1
|
Zhang W, Oh JH, Zhang W, Rathi S, Larson JD, Wechsler-Reya RJ, Sirianni RW, Elmquist WF. Central Nervous System Distribution of Panobinostat in Preclinical Models to Guide Dosing for Pediatric Brain Tumors. J Pharmacol Exp Ther 2023; 387:315-327. [PMID: 37827699 PMCID: PMC10658912 DOI: 10.1124/jpet.123.001826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Achieving adequate exposure of the free therapeutic agent at the target is a critical determinant of efficacious chemotherapy. With this in mind, a major challenge in developing therapies for central nervous system (CNS) tumors is to overcome barriers to delivery, including the blood-brain barrier (BBB). Panobinostat is a nonselective pan-histone deacetylase inhibitor that is being tested in preclinical and clinical studies, including for the treatment of pediatric medulloblastoma, which has a propensity for leptomeningeal spread and diffuse midline glioma, which can infiltrate into supratentorial brain regions. In this study, we examined the rate, extent, and spatial heterogeneity of panobinostat CNS distribution in mice. Transporter-deficient mouse studies show that panobinostat is a dual substrate of P-glycoprotein (P-gp) and breast cancer resistant protein (Bcrp), which are major efflux transporters expressed at the BBB. The CNS delivery of panobinostat was moderately limited by P-gp and Bcrp, and the unbound tissue-to-plasma partition coefficient of panobinostat was 0.32 and 0.21 in the brain and spinal cord in wild-type mice. In addition, following intravenous administration, panobinostat demonstrated heterogeneous distribution among brain regions, indicating that its efficacy would be influenced by tumor location or the presence and extent of leptomeningeal spread. Simulation using a compartmental BBB model suggests inadequate exposure of free panobinostat in the brain following a recommended oral dosing regimen in patients. Therefore, alternative approaches to CNS delivery may be necessary to have adequate exposure of free panobinostat for the treatment of a broad range of pediatric brain tumors. SIGNIFICANCE STATEMENT: This study shows that the central nervous system (CNS) penetration of panobinostat is limited by P-gp and Bcrp, and its efficacy may be limited by inadequate distribution to the tumor. Panobinostat has heterogeneous distribution into various brain regions, indicating that its efficacy might depend on the anatomical location of the tumors. These distributional parameters in the mouse CNS can inform both preclinical and clinical trial study design and may guide treatment for these devastating brain tumors in children.
Collapse
Affiliation(s)
- Wenqiu Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Ju-Hee Oh
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Wenjuan Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Sneha Rathi
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Jon D Larson
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Robert J Wechsler-Reya
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Rachael W Sirianni
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| |
Collapse
|
2
|
Chan C, Peng J, Rajesh V, Scott EY, Sklavounos AA, Faiz M, Wheeler AR. Digital Microfluidics for Microproteomic Analysis of Minute Mammalian Tissue Samples Enabled by a Photocleavable Surfactant. J Proteome Res 2023; 22:3242-3253. [PMID: 37651704 DOI: 10.1021/acs.jproteome.3c00281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Proteome profiles of precious tissue samples have great clinical potential for accelerating disease biomarker discovery and promoting novel strategies for early diagnosis and treatment. However, tiny clinical tissue samples are often difficult to handle and analyze with conventional proteomic methods. Automated digital microfluidic (DMF) workflows facilitate the manipulation of size-limited tissue samples. Here, we report the assessment of a DMF microproteomics workflow enabled by a photocleavable surfactant for proteomic analysis of minute tissue samples. The surfactant 4-hexylphenylazosulfonate (Azo) was found to facilitate fast droplet movement on DMF and enhance the proteomics analysis. Comparisons of Azo and n-Dodecyl β-d-maltoside (DDM) using small samples of HeLa digest standards and MCF-7 cell digests revealed distinct differences at the peptide level despite similar results at the protein level. The DMF microproteomics workflow was applied for the sample preparation of ∼3 μg biopsies from murine brain tissue. A total of 1969 proteins were identified in three samples, including established neural biomarkers and proteins related to synaptic signaling. Going forward, we propose that the Azo-enabled DMF workflow has the potential to advance the practical clinical application of DMF for the analysis of size-limited tissue samples.
