1
|
Zhang T, Liu C, Zhong N, Wang Y, Huang Y, Zhang X. Advances in the Treatment of Cognitive Impairment in Schizophrenia: Targeting NMDA Receptor Pathways. Int J Mol Sci 2024; 25:10668. [PMID: 39408997 PMCID: PMC11477438 DOI: 10.3390/ijms251910668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cognitive impairment is a core feature of schizophrenia, playing a pivotal role in the pathogenesis and prognosis of this disorder. Cognitive impairment in schizophrenia encompasses a wide range of domains, including processing speed, episodic memory, working memory, and executive function. These deficits persist throughout the course of the illness and significantly impact functional outcomes and quality of life. Therefore, it is imperative to identify the biological basis of cognitive deficits in schizophrenia and develop effective treatments. The role of N-methyl-D-aspartate (NMDA) receptors in synaptic transmission and plasticity has long been recognized, making them potential targets for schizophrenia treatment. This review will focus on emerging pharmacology targeting NMDA receptors, offering strategies for the prevention and treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (T.Z.); (C.L.); (N.Z.); (Y.W.); (Y.H.)
| |
Collapse
|
2
|
Rosenbrock H, Desch M, Wunderlich G. Development of the novel GlyT1 inhibitor, iclepertin (BI 425809), for the treatment of cognitive impairment associated with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1557-1566. [PMID: 36971864 PMCID: PMC10465677 DOI: 10.1007/s00406-023-01576-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Schizophrenia is a psychiatric disorder characterised by symptoms in three domains: positive (e.g. delusions, hallucinations), negative (e.g. social withdrawal, lack of motivation) and cognitive (e.g. working memory and executive function impairment). Cognitive impairment associated with schizophrenia (CIAS) is a major burden for patients and negatively impacts many aspects of a patient's life. Antipsychotics are the standard-of-care treatment for schizophrenia but only address positive symptoms. So far there are no approved pharmacotherapies for the treatment of CIAS. Iclepertin (BI 425809) is a novel, potent and selective glycine transporter 1 (GlyT1) inhibitor, under development by Boehringer Ingelheim for the treatment of CIAS. Phase I studies have shown it to be safe and well tolerated in healthy volunteers, and central target engagement (inhibition of GlyT1) was achieved in a dose-dependent manner from 5 to 50 mg in healthy volunteers. A Phase II study has demonstrated that iclepertin is safe and well tolerated in patients with schizophrenia and improves cognition at doses of 10 mg and 25 mg. Phase III studies are ongoing to confirm these initial positive safety and efficacy findings with the 10 mg dose, and if successful, iclepertin could become the first approved pharmacotherapy used to treat CIAS.
Collapse
Affiliation(s)
- Holger Rosenbrock
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Michael Desch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Glen Wunderlich
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA.
| |
Collapse
|
3
|
The Absolute Bioavailability, Absorption, Distribution, Metabolism, and Excretion of BI 425809 Administered as an Oral Dose or an Oral Dose with an Intravenous Microtracer Dose of [ 14C]-BI 425809 in Healthy Males. Clin Drug Investig 2021; 42:87-99. [PMID: 34936055 PMCID: PMC8901509 DOI: 10.1007/s40261-021-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND OBJECTIVES: BI 425809, a novel glycine transporter-1 inhibitor, may ameliorate cognitive deficits in schizophrenia. The objectives of the studies were: to assess absolute bioavailability of oral BI 425809 compared with intravenous (IV) microtracer infusion (study 1), and to determine the mass balance, distribution, metabolism, and excretion of BI 425809 (study 2). METHODS These were Phase I, open-label, non-randomized, single-period, single-arm studies in healthy males. Study 1 administered a single oral dose of unlabeled BI 425809 25 mg, then an IV microtracer infusion of [14C]-BI 425809 30 µg. In study 2, participants received an oral dose of [14C]-BI 425809 25 mg containing [14C]-labeled (dose: 3.7 megabecquerel (0.41 mSv)) and unlabeled drug. Safety was assessed. RESULTS In study 1 (n = 6), the absolute bioavailability of a 25 mg tablet of BI 425809 in a fasted state was 71.64%. The geometric mean dose-normalized maximum plasma concentration was approximately 80% lower after oral administration versus IV dose. In study 2 (n = 6), the total recovery of [14C]-BI 425809 was 96.7%, with ~ 48% of [14C]-radioactivity excreted in urine and ~ 48% excreted in feces. Among the labeled drug in urine, ~ 45% of the amount excreted was composed of BI 425809 (17.4%) and two metabolites (BI 758790, 21.0%; BI 761036, 5.9%). In feces, < 1% of BI 425809 was excreted as unchanged drug. In both studies, BI 425809 was generally well tolerated. CONCLUSIONS After normalization, the absolute bioavailability of tablet-form BI 425809 was 71.64%. The total recovery of [14C]-BI 425809 25 mg was high (96.7%), with low intraindividual variability and similar amounts excreted in urine and feces. CLINICALTRIALS. GOV IDENTIFIERS NCT03783000 and NCT03654170.
