1
|
Islam MT, Al Hasan MS, Ferdous J, Mia E, Yana NT, Ansari IA, Ansari SA, Islam MA, Coutinho HDM. Gaba Aergic sedative prospection of sclareol-linalool co-treatment: An antagonistic intervention through in vivo and in silico studies. Neurosci Lett 2025; 845:138060. [PMID: 39586457 DOI: 10.1016/j.neulet.2024.138060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Sleep disturbance causes many health problems in humans worldwide. This study evaluated the effects and possible mechanisms of sclareol (SCL) and/or linalool (LIN) through in vivo and in silico studies. For this, young chicks SCL (5, 10, and 20 mg/kg) and/or LIN (50 mg/kg) were orally administered thirty minutes before to the thiopental sodium (TS)-induced chicks with or without the standard drug diazepam (DZP: 3 mg/kg). Incidence, onset, and duration of sleep were then noted. The results suggest that SCL dose-dependently increased the onset and decreased the duration of sleep in animals. In contrast, LIN50 significantly (p < 0.05) decreased onset and increased sleep duration. SCL20 combined with LIN50 and/or DZP3 modulated the sleep parameters in animals. In combination, LIN50 showed better effects with DZP3, where the percentage decrease in latency and increase in sleep duration were 54.20 and 168.65 %, respectively. SCL20 when combined with LIN50 + DZP3 also modulated the onset and duration of sleep in animals. Further, in silico studies suggest that SCL and LIN have binding affinities with the 6X3X protein of the GABAA receptor (α1 and β2 subunits) of -6.9 and -6.8 kcal/mol, respectively. The standard drug DZP showed a binding affinity of -5.0 kcal/mol. Taken together, SCL may exert an angiogenic-like effect and antagonize LIN and/or DZP-mediated sedative effects in TS-induced chicks, possibly through the GABAA receptor α1 and β2 subunits interaction pathway.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh.
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Jannatul Ferdous
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh; Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka 1349, Bangladesh
| | - Emon Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Noshin Tasnim Yana
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin 10124, Italy
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, East West University, Dhaka 1212, Bangladesh
| | | |
Collapse
|
2
|
Islam MT, Bhuia MS, Mostakim MS, Chowdhury R, Hasan R, Sheikh S, Ansari SA, Ansari IA, Eity TA, Islam MT. Synergistic Anxiolytic Effects of Linalool and Sesamol Co-Treatment on Swiss Albino Mice: A Potential GABAergic Intervention. Synapse 2025; 79:e70003. [PMID: 39729049 DOI: 10.1002/syn.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Sesamol (SES) and linalool (LIN) are aromatic compounds that have neuroprotective effects. The main purpose of this study is to evaluate the anxiolytic activity of LIN and SES co-treatment on Swiss albino mice and analyze its possible mechanism through in silico study. In this sense, the mice were given the gamma-aminobutyric acid type A receptors (GABAA) agonist diazepam (DZP; 3 mg/kg, p.o.) as a positive control. A vehicle (10 mL/kg) was served as control. The tested chemicals, single-dose LIN (50 mg/kg) and SES (50 mg/kg), as well as a combination (LIN + SES) and (DZP + LIN + SES), were administered orally in order to conduct several behavioral tests, including open-field, swings box, hole-crossing, and dark-resident time tests. Further, molecular docking studies of LIN, SES, and DZP were carried out through different software. The results showed that LIN and SES individually have significant anxiolytic-like activity in mice. Further, when LIN was combined with SES and with (SES + DZP), it exhibited a relatively lower locomotor activity in mice compared to individual treatment groups, indicating a synergistic action. In addition, the molecular docking analysis revealed that LIN and SES have a moderate binding affinity (-5.0 and -5.1 kcal/mol) toward the GABAA receptor α3 subunit. In conclusion, our findings suggest that LIN and SES exerted synergistic anxiolytic activity on Swiss albino mice, possibly through the GABAergic interaction pathways.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Md Shadin Mostakim
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Salehin Sheikh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Tanzila Akter Eity
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Tohidul Islam
- Department of Biochemistry & Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| |
Collapse
|
3
|
Gonçalves S, Fernandes L, Caramelo A, Martins M, Rodrigues T, Matos RS. Soothing the Itch: The Role of Medicinal Plants in Alleviating Pruritus in Palliative Care. PLANTS 2024; 13:3515. [PMCID: PMC11677410 DOI: 10.3390/plants13243515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/05/2025]
Abstract
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates the antipruritic potential of eight medicinal plants: chamomile (Matricaria chamomilla ), aloe vera (Aloe barbadensis ), calendula (Calendula officinalis ), curcumin (Curcuma longa ), lavender (Lavandula angustifolia ), licorice (Glycyrrhiza glabra ), peppermint (Mentha piperita ), and evening primrose (Oenothera biennis ). These plants are analyzed for their traditional applications, active bioactive compounds, mechanisms of action, clinical evidence, usage, dosage, and safety profiles. Comprehensive searches were conducted in databases including PubMed, Web of Science, Scopus, and b-on, focusing on in vitro, animal, and clinical studies using keywords like “plant”, “extract”, and “pruritus”. Studies were included regardless of publication date and limited to English-language articles. Findings indicate that active compounds such as polysaccharides in aloe vera, curcuminoids in turmeric, and menthol in peppermint exhibit significant anti-inflammatory, antioxidant, and immune-modulating properties. Chamomile and calendula alleviate itching through anti-inflammatory and skin-soothing effects, while lavender and licorice offer antimicrobial benefits alongside antipruritic relief. Evening primrose, rich in gamma-linolenic acid, is effective in atopic dermatitis-related itching. Despite promising preclinical and clinical results, challenges remain in standardizing dosages and formulations. The review highlights the necessity of further clinical trials to ensure efficacy and safety, advocating for integrating these botanical therapies into complementary palliative care practices. Such approaches emphasize holistic treatment, addressing chronic pruritus’s physical and emotional burden, thereby enhancing patient well-being.