Collapse
Affiliation(s)
- Calvin Chan
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Ontario, Canada
| | - Vigneshwar Rajesh
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
| | - Erica Y Scott
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Ontario, Canada
| | - Maryam Faiz
- Department of Surgery, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Ontario, Canada
| |
Collapse
|
3
|
Arefieva AB, Komleva PD, Naumenko VS, Khotskin NV, Kulikov AV. In Vitro and In Vivo Chaperone Effect of (R)-2-amino-6-(1R, 2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one on the C1473G Mutant Tryptophan Hydroxylase 2. Biomolecules 2023; 13:1458. [PMID: 37892138 PMCID: PMC10604173 DOI: 10.3390/biom13101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
Tryptophan hydroxylase 2 (TPH2) is the key and rate-limiting enzyme of serotonin (5-HT) synthesis in the mammalian brain. The 1473G mutation in the Tph2 gene decreases TPH2 activity in the mouse brain by twofold. (R)-2-amino-6-(1R, 2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one (BH4) is a pharmacological chaperone for aromatic amino acid hydroxylases. In the present study, chaperone effects of BH4 on the mutant C1473G TPH2 were investigated in vitro and in vivo. In vitro BH4 increased the thermal stability (T50 value) of mutant and wild-type TPH2 molecules. At the same time, neither chronic (twice per day for 7 days) intraperitoneal injection of 48.3 mg/kg of BH4 nor a single intraventricular administration of 60 μg of the drug altered the mutant TPH2 activity in the brain of Balb/c mice. This result indicates that although BH4 shows a chaperone effect in vitro, it is unable to increase the activity of mutant TPH2 in vivo.
Collapse
Affiliation(s)
- Alla B. Arefieva
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.A.); (N.V.K.)
| | - Polina D. Komleva
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.D.K.); (V.S.N.)
| | - Vladimir S. Naumenko
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.D.K.); (V.S.N.)
- Departments of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita V. Khotskin
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.A.); (N.V.K.)
| | - Alexander V. Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.A.); (N.V.K.)
| |
Collapse
|
4
|
Venediktov AA, Bushueva OY, Kudryavtseva VA, Kuzmin EA, Moiseeva AV, Baldycheva A, Meglinski I, Piavchenko GA. Closest horizons of Hsp70 engagement to manage neurodegeneration. Front Mol Neurosci 2023; 16:1230436. [PMID: 37795273 PMCID: PMC10546621 DOI: 10.3389/fnmol.2023.1230436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023] Open
Abstract
Our review seeks to elucidate the current state-of-the-art in studies of 70-kilodalton-weighed heat shock proteins (Hsp70) in neurodegenerative diseases (NDs). The family has already been shown to play a crucial role in pathological aggregation for a wide spectrum of brain pathologies. However, a slender boundary between a big body of fundamental data and its implementation has only recently been crossed. Currently, we are witnessing an anticipated advancement in the domain with dozens of studies published every month. In this review, we briefly summarize scattered results regarding the role of Hsp70 in the most common NDs including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We also bridge translational studies and clinical trials to portray the output for medical practice. Available options to regulate Hsp70 activity in NDs are outlined, too.
Collapse
Affiliation(s)
- Artem A. Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Yu Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Varvara A. Kudryavtseva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Egor A. Kuzmin
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aleksandra V. Moiseeva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Anna Baldycheva
- STEMM Laboratory, University of Exeter, Exeter, United Kingdom
| | - Igor Meglinski
- Department of Physics, University of Oulu, Oulu, Finland
- College of Engineering and Physical Sciences, Aston University, Birmingham, United Kingdom
| | - Gennadii A. Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
5
|
Downs M, Zaia J, Sethi MK. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. MASS SPECTROMETRY REVIEWS 2023; 42:1848-1875. [PMID: 35719114 PMCID: PMC9763553 DOI: 10.1002/mas.21792] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The brain extracellular matrix (ECM) is a highly glycosylated environment and plays important roles in many processes including cell communication, growth factor binding, and scaffolding. The formation of structures such as perineuronal nets (PNNs) is critical in neuroprotection and neural plasticity, and the formation of molecular networks is dependent in part on glycans. The ECM is also implicated in the neuropathophysiology of disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Schizophrenia (SZ). As such, it is of interest to understand both the proteomic and glycomic makeup of healthy and diseased brain ECM. Further, there is a growing need for site-specific glycoproteomic information. Over the past decade, sample preparation, mass spectrometry, and bioinformatic methods have been developed and refined to provide comprehensive information about the glycoproteome. Core ECM molecules including versican, hyaluronan and proteoglycan link proteins, and tenascin are dysregulated in AD, PD, and SZ. Glycomic changes such as differential sialylation, sulfation, and branching are also associated with neurodegeneration. A more thorough understanding of the ECM and its proteomic, glycomic, and glycoproteomic changes in brain diseases may provide pathways to new therapeutic options.
