1
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
2
|
Yang J, Pu Z, Tao X, Liu J, Li K, Shi J, Qiao H, Fan X. Expression of KCNN4 in adult-type diffuse gliomas and its correlations with clinicopathological features and patient prognosis. Transl Oncol 2024; 44:101947. [PMID: 38555740 PMCID: PMC10998241 DOI: 10.1016/j.tranon.2024.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The KCa3.1 channel (KCNN4) is extensively investigated as an oncogene in human cancers. The current study aimed to explore the clinicopathological significance of KCNN4 expression in patients with primary adult-type diffuse gliomas. METHODS Demographic, RNA-seq, and follow-up data of 477 patients were retrospectively reviewed. Patients were divided into the experimental and validation groups (278 and 199). KCNN4-related genes were determined by Pearson correlation analysis, and enrichment analyses and tumor-infiltrating immune cell assessments were applied to explore the potential mechanisms of KCNN4 involving glioma progression. The Kaplan-Meier method and the Cox regression analysis were used to evaluate the prognostic value of KCNN4 expression. RESULTS KCNN4 showed significantly higher expression level in glioblastoma, IDH-wildtype, followed by astrocytoma, IDH-mutant and oligodendroglioma, IDH-mutant and 1p/19q-codeleted (p < 0.001). Enrichment analyses and tumor-infiltrating immune cell assessments suggested that KCNN4 could involve glioma progression through extracellular regulation, affecting immune response, and modulating subcellular trafficking. At last, the Kaplan-Meier analysis showed that high KCNN4 expression was significantly correlated with poor progression-free and overall survival (p < 0.001 for both). While multivariate Cox regression analysis obtained an insignificant result. CONCLUSIONS KCNN4 was identified to be overexpressed in glioma cells and its expression level is positively related to tumor malignancy. It potentially participates in glioma biology by affecting extracellular regulation, subcellular trafficking, and immune escape. Additionally, high KCNN4 expression was correlated with poor survival outcomes of patients. The results can shed new light on the mechanisms of glioma progression, and provide a potential therapeutic target for treating gliomas.
Collapse
Affiliation(s)
- Jun Yang
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Zhuonan Pu
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Xiaorong Tao
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Jiajia Liu
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Ke Li
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Jiawei Shi
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Hui Qiao
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China.
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China.
| |
Collapse
|
3
|
Stransky N, Ganser K, Quintanilla-Martinez L, Gonzalez-Menendez I, Naumann U, Eckert F, Koch P, Huber SM, Ruth P. Efficacy of combined tumor irradiation and K Ca3.1-targeting with TRAM-34 in a syngeneic glioma mouse model. Sci Rep 2023; 13:20604. [PMID: 37996600 PMCID: PMC10667541 DOI: 10.1038/s41598-023-47552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The intermediate-conductance calcium-activated potassium channel KCa3.1 has been proposed to be a new potential target for glioblastoma treatment. This study analyzed the effect of combined irradiation and KCa3.1-targeting with TRAM-34 in the syngeneic, immune-competent orthotopic SMA-560/VM/Dk glioma mouse model. Whereas neither irradiation nor TRAM-34 treatment alone meaningfully prolonged the survival of the animals, the combination significantly prolonged the survival of the mice. We found an irradiation-induced hyperinvasion of glioma cells into the brain, which was inhibited by concomitant TRAM-34 treatment. Interestingly, TRAM-34 did neither radiosensitize nor impair SMA-560's intrinsic migratory capacities in vitro. Exploratory findings hint at increased TGF-β1 signaling after irradiation. On top, we found a marginal upregulation of MMP9 mRNA, which was inhibited by TRAM-34. Last, infiltration of CD3+, CD8+ or FoxP3+ T cells was not impacted by either irradiation or KCa3.1 targeting and we found no evidence of adverse events of the combined treatment. We conclude that concomitant irradiation and TRAM-34 treatment is efficacious in this preclinical glioma model.
Collapse
Affiliation(s)
- Nicolai Stransky
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076, Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Ulrike Naumann
- Molecular Neurooncology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076, Tübingen, Germany
- Faculty of Medicine University, Gene and RNA Therapy Center (GRTC), Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University Vienna, AKH, Wien, Austria
| | - Pierre Koch
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Rashno Z, Rismani E, Ghasemi JB, Mansouri M, Shabani M, Afgar A, Dabiri S, Rezaei Makhouri F, Hatami A, Harandi MF. Design of ion channel blocking, toxin-like Kunitz inhibitor peptides from the tapeworm, Echinococcus granulosus, with potential anti-cancer activity. Sci Rep 2023; 13:11465. [PMID: 37454225 PMCID: PMC10349847 DOI: 10.1038/s41598-023-38159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Over-expression of K+ channels has been reported in human cancers and is associated with the poor prognosis of several malignancies. EAG1, a particular potassium ion channel, is widely expressed in the brain but poorly expressed in other normal tissues. Kunitz proteins are dominant in metazoan including the dog tapeworm, Echinococcus granulosus. Using computational analyses on one A-type potassium channel, EAG1, and in vitro cellular methods, including major cancer cell biomarkers expression, immunocytochemistry and whole-cell patch clamp, we demonstrated the anti-tumor activity of three synthetic small peptides derived from E. granulosus Kunitz4 protease inhibitors. Experiments showed induced significant apoptosis and inhibition of proliferation in both cancer cell lines via disruption in cell-cycle transition from the G0/G1 to S phase. Western blotting showed that the levels of cell cycle-related proteins including P27 and P53 were altered upon kunitz4-a and kunitz4-c treatment. Patch clamp analysis demonstrated a significant increase in spontaneous firing frequency in Purkinje neurons, and exposure to kunitz4-c was associated with an increase in the number of rebound action potentials after hyperpolarized current. This noteworthy component in nature could act as an ion channel blocker and is a potential candidate for cancer chemotherapy based on potassium channel blockage.
Collapse
Affiliation(s)
- Zahra Rashno
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jahan B Ghasemi
- Faculty of Chemistry, School of Sciences, University of Tehran, Tehran, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abbas Hatami
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| |
Collapse
|
5
|
Song Y, Deng Z, Sun H, Zhao Y, Zhao R, Cheng J, Huang Q. Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells. J Transl Med 2023; 21:390. [PMID: 37328854 PMCID: PMC10273655 DOI: 10.1186/s12967-023-04260-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. METHODS Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. RESULTS Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. CONCLUSIONS Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression.
Collapse
Affiliation(s)
- Yanwei Song
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Zheng Deng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Haoran Sun
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yucui Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Ruyi Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
6
|
Identification of KCNK1 as a potential prognostic biomarker and therapeutic target of breast cancer. Pathol Res Pract 2023; 241:154286. [PMID: 36566598 DOI: 10.1016/j.prp.2022.154286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the most common malignant cancer and is the second most common cause of cancer-related deaths among females worldwide. Thus, it warrants the urgent development of new therapeutic targets and strategies. Potassium channels are aberrantly expressed in various tumors and are related to tumor progression. However, studies on potassium channels in breast cancer remain limited. METHOD First, The Cancer Genome Atlas (TCGA) and Gene Set Enrichment Analysis (GSEA) were used to screen the differentially expressed potassium channels in breast cancer. Several other databases were utilized for further data analysis and visualization, including Gene Expression Profiling Interactive Analysis 2 (GEPIA2), Human Protein Atlas (HPA), GeneMANIA, Tumor Immune Estimation Resource 2 (TIMER2), Catalog of Somatic Mutations in Cancer (COSMIC), cBioPortal, and UCSC Xena tool. Besides, cell proliferation was detected by cell counting kit-8 (CCK8) and 5-Ethynyl-20-deoxyuridine (EdU), and cell migration was detected by wound healing and Transwell assays after knocking down KCNK1. Furthermore, the effect of KCNK1 knockdown on the sensitivity of breast cancer cells to paclitaxel was also evaluated. RESULT KCNK1 was overexpressed in breast cancer. Higher KCNK1 expression predicted an unfavorable prognosis. Moreover, the abnormal expression of KCNK1 was attributed to promoter hypomethylation of KCNK1 in breast cancer. Besides, cell proliferation and migration were significantly inhibited post-KCNK1 silencing, while KCNK1 knockdown significantly increased breast cancer cell sensitivity to paclitaxel. CONCLUSION Taken together, our findings demonstrated that KCNK1 is a potential prognostic biomarker and therapeutic target of breast cancer. Thus, targeting KCNK1 might help synergize with paclitaxel function in breast cancer treatment.
