeiner P, Page LM, Hildebrand KR. Mast Cell Degranulation and Fibroblast Activation in the Morphine-induced Spinal Mass: Role of Mas-related G Protein-coupled Receptor Signaling. Anesthesiology 2019; 131:132-147. [PMID: 31225809 PMCID: PMC6590697 DOI: 10.1097/aln.0000000000002730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND As the meningeally derived, fibroblast-rich, mass-produced by intrathecal morphine infusion is not produced by all opiates, but reduced by mast cell stabilizers, the authors hypothesized a role for meningeal mast cell/fibroblast activation. Using the guinea pig, the authors asked: (1) Are intrathecal morphine masses blocked by opiate antagonism?; (2) Do opioid agonists not producing mast cell degranulation or fibroblast activation produce masses?; and (3) Do masses covary with Mas-related G protein-coupled receptor signaling thought to mediate mast cell degranulation? METHODS In adult male guinea pigs (N = 66), lumbar intrathecal catheters connected to osmotic minipumps (14 days; 0.5 µl/h) were placed to deliver saline or equianalgesic concentrations of morphine sulfate (33 nmol/h), 2',6'-dimethyl tyrosine-(Tyr-D-Arg-Phe-Lys-NH2) (abbreviated as DMT-DALDA; 10 pmol/h; μ agonist) or PZM21 (27 nmol/h; biased μ agonist). A second pump delivered subcutaneous naltrexone (25 µg/h) in some animals. After 14 to 16 days, animals were anesthetized and perfusion-fixed. Drug effects on degranulation of human cultured mast cells, mouse embryonic fibroblast activation/migration/collagen formation, and Mas-related G protein-coupled receptor activation (PRESTO-Tango assays) were determined. RESULTS Intrathecal infusion of morphine, DMT-DALDA or PZM21, but not saline, comparably increased thermal thresholds for 7 days. Spinal masses proximal to catheter tip, composed of fibroblast/collagen type I (median: interquartile range, 0 to 4 scale), were produced by morphine (2.3: 2.0 to 3.5) and morphine plus naltrexone (2.5: 1.4 to 3.1), but not vehicle (1.2: 1.1 to 1.5), DMT-DALDA (1.0: 0.6 to 1.3), or PZM21 (0.5: 0.4 to 0.8). Morphine in a naloxone-insensitive fashion, but not PZM21 or DMT-DALDA, resulted in mast cell degranulation and fibroblast proliferation/collagen formation. Morphine-induced fibroblast proliferation, as mast cell degranulation, is blocked by cromolyn. Mas-related G protein-coupled receptor activation was produced by morphine and TAN67 (∂-opioid agonist), but not by PZM21, TRV130 (mu biased ligand), or DMT-DALDA. CONCLUSIONS Opiates that activate Mas-related G protein-coupled receptor will degranulate mast cells, activate fibroblasts, and result in intrathecal mass formation. Results suggest a mechanistically rational path forward to safer intrathecal opioid therapeutics.