Collapse
|
4
|
Desch M, Wunderlich G, Goettel M, Goetz S, Liesenfeld KH, Chan TS, Rosenbrock H, Sennewald R, Link J, Keller S, Wind S. Effects of Cytochrome P450 3A4 Induction and Inhibition on the Pharmacokinetics of BI 425809, a Novel Glycine Transporter 1 Inhibitor. Eur J Drug Metab Pharmacokinet 2021; 47:91-103. [PMID: 34716565 PMCID: PMC8752533 DOI: 10.1007/s13318-021-00723-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 12/02/2022]
Abstract
Background and Objective Increased glycine availability at the synaptic cleft may enhance N-methyl-D-aspartate receptor signalling and provide a promising therapeutic strategy for cognitive impairment associated with schizophrenia. These studies aimed to assess the pharmacokinetics of BI 425809, a potent glycine-transporter-1 inhibitor, when co-administered with a strong cytochrome P450 3A4 (CYP3A4) inhibitor (itraconazole) and inducer (rifampicin). Methods In vitro studies using recombinant CYPs, human liver microsomes, and human hepatocytes were conducted to determine the CYP isoforms responsible for BI 425809 metabolism. In addition, two open-label, fixed-treatment period, phase I studies in healthy male volunteers are described. Period 1: participants received oral BI 425809 25 mg (single dose) on day 1; period 2: participants received multiple doses, across 10 days, of oral itraconazole or rifampicin combined with a single dose of oral BI 425809 25 mg on day 4/7 of the itraconazole/rifampicin treatment, respectively. Pharmacokinetic and safety endpoints were assessed in the absence/presence of itraconazole/rifampicin and included area under the concentration-time curve (AUC) over the time interval 0–167 h (AUC0‒167; itraconazole), 0–168 h (AUC0‒168; rifampicin), or 0–infinity (AUC0-∞; rifampicin and itraconazole), maximum measured concentration (Cmax) of BI 425809, and adverse events. Results In vitro results suggested that CYP3A4 accounted for ≥ 90% of the metabolism of BI 425809. BI 425809 exposure (adjusted geometric mean ratio [%]) was higher in the presence of itraconazole (AUC0‒167: 265.3; AUC0−∞: 597.0; Cmax: 116.1) and lower in the presence of rifampicin (AUC0‒168: 10.3; AUC0−∞: 9.8; Cmax: 37.4) compared with BI 425809 alone. Investigational treatments were well tolerated. Conclusions Systemic exposure of BI 425809 was altered in the presence of strong CYP3A4 modulators, corroborating in vitro results that CYP3A4 mediates a major metabolic pathway for BI 425809. Trial Registration Number NCT02342717 (registered on 15 January 2015) and NCT03082183 (registered on 10 March 2017) Supplementary Information The online version contains supplementary material available at 10.1007/s13318-021-00723-y.
Collapse
Affiliation(s)
- Michael Desch
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany.
| | | | - Markus Goettel
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Sophia Goetz
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Karl-Heinz Liesenfeld
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Tom S Chan
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Holger Rosenbrock
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Regina Sennewald
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Jasmin Link
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Sascha Keller
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Sven Wind
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| |
Collapse
|
5
|
Hidayat R, Wulandari P, Marchira CR, Pratiti B. Efficacof Cinnamon Extract (Cinnamomum burmannii) as Supplementation in Lir-psychotic-induced Rats through Oxidative Stress Regulation in Neuronal Cells. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Cinnamon is a plant that is often found in Indonesia and is rich in secondary metabolites such as flavonoids, phenols, tannins, and alkaloids. Flavonoids and phenols are very potential as natural antioxidants to suppress various oxidant activities, including oxidant activity that occurs in the hippocampus, which is the underlying psychotic disorder.
AIM: This study was aimed to explore the potential of cinnamon extract (CE) on psychotic symptoms.
METHODS: Cinnamon simplicia was obtained from the Research and Testing Center for Traditional Medicine, Tawangmangu, Central Java, Indonesia. The extraction of cinnamon was carried out using the maceration method. The animals were subjected to lir-psychotic induction by intraperitoneal injection with ketamine (30 mg/kg BW) for 5 days. The rats were grouped into six groups; each group contained five animals; normal control group, a lir-psychotic group without treatment, lir-psychotic group with haloperidol, lir-psychotic with CE (25 mg/kg BW, 50 mg/kg BW, and 100 mg/kg BW). Oxidative stress in experimental animals was measured by evaluating malondialdehyde (MDA) expression in the brain tissue using immunohistochemical tests.