Collapse
Affiliation(s)
- Sara Gonçalves
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Lisete Fernandes
- Centro de Química-Vila Real (CQ-VR), UME-CIDE Unidade de Microscopia Eletrónica-Centro de Investigação e Desenvolvimento, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Caramelo
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- RISE-Health Research Network, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Maria Martins
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Palliative Medicine, Local Health Unit of Trás-os-Montes and Alto Douro EPE, 5400-261 Chaves, Portugal
| | - Tânia Rodrigues
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Rita S. Matos
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Local Health Unit of Trás-os-Montes and Alto Douro (ULSTMAD), 5050-275 Peso da Régua, Portugal
- Palliative Medicine, Local Health Unit of Nordeste, 5370-210 Mirandela, Portugal
| |
Collapse
|
4
|
André R, Gomes AP, Pereira-Leite C, Marques-da-Costa A, Monteiro Rodrigues L, Sassano M, Rijo P, Costa MDC. The Entourage Effect in Cannabis Medicinal Products: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:1543. [PMID: 39598452 DOI: 10.3390/ph17111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
This study explores the complementary or synergistic effects of medicinal cannabis constituents, particularly terpenes, concerning their therapeutic potential, known as the entourage effect. A systematic review of the literature on cannabis "entourage effects" was conducted using the PRISMA model. Two research questions directed the review: (1) What are the physiological effects of terpenes and terpenoids found in cannabis? (2) What are the proven "entourage effects" of terpenes in cannabis? The initial approach involved an exploratory search in electronic databases using predefined keywords and Boolean phrases across PubMed/MEDLINE, Web of Science, and EBSCO databases using Medical Subject Headings (MeSH). Analysis of published studies shows no evidence of neuroprotective or anti-aggregatory effects of α-pinene and β-pinene against β-amyloid-mediated toxicity; however, modest lipid peroxidation inhibition by α-pinene, β pinene, and terpinolene may contribute to the multifaceted neuroprotection properties of these C. sativa L. prevalent monoterpenes and the triterpene friedelin. Myrcene demonstrated anti-inflammatory proprieties topically; however, in combination with CBD, it did not show significant additional differences. Exploratory evidence suggests various therapeutic benefits of terpenes, such as myrcene for relaxation; linalool as a sleep aid and to relieve exhaustion and mental stress; D-limonene as an analgesic; caryophyllene for cold tolerance and analgesia; valencene for cartilage protection; borneol for antinociceptive and anticonvulsant potential; and eucalyptol for muscle pain. While exploratory research suggests terpenes as influencers in the therapeutic benefits of cannabinoids, the potential for synergistic or additive enhancement of cannabinoid efficacy by terpenes remains unproven. Further clinical trials are needed to confirm any terpenes "entourage effects."
Collapse
Affiliation(s)
- Rebeca André
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ana Patrícia Gomes
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- SOMAÍ Pharmaceuticals, R. 13 de Maio 52, 2580-507 Carregado, Portugal
| | - Catarina Pereira-Leite
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Laboratório Associado para a Química Verde, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | | | - Luis Monteiro Rodrigues
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Michael Sassano
- SOMAÍ Pharmaceuticals, R. 13 de Maio 52, 2580-507 Carregado, Portugal
| | - Patricia Rijo
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Maria do Céu Costa
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- NICiTeS, Polytechnic Institute of Lusophony, ERISA-Escola Superior de Saúde Ribeiro Sanches, Rua do Telhal aos Olivais 8, 1950-396 Lisboa, Portugal
| |
Collapse
|
5
|
Barrial-Lujàn AI, Taipe-Pardo F, Lima-Roman P, Correa-Cuba O, Aroni-Huamán J, Salas-Villano TS, Solano-Gutierrez J, Machaca Rejas J, Barrial-Lujàn C, Arevalo-Quijano JC, Huamán-Carrión ML. Assessment of physicochemical characteristics and bioactive compounds of the essential oil of wild herbs aromatic from Andean region of South Perú. BRAZ J BIOL 2024; 84:e286148. [PMID: 39570157 DOI: 10.1590/1519-6984.286148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/28/2024] [Indexed: 11/22/2024] Open
Abstract
Essential oils are a subject of study due to the heterogeneity of their components, which vary according to the genus and species of the plant material. The objective of this study was the physicochemical characterization and bioactive components of the essential oil (EO) extracted from wild punamuña (Satureja Boliviana) and runtuhuayra (Clinopodium Weberbaueri (Mansf.) Govaerts) herbs from high Andean areas of southern Peru. The extraction of the EO from both species was carried out using the steam distillation technique, the density characterization using gravimetric methods and the acidity, peroxide index and refraction by analytical methods recommended by the Norma Tecnica Peruana (NTP). The bioactive compounds were quantified using gas chromatography coupled to a mass spectrometry detector (GC-MS). A better EO performance was obtained from punañuna 0.38% (w/w) compared to runtuhuayra 0.28% (w/w); In both samples, the density and refractive index were similar values (0.93-0.94) g/mL and (1.528-1.520) (p>0.05) respectively; However, the acid and peroxide index showed a significant difference between the samples studied (p<0.05). 37 bioactive compounds synthesized as secondary metabolites in Satureja Boliviana EO were identified, with the majority being monoterpenes (62%) highlighted by menthone, L-menthone, pulegone and 3-cyclohexen-1-one. 2-isopropyl-5-methyl, linalool, α-cadinene and α-cadinol; Meanwhile, in the EO of Clinopodium Weberbaueri, 28 compounds were detected and quantified, in which monoterpenes predominate (61%) made up of pulegone (45.67%); isomenthol (13.85%), menthone (6.05%), carvacrol (5.39%), and also D-limonene; o-cymene; 3-octanol; β-pinene and α-terpineol successively. This characterization of the EO of the aforementioned samples reveals recent a new additive or ingredient alternative for the industry due to its biological value associated with antioxidant, antimicrobial, anti-inflammatory activities and psychotherapeutics.