Collapse
Affiliation(s)
- Tony L Yaksh
- From the Laboratory of Anesthesiology Research, Department of Anesthesiology (T.L.Y., K.A.E., S.K., R.R., Y.Z., Y.H., F.W., D.Q., S.A.M., J.J.S.) Department of Dermatology (Z.W., A.D.) Division of Trauma, Department of Surgery (B.P.E.), University of California, San Diego, California the Department of Pharmacology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina (K.L., W.K.K) Montreal Clinical Research Institute and the Department of Pharmacology and Physiology, University of Montreal, Quebec, Canada (P.W.S.) Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nurnberg, Erlangen, Germany (P.G.) Implantables Research and Technology, Medtronic, Inc., Restorative Therapies Group, Minneapolis, Minnesota (L.M.P., K.R.H.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Hildebrand KR, Page LM, Billstrom TM, Steinauer JJ, Eddinger KA, Arjomand S, Yaksh TL. Characterization of Effect of Repeated Bolus or Continuous Intrathecal Infusion of Morphine on Spinal Mass Formation in the Dog. Neuromodulation 2019; 22:790-798. [PMID: 31124198 DOI: 10.1111/ner.12963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 03/21/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND We determined whether intrathecally delivering the same daily dose of morphine (MS) at a fixed concentration of 25 mg/mL by periodic boluses versus continuous infusion would reduce intrathecal mass (IMs) formation in dogs. METHODS Adult dogs (hound cross, n = 32) were implanted with intrathecal catheters connected to SynchroMed II infusion pumps. Animals were randomly assigned to receive infusion of 0.48 mL/day of saline or MS dosing (12 mg/day at 25 mg/mL) as boluses: x1 (q24hour), x2 (q12hour), x4 (q6hour), or x8 (q3hour) given at the rate of 1000 μL/hour, or as a continuous infusion (25 mg/mL/20 μL/hour). RESULTS With IT saline, minimal pathology was noted. In contrast, animals receiving morphine displayed spinally compressing durally derived masses with the maximal cross-sectional area being greatest near the catheter tip. Histopathology showed that IMs consisted of fibroblasts in a collagen (type 1) matrix comprised of newly formed collagen near the catheter and mature collagen on the periphery of the mass. The rank order of median cross-sectional mass area (mm2 ) was: Saline: 0.7 mm2 ; x2: 1.8 mm2 ; x4: 2.7 mm2 ; x1: 2.7 mm2 ; x8: 4.2 mm2 ; Continuous: 8.1 mm2 , with statistical difference from saline being seen with continuous (p < 0.0001) and x8 (p < 0.05). Bench studies with a 2D diffusion chamber confirmed an increase in dye distribution and lower peak concentrations after bolus delivery versus continuous infusion of dye. CONCLUSIONS Using multiple bolus dosing, IMs were reduced as compared to continuous infusion, suggesting relevance of bolus delivery in yielding reduced intrathecal masses.
Collapse
Affiliation(s)
- Keith R Hildebrand
- Medtronic, Restorative Therapies Group, Targeted Drug Delivery, Minneapolis, MN, USA
| | - Linda M Page
- Medtronic, Restorative Therapies Group, Targeted Drug Delivery, Minneapolis, MN, USA
| | - Tina M Billstrom
- Medtronic Physiological Research Laboratories, Coon Rapid, MN, USA
| | - Joanne J Steinauer
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Kelly A Eddinger
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Shervin Arjomand
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
Rigo FK, Bochi GV, Pereira AL, Adamante G, Ferro PR, Dal-Toé De Prá S, Milioli AM, Damiani AP, da Silveira Prestes G, Dalenogare DP, Chávez-Olórtegui C, Moraes de Andrade V, Machado-de-Ávila RA, Trevisan G. TsNTxP, a non-toxic protein from Tityus serrulatus scorpion venom, induces antinociceptive effects by suppressing glutamate release in mice. Eur J Pharmacol 2019; 855:65-74. [PMID: 31059709 DOI: 10.1016/j.ejphar.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023]
Abstract
Neuropathic pain is a common type of chronic pain caused by trauma or chemotherapy. However, this type of pain is undertreated. TsNTxP is a non-toxic protein isolated from the venom of the scorpion Tityus serrulatus, and it is structurally similar to neurotoxins that interact with voltage-gated sodium channels. However, the antinociceptive properties of this protein have not been characterized. The purpose of this study was to investigate the antinociceptive effects of TsNTxP in acute and neuropathic pain models. Male and female Swiss mice (25-30 g) were exposed to different models of acute pain (tail-flick test and nociception caused by capsaicin intraplantar injection) or neuropathic pain (chronic pain syndrome induced by paclitaxel or chronic constriction injury of the sciatic nerve). Hypersensitivity to mechanical or cold stimuli were evaluated in the models of neuropathic pain. The ability of TsNTxP to alter the release of glutamate in mouse spinal cord synaptosomes was also evaluated. The results showed that TsNTxP exerted antinociceptive effects in the tail-flick test to a thermal stimulus and in the intraplantar capsaicin administration model. Furthermore, TsNTxP was non-toxic and exerted antiallodynic effects in neuropathic pain models induced by chronic constriction injury of the sciatic nerve and administration of paclitaxel. TsNTxP reduced glutamate release from mouse spinal cord synaptosomes following stimulation with potassium chloride (KCl) or capsaicin. Thus, this T. serrulatus protein may be a promising non-toxic drug for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Flávia Karine Rigo