RESULTS: There were differences in clinical symptoms of psychotic disorder in the animal model between before intervention with CE supplementation and after the intervention. The higher the CE dose administered, the better the improvement in psychotic symptoms seen in the psychotic-induced rats. CE supplementation could reduce MDA expression in the hippocampus. This suggests that there was an optimal significance of cinnamon supplementation in reducing oxidative stress from the hippocampus.
CONCLUSION: CE was effective in improving psychotic symptoms in lir-psychotic rats through regulation of oxidative stress in neuronal cells.
Collapse
|
6
|
Wu Q, Huang J, Wu R. Drugs Based on NMDAR Hypofunction Hypothesis in Schizophrenia. Front Neurosci 2021; 15:641047. [PMID: 33912003 PMCID: PMC8072017 DOI: 10.3389/fnins.2021.641047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
Treatments for negative symptoms and cognitive dysfunction in schizophrenia remain issues that psychiatrists around the world are trying to solve. Their mechanisms may be associated with N-methyl-D-aspartate receptors (NMDARs). The NMDAR hypofunction hypothesis for schizophrenia was brought to the fore mainly based on the clinical effects of NMDAR antagonists and anti-NMDAR encephalitis pathology. Drugs targeted at augmenting NMDAR function in the brain seem to be promising in improving negative symptoms and cognitive dysfunction in patients with schizophrenia. In this review, we list NMDAR-targeted drugs and report on related clinical studies. We then summarize their effects on negative symptoms and cognitive dysfunction and analyze the unsatisfactory outcomes of these clinical studies according to the improved glutamate hypothesis that has been revealed in animal models. We aimed to provide perspectives for scientists who sought therapeutic strategies for negative symptoms and cognitive dysfunction in schizophrenia based on the NMDAR hypofunction hypothesis.
Collapse
Affiliation(s)
- Qiongqiong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Seckler JM, Lewis SJ. Advances in D-Amino Acids in Neurological Research. Int J Mol Sci 2020; 21:ijms21197325. [PMID: 33023061 PMCID: PMC7582301 DOI: 10.3390/ijms21197325] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
D-amino acids have been known to exist in the human brain for nearly 40 years, and they continue to be a field of active study to today. This review article aims to give a concise overview of the recent advances in D-amino acid research as they relate to the brain and neurological disorders. This work has largely been focused on modulation of the N-methyl-D-aspartate (NMDA) receptor and its relationship to Alzheimer’s disease and Schizophrenia, but there has been a wealth of novel research which has elucidated a novel role for several D-amino acids in altering brain chemistry in a neuroprotective manner. D-amino acids which have no currently known activity in the brain but which have active derivatives will also be reviewed.
Collapse
Affiliation(s)
- James M. Seckler
- Department Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| | - Stephen J. Lewis
- Department Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
8
|
Tu CH, MacDonald I, Chen YH. The Effects of Acupuncture on Glutamatergic Neurotransmission in Depression, Anxiety, Schizophrenia, and Alzheimer's Disease: A Review of the Literature. Front Psychiatry 2019; 10:14. [PMID: 30809158 PMCID: PMC6379324 DOI: 10.3389/fpsyt.2019.00014] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
Neuropsychiatric disorders, including depression, anxiety, schizophrenia, and Alzheimer's disease (AD), are diseases that are directly or indirectly associated with cerebral dysfunction and contribute significantly to disability in adult populations worldwide. Important limitations surround the currently available pharmacologic agents for neuropsychiatric disorders and, moreover, many patients fail to respond to these therapies. Acupuncture might be a complementary therapy for neuropsychiatry disorders. In this review, we investigate the current evidence for the treatment efficacy of acupuncture in depression, anxiety, schizophrenia, and AD. Secondly, we review recent advances in understanding of the dysregulated glutamate system underlying the pathophysiology of these disorders. Finally, we discuss the ways in which acupuncture treatment can potentially modulate glutamate receptors and excitatory amino acid transporters. We conclude that the treatment effects of acupuncture may be underpinned by its intervention in the dysregulated glutamate system. Further preclinical and clinical studies are needed to clarify the possible mechanisms of acupuncture in these neuropsychiatric disorders and to establish protocols for treatment guidelines.