Collapse
|
7
|
Cortés Franco KD, Brakmann IC, Feoktistova M, Panayotova-Dimitrova D, Gründer S, Tian Y. Aggressive migration in acidic pH of a glioblastoma cancer stem cell line in vitro is independent of ASIC and K Ca3.1 ion channels, but involves phosphoinositide 3-kinase. Pflugers Arch 2023; 475:405-416. [PMID: 36522586 PMCID: PMC9908655 DOI: 10.1007/s00424-022-02781-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The microenvironment of proliferative and aggressive tumours, such as the brain tumour glioblastoma multiforme (GBM), is often acidic, hypoxic, and nutrient deficient. Acid-sensing ion channels (ASICs) are proton-sensitive Na+ channels that have been proposed to play a role in pH sensing and in modulation of cancer cell migration. We previously reported that primary glioblastoma stem cells (GSCs), which grow as multicellular tumour spheroids, express functional ASIC1a and ASIC3, whereas ASIC2a is downregulated in GSCs. Using a 2.5D migration assay, here we report that acidic pH dramatically increased migration of GSCs of the pro-neural subtype. Pharmacological blockade as well as CRISPR-Cas9-mediated gene knock-out of ASIC1a or stable overexpression of ASIC2a, however, revealed that neither ASIC1a nor ASIC3, nor downregulation of ASIC2a, mediated the aggressive migration at acidic pH. Therefore, we tested the role of two other proteins previously implicated in cancer cell migration: the Ca2+-activated K+ channel KCa3.1 (KCNN4) and phosphoinositide 3-kinase (PI3K). While pharmacological blockade of KCa3.1 did also not affect migration, blockade of PI3K decreased migration at acidic pH to control levels. In summary, our study reveals a strongly enhanced migration of GSCs at acidic pH in vitro and identifies PI3K as an important mediator of this effect.
Collapse
Affiliation(s)
| | - Ilka C Brakmann
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany
| | - Maria Feoktistova
- Department of Dermatology, RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany
| | | | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany.
| | - Yuemin Tian
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany
| |
Collapse
|
8
|
Tiffner A, Hopl V, Derler I. CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development. Cancers (Basel) 2022; 15:101. [PMID: 36612099 PMCID: PMC9817886 DOI: 10.3390/cancers15010101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer represents a major health burden worldwide. Several molecular targets have been discovered alongside treatments with positive clinical outcomes. However, the reoccurrence of cancer due to therapy resistance remains the primary cause of mortality. Endeavors in pinpointing new markers as molecular targets in cancer therapy are highly desired. The significance of the co-regulation of Ca2+-permeating and Ca2+-regulated ion channels in cancer cell development, proliferation, and migration make them promising molecular targets in cancer therapy. In particular, the co-regulation of the Orai1 and SK3 channels has been well-studied in breast and colon cancer cells, where it finally leads to an invasion-metastasis cascade. Nevertheless, many questions remain unanswered, such as which key molecular components determine and regulate their interplay. To provide a solid foundation for a better understanding of this ion channel co-regulation in cancer, we first shed light on the physiological role of Ca2+ and how this ion is linked to carcinogenesis. Then, we highlight the structure/function relationship of Orai1 and SK3, both individually and in concert, their role in the development of different types of cancer, and aspects that are not yet known in this context.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
9
|
Stransky N, Ganser K, Naumann U, Huber SM, Ruth P. Tumoricidal, Temozolomide- and Radiation-Sensitizing Effects of K Ca3.1 K + Channel Targeting In Vitro Are Dependent on Glioma Cell Line and Stem Cell Fraction. Cancers (Basel) 2022; 14:cancers14246199. [PMID: 36551685 PMCID: PMC9776522 DOI: 10.3390/cancers14246199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Reportedly, the intermediate-conductance Ca2+-activated potassium channel KCa3.1 contributes to the invasion of glioma cells into healthy brain tissue and resistance to temozolomide and ionizing radiation. Therefore, KCa3.1 has been proposed as a potential target in glioma therapy. The aim of the present study was to assess the variability of the temozolomide- and radiation-sensitizing effects conferred by the KCa3.1 blocking agent TRAM-34 between five different glioma cell lines grown as differentiated bulk tumor cells or under glioma stem cell-enriching conditions. As a result, cultures grown under stem cell-enriching conditions exhibited indeed higher abundances of mRNAs encoding for stem cell markers compared to differentiated bulk tumor cultures. In addition, stem cell enrichment was paralleled by an increased resistance to ionizing radiation in three out of the five glioma cell lines tested. Finally, TRAM-34 led to inconsistent results regarding its tumoricidal but also temozolomide- and radiation-sensitizing effects, which were dependent on both cell line and culture condition. In conclusion, these findings underscore the importance of testing new drug interventions in multiple cell lines and different culture conditions to partially mimic the in vivo inter- and intra-tumor heterogeneity.
Collapse
Affiliation(s)
- Nicolai Stransky
- Department of Radiation Oncology, University of Tübingen, 72076 Tübingen, Germany
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, 72076 Tübingen, Germany
| | - Ulrike Naumann
- Molecular Neurooncology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: or ; Tel.: +49-7071-29-82183; Fax: +49-7071-29-4944
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
10
|
IK Ca channels control breast cancer metabolism including AMPK-driven autophagy. Cell Death Dis 2022; 13:902. [PMID: 36302750 PMCID: PMC9613901 DOI: 10.1038/s41419-022-05329-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
Ca2+-activated K+ channels of intermediate conductance (IK) are frequently overexpressed in breast cancer (BC) cells, while IK channel depletion reduces BC cell proliferation and tumorigenesis. This raises the question, of whether and mechanistically how IK activity interferes with the metabolic activity and energy consumption rates, which are fundamental for rapidly growing cells. Using BC cells obtained from MMTV-PyMT tumor-bearing mice, we show that both, glycolysis and mitochondrial ATP-production are reduced in cells derived from IK-deficient breast tumors. Loss of IK altered the sub-/cellular K+- and Ca2+- homeostasis and mitochondrial membrane potential, ultimately resulting in reduced ATP-production and metabolic activity. Consequently, we find that BC cells lacking IK upregulate AMP-activated protein kinase activity to induce autophagy compensating the glycolytic and mitochondrial energy shortage. Our results emphasize that IK by modulating cellular Ca2+- and K+-dynamics contributes to the remodeling of metabolic pathways in cancer. Thus, targeting IK channel might disturb the metabolic activity of BC cells and reduce malignancy.
Collapse
|
11
|
Djamgoz MBA. Combinatorial Therapy of Cancer: Possible Advantages of Involving Modulators of Ionic Mechanisms. Cancers (Basel) 2022; 14:2703. [PMID: 35681682 PMCID: PMC9179511 DOI: 10.3390/cancers14112703] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer is a global health problem that 1 in 2-3 people can expect to experience during their lifetime. Several different modalities exist for cancer management, but all of these suffer from significant shortcomings in both diagnosis and therapy. Apart from developing completely new therapies, a viable way forward is to improve the efficacy of the existing modalities. One way is to combine these with each other or with other complementary approaches. An emerging latter approach is derived from ionic mechanisms, mainly ion channels and exchangers. We evaluate the evidence for this systematically for the main treatment methods: surgery, chemotherapy, radiotherapy and targeted therapies (including monoclonal antibodies, steroid hormones, tyrosine kinase inhibitors and immunotherapy). In surgery, the possible systemic use of local anesthetics to suppress subsequent relapse is still being discussed. For all the other methods, there is significant positive evidence for several cancers and a range of modulators of ionic mechanisms. This applies also to some of the undesirable side effects of the treatments. In chemotherapy, for example, there is evidence for co-treatment with modulators of the potassium channel (Kv11.1), pH regulation (sodium-hydrogen exchanger) and Na+-K+-ATPase (digoxin). Voltage-gated sodium channels, shown previously to promote metastasis, appear to be particularly useful for co-targeting with inhibitors of tyrosine kinases, especially epidermal growth factor. It is concluded that combining current orthodox treatment modalities with modulators of ionic mechanisms can produce beneficial effects including (i) making the treatment more effective, e.g., by lowering doses; (ii) avoiding the onset of resistance to therapy; (iii) reducing undesirable side effects. However, in many cases, prospective clinical trials are needed to put the findings firmly into clinical context.
Collapse
Affiliation(s)
- Mustafa B. A. Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; ; Tel.: +44-796-181-6959
- Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin 10, Turkey
| |
Collapse
|
12
|
Maltan L, Andova AM, Derler I. The Role of Lipids in CRAC Channel Function. Biomolecules 2022; 12:biom12030352. [PMID: 35327543 PMCID: PMC8944985 DOI: 10.3390/biom12030352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
The composition and dynamics of the lipid membrane define the physical properties of the bilayer and consequently affect the function of the incorporated membrane transporters, which also applies for the prominent Ca2+ release-activated Ca2+ ion channel (CRAC). This channel is activated by receptor-induced Ca2+ store depletion of the endoplasmic reticulum (ER) and consists of two transmembrane proteins, STIM1 and Orai1. STIM1 is anchored in the ER membrane and senses changes in the ER luminal Ca2+ concentration. Orai1 is the Ca2+-selective, pore-forming CRAC channel component located in the plasma membrane (PM). Ca2+ store-depletion of the ER triggers activation of STIM1 proteins, which subsequently leads to a conformational change and oligomerization of STIM1 and its coupling to as well as activation of Orai1 channels at the ER-PM contact sites. Although STIM1 and Orai1 are sufficient for CRAC channel activation, their efficient activation and deactivation is fine-tuned by a variety of lipids and lipid- and/or ER-PM junction-dependent accessory proteins. The underlying mechanisms for lipid-mediated CRAC channel modulation as well as the still open questions, are presented in this review.