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Guilherme Vargas Bochi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Adriano Lana Pereira
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Gabriela Adamante
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Paula Ronsani Ferro
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Samira Dal-Toé De Prá
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Alessandra Marcone Milioli
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Adriani Paganini Damiani
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Gabriele da Silveira Prestes
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Diéssica Padilha Dalenogare
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Carlos Chávez-Olórtegui
- Department of Biochemistry and Immunology, Federal University of Minas Gerais State (UFMG), 31270-901, Belo Horizonte, MG, Brazil
| | - Vanessa Moraes de Andrade
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | | | - Gabriela Trevisan
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil; Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
33
|
|
34
|
Batista CM, Mariano ED, Onuchic F, Dale CS, dos Santos GB, Cristante AF, Otoch JP, Teixeira MJ, Morgalla M, Lepski G. Characterization of traumatic spinal cord injury model in relation to neuropathic pain in the rat. Somatosens Mot Res 2019; 36:14-23. [DOI: 10.1080/08990220.2018.1563537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chary Marquez Batista
- Department of Neurology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Eric Domingos Mariano
- Department of Neurology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Onuchic
- Department of Neurology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gustavo Bispo dos Santos
- Department of Orthopedic and Traumatology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre Fogaça Cristante
- Department of Orthopedic and Traumatology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Pinhata Otoch
- Department of Surgery, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | | | - Matthias Morgalla
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
| | - Guilherme Lepski
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
- Department of Psychiatry, School of Medicine, University de São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Development of New Analgesics: An Answer to Opioid Epidemic. Trends Pharmacol Sci 2019; 39:1000-1002. [PMID: 30454767 DOI: 10.1016/j.tips.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/05/2023]
Abstract
Management of pain is a fundamental imperative in medicine. Current analgesics suffer from limitations related to efficacy and adverse events of which abuse potential has assumed an important role. Here we highlight the factors that drive the development of novel analgesics and the advances made in the field.
Collapse
|
36
|
Batista CM, Mariano ED, Dale CS, Cristante AF, Britto LR, Otoch JP, Teixeira MJ, Morgalla M, Lepski G. Pain inhibition through transplantation of fetal neuronal progenitors into the injured spinal cord in rats. Neural Regen Res 2019; 14:2011-2019. [PMID: 31290460 PMCID: PMC6676883 DOI: 10.4103/1673-5374.259624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain after spinal cord injury (SCI) is a complex condition that responds poorly to usual treatments. Cell transplantation represents a promising therapy; nevertheless, the ideal cell type in terms of neurogenic potential and effectiveness against pain remains largely controversial. Here, we evaluated the ability of fetal neural stem cells (fNSC) to relieve chronic pain and, secondarily, their effects on motor recovery. Adult Wistar rats with traumatic SCI were treated, 10 days after injury, with intra-spinal injections of culture medium (sham) or fNSCs extracted from telencephalic vesicles (TV group) or the ventral medulla (VM group) of E/14 embryos. Sensory (von Frey filaments and hot plate) and motor (the Basso, Beattie, Bresnahan locomotor rating scale and inclined plane test) assessments were performed during 8 weeks. Thereafter, spinal cords were processed for immunofluorescence and transplanted cells were quantified by stereology. The results showed improvement of thermal hyperalgesia in the TV and VM groups at 4 and 5 weeks after transplantation, respectively. Moreover, mechanical allodynia improved in both the TV and VM groups at 8 weeks. No significant motor recovery was observed in the TV or VM groups compared with sham. Stereological analyses showed that ~70% of TV and VM cells differentiated into NeuN+ neurons, with a high proportion of enkephalinergic and GABAergic cells in the TV group and enkephalinergic and serotoninergic cells in the VM group. Our study suggests that neuronal precursors from TV and VM, once implanted into the injured spinal cord, maturate into different neuronal subtypes, mainly GABAergic, serotoninergic, and enkephalinergic, and all subtypes alleviate pain, despite no significant motor recovery. The study was approved by the Animal Ethics Committee of the Medical School of the University of São Paulo (protocol number 033/14) on March 4, 2016.