Collapse
Affiliation(s)
- Cheng-Hao Tu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Iona MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Moschetti V, Schlecker C, Wind S, Goetz S, Schmitt H, Schultz A, Liesenfeld KH, Wunderlich G, Desch M. Multiple Rising Doses of Oral BI 425809, a GlyT1 Inhibitor, in Young and Elderly Healthy Volunteers: A Randomised, Double-Blind, Phase I Study Investigating Safety and Pharmacokinetics. Clin Drug Investig 2018; 38:737-750. [PMID: 29846887 PMCID: PMC6061410 DOI: 10.1007/s40261-018-0660-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background and Objective Schizophrenia and Alzheimer’s disease are characterised by abnormalities in glutamatergic pathways related to N-methyl-d-aspartate receptor hypofunction. Glycine is an N-methyl-d-aspartate receptor co-agonist; inhibition of glycine transporter 1 may improve N-methyl-d-aspartate receptor function. This phase I, randomised, two-part study evaluated the safety, tolerability and pharmacokinetic profile of BI 425809, a novel glycine transporter 1 inhibitor, in healthy male and female volunteers. Methods Part 1 evaluated BI 425809 10, 25, 50 or 75 mg once daily or 75 mg twice daily in young subjects, and 25 mg or 50 mg once daily in elderly subjects. Each dose group comprised 12 subjects who received BI 425809 (n = 9) or placebo (n = 3) for 14 days (day 1: single dose; days 4–14: multiple dosing). Part 2 compared pharmacokinetic profiles in 12 subjects who received a single dose of BI 425809 25 mg in the morning and evening. Results Pharmacokinetic profiles were similarly shaped for all dose groups. Median time to maximum plasma concentration was 3.0–4.5 h with steady state being reached between days 6 and 10. Pharmacokinetic parameters demonstrated dose linearity at the predicted therapeutic exposure range of BI 425809 ≤ 25 mg once daily, but increased less than dose proportionally for ≥ 50 mg once daily. All reported adverse events were of mild-to-moderate intensity, 51/84 (61%; part 1) subjects had one or more treatment-related adverse event, no serious adverse events occurred and no dose dependency was observed. Conclusions Pharmacokinetic properties support both morning and evening dosing. BI 425809 was generally well tolerated at all tested doses. Clinicaltrials.gov identifier NCT02337283. Electronic supplementary material The online version of this article (10.1007/s40261-018-0660-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Sven Wind
- Boehringer Ingelheim International GmbH, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Sophia Goetz
- Boehringer Ingelheim International GmbH, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Holger Schmitt
- Boehringer Ingelheim International GmbH, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Armin Schultz
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | - Karl-Heinz Liesenfeld
- Boehringer Ingelheim International GmbH, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | | | - Michael Desch
- Boehringer Ingelheim International GmbH, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
10
|
Moschetti V, Desch M, Goetz S, Liesenfeld KH, Rosenbrock H, Kammerer KP, Wunderlich G, Wind S. Safety, Tolerability and Pharmacokinetics of Oral BI 425809, a Glycine Transporter 1 Inhibitor, in Healthy Male Volunteers: A Partially Randomised, Single-Blind, Placebo-Controlled, First-in-Human Study. Eur J Drug Metab Pharmacokinet 2018; 43:239-249. [PMID: 29076028 PMCID: PMC5854750 DOI: 10.1007/s13318-017-0440-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Schizophrenia and Alzheimer's disease are characterised by glutamatergic pathway abnormalities related to N-methyl-D-aspartate (NMDA) receptor hypofunction and cognitive impairment. Glycine is an NMDA receptor co-agonist; inhibition of glycine transporter 1 (GlyT1) should improve NMDA receptor hypofunction. This study evaluated safety and pharmacokinetic properties of BI 425809-a potent and selective GlyT1 inhibitor. METHODS In the single-rising dose (SRD) component of this study, subjects were randomised to a single dose of BI 425809 [doses (mg): 0.5, 1, 2, 5, 10, 25, 50, 100 and 150], or placebo. The bioavailability/food effect (BA/FE) component investigated BI 425809 pharmacokinetics following single dosing (25-mg tablet) after overnight fasting or with a high-calorie meal or as solution (25 mg) after overnight fasting. RESULTS Overall, 33/83 (39.8%) subjects had ≥ 1 treatment-related adverse event (AE); there were no deaths or serious AEs. Reported SRD part AEs trended towards dose dependency, occurring at the higher doses (mostly central nervous system related). BI 425809 plasma concentration-time profiles were similarly shaped across all doses and plasma exposure increased proportional to dose. In the BA/FE component, geometric mean ratios for the area under the concentration-time curve from time zero to the last measurable concentration and the maximum plasma concentration for tablet fasted versus solution fasted were 80.5 and 50.0%, respectively, and for tablet fed versus fasted were 125.9 and 142.1%, respectively. CONCLUSION BI 425809 was generally well-tolerated at doses expected to be clinically relevant. The AE profile suggested possible GlyT1-inhibiting effects. CLINICAL TRIAL IDENTIFIER NCT02068690.