Collapse
Affiliation(s)
- A I Barrial-Lujàn
- Universidad Politécnica de Valencia, Departamento de Tecnologia de Alimentos, Valencia, España
- Universidad Nacional José María Arguedas, Facultad de Ingenieria, Andahuaylas, Perú
| | - F Taipe-Pardo
- Universidad Nacional José María Arguedas, Facultad de Ingenieria, Andahuaylas, Perú
| | - P Lima-Roman
- Universidad Nacional José María Arguedas, Facultad de Ciencias de la Empresa, Andahuaylas, Perú
| | - O Correa-Cuba
- Universidad Nacional José María Arguedas, Facultad de Ingenieria, Andahuaylas, Perú
| | - J Aroni-Huamán
- Universidad Nacional José María Arguedas, Facultad de Ingenieria, Andahuaylas, Perú
| | - T S Salas-Villano
- Universidad Nacional José María Arguedas, Facultad de Ingenieria, Andahuaylas, Perú
| | - J Solano-Gutierrez
- Universidad Nacional José María Arguedas, Facultad de Ciencias de la Empresa, Andahuaylas, Perú
| | - J Machaca Rejas
- Universidad Nacional José María Arguedas, Facultad de Ciencias de la Empresa, Andahuaylas, Perú
| | - C Barrial-Lujàn
- Universidad Tecnología de los Andes, Facultad de Ingeniería, Andahuaylas, Perú
| | - J C Arevalo-Quijano
- Universidad Nacional José María Arguedas, Facultad de Ciencias de la Empresa, Andahuaylas, Perú
| | - M L Huamán-Carrión
- Universidad Nacional San Cristóbal de Huamanga, Unidad de Posgrado, Ayacucho, Perú
| |
Collapse
|
6
|
Irsal RA, Gholam GM, Dwicesaria MA, Mansyah TF, Chairunisa F. Exploring the potential of Scabiosa columbaria in Alzheimer's disease treatment: An in silico approach. J Taibah Univ Med Sci 2024; 19:947-960. [PMID: 39397872 PMCID: PMC11470288 DOI: 10.1016/j.jtumed.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Objectives Alzheimer's disease (AD) is posing an increasing global threat and currently lacks effective treatments. Therefore, this study was aimed at exploring phytochemicals in Scabiosa columbaria (S. columbaria) as inhibitors of acetylcholinesterase (AChE), β-site APP cleavage enzyme 1 (BACE1), and TNF-α converting enzyme (TACE) in AD. S. columbaria contains various bioactive compounds, such as chlorogenic acid, linalool, and catechins, which are known for their detoxification properties, capacity to resist and manage harmful moisture buildup, and therapeutic roles in COVID-19. Several studies have also shown that S. columbaria extract has strong antioxidant activity, and may potentially decrease neuroinflammation in AD. Therefore, this study investigated the interactions between S. columbaria phytochemicals and key enzymes associated with AD, thus providing opportunities for the development of new therapeutic candidates. Methods A total of 27 phytochemicals were evaluated for their inhibitory activity against AChE, BACE1, and TACE with YASARA Structure. ADMET profiles and toxicity were assessed. The top candidate compounds underwent 100 ns MD simulations. Results All ligands met Lipinski's rule and showed low toxicity. Catechins, compared with the known drug galantamine, showed higher inhibitory activity and interacted with additional active sites on AChE, thus suggesting potentially higher efficacy. Moreover, chlorogenic acid showed stronger inhibitory activity against TACE than the control drug (aryl-sulfonamide), thereby suggesting a different mechanism of action. MD simulation revealed that the formed complexes had good stability. However, further exploration is necessary. Conclusion S. columbaria derivative compounds are promising drug candidates because of their properties, including the affinity of chlorogenic acid toward TACE and hydrogen bond enhancing ligand-receptor interactions. MD simulation indicated stable ligand-protein complexes, and the radius of gyration and MM-PBSA calculations revealed favorable binding and interaction energies. Our findings demonstrate the identified compounds' potential for further drug development.
Collapse
Affiliation(s)
- Riyan A.P. Irsal
- Biomatics, Bogor, West Java, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Gusnia M. Gholam
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics, Malang, Indonesia
| | - Maheswari A. Dwicesaria
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Tiyara F. Mansyah
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | | |
Collapse
|
7
|
Noor AAM. Exploring the Therapeutic Potential of Terpenoids for Depression and Anxiety. Chem Biodivers 2024; 21:e202400788. [PMID: 38934531 DOI: 10.1002/cbdv.202400788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
This review focus on the terpenoids as potential therapeutic agents for depression and anxiety disorders, which naturally found in a variety of plants and exhibit a wide range of biological activities. Among the terpenoids discussed in this review are α-pinene, β-caryophyllene, α-phellandrene, limonene, β-linalool, 1, 8-cineole, β-pinene, caryophyllene oxide, p-cymene, and eugenol. All of these compounds have been studied extensively regarding their pharmacological properties, such as neuroprotective effect, anti-inflammation, antibacterial, regulation of neurotransmitters and antioxidant effect. Preclinical evidence are reviewed to highlight their diverse mechanisms of action and therapeutic potential to support antidepressant and anxiolytic properties. Additionally, challenges and future directions are also discussed to emphasize therapeutic utility of terpenoids for mental health disorders. Overall, this review provides a promising role of terpenoids as novel therapeutic agents for depression and anxiety, with potential implications for the development of more effective and well-tolerated treatments in the field of psychopharmacology.
Collapse
Affiliation(s)
- Arif Azimi Md Noor
- Harvard Medical School, Department of Biomedical Informatics, 10 Shattuck Street Suite 514, Boston MA, 02115, United States of America
- Eyes Specialist Clinic, Raja Perempuan Zainab 2 Hospital, 15586, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
8
|
Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, Nair JB. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024; 151:107649. [PMID: 39029321 DOI: 10.1016/j.bioorg.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu 632001, India
| | - Jyotsna B Nair
- Department of Biotechnology, JDT Islam College of Arts and Science, Vellimadukunnu, Kozhikode, Kerala 673012, India
| |
Collapse
|
9
|
Dos Santos ÉRQ, Pantoja LVPDS, Farias SV, Pinheiro BG, Andrade EHA, Mendes PFS, Cruz JN, Monteiro MC, Davis K, Lima RR, Freitas JJDS, Burbano RMR, Prediger RD, Fontes-Junior EA, Maia JGS, Maia CDSF. Linalool-rich rosewood essential oil (Aniba rosaeodora Ducke) mitigates emotional and neurochemical impairments induced by ethanol binge-like exposure during adolescence in female rats. Biomed Pharmacother 2024; 178:117120. [PMID: 39024836 DOI: 10.1016/j.biopha.2024.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Linalool-rich Rosewood oil (Aniba rosaeodora Ducke) is a natural compound widely used in perfumery industry. Evidence suggests that linalool exerts antidepressant and anxiolytic effects. Conversely, ethanol binge drinking (i.e., intermittent and episodic consumption) during adolescence elicits neurobehavioral alterations associated with brain damage. Here, we investigated whether linalool-rich Rosewood oil administration can improve the emotional and molecular impairments associated with ethanol binge-like exposure during adolescence in female rats. Rosewood oil was obtained by hydrodistillation and posteriorly analyzed. Adolescent female Wistar rats received four-cycles of ethanol binge-like pattern (3 g/kg/day, 3 days on/4 days off) and daily Rosewood oil (35 mg/kg, intranasally) for 28 days. Twenty-four hours after treatments, it was evaluated the impact of ethanol exposure and Rosewood oil treatment on the putative emotional impairments assessed on the splash and forced swimming tests, as well as the levels of brain-derived neurotrophic factor (BDNF), S100B, oxidative parameters, and inflammatory cytokines in prefrontal cortex and hippocampus. Results indicated that Rosewood oil intranasal administration mitigated emotional impairments induced by ethanol exposure accompanied by a marked increase in BDNF, S100B, glutathione (GSH), and antioxidant activity equivalent to Trolox (TEAC) levels in brain areas. Rosewood oil treatment also prevented the ethanol-induced increase of interleukin-1β, interleukin-6, tumor necrosis factor α (TNF-α), and neurofilament light chain (NFL) levels. These findings provide the first evidence that Rosewood oil intranasal administration exerts protective effects against emotional and molecular impairments associated with adolescent ethanol binge-like exposure, possibly due to linalool actions triggering neurotrophic factors, rebalancing antioxidant status, and attenuating proinflammatory process.