Collapse
Affiliation(s)
- Chary M Batista
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Eric D Mariano
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Camila S Dale
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alexandre F Cristante
- Department of Orthopedic and Traumatology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luiz R Britto
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jose P Otoch
- Department of Surgery, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Manoel J Teixeira
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matthias Morgalla
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
| | - Guilherme Lepski
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany; Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Bell RF, Kalso EA. Ketamine for pain management. Pain Rep 2018; 3:e674. [PMID: 30534625 PMCID: PMC6181464 DOI: 10.1097/pr9.0000000000000674] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is Available in the Text.
Collapse
Affiliation(s)
- Rae Frances Bell
- Regional Centre of Excellence in Palliative Care, Haukeland University Hospital, Bergen, Norway
| | - Eija Anneli Kalso
- Perioperative, Intensive Care and Pain Medicine, University of Helsinki and Pain Clinic, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
38
|
Maiarù M, Leese C, Certo M, Echeverria-Altuna I, Mangione AS, Arsenault J, Davletov B, Hunt SP. Selective neuronal silencing using synthetic botulinum molecules alleviates chronic pain in mice. Sci Transl Med 2018; 10:10/450/eaar7384. [DOI: 10.1126/scitranslmed.aar7384] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/20/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
|
39
|
Yezierski RP, Hansson P. Inflammatory and Neuropathic Pain From Bench to Bedside: What Went Wrong? THE JOURNAL OF PAIN 2018; 19:571-588. [DOI: 10.1016/j.jpain.2017.12.261] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
|
40
|
A Proposed Molecular Mechanism for Physical Analgesia in Chronic Pain. Neural Plast 2018; 2018:1260285. [PMID: 29887879 PMCID: PMC5985137 DOI: 10.1155/2018/1260285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Although pain is indispensable for survival, chronic pain places a heavy burden on humans. As the efficacy of opioid treatment is limited, the development of alternative methods of pain relief without medication is desirable. Recently, we have developed a novel method of physical analgesia using an adhesive “pyramidal thorn patch.” When we apply about 3 trials of these patches on the skin of a pain region, the pain region moves toward the spinal cord like a “cutaneous rabbit,” and finally, the pain vanishes. In the present review, we propose a molecular mechanism for this analgesic method or pain relief following application of the pyramidal thorn patch where firstly the mechanoreceptors and their related nerves under the skin are activated in response to touch. Transient receptor potential (TRP) channels serve as mechanosensitive channels within these mechanoreceptors. We further propose that activation of the nerves connected with the mechanoreceptors releases oxytocin, which has an antinociceptive function and activates TRP channels to hyperpolarize the pain signal nerves. We believe that our system will pave the way for alternative pain treatment.
Collapse
|
41
|
|
42
|
Emami A, Tepper J, Short B, Yaksh TL, Bendele AM, Ramani T, Cisternas AF, Chang JH, Mellon RD. Toxicology Evaluation of Drugs Administered via Uncommon Routes: Intranasal, Intraocular, Intrathecal/Intraspinal, and Intra-Articular. Int J Toxicol 2017; 37:4-27. [PMID: 29264927 DOI: 10.1177/1091581817741840] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As the need for nasal, ocular, spinal, and articular therapeutic compounds increases, toxicology assessments of drugs administered via these routes play an important role in human safety. This symposium outlined the local and systemic evaluation to support safety during the development of these drugs in nonclinical models with some case studies. Discussions included selection of appropriate species for the intended route; conducting nonclinical studies that closely mimic the intended use with adequate duration; functional assessment, if deemed necessary; evaluation of local tissues with special histological staining procedure; and evaluations of safety margins based on local and systemic toxicity.