Collapse
Affiliation(s)
| | - Michael Desch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sophia Goetz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Holger Rosenbrock
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | - Sven Wind
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
11
|
Rosenbrock H, Desch M, Kleiner O, Dorner-Ciossek C, Schmid B, Keller S, Schlecker C, Moschetti V, Goetz S, Liesenfeld KH, Fillon G, Giovannini R, Ramael S, Wunderlich G, Wind S. Evaluation of Pharmacokinetics and Pharmacodynamics of BI 425809, a Novel GlyT1 Inhibitor: Translational Studies. Clin Transl Sci 2018; 11:616-623. [PMID: 30136756 PMCID: PMC6226115 DOI: 10.1111/cts.12578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/14/2018] [Indexed: 01/04/2023] Open
Abstract
BI 425809 is a potent and selective glycine transporter 1 (GlyT1) inhibitor being developed for the treatment of cognitive impairment in Alzheimer disease and schizophrenia. Translational studies evaluated the effects of BI 425809 on glycine levels in rat and human cerebrospinal fluid (CSF). Oral administration of BI 425809 in rats induced a dose‐dependent increase of glycine CSF levels from 30% (0.2 mg/kg, not significant) to 78% (2 mg/kg, P < 0.01), relative to vehicle. Similarly, oral administration of BI 425809 in healthy volunteers resulted in a dose‐dependent increase in glycine CSF levels at steady state, with a mean 50% increase at doses as low as 10 mg. The peak plasma concentration (Cmax) of BI 425809 was achieved earlier in plasma than in CSF (tmax 3–5 vs. 5–8 hours, respectively). Generally, BI 425809 was safe and well tolerated. These data provide evidence of functional target engagement of GlyT1 by BI 425809.
Collapse
Affiliation(s)
- Holger Rosenbrock
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany
| | - Michael Desch
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany
| | - Oliver Kleiner
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany
| | | | - Bernhard Schmid
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany
| | - Sascha Keller
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany
| | | | | | - Sophia Goetz
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany
| | | | - Gwenaelle Fillon
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany
| | | | | | - Glen Wunderlich
- Boehringer Ingelheim (Canada) Ltd, Burlington, Ontario, Canada
| | - Sven Wind
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany
| |
Collapse
|
12
|
Yamamoto S, Ohta H, Abe K, Kambe D, Tsukiyama N, Kawakita Y, Moriya M, Yasuhara A. Identification of 1-Methyl-N-(propan-2-yl)-N-({2-[4-(trifluoromethoxy)phenyl]pyridin-4-yl}methyl)-1H-imidazole-4-carboxamide as a Potent and Orally Available Glycine Transporter 1 Inhibitor. Chem Pharm Bull (Tokyo) 2017; 64:1630-1640. [PMID: 27803474 DOI: 10.1248/cpb.c16-00610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We previously identified 3-chloro-N-{(S)-[3-(1-ethyl-1H-pyrazol-4-yl)phenyl][(2S)-piperidine-2-yl]methyl}-4-(trifluoromethyl)pyridine-2-carboxamide (5, TP0439150) as a potent and orally available glycine transporter 1 (GlyT1) inhibitor. In this article, we describe our identification of 1-methyl-N-(propan-2-yl)-N-({2-[4-(trifluoromethoxy)phenyl]pyridin-4-yl}methyl)-1H-imidazole-4-carboxamide (7n) as a structurally diverse back-up compound of 5, using central nervous system multiparameter optimization (CNS MPO) as a drug-likeness guideline. Compound 7n showed a higher CNS MPO score and different physicochemical properties as compared to 5. Compound 7n exhibited potent GlyT1 inhibitory activity, a favorable pharmacokinetics profile, and elicited an increase in the cerebrospinal fluid (CSF) concentration of glycine in rats.
Collapse
|
13
|
Cioffi CL, Liu S, Wolf MA, Guzzo PR, Sadalapure K, Parthasarathy V, Loong DTJ, Maeng JH, Carulli E, Fang X, Karunakaran K, Matta L, Choo SH, Panduga S, Buckle RN, Davis RN, Sakwa SA, Gupta P, Sargent BJ, Moore NA, Luche MM, Carr GJ, Khmelnitsky YL, Ismail J, Chung M, Bai M, Leong WY, Sachdev N, Swaminathan S, Mhyre AJ. Synthesis and Biological Evaluation of N-((1-(4-(Sulfonyl)piperazin-1-yl)cycloalkyl)methyl)benzamide Inhibitors of Glycine Transporter-1. J Med Chem 2016; 59:8473-94. [PMID: 27559615 DOI: 10.1021/acs.jmedchem.6b00914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously disclosed the discovery of rationally designed N-((1-(4-(propylsulfonyl)piperazin-1-yl)cycloalkyl)methyl)benzamide inhibitors of glycine transporter-1 (GlyT-1), represented by analogues 10 and 11. We describe herein further structure-activity relationship exploration of this series via an optimization strategy that primarily focused on the sulfonamide and benzamide appendages of the scaffold. These efforts led to the identification of advanced leads possessing a desirable balance of excellent in vitro GlyT-1 potency and selectivity, favorable ADME and in vitro pharmacological profiles, and suitable pharmacokinetic and safety characteristics. Representative analogue (+)-67 exhibited robust in vivo activity in the cerebral spinal fluid glycine biomarker model in both rodents and nonhuman primates. Furthermore, rodent microdialysis experiments also demonstrated that oral administration of (+)-67 significantly elevated extracellular glycine levels within the medial prefrontal cortex (mPFC).