Collapse
|
13
|
Ganser K, Eckert F, Riedel A, Stransky N, Paulsen F, Noell S, Krueger M, Schittenhelm J, Beck-Wödl S, Zips D, Ruth P, Huber SM, Klumpp L. Patient-individual phenotypes of glioblastoma stem cells are conserved in culture and associate with radioresistance, brain infiltration and patient prognosis. Int J Cancer 2022; 150:1722-1733. [PMID: 35085407 DOI: 10.1002/ijc.33950] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022]
Abstract
Identification of prognostic or predictive molecular markers in glioblastoma resection specimens may lead to strategies for therapy stratification and personalized treatment planning. Here, we analyzed in primary glioblastoma stem cell (pGSC) cultures the mRNA abundances of 7 stem cell (MSI1, Notch1, nestin, Sox2, Oct4, FABP7, ALDH1A3), and 3 radioresistance or invasion markers (CXCR4, IKCa , BKCa ). From these abundances, an mRNA signature was deduced which describes the mesenchymal-to-proneural expression profile of an individual GSC culture. To assess its functional significance, we associated the GSC mRNA signature with the clonogenic survival after irradiation with 4 Gy and the fibrin matrix invasion of the GSC cells. In addition, we compared the molecular pGSC mRNA signature with the tumor recurrence pattern and the overall survival of the glioblastoma patients from whom the pGSC cultures were derived. As a result, the molecular pGSC mRNA signature correlated positively with the pGSC radioresistance and matrix invasion capability in vitro. Moreover, patients with a mesenchymal (> median) mRNA signature in their pGSC cultures exhibited predominantly a multifocal tumor recurrence and a significantly (univariate log rank test) shorter overall survival than patients with proneural (≤ median mRNA signature) pGSCs. The tumors of the latter recurred predominately unifocally. We conclude that our pGSC cultures induce/select those cell subpopulations of the heterogeneous brain tumor that determine disease progression and therapy outcome. In addition, we further postulate a clinically relevant prognostic/predictive value for the 10 mRNAs-based mesenchymal-to-proneural signature of the GSC subpopulations in glioblastoma.
Collapse
Affiliation(s)
- Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Andreas Riedel
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Nicolai Stransky
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Susan Noell
- Department of Neurosurgery, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Marcel Krueger
- Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Calwerstr. 3, 72076, Tübingen, Germany
| | - Stefanie Beck-Wödl
- Institute of Medical Genetics und Applied Genomics, University of Tübingen, Calwerstr. 6, 72076, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| |
Collapse
|
14
|
Mokrane N, Snabi Y, Cens T, Guiramand J, Charnet P, Bertaud A, Menard C, Rousset M, de Jesus Ferreira MC, Thibaud JB, Cohen-Solal C, Vignes M, Roussel J. Manipulations of Glutathione Metabolism Modulate IP 3-Mediated Store-Operated Ca 2+ Entry on Astroglioma Cell Line. Front Aging Neurosci 2022; 13:785727. [PMID: 34975458 PMCID: PMC8719003 DOI: 10.3389/fnagi.2021.785727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 02/03/2023] Open
Abstract
The regulation of the redox status involves the activation of intracellular pathways as Nrf2 which provides hormetic adaptations against oxidative stress in response to environmental stimuli. In the brain, Nrf2 activation upregulates the formation of glutathione (GSH) which is the primary antioxidant system mainly produced by astrocytes. Astrocytes have also been shown to be themselves the target of oxidative stress. However, how changes in the redox status itself could impact the intracellular Ca2+ homeostasis in astrocytes is not known, although this could be of great help to understand the neuronal damage caused by oxidative stress. Indeed, intracellular Ca2+ changes in astrocytes are crucial for their regulatory actions on neuronal networks. We have manipulated GSH concentration in astroglioma cells with selective inhibitors and activators of the enzymes involved in the GSH cycle and analyzed how this could modify Ca2+ homeostasis. IP3-mediated store-operated calcium entry (SOCE), obtained after store depletion elicited by Gq-linked purinergic P2Y receptors activation, are either sensitized or desensitized, following GSH depletion or increase, respectively. The desensitization may involve decreased expression of the proteins STIM2, Orai1, and Orai3 which support SOCE mechanism. The sensitization process revealed by exposing cells to oxidative stress likely involves the increase in the activity of Calcium Release-Activated Channels (CRAC) and/or in their membrane expression. In addition, we observe that GSH depletion drastically impacts P2Y receptor-mediated changes in membrane currents, as evidenced by large increases in Ca2+-dependent K+ currents. We conclude that changes in the redox status of astrocytes could dramatically modify Ca2+ responses to Gq-linked GPCR activation in both directions, by impacting store-dependent Ca2+-channels, and thus modify cellular excitability under purinergic stimulation.
Collapse
Affiliation(s)
- Nawfel Mokrane
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,Department of Biological Sciences, Université de Montpellier, Montpellier, France
| | - Yassin Snabi
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,Department of Biological Sciences, Université de Montpellier, Montpellier, France
| | - Thierry Cens
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France
| | - Janique Guiramand
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France
| | - Pierre Charnet
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France
| | - Anaïs Bertaud
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,Department of Biological Sciences, Université de Montpellier, Montpellier, France
| | - Claudine Menard
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,Department of Biological Sciences, Université de Montpellier, Montpellier, France
| | - Matthieu Rousset
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France
| | - Marie-Céleste de Jesus Ferreira
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,Department of Biological Sciences, Université de Montpellier, Montpellier, France
| | | | - Catherine Cohen-Solal
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,Department of Biological Sciences, Université de Montpellier, Montpellier, France
| | - Michel Vignes
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,Department of Biological Sciences, Université de Montpellier, Montpellier, France
| | - Julien Roussel
- UMR 5247 Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France.,Department of Biological Sciences, Université de Montpellier, Montpellier, France
| |
Collapse
|
15
|
Tiffner A, Hopl V, Schober R, Sallinger M, Grabmayr H, Höglinger C, Fahrner M, Lunz V, Maltan L, Frischauf I, Krivic D, Bhardwaj R, Schindl R, Hediger MA, Derler I. Orai1 Boosts SK3 Channel Activation. Cancers (Basel) 2021; 13:6357. [PMID: 34944977 PMCID: PMC8699475 DOI: 10.3390/cancers13246357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
The interplay of SK3, a Ca2+ sensitive K+ ion channel, with Orai1, a Ca2+ ion channel, has been reported to increase cytosolic Ca2+ levels, thereby triggering proliferation of breast and colon cancer cells, although a molecular mechanism has remained elusive to date. We show in the current study, via heterologous protein expression, that Orai1 can enhance SK3 K+ currents, in addition to constitutively bound calmodulin (CaM). At low cytosolic Ca2+ levels that decrease SK3 K+ permeation, co-expressed Orai1 potentiates SK3 currents. This positive feedback mechanism of SK3 and Orai1 is enabled by their close co-localization. Remarkably, we discovered that loss of SK3 channel activity due to overexpressed CaM mutants could be restored by Orai1, likely via its interplay with the SK3-CaM binding site. Mapping for interaction sites within Orai1, we identified that the cytosolic strands and pore residues are critical for a functional communication with SK3. Moreover, STIM1 has a bimodal role in SK3-Orai1 regulation. Under physiological ionic conditions, STIM1 is able to impede SK3-Orai1 interplay by significantly decreasing their co-localization. Forced STIM1-Orai1 activity and associated Ca2+ influx promote SK3 K+ currents. The dynamic regulation of Orai1 to boost endogenous SK3 channels was also determined in the human prostate cancer cell line LNCaP.
Collapse
Affiliation(s)
- Adéla Tiffner
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Valentina Hopl
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Romana Schober
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Matthias Sallinger
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Herwig Grabmayr
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Carmen Höglinger
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Marc Fahrner
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Victoria Lunz
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Lena Maltan
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Irene Frischauf
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Denis Krivic
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Rajesh Bhardwaj
- Department of Nephrology and Hypertension, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland; (R.B.); (M.A.H.)
- Department of Biomedical Research, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Matthias A. Hediger
- Department of Nephrology and Hypertension, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland; (R.B.); (M.A.H.)