Collapse
Affiliation(s)
- Éverton Renan Quaresma Dos Santos
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Sarah Viana Farias
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Bruno Gonçalves Pinheiro
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Eloisa Helena A Andrade
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém, PA 66075-900, Brazil
| | | | - Jorddy Neves Cruz
- Laboratório de Biologia Funcional e Estrutural, Universidade Federal do Pará, Belém, PA 66075-900, Brazil
| | - Marta Chagas Monteiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém, PA 66075-900, Brazil
| | - Kelly Davis
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém, PA 66075-900, Brazil
| | - Rafael Rodrigues Lima
- Laboratório de Biologia Funcional e Estrutural, Universidade Federal do Pará, Belém, PA 66075-900, Brazil
| | | | | | - Rui Daniel Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88049-900, Brazil
| | - Enéas Andrade Fontes-Junior
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém, PA, Brazil
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém, PA 66075-900, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
10
|
Thapa R, Moglad E, Goyal A, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Ali H, Oliver BG, MacLoughlin R, Dureja H, Singh SK, Dua K, Gupta G. Deciphering NF-kappaB pathways in smoking-related lung carcinogenesis. EXCLI JOURNAL 2024; 23:991-1017. [PMID: 39253534 PMCID: PMC11382301 DOI: 10.17179/excli2024-7475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/01/2024] [Indexed: 09/11/2024]
Abstract
One of the main causes of death worldwide is lung cancer, which is largely caused by cigarette smoking. The crucial transcription factor NF-κB, which controls inflammatory responses and various cellular processes, is a constitutively present cytoplasmic protein strictly regulated by inhibitors like IκB proteins. Upon activation by external stimuli, it undergoes phosphorylation, translocates into the nucleus, and modulates the expression of specific genes. The incontrovertible association between pulmonary malignancy and tobacco consumption underscores and highlights a public health concern. Polycyclic aromatic hydrocarbons and nitrosamines, potent carcinogenic compounds present in the aerosol emitted from combusted tobacco, elicit profound deleterious effects upon inhalation, resulting in severe perturbation of pulmonary tissue integrity. The pathogenesis of smoking-induced lung cancer encompasses an intricate process wherein NF-κB activation plays a pivotal role, triggered by exposure to cigarette smoke through diverse signaling pathways, including those associated with oxidative stress and pro-inflammatory cytokines. Unraveling the participation of NF-κB in smoking-induced lung cancer provides pivotal insights into molecular processes, wherein intricate crosstalk between NF-κB and pathways such as MAPK and PI3K-Akt amplifies the inflammatory response, fostering an environment conducive to the formation of lung cancer. This study reviews the critical function of NF-κB in the complex molecular pathways linked to the initiation and advancement of lung carcinogenesis as well as potential treatment targets. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2137 Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94 Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77 Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40 Ireland
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Center for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
11
|
Prabowo WC, Kuncoro H, Irawan B, Kusuma SAF, Susilawati Y. Botanical and pharmacognostic investigation of Strobilanthes kalimantanensis. J Adv Pharm Technol Res 2024; 15:144-149. [PMID: 39290543 PMCID: PMC11404428 DOI: 10.4103/japtr.japtr_9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 09/19/2024] Open
Abstract
Under a hidden waterfall in the interior of the tropical rainforest of East Kalimantan, a new medicinal plant that produces essential oil (EO) was found with the name Strobilanthes kalimantanensis. The aim was to investigate the botanical and evaluate the pharmacognostic characteristics of S. kalimantanensis leaves from East Kalimantan, Indonesia. Pharmacognostic studies can provide recommendations for establishing quality control standards or guidelines for cultivating, harvesting, and processing S. kalimantanensi s to ensure the consistent and reliable quality of medicinal products. Characteristic methods of S. kalimantanensis leaves include botanical macroscopic, fluorescence, physicochemical, and phytochemical evaluation. The plant characteristics of this plant are similar to S. kunthia and S. reptans but can be differentiated in the leaves and flowers. Fluorescence assay with sodium hydroxide 5% shows unique characteristics of secondary metabolites based on their ability to form dark green with black precipitate in Ultraviolet 365 nm. The physicochemical characteristics showed yield, water content, water-soluble, ethanol soluble, total ash value, and acid-insoluble ash. Phytochemicals showed the presence of alkaloids, polyphenols, terpenoids, and EO containing 23% trans-anethole. This evaluation report details the chemical composition, identity, and safety of S. kalimantanensis leaves.
Collapse
Affiliation(s)
- Wisnu Cahyo Prabowo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Mulawarman University, Samarinda, East Kalimantan, Indonesia
| | - Hadi Kuncoro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Mulawarman University, Samarinda, East Kalimantan, Indonesia
| | - Budi Irawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jatinangor, Indonesia
| | - Sri Agung Fitri Kusuma
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Yasmiwar Susilawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
12
|
Singh S, Mishra A. Linalool: Therapeutic Indication And Their Multifaceted Biomedical Applications. Drug Res (Stuttg) 2024; 74:255-268. [PMID: 38968949 DOI: 10.1055/a-2321-9571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
This comprehensive review endeavors to illuminate the nuanced facets of linalool, a prominent monoterpene found abundantly in essential oils, constituting a massive portion of their composition. The biomedical relevance of linalool is a key focus, highlighting its therapeutic attributes observed through anti-nociceptive effects, anxiolytic properties, and behavioral modulation in individuals affected by dementia. These findings underscore the compound's potential application in biomedical applications. This review further explores contemporary formulations, delineating the adaptability of linalool in nano-emulsions, microemulsions, bio-capsules, and various topical formulations, including topical gels and lotions. This review covers published and granted patents between 2018-2024 and sheds light on the evolving landscape of linalool applications, revealing advancements in dermatological, anti-inflammatory, and antimicrobial domains.