Collapse
Affiliation(s)
- Christopher L Cioffi
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Shuang Liu
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Mark A Wolf
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Peter R Guzzo
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Kashinath Sadalapure
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Visweswaran Parthasarathy
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - David T J Loong
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Jun-Ho Maeng
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Edmund Carulli
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Xiao Fang
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Kalesh Karunakaran
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Lakshman Matta
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Sok Hui Choo
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Shailijia Panduga
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Ronald N Buckle
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Randall N Davis
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Samuel A Sakwa
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Priya Gupta
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Bruce J Sargent
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Nicholas A Moore
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Michele M Luche
- Bothell Research Center, AMRI , 22215 26th Ave SE, Bothell, Washington 98021-4425, United States
| | - Grant J Carr
- Bothell Research Center, AMRI , 22215 26th Ave SE, Bothell, Washington 98021-4425, United States
| | - Yuri L Khmelnitsky
- Drug Metabolism and Pharmacokinetics, AMRI , East Campus, 17 University Place, Rensselaer, New York 12144, United States
| | - Jiffry Ismail
- Drug Metabolism and Pharmacokinetics, AMRI , East Campus, 17 University Place, Rensselaer, New York 12144, United States
| | - Mark Chung
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Mei Bai
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Wei Yee Leong
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Nidhi Sachdev
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Srividya Swaminathan
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Andrew J Mhyre
- Bothell Research Center, AMRI , 22215 26th Ave SE, Bothell, Washington 98021-4425, United States
| |
Collapse
|
14
|
Yamamoto S, Shibata T, Abe K, Oda K, Aoki T, Kawakita Y, Kawamoto H. Discovery of 3-Chloro-<i>N</i>-{(<i>S</i>)-[3-(1-ethyl-1<i>H</i>-pyrazol-4-yl)phenyl][(2<i>S</i>)-piperidine-2-yl]methyl}-4-(trifluoromethyl)pyridine-2-carboxamide as a Potent Glycine Transporter 1 Inhibitor. Chem Pharm Bull (Tokyo) 2016; 64:1321-37. [DOI: 10.1248/cpb.c16-00314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | - Kumi Abe
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Koji Oda
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Takeshi Aoki
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Yasunori Kawakita
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | | |
Collapse
|
15
|
Zhao J, Tao H, Xian W, Cai Y, Cheng W, Yin M, Liang G, Li K, Cui L, Zhao B. A Highly Selective Inhibitor of Glycine Transporter-1 Elevates the Threshold for Maximal Electroshock-Induced Tonic Seizure in Mice. Biol Pharm Bull 2016; 39:174-80. [DOI: 10.1248/bpb.b15-00501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jianghao Zhao
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Hua Tao
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Wenchuan Xian
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Wanwen Cheng
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Mingkang Yin
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Guocong Liang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Keshen Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| |
Collapse
|
16
|
Bhowmick R, Subramanian A, Sarkar RR. Exploring the differences in metabolic behavior of astrocyte and glioblastoma: a flux balance analysis approach. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:159-177. [PMID: 28392849 DOI: 10.1007/s11693-015-9183-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
Brain cancers demonstrate a complex metabolic behavior so as to adapt the external hypoxic environment and internal stress generated by reactive oxygen species. To survive in these stringent conditions, glioblastoma cells develop an antagonistic metabolic phenotype as compared to their predecessors, the astrocytes, thereby quenching the resources expected for nourishing the neurons. The complexity and cumulative effect of the large scale metabolic functioning of glioblastoma is mostly unexplored. In this study, we reconstruct a metabolic network comprising of pathways that are known to be deregulated in glioblastoma cells as compared to the astrocytes. The network, consisted of 147 genes encoding for enzymes performing 247 reactions distributed across five distinct model compartments, was then studied using constrained-based modeling approach by recreating the scenarios for astrocytes and glioblastoma, and validated with available experimental evidences. From our analysis, we predict that glycine requirement of the astrocytes are mostly fulfilled by the internal glycine-serine metabolism, whereas glioblastoma cells demand an external uptake of glycine to utilize it for glutathione production. Also, cystine and glucose were identified to be the major contributors to glioblastoma growth. We also proposed an extensive set of single and double lethal reaction knockouts, which were further perturbed to ascertain their role as probable chemotherapeutic targets. These simulation results suggested that, apart from targeting the reactions of central carbon metabolism, knockout of reactions belonging to the glycine-serine metabolism effectively reduce glioblastoma growth. The combinatorial targeting of glycine transporter with any other reaction belonging to glycine-serine metabolism proved lethal to glioblastoma growth.