Collapse
Affiliation(s)
- Margaret Downs
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Manveen K Sethi
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Murphy S, Schmitt-John T, Dowling P, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic profiling of the brain from the wobbler mouse model of amyotrophic lateral sclerosis reveals elevated levels of the astrogliosis marker glial fibrillary acidic protein. Eur J Transl Myol 2023; 33:11555. [PMID: 37565261 PMCID: PMC10583141 DOI: 10.4081/ejtm.2023.11555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
The wobbler mouse is a widely used model system of amyotrophic lateral sclerosis and exhibits progressive neurodegeneration and neuroinflammation in association with skeletal muscle wasting. This study has used wobbler brain preparations for the systematic and mass spectrometric determination of proteome-wide changes. The proteomic characterization of total protein extracts from wobbler specimens was carried out with the help of an Orbitrap mass spectrometer and revealed elevated levels of glia cell marker proteins, i.e., glial fibrillary acidic protein and the actin-binding protein coronin. In contrast, the abundance of the actin-binding protein neurabin and the scaffolding protein named piccolo of the presynaptic cytomatrix were shown to be reduced. The increased abundance of glial fibrillary acidic protein, which is frequently used in neuropathological studies as a marker protein of glial scar formation, was confirmed by immunoblotting. In analogy, the proteomic profiling of the brain from another established murine model of motor neuron disease, the SOD1mouse, also showed increased levels of this intermediate filament protein. This suggests that neurodegenerative processes are associated with astrogliosis in both the wobbler and SOD1 brain.
Collapse
Affiliation(s)
- Sandra Murphy
- Charles River Laboratories, Chesterford Research Park, Saffron Walden.
| | | | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
7
|
Dowling P, Zweyer M, Sabir H, Henry M, Meleady P, Swandulla D, Ohlendieck K. Mass spectrometry-based proteomic characterization of the middle-aged mouse brain for animal model research of neuromuscular diseases. Eur J Transl Myol 2023; 33:11553. [PMID: 37545360 PMCID: PMC10583138 DOI: 10.4081/ejtm.2023.11553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023] Open
Abstract
Neuromuscular diseases with primary muscle wasting symptoms may also display multi-systemic changes in the body and exhibit secondary pathophysiological alterations in various non-muscle tissues. In some cases, this includes proteome-wide alterations and/or adaptations in the central nervous system. Thus, in order to provide an improved bioanalytical basis for the comprehensive evaluation of animal models that are routinely used in muscle research, this report describes the mass spectrometry-based proteomic characterization of the mouse brain. Crude tissue extracts were examined by bottom-up proteomics and detected 4558 distinct protein species. The detailed analysis of the brain proteome revealed the presence of abundant cellular proteoforms in the neuronal cytoskeleton, as well as various brain region enriched proteins, including markers of the cerebral cortex, cerebellum, hippocampus and the olfactory bulb. Neuroproteomic markers of specific cell types in the brain were identified in association with various types of neurons and glia cells. Markers of subcellular structures were established for the plasmalemma, nucleus, endoplasmic reticulum, mitochondria and other crucial organelles, as well as synaptic components that are involved in presynaptic vesicle docking, neurotransmitter release and synapse remodelling.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases, University of Bonn, Bonn.
| | - Hemmen Sabir
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases, University of Bonn, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
8
|
Venz S, von Bohlen Und Halbach V, Hentschker C, Junker H, Kuss AW, Sura T, Krüger E, Völker U, von Bohlen Und Halbach O, Jensen LR, Hammer E. Global Protein Profiling in Processed Immunohistochemistry Tissue Sections. Int J Mol Sci 2023; 24:11308. [PMID: 37511068 PMCID: PMC10379013 DOI: 10.3390/ijms241411308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Tissue sections, which are widely used in research and diagnostic laboratories and have already been examined by immunohistochemistry (IHC), may subsequently provide a resource for proteomic studies, even though only small amount of protein is available. Therefore, we established a workflow for tandem mass spectrometry-based protein profiling of IHC specimens and characterized defined brain area sections. We investigated the CA1 region of the hippocampus dissected from brain slices of adult C57BL/6J mice. The workflow contains detailed information on sample preparation from brain slices, including removal of antibodies and cover matrices, dissection of region(s) of interest, protein extraction and digestion, mass spectrometry measurement, and data analysis. The Gene Ontology (GO) knowledge base was used for further annotation. Literature searches and Gene Ontology annotation of the detected proteins verify the applicability of this method for global protein profiling using formalin-fixed and embedded material and previously used IHC slides.