Collapse
Affiliation(s)
- Shiva Singh
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| |
Collapse
|
13
|
Solomon DA, Prasad N, Beautily V, Thenmozhi P, Madaswamy R, Deepika D. Effect of Lavender Oil on Social Anxiety Among First-Year College Students. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S2907-S2909. [PMID: 39346373 PMCID: PMC11426830 DOI: 10.4103/jpbs.jpbs_601_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 10/01/2024] Open
Abstract
Background In order to build learning environments that support both academic and psychological growth, it is important to recognize and manage social anxiety, a problem that is frequently experienced by first-year students in educational settings. Objective The aim of this study is to assess effectiveness of lavender oil on social anxiety among first-year college students. Methods A quasi-experimental research design was employed. The 100 samples selected using the non-probability purposive selection strategy. The instrument has two sections: demographic information and the Social Interaction Anxiety Scale. Results The results reveal that in the pretest, 70 (70%) had no anxiety, 12 (12%) had mild anxiety, and 18 (18%) had moderate anxiety, while in the post-test, 85 (85%) had no anxiety, 13 (13%) had mild anxiety, and 2 (2%) had moderate anxiety among first-year students. Students had a mean anxiety score of 37.90 ± 8.59 before and 21.53 ± 5.79 after the test. The mean difference score was 16.37, while the mean difference percentage was 41%. The estimated paired "t"-test result of t = 16.209 was found to be statistically significant at P < 0.001. This demonstrates that the lavender oil on social anxiety administered to students was effective in lowering anxiety levels during the post-test. Conclusion Lavender oil is a promising natural treatment for social anxiety, providing a simple and accessible option with little side effects.
Collapse
Affiliation(s)
- D Alfred Solomon
- Department of Mental Health Nursing, Saveetha College of Nursing, SIMATS, Thandalam, Chennai, Tamil Nadu, India
| | - Nagendhra Prasad
- Department of Mental Health Nursing, Saveetha College of Nursing, SIMATS, Thandalam, Chennai, Tamil Nadu, India
| | - V Beautily
- Department of Child Health Nursing, Saveetha College of Nursing, SIMATS, Thandalam, Chennai, Tamil Nadu, India
| | - P Thenmozhi
- Department of Medical and Surgical Nursing, Saveetha College of Nursing, SIMATS, Thandalam, Chennai, Tamil Nadu, India
| | - R Madaswamy
- Department of Mental Health Nursing, Saveetha College of Nursing, SIMATS, Thandalam, Chennai, Tamil Nadu, India
| | - D Deepika
- Department of Mental Health Nursing, Saveetha College of Nursing, SIMATS, Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Haramshahi M, Babaie S, Shahnazi M, Kafil B, Farshbaf-Khalili A, Naghdi M. The efficacy of oral Lavandula angustifolia Mill. essential oil on menopausal symptoms, serum lipid profile, and cortisol concentration in postmenopausal women: A triple-blind, randomized, controlled trial. Complement Ther Med 2024; 82:103050. [PMID: 38754638 DOI: 10.1016/j.ctim.2024.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE To determine the effect of oral Lavandula angustifolia Mill. essential oil (LEO) on menopausal symptoms, serum cortisol level, and lipid profile in postmenopausal women. METHODS This was a triple-blind parallel-armed randomized trial. Seventy-two postmenopausal women aged 50-65 years referring to healthcare centers in Tabriz, Iran with a score of 15-42 on the Green scale were included from May 10, 2022 to May 22, 2023. The participants were randomly assigned to two groups with a 1:1 ratio and using four and six blocks. One group received LEO soft gel 80 mg per day, and another group received a similar placebo for 60 days. A demographic questionnaire and a Greene menopause symptom scale were used for data collection. The lipid profile (total cholesterol, triglyceride, LDL, HDL) and the serum levels of cortisol were measured using biochemical methods. Chi-square, Fisher's exact tests, Independent samples t-test, Analysis of Covariance (ANCOVA), Repeated measure ANOVA, and Paired sample t-test were utilized for analyses. A p-value less than 0.05 was considered statistically significant. RESULTS The demographic and personal characteristics of the participants were similar. After two months of intervention, all symptoms in psychological, physical, vasomotor, anxiety, depression, and sexual dysfunction domains were significantly relieved (decreased) among both groups (p < 0.003), except for sexual dysfunction, the reduction of which was not significant in the placebo group (p = 0.317). The mean (SD) total score of menopausal symptoms reduced from 27.4 (6.3) at baseline to 17.7 (4.9) at the end of the study in the LEO group (p < 0.001). It also decreased from 27.4 (7.1) to 17.6 (5.1) in the placebo group (p < 0.001). However, between-group analyses revealed that this reduction was significantly greater in the LEO group compared to the placebo group only in the sexual dysfunction (Mean (SD): 1.3 (0.6) vs. 1.0 (0.5); adjusted mean difference (95% confidence interval); p: - 0.35 (-0.67 to -0.02); 0.039). No significant within-group changes or between-group differences were observed (p > 0.05) in terms of studied serum markers. CONCLUSION The oral LEO exhibited a significant enhancement in sexual dysfunction among postmenopausal women. Therefore, it can be used alongside other therapies to improve sexual dysfunction during menopause. LEO did not affect lipid profile and serum cortisol level in this study.
Collapse
Affiliation(s)
- Morteza Haramshahi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Shahnazi
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Kafil
- Nutrition Research Center, Stem Cell Innovation and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mina Naghdi
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Cannas C, Lostia G, Serra PA, Peana AT, Migheli R. Food and Food Waste Antioxidants: Could They Be a Potent Defence against Parkinson's Disease? Antioxidants (Basel) 2024; 13:645. [PMID: 38929084 PMCID: PMC11200518 DOI: 10.3390/antiox13060645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress, an imbalance between reactive oxygen species (ROS) and endogenous antioxidants, plays an important role in the development of neurodegenerative diseases, including Parkinson's. The human brain is vulnerable to oxidative stress because of the high rate of oxygen that it needs and the high levels of polyunsaturated fatty acids, which are substrates of lipid peroxidation. Natural antioxidants inhibit oxidation and reduce oxidative stress, preventing cancer, inflammation, and neurodegenerative disorders. Furthermore, in the literature, it is reported that antioxidants, due to their possible neuroprotective activity, may offer an interesting option for better symptom management, even Parkinson's disease (PD). Natural antioxidants are usually found in several foods, such as fruits, vegetables, meat, fish, and oil, and in food wastes, such as seeds, peels, leaves, and skin. They can help the system of endogenous antioxidants, protect or repair cellular components from oxidative stress, and even halt lipid, protein, and DNA damage to neurons. This review will examine the extent of knowledge from the last ten years, about the neuroprotective potential effect of natural antioxidants present in food and food by-products, in in vivo and in vitro PD models. Additionally, this study will demonstrate that the pool of dietary antioxidants may be an important tool in the prevention of PD and an opportunity for cost savings in the public health area.