- Department of Biomedical Research, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Isabella Derler
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| |
Collapse
|
16
|
Zirjacks L, Stransky N, Klumpp L, Prause L, Eckert F, Zips D, Schleicher S, Handgretinger R, Huber SM, Ganser K. Repurposing Disulfiram for Targeting of Glioblastoma Stem Cells: An In Vitro Study. Biomolecules 2021; 11:1561. [PMID: 34827559 PMCID: PMC8615869 DOI: 10.3390/biom11111561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal glioblastoma stem cells (GSCs), a subpopulation in glioblastoma that are responsible for therapy resistance and tumor spreading in the brain, reportedly upregulate aldehyde dehydrogenase isoform-1A3 (ALDH1A3) which can be inhibited by disulfiram (DSF), an FDA-approved drug formerly prescribed in alcohol use disorder. Reportedly, DSF in combination with Cu2+ ions exerts multiple tumoricidal, chemo- and radio-therapy-sensitizing effects in several tumor entities. The present study aimed to quantify these DSF effects in glioblastoma stem cells in vitro, regarding dependence on ALDH1A3 expression. To this end, two patient-derived GSC cultures with differing ALDH1A3 expression were pretreated (in the presence of CuSO4, 100 nM) with DSF (0 or 100 nM) and the DNA-alkylating agent temozolomide (0 or 30 µM) and then cells were irradiated with a single dose of 0-8 Gy. As read-outs, cell cycle distribution and clonogenic survival were determined by flow cytometry and limited dilution assay, respectively. As a result, DSF modulated cell cycle distribution in both GSC cultures and dramatically decreased clonogenic survival independently of ALDH1A3 expression. This effect was additive to the impairment of clonogenic survival by radiation, but not associated with radiosensitization. Of note, cotreatment with temozolomide blunted the DSF inhibition of clonogenic survival. In conclusion, DSF targets GSCs independent of ALDH1A3 expression, suggesting a therapeutic efficacy also in glioblastomas with low mesenchymal GSC populations. As temozolomide somehow antagonized the DSF effects, strategies for future combination of DSF with the adjuvant standard therapy (fractionated radiotherapy and concomitant temozolomide chemotherapy followed by temozolomide maintenance therapy) are not supported by the present study.
Collapse
Affiliation(s)
- Lisa Zirjacks
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Nicolai Stransky
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Lukas Klumpp
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Lukas Prause
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Franziska Eckert
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Sabine Schleicher
- Department of Hematology and Oncology, University Hospital Tuebingen, Children’s Hospital, 72076 Tuebingen, Germany; (S.S.); (R.H.)
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Hospital Tuebingen, Children’s Hospital, 72076 Tuebingen, Germany; (S.S.); (R.H.)
| | - Stephan M. Huber
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Katrin Ganser
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| |
Collapse
|
17
|
TRPM2 Oxidation Activates Two Distinct Potassium Channels in Melanoma Cells through Intracellular Calcium Increase. Int J Mol Sci 2021; 22:ijms22168359. [PMID: 34445066 PMCID: PMC8393965 DOI: 10.3390/ijms22168359] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor microenvironments are often characterized by an increase in oxidative stress levels. We studied the response to oxidative stimulation in human primary (IGR39) or metastatic (IGR37) cell lines obtained from the same patient, performing patch-clamp recordings, intracellular calcium ([Ca2+]i) imaging, and RT-qPCR gene expression analysis. In IGR39 cells, chloramine-T (Chl-T) activated large K+ currents (KROS) that were partially sensitive to tetraethylammonium (TEA). A large fraction of KROS was inhibited by paxilline—a specific inhibitor of large-conductance Ca2+-activated BK channels. The TEA-insensitive component was inhibited by senicapoc—a specific inhibitor of the Ca2+-activated KCa3.1 channel. Both BK and KCa3.1 activation were mediated by an increase in [Ca2+]i induced by Chl-T. Both KROS and [Ca2+]i increase were inhibited by ACA and clotrimazole—two different inhibitors of the calcium-permeable TRPM2 channel. Surprisingly, IGR37 cells did not exhibit current increase upon the application of Chl-T. Expression analysis confirmed that the genes encoding BK, KCa3.1, and TRPM2 are much more expressed in IGR39 than in IGR37. The potassium currents and [Ca2+]i increase observed in response to the oxidizing agent strongly suggest that these three molecular entities play a major role in the progression of melanoma. Pharmacological targeting of either of these ion channels could be a new strategy to reduce the metastatic potential of melanoma cells, and could complement classical radio- or chemotherapeutic treatments.
Collapse
|
18
|
Chen S, Wang C, Su X, Dai X, Li S, Mo Z. KCNN4 is a potential prognostic marker and critical factor affecting the immune status of the tumor microenvironment in kidney renal clear cell carcinoma. Transl Androl Urol 2021; 10:2454-2470. [PMID: 34295732 PMCID: PMC8261455 DOI: 10.21037/tau-21-332] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background The tumor microenvironment (TME) has emerged as a crucial factor in cancer development and progression. Recent findings have indicated that tumor-infiltrating immune cells (TICs) in the TME may predict cancer prognosis and response to treatment. Herein, we sought to identify critical modulators of the kidney renal clear cell carcinoma (KIRC) TME. Methods KIRC datasets from The Cancer Genome Atlas (TCGA) were analyzed using the ESTIMATE algorithm to determine the ImmuneScore and StromalScore. By profiling the differentially expressed genes (DEGs) in the ImmuneScore and StromalScore, we finally identified the immune- and stromal-related DEGs of the cases, through which we then performed intersection analysis to determine the immune-related genes (IRGs). Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were used to identify critical IRGs and construct a prognostic model. The CIBERSORT algorithm was used to calculate the relative content of 22 immune cell types. Finally, the datasets from the Gene Expression Omnibus (GEO) database were analyzed to validate results from the above analyses. Experimental validation was used on KIRC tissues by quantitative polymerase chain reaction (qPCR) and western blot. Results We found that the ImmuneScore was negatively correlated with patients’ prognosis. Intersection analysis of the ImmuneScore and StromalScore identified 118 IRGs that were enriched in immune-related functions. Following IRGs screening by Cox and LASSO regression analyses, six genes were identified and used to construct a KIRC prognostic model. Intersection analysis of these six genes and protein-protein interaction (PPI) were performed and obtained the most critical gene: Potassium Calcium-Activated Channel Subfamily N Member 4 (KCNN4). Further analysis showed that KCNN4 expression was higher in tumor samples relative to normal controls, and was negatively correlated with prognosis. CIBERSORT analysis revealed significant correlation between KCNN4 expression and multiple types of TICs, demonstrating that KCNN4 may affect KIRC prognosis by influencing the TME immune status. Ultimately, the GEO datasets and validation experiments confirmed that KCNN4 was highly expressed in tumor tissues compared to the corresponding normal tissues. Conclusions Our study demonstrated that KCNN4 might be a potential prognostic marker in KIRC, offering a novel therapeutic avenue.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Chengbang Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Xiaotao Su
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodi Dai
- Guangxi Medical University, Nanning, China
| | - Songheng Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| |
Collapse
|
19
|
Abstract
Neoplastic transformation is reportedly associated with alterations of the potassium transport across plasma and intracellular membranes. These alterations have been identified as crucial elements of the tumourigenic reprogramming of cells. Potassium channels may contribute to cancer initiation, malignant progression and therapy resistance of tumour cells. The book chapter focusses on (oncogenic) potassium channels frequently upregulated in different tumour entities, upstream and downstream signalling of these channels, their contribution to the maintenance of cancer stemness and the formation of an immunosuppressive tumour microenvironment. In addition, their role in adaptation to tumour hypoxia, metabolic reprogramming, as well as tumour spreading and metastasis is discussed. Finally, we discuss how (oncogenic) potassium channels may confer treatment resistance of tumours against radiation and chemotherapy and thus might be harnessed for new therapy strategies, for instance, by repurposing approved drugs known to target potassium channels.
Collapse
|
20
|
Riedel A, Klumpp L, Menegakis A, De-Colle C, Huber SM, Schittenhelm J, Neumann M, Noell S, Tatagiba M, Zips D. γH2AX foci assay in glioblastoma: Surgical specimen versus corresponding stem cell culture. Radiother Oncol 2021; 159:119-125. [PMID: 33775712 DOI: 10.1016/j.radonc.2021.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/02/2020] [Accepted: 03/17/2021] [Indexed: 11/29/2022]
Abstract
AIM To assess radiation response using γH2AX assay in surgical specimens from glioblastoma (GB) patients and their corresponding primary gliosphere culture. To test the hypothesis that gliospheres (stem cell enriched) are more resistant than specimens (bulky cell dominated) but that the interpatient heterogeneity is similar. MATERIAL AND METHODS Ten pairs of specimens and corresponding gliospheres derived from patients with IDH-wildtype GB were studied. Specimens and gliospheres were irradiated with graded doses and after 24 h the number of residual γH2AX foci was counted. RESULTS Gliospheres showed a higher Nestin expression than specimens and exhibited two different phenotypes: free floating (n = 7) and attached (n = 3). Slope analysis revealed an interpatient heterogeneity with values between 0.15 and 1.30 residual γH2AX foci/Gy. Free-floating spheres were more resistant than their parental specimens (median slope 0.13 foci/Gy versus 0.53) as well as than the attached spheres (2.14). The slopes of free floating spheres did not correlate with their corresponding specimens while a trend for a positive correlation was found for the attached spheres and the respective specimens. Association with MGMT did not reach statistical significance. CONCLUSION Consistent with the clinical phenotype and our previous experiments, GB specimens show low radiation sensitivity. Stem-cell enriched free-floating gliospheres were more resistant than specimens supporting the concept of radioresistance in stem cell-like cells. The lack of correlation between specimens and their respective gliosphere cultures needs validation and may have a profound impact on future translational studies using γH2AX as a potential biomarker for personalized radiation therapy.