Collapse
Affiliation(s)
- Simone Venz
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | | | - Christian Hentschker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Andreas Walter Kuss
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Thomas Sura
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | | | - Lars Riff Jensen
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
9
|
Jiang H, Zhang J, Yu H, Hou A, Wang S, Wang X, Zheng S, Yang L, Kuang H. Anti-rheumatoid arthritis effects of Xanthii Fructus by affecting the PI3K-AKT signaling pathway based on TMT-labeled quantitative proteomics. Biomed Chromatogr 2023; 37:e5520. [PMID: 36205398 DOI: 10.1002/bmc.5520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis is a systemic autoimmune disease characterized by chronic symmetrical multiple arthritis. Current traditional counter-therapies are expensive and have side effects. Xanthii Fructus has effects in expelling wind and cold, draining the nasal orifice, and removing wind and dampness. However, its mechanism of action against rheumatoid arthritis is unknown. In this paper, the mechanism of the anti- rheumatoid arthritis effect of Xanthii Fructus is studied by proteomics. The experimental results show that it could significantly reduce serum inflammatory factor levels, alleviate joint edema, improve vasodilation and congestion, and significantly reduce the number of inflammatory cells. Proteomics results show that the PI3K-AKT signaling pathway is the key pathway for Xanthii Fructus to treat rheumatoid arthritis. In this study, we obtained a new understanding of the mechanism of Xanthii Fructus in the treatment of rheumatoid arthritis, which provided a theoretical basis for its prevention and treatment and laid the foundation for further research.
Collapse
Affiliation(s)
- Hai Jiang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Jiaxu Zhang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Huan Yu
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Ajiao Hou
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Song Wang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Xuejiao Wang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Senwang Zheng
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Liu Yang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Haixue Kuang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| |
Collapse
|
10
|
Blasco Tavares Pereira Lopes F, Schlatzer D, Wang R, Li X, Feng E, Koyutürk M, Qi X, Chance MR. Temporal and Sex-Linked Protein Expression Dynamics in a Familial Model of Alzheimer's Disease. Mol Cell Proteomics 2022; 21:100280. [PMID: 35944844 PMCID: PMC9483563 DOI: 10.1016/j.mcpro.2022.100280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mouse models of Alzheimer's disease (AD) show progression through stages reflective of human pathology. Proteomics identification of temporal and sex-linked factors driving AD-related pathways can be used to dissect initiating and propagating events of AD stages to develop biomarkers or design interventions. In the present study, we conducted label-free proteome measurements of mouse hippocampus tissue with variables of time (3, 6, and 9 months), genetic background (5XFAD versus WT), and sex (equal males and females). These time points are associated with well-defined phenotypes with respect to the following: Aβ42 plaque deposition, memory deficits, and neuronal loss, allowing correlation of proteome-based molecular signatures with the mouse model stages. Our data show 5XFAD mice exhibit increases in known human AD biomarkers as amyloid-beta peptide, APOE, GFAP, and ITM2B are upregulated across all time points/stages. At the same time, 23 proteins are here newly associated with Alzheimer's pathology as they are also dysregulated in 5XFAD mice. At a pathways level, the 5XFAD-specific upregulated proteins are significantly enriched for DNA damage and stress-induced senescence at 3-month only, while at 6-month, the AD-specific proteome signature is altered and significantly enriched for membrane trafficking and vesicle-mediated transport protein annotations. By 9-month, AD-specific dysregulation is also characterized by significant neuroinflammation with innate immune system, platelet activation, and hyper-reactive astrocyte-related enrichments. Aside from these temporal changes, analysis of sex-linked differences in proteome signatures uncovered novel sex and AD-associated proteins. Pathway analysis revealed sex-linked differences in the 5XFAD model to be involved in the regulation of well-known human AD-related processes of amyloid fibril formation, wound healing, lysosome biogenesis, and DNA damage. Verification of the discovery results by Western blot and parallel reaction monitoring confirm the fundamental conclusions of the study and poise the 5XFAD model for further use as a molecular tool for understanding AD.