Collapse
Affiliation(s)
| | | | | | | | - Rossana Migheli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy (A.T.P.)
| |
Collapse
|
16
|
Gostin IN, Blidar CF. Glandular Trichomes and Essential Oils Variability in Species of the Genus Phlomis L.: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:1338. [PMID: 38794409 PMCID: PMC11125434 DOI: 10.3390/plants13101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
The genus Phlomis is one of the largest genera in the Lamiaceae family and includes species used since ancient times in traditional medicine, as flavoring for food and as fragrance in cosmetics. The secretory structures (represented by glandular trichomes) as well as the essential oils produced by them constitute the subject of this review. While representatives of this genus are not typically regarded as large producers of essential oils compared to other species of the Lamiaceae family, the components identified in their essential oils and their biological properties necessitate more investigation of this genus. A comprehensive analysis of the specialized literature was conducted for each of the 93 currently accepted species to identify all the results obtained by researchers regarding the secretory structures and essential oils of this genus up to the present time. Glandular trichomes, still insufficiently studied, present morphological peculiarities that differentiate this genus within the family: they are of two categories: capitate (with a wide distribution in this genus) and dendroid. The peltate trichomes, characteristic of many species of this family, are absent. The essential oils from the species of the genus Phlomis have been much more widely studied than the secretory structures. They show considerable variability depending on the species and the environmental conditions.
Collapse
Affiliation(s)
- Irina Neta Gostin
- Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Bdul Carol I, No. 11, 700506 Iasi, Romania
| | - Cristian Felix Blidar
- Department of Biology, Faculty of Informatics and Sciences, University of Oradea, Street Universităţii No. 1, 410087 Oradea, Romania;
| |
Collapse
|
17
|
Sedky NK, Mahdy NK, Abdel-Kader NM, Abdelhady MMM, Maged M, Allam AL, Alfaifi MY, Shamma SN, Hassan HAFM, Fahmy SA. Facile sonochemically-assisted bioengineering of titanium dioxide nanoparticles and deciphering their potential in treating breast and lung cancers: biological, molecular, and computational-based investigations. RSC Adv 2024; 14:8583-8601. [PMID: 38487521 PMCID: PMC10938292 DOI: 10.1039/d3ra08908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Combining sonochemistry with phytochemistry is a modern trend in the biosynthesis of metallic nanoparticles (NPs), which contributes to the sustainability of chemical processes and minimizes hazardous effects. Herein, titanium dioxide (TiO2) NPs were bioengineered using a novel and facile ultrasound-assisted approach utilizing the greenly extracted essential oil of Ocimum basilicum. FTIR and UV-Vis spectrophotometry were used to confirm the formation of TiO2 NPs. The X-ray diffraction (XRD) analysis showed the crystalline nature of TiO2 NPs. TEM analysis revealed the spherical morphology of the NPs with sizes ranging from 5.55 to 13.89 nm. Energy-dispersive X-ray (EDX) confirmed the purity of the greenly synthesized NPs. TiO2 NPs demonstrated outstanding antitumor activity against breast (MCF-7) and lung (A-549) cancer cells with estimated IC50 values of 1.73 and 4.79 μg mL-1. The TiO2 NPs were cytocompatible to normal cells (MCF-10A) with a selectivity index (SI) of 8.77 for breast and 3.17 for lung cancer. Biological assays revealed a promising potential for TiO2 NPs to induce apoptosis and arrest cells at the sub-G1 phase of the cell cycle phase in both cancer cell lines. Molecular investigations showed the ability of TiO2 NPs to increase apoptotic genes' expression (Bak and Bax) and their profound ability to elevate the expression of apoptotic proteins (caspases 3 and 7). Molecular docking demonstrated strong binding interactions for TiO2 NPs with caspase 3 and EGFR-TK targets. In conclusion, the greenly synthesized TiO2 NPs exhibited potent antitumor activity and mitochondrion-based cell death against breast and lung cancer cell lines while maintaining cytocompatibility against normal cells.
Collapse
Affiliation(s)
- Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Nour M Abdel-Kader
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Manal M M Abdelhady
- Clinical Pharmacy Department, Faculty of Pharmacy, Badr University Cairo 11829 Egypt
| | - Mohamad Maged
- Faculty of Biotechnology, Nile University Giza Egypt
| | - Aya L Allam
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Egypt
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
| | - Samir N Shamma
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Hatem A F M Hassan
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20-1222613344
| |
Collapse
|
18
|
maheswari CU. Molecular structure, vibrational spectral, electron density analysis on linaloe oil and molecular docking efficacy against the therapeutic target on human immunodeficiency virus-1 organism (VIRAL protein). Heliyon 2024; 10:e26274. [PMID: 38384556 PMCID: PMC10879012 DOI: 10.1016/j.heliyon.2024.e26274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Natural traditional medicine extensively uses certain terpenes and gives plants their flavor, aroma, and color. Treatments for bacterial infections, malaria, and cardiovascular disorders, anti-inflammatory, promote circulation, and heal wounds. 3,7-Dimethyl-1,6-octadien-3-ol (Linalool) is a naturally occurring monoterpene alcohol with no cycle and is a colorless liquid. Spectral analysis such as UV absorption spectra, NMR for structure determination, and IR and Raman for vibrational analysis. The Quantum mechanical approach uses DFT, ELF, and LOL-promolecular electron density, non-relaxed, and atomic density analysis. The biomolecular studies such as molecular dynamics using protein-ligand complex with HIV-1 organism (energy minimization). ADMET for the usage of linalool in different metabolism studies and Molecular docking for binding affinity, its reactive site estimation, and macromolecules that come into contact with protein receptors and conclude ligand binding affinity with protein.