Collapse
Affiliation(s)
- Andreas Riedel
- Radiation Oncology, Medical Faculty and University Hospital Tübingen, Germany
| | - Lukas Klumpp
- Radiation Oncology, Medical Faculty and University Hospital Tübingen, Germany
| | - Apostolos Menegakis
- Netherlands Cancer Institute, Division of Cell Biology, Amsterdam, The Netherlands
| | - Chiara De-Colle
- Radiation Oncology, Medical Faculty and University Hospital Tübingen, Germany
| | - Stephan M Huber
- Radiation Oncology, Medical Faculty and University Hospital Tübingen, Germany
| | - Jens Schittenhelm
- Division of Neuropathology, Medical Faculty and University Hospital Tübingen, Germany
| | - Manuela Neumann
- Division of Neuropathology, Medical Faculty and University Hospital Tübingen, Germany
| | - Susan Noell
- Department of Neurosurgery, Medical Faculty and University Hospital Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Medical Faculty and University Hospital Tübingen, Germany
| | - Daniel Zips
- Radiation Oncology, Medical Faculty and University Hospital Tübingen, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Li X, Liu Y, Cao A, Li C, Wang L, Wu Q, Li X, Lv X, Zhu J, Chun H, Laba C, Du X, Zhang Y, Yang H. Crocin Improves Endothelial Mitochondrial Dysfunction via GPx1/ROS/KCa3.1 Signal Axis in Diabetes. Front Cell Dev Biol 2021; 9:651434. [PMID: 33777959 PMCID: PMC7994751 DOI: 10.3389/fcell.2021.651434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction contributes to excessive reactive oxygen species (ROS) generation, which is a dramatic cause to promote endothelial dysfunction in diabetes. It was previously demonstrated that crocin protected the endothelium based on its diverse medicinal properties, but its effect on the mitochondrion and the potential mechanism are not fully understood. In this study, mitochondrial function was analyzed during the process of excessive ROS generation in high glucose (HG)-cultured human umbilical vein endothelial cells (HUVECs). The role played by KCa3.1 was further investigated by the inhibition and/or gene silence of KCa3.1 in this process. In addition, nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase 2 (NOX2), superoxide dismutase 1 (SOD1), and glutathione peroxidase 1 (GPx1) were also detected in this study. Our data showed that crocin improved mitochondrial dysfunction and maintained normal mitochondrial morphology by enhancing the mitochondrial membrane potential (MMP), mitochondrial mass, and mitochondrial fusion. Furthermore, KCa3.1 was confirmed to be located in the mitochondrion, and the blockade and/or silencing of KCa3.1 improved mitochondrial dysfunction and reduced excessive ROS generation but did not affect NOX2 and/or the SOD1 system. Intriguingly, it was confirmed that KCa3.1 expression was elevated by ROS overproduction in the endothelium under HG and/or diabetes conditions, while crocin significantly suppressed this elevation by promoting GPx1 and subsequently eliminating ROS generation. In addition, crocin enhanced CD31, thrombomodulin (TM), and p-/t-endothelial nitric oxide synthase (eNOS) expressions as well as NO generation and decreased vascular tone. Hence, crocin improved mitochondrial dysfunction through inhibiting ROS-induced KCa3.1 overexpression in the endothelium, which in turn reduced more ROS generation and final endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Anatomy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Anqiang Cao
- Department of Cardiac Surgery, The Third People's Hospital of Chengdu, Institute of Cardiovascular Science, Chengdu, China
| | - Chao Li
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Luodan Wang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Qing Wu
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xinlei Li
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xiaohong Lv
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Jiwei Zhu
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Hua Chun
- Department of Modern Medicine, Tibetan Traditional Medical College, Lhasa, China
| | - Ciren Laba
- Department of Modern Medicine, Tibetan Traditional Medical College, Lhasa, China
| | - Xingchi Du
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yafang Zhang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, China.,Department of Modern Medicine, Tibetan Traditional Medical College, Lhasa, China
| |
Collapse
|
22
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
23
|
Kast RE, Burns TC, Halatsch ME. Short review of SEC, a potential dexamethasone-sparing regimen for glioblastoma: Spironolactone, ecallantide, clotrimazole. Neurochirurgie 2021; 67:508-515. [PMID: 33450263 DOI: 10.1016/j.neuchi.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/31/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
This paper presents a short review of data supporting a dexamethasone sparing regimen, SEC, to reduce glioblastoma related brain edema. The conclusion of the reviewed data is that the rationale and risk/benefit ratio favors a pilot study to determine if the three drug regimen of SEC can reduce need for corticosteroid use during the course of glioblastoma. Details of how selected pathophysiological aspects of brain edema occurring during the course of glioblastoma and its treatment intersect with the established action of the three old drugs of SEC indicate that they can be repurposed to reduce that edema. Current first-line treatment of this edema is dexamethasone or related corticosteroids. There are multiple negative prognostic implications of both the edema itself and of dexamethasone, prime among them shortened survival, making a dexamethasone sparing regimen highly desirable. SEC uses spironolactone, an antihypertensive potassium-sparing diuretic acting by mineralocorticoid receptor inhibition, ecallantide acting to inhibit kallikrein activation marketed to treat hereditary angioedema, and clotrimazole, an old antifungal drug that inhibits intermediate conductance Ca++ activated K+ channel (KCa3.1). These three old drugs are well known to most clinicians, have a well-tolerated safety history, and have a robust preclinical database showing their potential to reduce the specific edema of glioblastoma. Additionally, these three drugs were chosen by virtue of each having preclinical evidence of glioblastoma growth and/or migration inhibition independent of their edema reduction action. A clinical study of SEC is being planned.
Collapse
Affiliation(s)
- R E Kast
- IIAIGC Study Center, 11, Arlington Ct, VT 05408 Burlington, USA.
| | - T C Burns
- Department of Neurologic Surgery, Mayo Clinic, 200, First St SW, MN 55905 Rochester, USA
| | - M-E Halatsch
- Department of Neurosurgery, Ulm University Hospital, Albert-Einstein-Allée 23, D-89081 Ulm, Germany; Department of Neurosurgery, Cantonal Hospital of Winterthur, Brauerstr, 15, CH-8401, Winterthur, Switzerland
| |
Collapse
|
24
|
Alharbi A, Zhang Y, Parrington J. Deciphering the Role of Ca 2+ Signalling in Cancer Metastasis: From the Bench to the Bedside. Cancers (Basel) 2021; 13:E179. [PMID: 33430230 PMCID: PMC7825727 DOI: 10.3390/cancers13020179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/03/2023] Open
Abstract
Metastatic cancer is one of the major causes of cancer-related mortalities. Metastasis is a complex, multi-process phenomenon, and a hallmark of cancer. Calcium (Ca2+) is a ubiquitous secondary messenger, and it has become evident that Ca2+ signalling plays a vital role in cancer. Ca2+ homeostasis is dysregulated in physiological processes related to tumour metastasis and progression-including cellular adhesion, epithelial-mesenchymal transition, cell migration, motility, and invasion. In this review, we looked at the role of intracellular and extracellular Ca2+ signalling pathways in processes that contribute to metastasis at the local level and also their effects on cancer metastasis globally, as well as at underlying molecular mechanisms and clinical applications. Spatiotemporal Ca2+ homeostasis, in terms of oscillations or waves, is crucial for hindering tumour progression and metastasis. They are a limited number of clinical trials investigating treating patients with advanced stages of various cancer types. Ca2+ signalling may serve as a novel hallmark of cancer due to the versatility of Ca2+ signals in cells, which suggests that the modulation of specific upstream/downstream targets may be a therapeutic approach to treat cancer, particularly in patients with metastatic cancers.