Collapse
Affiliation(s)
- Rupa Bhowmick
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
| | - Abhishek Subramanian
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Campus, Pune, 411008 India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Campus, Pune, 411008 India
| |
Collapse
|
17
|
Kolomeets NS. [Role of astrocytes in alterations of glutamatergic neurotransmission in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:110-117. [PMID: 25945378 DOI: 10.17116/jnevro201511511110-117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The glutamatergic hypothesis of schizophrenia based on the hypofunction of the N-methyl-D-aspartate-type glutamate receptors (NMDA-R) is one of the most widely implicated hypothesis that explains the origin of positive and negative symptoms of illness as well as cognitive deficits. The author considered a neuromorphological aspect of this hypothesis related to the glial astrocytes function. The literature on the astrocyte ability to regulate glutamate neurotransmission is reviewed. Astrocyte abnormalities in schizophrenia include the disturbances of glutamate reuptake, recycling and turnover of endogenous NMDA-R ligands. The results of the experimental and clinical studies that target levels of endogenous NMDA-R ligands, their enzymes and transporters for treatment of schizophrenia symptoms are discussed. Further studies studies are needed to develop this strategy.
Collapse
Affiliation(s)
- N S Kolomeets
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow
| |
Collapse
|
18
|
Pinard E, Alberati D, Alvarez-Sanchez R, Brom V, Burner S, Fischer H, Hauser N, Kolczewski S, Lengyel J, Mory R, Saladin C, Schulz-Gasch T, Stalder H. 3-Amido-3-aryl-piperidines: A Novel Class of Potent, Selective, and Orally Active GlyT1 Inhibitors. ACS Med Chem Lett 2014; 5:428-33. [PMID: 24900853 DOI: 10.1021/ml500005m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/04/2014] [Indexed: 11/29/2022] Open
Abstract
3-Amido-3-aryl-piperidines were discovered as a novel structural class of GlyT1 inhibitors. The structure-activity relationship, which was developed, led to the identification of highly potent compounds exhibiting excellent selectivity against the GlyT2 isoform, drug-like properties, and in vivo activity after oral administration.
Collapse
Affiliation(s)
- Emmanuel Pinard
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Daniela Alberati
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Ruben Alvarez-Sanchez
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Virginie Brom
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Serge Burner
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Holger Fischer
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Nicole Hauser
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Sabine Kolczewski
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Judith Lengyel
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Roland Mory
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Christian Saladin
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Tanja Schulz-Gasch
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Henri Stalder
- Pharmaceutical Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| |
Collapse
|
19
|
Zhang JC, Toyohara J, Wu J, Ishiwata K, Hashimoto K. In Vivo Evaluation of (11)C-labeled Three Radioligands for Glycine Transporter 1 in the Mouse Brain. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2013; 10:34-43. [PMID: 23429671 PMCID: PMC3569154 DOI: 10.9758/cpn.2012.10.1.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 11/18/2022]
Abstract
Objective Glycine transporter 1 (GlyT-1) is one of the most attractive therapeutic targets for schizophrenia. There is great interest in developing radioligands for in vivo imaging of GlyT-1 in the brain using positron emission tomography. Here, we report the properties of three novel non-sarcosine-based radioligands [11C]CHIBA-3007, [11C]CHIBA-3009, and [11C]CHIBA-3011, for GlyT-1 imaging in the mouse brain in vivo. Methods The three radioligands were synthesized by N-[11C] methylation of the corresponding desmethyl precursor. A pharmacological characterization of these radioligands for in vivo imaging of GlyT-1 in the brain was conducted using male ddY mice. Results [11C]CHIBA-3009 and [11C]CHIBA-3011 were scarcely incorporated into the brain, whereas [11C]CHIBA-3007 showed slight but considerable brain uptake. Regional brain uptake of [11C]CHIBA-3007 (medulla oblongata>cerebellum>cortex) was similar to the distribution of the GlyT-1 protein. However, pretreatment with CHIBA-3007 (1 mg/kg) or the GlyT-1 selective inhibitor ALX5407 (N-[(3R)-3-([1,1'-Biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine) (30 mg/kg) did not significantly decrease brain uptake of [11C]CHIBA-3007, suggesting low specific binding to GlyT-1. Pretreatment with cyclosporin A significantly increased brain uptake of [11C]CHIBA-3009 and [11C]CHIBA-3011, suggesting a role for P-glycoprotein in the brain uptake of these ligands. All three radioligands were rapidly degraded intact forms were 3-18% in plasma and 15-74% in the brain at 15 min after injection. Conclusion The results suggest that these three radioligands are not suitable for in vivo imaging of GlyT-1 in the brain because of low brain uptake and rapid metabolism. Further structural refinement is necessary to enhance brain uptake.