Collapse
Affiliation(s)
- Chandramohan Uma maheswari
- Department of Physics, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, 600062, Tamilnadu, India
| |
Collapse
|
19
|
Chang WH, Hsu HT, Lin CC, An LM, Lee CH, Ko HH, Lin CL, Lo YC. Linalool, a Fragrance Compound in Plants, Protects Dopaminergic Neurons and Improves Motor Function and Skeletal Muscle Strength in Experimental Models of Parkinson's Disease. Int J Mol Sci 2024; 25:2514. [PMID: 38473763 DOI: 10.3390/ijms25052514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in reduced dopamine levels in the striatum and eventual onset of motor symptoms. Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a monoterpene in aromatic plants exhibiting antioxidant, antidepressant, and anti-anxiety properties. The objective of this study is to evaluate the neuroprotective impacts of linalool on dopaminergic SH-SY5Y cells, primary mesencephalic and cortical neurons treated with 1-methyl-4-phenylpyridinium ion (MPP+), as well as in PD-like mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cell viability, α-tubulin staining, western blotting, immunohistochemistry and behavioral experiments were performed. In MPP+-treated SH-SY5Y cells, linalool increased cell viability, reduced neurite retraction, enhanced antioxidant defense by downregulation of apoptosis signaling (B-cell lymphoma 2 (Bcl-2), cleaved caspase-3 and poly ADP-ribose polymerase (PARP)) and phagocyte NADPH oxidase (gp91phox), as well as upregulation of neurotrophic signaling (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) and nuclear factor-erythroid 2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. In MPP+-treated primary mesencephalic neurons, linalool enhanced the expressions of tyrosine hydroxylase (TH), Sirtuin 1 (SirT1), and parkin. In MPP+-treated primary cortical neurons, linalool upregulated protein expression of SirT1, γ-Aminobutyric acid type A-α1 (GABAA-α1), and γ-Aminobutyric acid type B (GABAB). In PD-like mice, linalool attenuated the loss of dopamine neurons in SNpc. Linalool improved the motor and nonmotor behavioral deficits and muscle strength of PD-like mice. These findings suggest that linalool potentially protects dopaminergic neurons and improves the impairment symptoms of PD.
Collapse
Affiliation(s)
- Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Te Hsu
- Department of Anesthesia, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 80756, Taiwan
- Faculty of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Cheng Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Li-Mei An
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
20
|
Marchidan IG, Ortan A, Marcu Spinu S, Avramescu SM, Avram I, Fierascu RC, Babeanu N. Chemical Composition and Biological Properties of New Romanian Lavandula Species. Antioxidants (Basel) 2023; 12:2127. [PMID: 38136246 PMCID: PMC10741150 DOI: 10.3390/antiox12122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The aims of the present study were to evaluate for the first time the chemical composition and antioxidant, antibacterial, antifungal and antiproliferative potentials of the Romanian George 90 lavender species, as well as parental species, L. angustifolia and L. latifolia. The L. angustifolia, L. latifolia and George 90 essential oils were analyzed by GC-MS/MS and the L. angustifolia, L. latifolia and George 90 hydroalcoholic extracts were analyzed by HPLC-DAD. The antioxidant, antibacterial, antifungal and antiproliferative assays revealed that all the investigated species showed significant activities. The results highlighted the chemical composition and the promising biological potentials of the L. angustifolia, L. latifolia and George 90 lavender species, validating their ethnomedicinal value, which offers potential applications as natural drugs.
Collapse
Affiliation(s)
- Ionuț Georgică Marchidan
- Biotechnologies Department, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania; (I.G.M.); (N.B.)
| | - Alina Ortan
- Mathematics, Physics and Measurements Department, Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania;
| | - Simona Marcu Spinu
- Mathematics, Physics and Measurements Department, Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania;
| | - Sorin Marius Avramescu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Soseaua Panduri, 050663 Bucharest, Romania;
| | - Ionela Avram
- Department of Genetics, University of Bucharest, 1-3-Aleea Portocalelor, 060101 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM–Bucharest, 060021 Bucharest, Romania;
| | - Narcisa Babeanu
- Biotechnologies Department, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania; (I.G.M.); (N.B.)
| |
Collapse
|
21
|
Zhao Y, Li S, Du X, Xu W, Bian J, Chen S, He C, Xu J, Ye S, Feng D, Li P. Insights into momentous aroma dominating the characteristic flavor of jasmine tea. Food Sci Nutr 2023; 11:7841-7854. [PMID: 38107141 PMCID: PMC10724623 DOI: 10.1002/fsn3.3701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 12/19/2023] Open
Abstract
Jasmine tea is loved by most people who drink flower tea owing to its unique aroma, and it is known as the top of flower teas. In our study, the quantitative evaluation of the quality of jasmine tea and detection of aroma components were carried out. First, the flavor quality of 92 kinds of jasmine tea was evaluated using multiple sub-factor quality evaluation methods. According to the evaluation results, jasmine tea was divided into three types: "fresh and lovely" (FL), "heavy and thick" (HT), and "fresh and heavy" (FH). Gas chromatography-mass spectrometry (GC-MS) was used to detect the aroma components of the three types of jasmine tea samples. α-Farnesene, cis-3-hexenyl benzoate, acid phenylmethyl ester, linalool, methyl anthranilate, and indole were the main substances that constituted the basic aroma quality characteristics of jasmine tea. Compared to the FL type, the HT and FH types were weaker in the diversification of the characteristic aroma and accumulation of green, herb, sweet, and roast aroma substances. Green and herb aromas play crucial roles in the fresh and persistent qualities of the three types of jasmine tea, which are the key quality factors research focus of jasmine tea.