Collapse
Affiliation(s)
- Abeer Alharbi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud Bin Abdul-Aziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Yuxuan Zhang
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| |
Collapse
|
25
|
Brandalise F, Ratto D, Leone R, Olivero F, Roda E, Locatelli CA, Grazia Bottone M, Rossi P. Deeper and Deeper on the Role of BK and Kir4.1 Channels in Glioblastoma Invasiveness: A Novel Summative Mechanism? Front Neurosci 2020; 14:595664. [PMID: 33328867 PMCID: PMC7734145 DOI: 10.3389/fnins.2020.595664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
In the last decades, increasing evidence has revealed that a large number of channel protein and ion pumps exhibit impaired expression in cancers. This dysregulation is responsible for high proliferative rates as well as migration and invasiveness, reflected in the recently coined term oncochannelopathies. In glioblastoma (GBM), the most invasive and aggressive primary brain tumor, GBM cells modify their ionic equilibrium in order to change their volume as a necessary step prior to migration. This mechanism involves increased expression of BK channels and downregulation of the normally widespread Kir4.1 channels, as noted in GBM biopsies from patients. Despite a large body of work implicating BK channels in migration in response to an artificial intracellular calcium rise, little is known about how this channel acts in GBM cells at resting membrane potential (RMP), as compared to other channels that are constitutively open, such as Kir4.1. In this review we propose that a residual fraction of functionally active Kir4.1 channels mediates a small, but continuous, efflux of potassium at the more depolarized RMP of GBM cells. In addition, coinciding with transient membrane deformation and the intracellular rise in calcium concentration, brief activity of BK channels can induce massive and rapid cytosolic water loss that reduces cell volume (cell shrinkage), a necessary step for migration within the brain parenchyma.
Collapse
Affiliation(s)
- Federico Brandalise
- Department of Fundamental Neurosciences (NEUFO), University of Geneva, Geneva, Switzerland
| | - Daniela Ratto
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia, Italy
| | - Roberta Leone
- Department of Fundamental Neurosciences (NEUFO), University of Geneva, Geneva, Switzerland
| | - Federico Olivero
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia, Italy
| | - Elisa Roda
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia, Italy.,Pavia Poison Centre, National Toxicology Information Centre, Laboratory of Clinical & Experimental Toxicology, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Alessandro Locatelli
- Pavia Poison Centre, National Toxicology Information Centre, Laboratory of Clinical & Experimental Toxicology, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
26
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
27
|
Pethő Z, Najder K, Carvalho T, McMorrow R, Todesca LM, Rugi M, Bulk E, Chan A, Löwik CWGM, Reshkin SJ, Schwab A. pH-Channeling in Cancer: How pH-Dependence of Cation Channels Shapes Cancer Pathophysiology. Cancers (Basel) 2020; 12:E2484. [PMID: 32887220 PMCID: PMC7565548 DOI: 10.3390/cancers12092484] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in the literature. Thus, the main focus of this review is to highlight possible events in tumor progression and tumor immunity where the pH sensitivity of cation channels could be of great importance.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Karolina Najder
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Tiago Carvalho
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
| | - Luca Matteo Todesca
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Micol Rugi
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Etmar Bulk
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Alan Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Clemens W. G. M. Löwik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
- Department of Oncology CHUV, UNIL and Ludwig Cancer Center, 1011 Lausanne, Switzerland
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| |
Collapse
|
28
|
Liu J, Qu C, Han C, Chen MM, An LJ, Zou W. Potassium channels and their role in glioma: A mini review. Mol Membr Biol 2020; 35:76-85. [PMID: 32067536 DOI: 10.1080/09687688.2020.1729428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
K+ channels regulate a multitude of biological processes and play important roles in a variety of diseases by controlling potassium flow across cell membranes. They are widely expressed in the central and peripheral nervous system. As a malignant tumor derived from nerve epithelium, glioma has the characteristics of high incidence, high recurrence rate, high mortality rate, and low cure rate. Since glioma cells show invasive growth, current surgical methods cannot completely remove tumors. Adjuvant chemotherapy is still needed after surgery. Because the blood-brain barrier and other factors lead to a lower effective concentration of chemotherapeutic drugs in the tumor, the recurrence rate of residual lesions is extremely high. Therefore, new therapeutic methods are needed. Numerous studies have shown that different K+ channel subtypes are differentially expressed in glioma cells and are involved in the regulation of the cell cycle of glioma cells to arrest them at different stages of the cell cycle. Increasing evidence suggests that K+ channels express in glioma cells and regulate glioma cell behaviors such as cell cycle, proliferation and apoptosis. This review article aims to summarize the current knowledge on the function of K+ channels in glioma, suggests K+ channels participating in the development of glioma.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science, Technology, Dalian University of Technology, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Chao Han
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meng-Meng Chen
- Company of Qingdao Re-Store Life Sciences, Qingdao, China
| | - Li-Jia An
- School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science, Technology, Dalian University of Technology, Dalian, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, China.,Company of Qingdao Re-Store Life Sciences, Qingdao, China
| |
Collapse
|
29
|
Chen PY, Li XD, Ma WN, Li H, Li MM, Yang XY, Li SY. Comprehensive Transcriptomic Analysis and Experimental Validation Identify lncRNA HOXA-AS2/miR-184/COL6A2 as the Critical ceRNA Regulation Involved in Low-Grade Glioma Recurrence. Onco Targets Ther 2020; 13:4999-5016. [PMID: 32581558 PMCID: PMC7276213 DOI: 10.2147/ott.s245896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose The recurrence and metastasis of glioma are closely related to complex regulatory networks among protein-coding genes, lncRNAs and microRNAs. The aim of this study was to investigate core genes, lncRNAs, miRNAs and critical ceRNA regulatory mechanisms, which are involved in lower-grade glioma (LGG) recurrence. Materials and Methods We employed multiple datasets from Chinese Glioma Genome Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) to perform comprehensive transcriptomic analysis. Further in vitro experiments including cell proliferation assay, luciferase reporter assay, and Western blot were performed to validate our results. Results Recurrent LGG and glioblastoma (GBM) showed different transcriptome characteristics with less overlap of differentially expressed protein-coding genes (DEPs), lncRNAs (DELs) and miRNAs (DEMs) compared with primary samples. There were no overlapping gene in ontology (GO) terms related to GBM recurrence in the TCGA and CGGA databases, but there were overlaps associated with LGG recurrence. GO analysis and protein–protein interaction (PPI) network analysis identified three core genes: TIMP1, COL1A1 and COL6A2. By hierarchical cluster analysis of them, LGGs could be clustered as Low_risk and High_risk group. The High_risk group with high expression of TIMP1, COL1A1, and COL6A2 showed worse prognosis. By coexpression networks analysis, competing endogenous RNA (ceRNA) network analysis, cell proliferation assay and luciferase reporter assay, we confirmed that lncRNA HOXA-AS2 functioned as a ceRNA for miR-184 to regulate expression of COL6A2, which induced cell proliferation of low-grade glioma. Conclusion In this study, we revealed a 3-hub protein-coding gene signature to improve prognostic prediction in LGG, and identified a critical ceRNA regulation involved in LGG recurrence.
Collapse
Affiliation(s)
- Peng-Yu Chen
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Xiao-Dong Li
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Wei-Ning Ma
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Miao-Miao Li
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Xin-Yu Yang
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Shao-Yi Li
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
30
|
Palme D, Misovic M, Ganser K, Klumpp L, Salih HR, Zips D, Huber SM. hERG K + Channels Promote Survival of Irradiated Leukemia Cells. Front Pharmacol 2020; 11:489. [PMID: 32390841 PMCID: PMC7194033 DOI: 10.3389/fphar.2020.00489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Many tumor cells express highly elevated activities of voltage-gated K+ channels in the plasma membrane which are indispensable for tumor growth. To test for K+ channel function during DNA damage response, we subjected human chronic myeloid leukemia (CML) cells to sub-lethal doses of ionizing radiation (0-8 Gy, 6 MV photons) and determined K+ channel activity, K+ channel-dependent Ca2+ signaling, cell cycle progression, DNA repair, and clonogenic survival by whole-cell patch clamp recording, fura-2 Ca2+ imaging, Western blotting, flow cytometry, immunofluorescence microscopy, and pre-plating colony formation assay, respectively. As a result, the human erythroid CML cell line K562 and primary human CML cells functionally expressed hERG1. Irradiation stimulated in both cell types an increase in the activity of hERG1 K+ channels which became apparent 1-2 h post-irradiation. This increase in K+ channel activity was paralleled by an accumulation in S phase of cell cycle followed by a G2/M cell cycle arrest as analyzed between 8 and 72 h post-irradiation. Attenuating the K+ channel function by applying the hERG1 channel inhibitor E4031 modulated Ca2+ signaling, impaired inhibition of the mitosis promoting subunit cdc2, overrode cell cycle arrest, and decreased clonogenic survival of the irradiated cells but did not affect repair of DNA double strand breaks suggesting a critical role of the hERG1 K+ channels for the Ca2+ signaling and the cell cycle control during DNA damage response.