Collapse
Affiliation(s)
- Ji-Chun Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | | | | | | | | |
Collapse
|
20
|
Blakely RD, Edwards RH. Vesicular and plasma membrane transporters for neurotransmitters. Cold Spring Harb Perspect Biol 2012; 4:a005595. [PMID: 22199021 PMCID: PMC3281572 DOI: 10.1101/cshperspect.a005595] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoactive drugs, these transport systems have important roles in transmitter release, but we are only beginning to understand their contribution to synaptic transmission, plasticity, behavior, and disease. Recent work has started to provide a structural basis for their activity, to characterize their trafficking and potential for regulation. The results indicate that far from the passive target of psychoactive drugs, neurotransmitter transporters undergo regulation that contributes to synaptic plasticity.
Collapse
Affiliation(s)
- Randy D Blakely
- Department of Pharmacology and Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548, USA
| | | |
Collapse
|
21
|
Hopkins CR. ACS chemical neuroscience molecule spotlight on RG1678. ACS Chem Neurosci 2011; 2:685-6. [PMID: 22860161 DOI: 10.1021/cn200108z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 11/29/2022] Open
Abstract
RG1678 is a glycine transporter-1 inhibitor currently in Phase III trials for the treatment of the negative symptoms of schizophrenia and is being developed by Roche (in combination with Chugai). Recent Phase II data shows that RG1678 is effective in reducing the negative symptoms when given in combination with second generation antipsychotics.
Collapse
Affiliation(s)
- Corey R. Hopkins
- Department of Pharmacology and Chemistry,
Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical
Center, Vanderbilt University, Nashville,
Tennessee 37232-6600, United States
| |
Collapse
|
22
|
Zhang J, Wu J, Toyohara J, Fujita Y, Chen H, Hashimoto K. Pharmacological characterization of [³H]CHIBA-3007 binding to glycine transporter 1 in the rat brain. PLoS One 2011; 6:e21322. [PMID: 21731704 PMCID: PMC3121759 DOI: 10.1371/journal.pone.0021322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/24/2011] [Indexed: 01/28/2023] Open
Abstract
Glycine transporter-1 (GlyT-1) in glial cells regulates extracellular levels of glycine, which acts as an obligatory co-agonist at the N-methyl-D-aspartate (NMDA) receptors in the brain. In the present study, we developed a novel radioligand, [³H]3-chloro-N-((S)-((R)-1-methylpiperidin-2-yl)(thiophen- 3-yl)methyl)-4- (trifluoromethyl)picolinamide ([³H]CHIBA-3007), for studying GlyT-1 in the brain. The presence of a single saturable high-affinity binding component for [³H]CHIBA-3007 binding to the rat brain membranes was detected. Scatchard analysis revealed an apparent equilibrium dissociation constant (K(d)) of 1.61±0.16 nM and a maximal number of binding sites (B(max)) of 692.8±22.8 fmol/mg protein (mean ± SEM, n = 3). The specific binding of [³H]CHIBA-3007 was inhibited by a number of GlyT-1 inhibitors, such as CHIBA-3007, desmethyl-CHIBA-3007, CHIBA-3008, SSR504734, NFPS/ALX5407, LY2365109 and Org24598, consistent with the pharmacological profiles of GlyT-1 inhibitors. Interestingly, the potency of eight GlyT-1 inhibitors (CHIBA-3007, desmethyl-CHIBA-3007, NFPS/ALX5407, LY2365109, Org24598, SSR504734, sarcosine, and glycine) for blocking in vitro specific binding of [³H]CHIBA-3007 was significantly correlated with the potency of these inhibitors for inhibiting [¹⁴C]glycine uptake in the rat brain membranes. In contrast, the GlyT-2 inhibitor ALX1393 exhibited very weak for [³H]CHIBA-3007 binding. Furthermore, the regional distribution of [³H]CHIBA-3007 binding in the rat brain was similar to the previously reported distribution of GlyT-1. The present findings suggest that [³H]CHIBA-3007 would be a useful new radioligand for studying GlyT-1 in the brain.
Collapse
Affiliation(s)
- Jichun Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Jin Wu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Jun Toyohara
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Hongxian Chen
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
- * E-mail:
| |
Collapse
|