Collapse
Affiliation(s)
- Yueling Zhao
- Department of Tea Science, College of HorticultureSichuan Agricultural UniversityChengduChina
- Tea Refining and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Shunyu Li
- Department of Tea Science, College of HorticultureSichuan Agricultural UniversityChengduChina
| | - Xiao Du
- Department of Tea Science, College of HorticultureSichuan Agricultural UniversityChengduChina
- Tea Refining and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Wei Xu
- Department of Tea Science, College of HorticultureSichuan Agricultural UniversityChengduChina
- Tea Refining and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Jinlin Bian
- Department of Tea Science, College of HorticultureSichuan Agricultural UniversityChengduChina
- Tea Refining and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Shengxiang Chen
- Department of Tea Science, College of HorticultureSichuan Agricultural UniversityChengduChina
- Tea Refining and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Chunlei He
- Department of Tea Science, College of HorticultureSichuan Agricultural UniversityChengduChina
- Tea Refining and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Jingyi Xu
- Department of Tea Science, College of HorticultureSichuan Agricultural UniversityChengduChina
- Tea Refining and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Shanrong Ye
- National Institute of Measurement and Testing TechnologyChengduChina
| | - Dejian Feng
- National Institute of Measurement and Testing TechnologyChengduChina
| | - Pinwu Li
- Department of Tea Science, College of HorticultureSichuan Agricultural UniversityChengduChina
- Tea Refining and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| |
Collapse
|
22
|
Bappi MH, Prottay AAS, Kamli H, Sonia FA, Mia MN, Akbor MS, Hossen MM, Awadallah S, Mubarak MS, Islam MT. Quercetin Antagonizes the Sedative Effects of Linalool, Possibly through the GABAergic Interaction Pathway. Molecules 2023; 28:5616. [PMID: 37513487 PMCID: PMC10384931 DOI: 10.3390/molecules28145616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Sedatives promote calmness or sleepiness during surgery or severely stressful events. In addition, depression is a mental health issue that negatively affects emotional well-being. A group of drugs called anti-depressants is used to treat major depressive illnesses. The aim of the present work was to evaluate the effects of quercetin (QUR) and linalool (LIN) on thiopental sodium (TS)-induced sleeping mice and to investigate the combined effects of these compounds using a conventional co-treatment strategy and in silico studies. For this, the TS-induced sleeping mice were monitored to compare the occurrence, latency, and duration of the sleep-in response to QUR (10, 25, 50 mg/kg), LIN (10, 25, 50 mg/kg), and diazepam (DZP, 3 mg/kg, i.p.). Moreover, an in silico investigation was undertaken to assess this study's putative modulatory sedation mechanism. For this, we observed the ability of test and standard medications to interact with various gamma-aminobutyric acid A receptor (GABAA) subunits. Results revealed that QUR and LIN cause dose-dependent antidepressant-like and sedative-like effects in animals, respectively. In addition, QUR-50 mg/kg and LIN-50 mg/kg and/or DZP-3 mg/kg combined were associated with an increased latency period and reduced sleeping times in animals. Results of the in silico studies demonstrated that QUR has better binding interaction with GABAA α3, β1, and γ2 subunits when compared with DZP, whereas LIN showed moderate affinity with the GABAA receptor. Taken together, the sleep duration of LIN and DZP is opposed by QUR in TS-induced sleeping mice, suggesting that QUR may be responsible for providing sedation-antagonizing effects through the GABAergic interaction pathway.
Collapse
Affiliation(s)
- Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Nayem Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Munnaf Hossen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
23
|
Fonseca ECM, Ferreira LR, Figueiredo PLB, Maia CDSF, Setzer WN, Da Silva JKR. Antidepressant Effects of Essential Oils: A Review of the Past Decade (2012-2022) and Molecular Docking Study of Their Major Chemical Components. Int J Mol Sci 2023; 24:ijms24119244. [PMID: 37298210 DOI: 10.3390/ijms24119244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 06/12/2023] Open
Abstract
Depression is a mental disorder that affects more than 300 million people worldwide. The medications available for treatment take a long time to exhibit therapeutic results and present several side effects. Furthermore, there is a decrease in the quality of life of people suffering from this affliction. Essential oils are traditionally used to relieve the symptoms of depression due to the properties of the constituents of these oils to cross the blood-brain barrier acting on depression-related biological receptors associated with reduced toxicity and side effects. In addition, compared to traditional drugs, they have several administration forms. This review provides a comprehensive assessment of studies on plants whose essential oil has exhibit antidepressant activity in the past decade and the mechanism of action of the major components and models tested. An additional in silico study was conducted with the frequent compounds in the composition of these essential oils, providing a molecular approach to the mechanism of action that has been reported in the past decade. This review is valuable for the development of potential antidepressant medications in addition to providing a molecular approach to the antidepressant mechanism of action of the major volatile compounds that have been reported in the past decade.
Collapse
Affiliation(s)
- Emily Christie M Fonseca
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Lanalice R Ferreira
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Pablo Luis B Figueiredo
- Laboratório de Química dos Produtos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66087-662, Brazil
| | - Cristiane do Socorro F Maia
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Joyce Kelly R Da Silva
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, Brazil
| |
Collapse
|
24
|
Cartágenes SDC, da Silveira CCSDM, Pinheiro BG, Fernandes LMP, Farias SV, Kobayashi NHC, de Souza PHFS, do Prado AF, Ferreira MKM, Lima RR, de Oliveira EHC, de Luna FCF, Burbano RMR, Fontes-Júnior EA, Maia CDSF. “K-Powder” Exposure during Adolescence Elicits Psychiatric Disturbances Associated with Oxidative Stress in Female Rats. Pharmaceuticals (Basel) 2022; 15:ph15111373. [PMID: 36355545 PMCID: PMC9698848 DOI: 10.3390/ph15111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Ketamine, also called ‘K-powder’ by abusers, an analog of phencyclidine, primarily acts as an antagonist of N-methyl-D-aspartic acid (NMDA) receptors, therapeutically used as an anesthetic agent. Ketamine also stimulates the limbic system, inducing hallucinations and dissociative effects. At sub-anesthetic doses, ketamine also displays hallucinatory and dissociative properties, but not loss of consciousness. These behavioral consequences have elicited its recreational use worldwide, mainly at rave parties. Ketamine is generally a drug of choice among teenagers and young adults; however, the harmful consequences of its recreational use on adolescent central nervous systems are poorly explored. Thus, the aim of the present study was to characterize the behavioral and biochemical consequences induced by one binge-like cycle of ketamine during the early withdrawal period in adolescent female rats. Adolescent female Wistar rats (n = 20) received intraperitoneally administered ketamine (10 mg/kg/day) for 3 consecutive days. Twenty-four hours after the last administration of ketamine, animals were submitted to behavioral tests in an open field, elevated plus-maze, and forced swimming test. Then, animals were intranasally anesthetized with 2% isoflurane and euthanized to collect prefrontal cortex and hippocampus to assess lipid peroxidation, antioxidant capacity against peroxyl radicals, reactive oxygen species, reduced glutathione, and brain-derived neurotrophic factor (BDNF) levels. Our results found that 24 h after recreational ketamine use, emotional behavior disabilities, such as anxiety- and depression-like profiles, were detected. In addition, spontaneous ambulation was reduced. These negative behavioral phenotypes were associated with evidence of oxidative stress on the prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | | | - Bruno Gonçalves Pinheiro
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
- Physiological and Morphological Sciences Department, Biological and Health Science Centre, State University of Pará, Belém 66087-662, PA, Brazil
| | - Sarah Viana Farias
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Natália Harumi Correa Kobayashi
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Pablo Henrique Franco Santos de Souza
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Alejandro Ferraz do Prado
- Laboratory of Pharmacology and Toxicology of Cardiovascular System, Institute of Biological Science, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil
| | - Francisco Canindé Ferreira de Luna
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil
| | | | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
- Correspondence:
| |
Collapse
|
25
|
Zhai R, Ma J, An Y, Wen Z, Liu Y, Sun Q, Xie P, Zhao S. Ultra-stable Linalool/water Pickering Emulsions: A Combined Experimental and Simulation Study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|