Collapse
Affiliation(s)
- Daniela Palme
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Milan Misovic
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Manfroni G, Ragonese F, Monarca L, Astolfi A, Mancinelli L, Iannitti RG, Bastioli F, Barreca ML, Cecchetti V, Fioretti B. New Insights on KCa3.1 Channel Modulation. Curr Pharm Des 2020; 26:2096-2101. [PMID: 32175839 DOI: 10.2174/1381612826666200316152645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 11/22/2022]
Abstract
The human intermediate conductance calcium-activated potassium channel, KCa3.1, is involved in several pathophysiological conditions playing a critical role in cell secretory machinery and calcium signalling. The recent cryo-EM analysis provides new insights for understanding the modulation by both endogenous and pharmacological agents. A typical feature of this channel is the low open probability in saturating calcium concentrations and its modulation by potassium channel openers (KCOs), such as benzo imidazolone 1-EBIO, without changing calcium-dependent activation. In this paper, we proposed a model of KCOs action in the modulation of channel activity. The KCa3.1 channel has a very rich pharmacological profile with several classes of molecules that selectively interact with different binding sites of the channel. Among them, benzo imidazolones can be openers (positive modulators such as 1-EBIO, DC-EBIO) or blockers (negative modulators such as NS1619). Through computation modelling techniques, we identified the 1,4-benzothiazin-3-one as a promising scaffold to develop new KCa3.1 channel modulators. Further studies are needed to explore the potential use of 1-4 benzothiazine- 3-one in KCa3.1 modulation and its pharmacological application.
Collapse
Affiliation(s)
- Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.,Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Lorenzo Monarca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.,Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Loretta Mancinelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | | | - Maria L Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
32
|
|
33
|
Ni W, Xia Y, Luo L, Wen F, Hu D, Bi Y, Qi J. High expression of ALDH1A3 might independently influence poor progression-free and overall survival in patients with glioma via maintaining glucose uptake and lactate production. Cell Biol Int 2019; 44:569-582. [PMID: 31642564 DOI: 10.1002/cbin.11257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/19/2019] [Indexed: 12/29/2022]
Abstract
Recent studies have found that the acetaldehyde dehydrogenase 1A3 (ALDH1A3) gene is a marker of glioma stem cells. A total of 115 brain glioma specimens were collected and classified into grade I-IV, while non-tumor brain tissue specimens, taken from 12 patients of vascular malformation surgery, were used as control. ALDH1A3 gene promoter methylation in glioma tissues was detected by pyrosequencing, while immunohistochemistry and western blot were used to detect ALDH1A3 protein expressions in different grades of glioma tissues and normal brain tissues. The expression of ALDH1A3 in the glioma cell line U87 was detected by quantitative real-time polymerase chain reaction and RNA-Seq technology was applied to investigate differentially expressed genes before and after silencing the ALDH1A3 gene. Among the 115 glioma tissue specimens, 50 (43.48%) showed low and 65 (56.52%) high expression of ALDH1A3, but no expression was detected in the control. Univariate and multivariate COX regression analyses showed that the patient's tumor pathological grade, the methylation status of ALDH1A3 promoter, and the expression of ALDH1A3 protein were risk factors for progression-free survival (PFS) and overall survival (OS) (all P < 0.05) and the OS of mice with silenced ALDH1A3 in a glioma nude mouse model was prolonged. U87 experiments revealed that ALDH1A3 expression had significant effects on apoptosis, proliferation, cell cycle, mitochondrial membrane potential, glucose consumption, lactate production, invasion ability, and expression of the pyruvate kinase M2 (PKM2) and hexokinase 2 (HK2) in glioma cells. ALDH1A3 protein expression is a marker for poor PFS and OS in glioma patients.
Collapse
Affiliation(s)
- Wei Ni
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yaoxiong Xia
- Department of Radiation Oncology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Lin Luo
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Fan Wen
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Dong Hu
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yuxu Bi
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Junhui Qi
- Department of Neurosurgery, Second People's Hospital of Yunnan Province, Kunming, 650021, China
| |
Collapse
|
34
|
K Ca3.1 Channels Confer Radioresistance to Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11091285. [PMID: 31480522 PMCID: PMC6770875 DOI: 10.3390/cancers11091285] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
KCa3.1 K+ channels reportedly contribute to the proliferation of breast tumor cells and may serve pro-tumor functions in the microenvironment. The putative interaction of KCa3.1 with major anti-cancer treatment strategies, which are based on cytotoxic drugs or radiotherapy, remains largely unexplored. We employed KCa3.1-proficient and -deficient breast cancer cells derived from breast cancer-prone MMTV-PyMT mice, pharmacological KCa3.1 inhibition, and a syngeneic orthotopic mouse model to study the relevance of functional KCa3.1 for therapy response. The KCa3.1 status of MMTV-PyMT cells did not determine tumor cell proliferation after treatment with different concentrations of docetaxel, doxorubicin, 5-fluorouracil, or cyclophosphamide. KCa3.1 activation by ionizing radiation (IR) in breast tumor cells in vitro, however, enhanced radioresistance, probably via an involvement of the channel in IR-stimulated Ca2+ signals and DNA repair pathways. Consistently, KCa3.1 knockout increased survival time of wildtype mice upon syngeneic orthotopic transplantation of MMTV-PyMT tumors followed by fractionated radiotherapy. Combined, our results imply that KCa3.1 confers resistance to radio- but not to chemotherapy in the MMTV-PyMT breast cancer model. Since KCa3.1 is druggable, KCa3.1 targeting concomitant to radiotherapy seems to be a promising strategy to radiosensitize breast tumors.
Collapse
|
35
|
Li QT, Feng YM, Ke ZH, Qiu MJ, He XX, Wang MM, Li YN, Xu J, Shi LL, Xiong ZF. KCNN4 promotes invasion and metastasis through the MAPK/ERK pathway in hepatocellular carcinoma. J Investig Med 2019; 68:68-74. [PMID: 31431469 DOI: 10.1136/jim-2019-001073] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2019] [Indexed: 01/15/2023]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common malignancies in the world, and is well-known for its bad prognosis. Potassium calcium-activated channel subfamily N member 4 (KCNN4) is a type of intermediate conductance calcium-activated potassium channel, and increasing evidence suggests that KCNN4 contributes to the regulation of invasion and metastasis in a number of cancers. However, its clinical significance and biological function remain unclear in the HCC disease process. In this study, the expression levels of KCNN4 in 86 HCC samples were compared with corresponding paracancerous tissues. sh-RNA was used to reduce the expression of KCNN4 in Hep3B HCC cells in vitro; this was confirmed by Real time-PCR and western blotting. Wound healing, transwell assays and high content analysis were performed to investigate the tumor-promoting characteristics of KCNN4 in Hep3B HCC cells. As results, KCNN4 expression was significantly associated with preoperative serum alpha-fetoprotein level (p=0.038) and TNM stage (p=0.039). Additionally, patients with high KCNN4 amplification in HCC tissue exhibited shorter disease-free survival, whereas there was no statistical significance between KCNN4 amplification and overall survival. Wound healing and transwell assays showed that knockdown of KCNN4 expression could reduce migration and invasion abilities of HCC cells. High content analysis result showed that down-regulated KCNN4 could inhibit the ability of HCC cell proliferation. The mitogen-activated protein kinase (MAPK) pathway is active in cell proliferation, differentiation, migration, senescence, and apoptosis. Matrix metallopeptidase 9 and extracellular signal regulated kinase 1/2 (ERK1/2) were important biomarkers of MAPK/ERK pathway, knockdown of KCNN4 reduced the expression of MMP9 and ERK1/2. These findings showed that KCNN4 promotes HCC invasion and metastasis through the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Qiu-Ting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ming Feng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zun-Hui Ke
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Meng-Jun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Xiao He
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Meng Wang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Liang-Liang Shi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Fan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Eckert F, Zwirner K, Boeke S, Thorwarth D, Zips D, Huber SM. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors. Front Immunol 2019; 10:407. [PMID: 30930892 PMCID: PMC6423917 DOI: 10.3389/fimmu.2019.00407] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
In order to compensate for the increased oxygen consumption in growing tumors, tumors need angiogenesis and vasculogenesis to increase the supply. Insufficiency in this process or in the microcirculation leads to hypoxic tumor areas with a significantly reduced pO2, which in turn leads to alterations in the biology of cancer cells as well as in the tumor microenvironment. Cancer cells develop more aggressive phenotypes, stem cell features and are more prone to metastasis formation and migration. In addition, intratumoral hypoxia confers therapy resistance, specifically radioresistance. Reactive oxygen species are crucial in fixing DNA breaks after ionizing radiation. Thus, hypoxic tumor cells show a two- to threefold increase in radioresistance. The microenvironment is enriched with chemokines (e.g., SDF-1) and growth factors (e.g., TGFβ) additionally reducing radiosensitivity. During recent years hypoxia has also been identified as a major factor for immune suppression in the tumor microenvironment. Hypoxic tumors show increased numbers of myeloid derived suppressor cells (MDSCs) as well as regulatory T cells (Tregs) and decreased infiltration and activation of cytotoxic T cells. The combination of radiotherapy with immune checkpoint inhibition is on the rise in the treatment of metastatic cancer patients, but is also tested in multiple curative treatment settings. There is a strong rationale for synergistic effects, such as increased T cell infiltration in irradiated tumors and mitigation of radiation-induced immunosuppressive mechanisms such as PD-L1 upregulation by immune checkpoint inhibition. Given the worse prognosis of patients with hypoxic tumors due to local therapy resistance but also increased rate of distant metastases and the strong immune suppression induced by hypoxia, we hypothesize that the subgroup of patients with hypoxic tumors might be of special interest for combining immune checkpoint inhibition with radiotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Zwirner
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
37
|
Alternating Electric Fields (TTFields) Activate Ca v1.2 Channels in Human Glioblastoma Cells. Cancers (Basel) 2019; 11:cancers11010110. [PMID: 30669316 PMCID: PMC6356873 DOI: 10.3390/cancers11010110] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/16/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor treating fields (TTFields) represent a novel FDA-approved treatment modality for patients with newly diagnosed or recurrent glioblastoma multiforme. This therapy applies intermediate frequency alternating electric fields with low intensity to the tumor volume by the use of non-invasive transducer electrode arrays. Mechanistically, TTFields have been proposed to impair formation of the mitotic spindle apparatus and cytokinesis. In order to identify further potential molecular targets, here the effects of TTFields on Ca2+-signaling, ion channel activity in the plasma membrane, cell cycle, cell death, and clonogenic survival were tested in two human glioblastoma cell lines in vitro by fura-2 Ca2+ imaging, patch-clamp cell-attached recordings, flow cytometry and pre-plated colony formation assay. In addition, the expression of voltage-gated Ca2+ (Cav) channels was determined by real-time RT-PCR and their significance for the cellular TTFields response defined by knock-down and pharmacological blockade. As a result, TTFields stimulated in a cell line-dependent manner a Cav1.2-mediated Ca2+ entry, G1 or S phase cell cycle arrest, breakdown of the inner mitochondrial membrane potential and DNA degradation, and/or decline of clonogenic survival suggesting a tumoricidal action of TTFields. Moreover, inhibition of Cav1.2 by benidipine aggravated in one glioblastoma line the TTFields effects suggesting that Cav1.2-triggered signaling contributes to cellular TTFields stress response. In conclusion, the present study identified Cav1.2 channels as TTFields target in the plasma membrane and provides the rationale to combine TTFields therapy with Ca2+ antagonists that are already in clinical use.