Collapse
Affiliation(s)
- Armaghan Emami
- 1 US Food and Drug Administration, Silver Spring, MD, USA
| | - Jeff Tepper
- 2 Tepper Nonclinical Consulting, San Carlos, CA, USA
| | - Brian Short
- 3 Brian Short Consulting, LLC, Trabuco Canyon, CA, USA
| | - Tony L Yaksh
- 4 Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | - Jay H Chang
- 1 US Food and Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
43
|
Jergova S, Gordon CE, Gajavelli S, Sagen J. Experimental Gene Therapy with Serine-Histogranin and Endomorphin 1 for the Treatment of Chronic Neuropathic Pain. Front Mol Neurosci 2017; 10:406. [PMID: 29276474 PMCID: PMC5727090 DOI: 10.3389/fnmol.2017.00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
The insufficient pain relief provided by current pharmacotherapy for chronic neuropathic pain is a serious medical problem. The enhanced glutamate signaling via NMDA receptors appears to be one of the key events in the development of chronic pain. Although effective, clinical use of systemic NMDA antagonists is limited by adverse effects such as hallucinations and motor dysfunction. Opioids are also potent analgesics but their chronic use is accompanied by tolerance and risk of addiction. However, combination of NMDA antagonists and opioids seems to provide a stable pain relieve at subthreshold doses of both substances, eliminating development of side effects. Our previous research showed that combined delivery of NMDA antagonist Serine histrogranin (SHG) and endomorphin1 (EM1) leads to attenuation of acute and chronic pain. The aim of this study was to design and evaluate an analgesic potency of the gene construct encoding SHG and EM1. Constructs with 1SHG copy in combination with EM1, 1SHG/EM1, and 6SHG/EM1 were intraspinally injected to animals with peripheral nerve injury-induced pain (chronic constriction injury, CCI) or spinal cord injury induced pain (clip compression model, SCI) and tactile and cold allodynia were evaluated. AAV2/8 particles were used for gene delivery. The results demonstrated 6SHG/EM1 as the most efficient for alleviation of pain-related behavior. The effect was observed up to 8 weeks in SCI animals, suggesting the lack of tolerance of possible synergistic effect between SHG and EM1. Intrathecal injection of SHG antibody or naloxone attenuated the analgesic effect in treated animals. Biochemical and histochemical evaluation confirmed the presence of both peptides in the spinal tissue. The results of this study showed that the injection of AAV vectors encoding combined SHG/EM constructs can provide long term attenuation of pain without overt adverse side effects. This approach may provide better treatment options for patients suffering from chronic pain.
Collapse
Affiliation(s)
- Stanislava Jergova
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Catherine E Gordon
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Shyam Gajavelli
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jacqueline Sagen
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
44
|
Knezevic NN, Yekkirala A, Yaksh TL. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics. Anesth Analg 2017; 125:1714-1732. [PMID: 29049116 PMCID: PMC5679134 DOI: 10.1213/ane.0000000000002442] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- From the *Department of Anesthesiology, Advocate Illinois Masonic Medical Center Chicago, Illinois; Departments of †Anesthesiology and ‡Surgery, University of Illinois, Chicago, Illinois; §Department of Neurobiology, Harvard Medical School, and Boston Children's Hospital, Boston, Massachusetts; ‖Blue Therapeutics, Harvard Innovation Launch Lab, Allston, Massachusetts; and Departments of ¶Anesthesiology and #Pharmacology, University of California, San Diego, La Jolla, California
| | | | | |
Collapse
|
45
|
|
46
|
Duarte RV, Raphael JH, Eldabe S. Editorial (Thematic Selection: Spinal Neuropharmacological Agents for the Management of Pain). Curr Neuropharmacol 2017; 15:196-197. [PMID: 28125955 PMCID: PMC5412701 DOI: 10.2174/1570159x1502170104222844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rui V Duarte
- University of Birmingham Institute of Applied Health Research Room 124, Learning Centre Edgbaston, Birmingham West Midlands B15 2TT
| | | | | |
Collapse
|
47
|
van Tilburg CWJ. Intrathecal Analgesic Drug Delivery is Effective for Analgesia in a Patient with Post-Poliomyelitis Syndrome: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2016; 17:957-962. [PMID: 27980323 PMCID: PMC5191617 DOI: 10.12659/ajcr.901157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Patient: Female, 45 Final Diagnosis: Post-poliomyelitis syndrome Symptoms: Chronic pain Medication: Fentanyl • Oxycodone • Gabapentin • Naproxen • Paracetamol Clinical Procedure: Intrathecal analgesic drug delivery Specialty: Anesthesiology
Collapse
|