Collapse
|
38
|
Cancer-Associated Intermediate Conductance Ca 2+-Activated K⁺ Channel K Ca3.1. Cancers (Basel) 2019; 11:cancers11010109. [PMID: 30658505 PMCID: PMC6357066 DOI: 10.3390/cancers11010109] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Several tumor entities have been reported to overexpress KCa3.1 potassium channels due to epigenetic, transcriptional, or post-translational modifications. By modulating membrane potential, cell volume, or Ca2+ signaling, KCa3.1 has been proposed to exert pivotal oncogenic functions in tumorigenesis, malignant progression, metastasis, and therapy resistance. Moreover, KCa3.1 is expressed by tumor-promoting stroma cells such as fibroblasts and the tumor vasculature suggesting a role of KCa3.1 in the adaptation of the tumor microenvironment. Combined, this features KCa3.1 as a candidate target for innovative anti-cancer therapy. However, immune cells also express KCa3.1 thereby contributing to T cell activation. Thus, any strategy targeting KCa3.1 in anti-cancer therapy may also modulate anti-tumor immune activity and/or immunosuppression. The present review article highlights the potential of KCa3.1 as an anti-tumor target providing an overview of the current knowledge on its function in tumor pathogenesis with emphasis on vasculo- and angiogenesis as well as anti-cancer immune responses.
Collapse
|
39
|
Eckert F, Schilbach K, Klumpp L, Bardoscia L, Sezgin EC, Schwab M, Zips D, Huber SM. Potential Role of CXCR4 Targeting in the Context of Radiotherapy and Immunotherapy of Cancer. Front Immunol 2018; 9:3018. [PMID: 30622535 PMCID: PMC6308162 DOI: 10.3389/fimmu.2018.03018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022] Open
Abstract
Cancer immunotherapy has been established as standard of care in different tumor entities. After the first reports on synergistic effects with radiotherapy and the induction of abscopal effects-tumor shrinkage outside the irradiated volume attributed to immunological effects of radiotherapy-several treatment combinations have been evaluated. Different immunotherapy strategies (e.g., immune checkpoint inhibition, vaccination, cytokine based therapies) have been combined with local tumor irradiation in preclinical models. Clinical trials are ongoing in different cancer entities with a broad range of immunotherapeutics and radiation schedules. SDF-1 (CXCL12)/CXCR4 signaling has been described to play a major role in tumor biology, especially in hypoxia adaptation, metastasis and migration. Local tumor irradiation is a known inducer of SDF-1 expression and release. CXCR4 also plays a major role in immunological processes. CXCR4 antagonists have been approved for the use of hematopoietic stem cell mobilization from the bone marrow. In addition, several groups reported an influence of the SDF-1/CXCR4 axis on intratumoral immune cell subsets and anti-tumor immune response. The aim of this review is to merge the knowledge on the role of SDF-1/CXCR4 in tumor biology, radiotherapy and immunotherapy of cancer and in combinatorial approaches.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics/Pediatric Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Lilia Bardoscia
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Department of Radiation Oncology, University of Brescia, Brescia, Italy
| | - Efe Cumhur Sezgin
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University Hospital and University Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
40
|
Role of KCa3.1 Channels in Modulating Ca 2+ Oscillations during Glioblastoma Cell Migration and Invasion. Int J Mol Sci 2018; 19:ijms19102970. [PMID: 30274242 PMCID: PMC6213908 DOI: 10.3390/ijms19102970] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/29/2023] Open
Abstract
Cell migration and invasion in glioblastoma (GBM), the most lethal form of primary brain tumors, are critically dependent on Ca2+ signaling. Increases of [Ca2+]i in GBM cells often result from Ca2+ release from the endoplasmic reticulum (ER), promoted by a variety of agents present in the tumor microenvironment and able to activate the phospholipase C/inositol 1,4,5-trisphosphate PLC/IP3 pathway. The Ca2+ signaling is further strengthened by the Ca2+ influx from the extracellular space through Ca2+ release-activated Ca2+ (CRAC) currents sustained by Orai/STIM channels, meant to replenish the partially depleted ER. Notably, the elevated cytosolic [Ca2+]i activates the intermediate conductance Ca2+-activated K (KCa3.1) channels highly expressed in the plasma membrane of GBM cells, and the resulting K+ efflux hyperpolarizes the cell membrane. This translates to an enhancement of Ca2+ entry through Orai/STIM channels as a result of the increased electromotive (driving) force on Ca2+ influx, ending with the establishment of a recurrent cycle reinforcing the Ca2+ signal. Ca2+ signaling in migrating GBM cells often emerges in the form of intracellular Ca2+ oscillations, instrumental to promote key processes in the migratory cycle. This has suggested that KCa3.1 channels may promote GBM cell migration by inducing or modulating the shape of Ca2+ oscillations. In accordance, we recently built a theoretical model of Ca2+ oscillations incorporating the KCa3.1 channel-dependent dynamics of the membrane potential, and found that the KCa3.1 channel activity could significantly affect the IP3 driven Ca2+ oscillations. Here we review our new theoretical model of Ca2+ oscillations in GBM, upgraded in the light of better knowledge of the KCa3.1 channel kinetics and Ca2+ sensitivity, the dynamics of the Orai/STIM channel modulation, the migration and invasion mechanisms of GBM cells, and their regulation by Ca2+ signals.
Collapse
|
41
|
Ren Q, Wang ZZ, Chu SF, Xia CY, Chen NH. Gap junction channels as potential targets for the treatment of major depressive disorder. Psychopharmacology (Berl) 2018; 235:1-12. [PMID: 29178009 DOI: 10.1007/s00213-017-4782-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/05/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) remains a major public health problem worldwide. The association between MDD and the dysfunction of gap junction channels (GJCs) in glial cells, especially astrocytes, is still controversial. OBJECTIVE This review provides an overview of the role of astrocyte GJCs in LMDD. RESULTS Exposure to chronic unpredictable stress caused a reduction in connexin expression in the rat prefrontal cortex, a result that is consistent with clinical findings reported in postmortem studies of brains from MDD patients. Chronic antidepressant treatment in these rats increased the expression of connexins. However, pharmacological GJC blockade in normal rodents decreased connexin expression and caused depressive-like behaviors. Furthermore, GJC dysfunction affects electrical conductance, metabolic coupling and secondary messengers, and inflammatory responses, which are consistent with current hypotheses on MDD. All these results provide a comprehensive overview of the neurobiology of MDD. CONCLUSION This review supports the hypothesis that the regulation of GJCs between astrocytes could be an underlying mechanism for the therapeutic effect of antidepressants.
Collapse
Affiliation(s)
- Qian Ren
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|