Collapse
Affiliation(s)
- Filipa Blasco Tavares Pereira Lopes
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniela Schlatzer
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rihua Wang
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Mitochondrial Diseases, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaolin Li
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Emily Feng
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mehmet Koyutürk
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Computer and Data Sciences, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Qi
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Mitochondrial Diseases, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark R Chance
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
11
|
Mouat MA, Wilkins BP, Ding E, Govindaraju H, Coleman JLJ, Graham RM, Turner N, Smith NJ. Metabolic Profiling of Mice with Deletion of the Orphan G Protein-Coupled Receptor, GPR37L1. Cells 2022; 11:cells11111814. [PMID: 35681509 PMCID: PMC9180194 DOI: 10.3390/cells11111814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the neurogenic causes of obesity may reveal novel drug targets to counter the obesity crisis and associated sequelae. Here, we investigate whether the deletion of GPR37L1, an astrocyte-specific orphan G protein-coupled receptor, affects whole-body energy homeostasis in mice. We subjected male Gpr37l1−/− mice and littermate wildtype (Gpr37l1+/+, C57BL/6J background) controls to either 12 weeks of high-fat diet (HFD) or chow feeding, or to 1 year of chow diet, with body composition quantified by EchoMRI, glucose handling by glucose tolerance test and metabolic rate by indirect calorimetry. Following an HFD, Gpr37l1−/− mice had similar glucose handling, body weight and fat mass compared with wildtype controls. Interestingly, we observed a significantly elevated respiratory exchange ratio in HFD- and chow-fed Gpr37l1−/− mice during daylight hours. After 1 year of chow feeding, we again saw no differences in glucose and insulin tolerance or body weight between genotypes, nor in energy expenditure or respiratory exchange ratio. However, there was significantly lower fat mass accumulation, and higher ambulatory activity in the Gpr37l1−/− mice during night hours. Overall, these results indicate that while GPR37L1 may play a minor role in whole-body metabolism, it is not a viable clinical target for the treatment of obesity.
Collapse
Affiliation(s)
- Margaret A. Mouat
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Brendan P. Wilkins
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
| | - Eileen Ding
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
| | - Hemna Govindaraju
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
| | - James L. J. Coleman
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Robert M. Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Nigel Turner
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- Correspondence: (N.T.); (N.J.S.)
| | - Nicola J. Smith
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
- Correspondence: (N.T.); (N.J.S.)
| |
Collapse
|
12
|
Zografos E, Proikakis SC, Anagnostopoulos AK, Korakiti AM, Zagouri F, Gazouli M, Tsangaris GT. High-throughput Proteomic Profiling of Male Breast Cancer Tissue. Cancer Genomics Proteomics 2022; 19:229-240. [PMID: 35181590 DOI: 10.21873/cgp.20316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Until now, little emphasis has been placed on the protein expression profile of male breast cancer (MBC) tumors, due to the rarity of the disease. The present study aimed to identify a proteomic pattern that is characteristic for malignant male breast tissue epithelium. MATERIALS AND METHODS The protein content of four male breast tumors and corresponding adjacent healthy (control) tissues was analyzed by high-throughput nano-liquid chromatography-MS/MS technology. RESULTS A total of 2,352 proteins were identified, that correspond to 1,249 single gene products, with diverse biological roles. Of those, a panel of 119 differentially expressed tissue proteins was identified in MBC samples compared to controls; 90 were found to be over-expressed in MBC tissues, while 29 were down-regulated. Concurrently, 844 proteins were detected only in MBC tumors and 197 were expressed exclusively in control mammary samples. CONCLUSION Differential proteomic expression was found in MBC tissue, leading to improved understanding of MBC pathology and highlighting the need for personalized management of male patients.
Collapse
Affiliation(s)
- Eleni Zografos
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece;
| | - Stavros C Proikakis
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Athanasios K Anagnostopoulos
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anna-Maria Korakiti
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George T Tsangaris
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
13
|
Mouat MA, Coleman JLJ, Wu J, Dos Remedios CG, Feneley MP, Graham RM, Smith NJ. Involvement of GPR37L1 in murine blood pressure regulation and human cardiac disease pathophysiology. Am J Physiol Heart Circ Physiol 2021; 321:H807-H817. [PMID: 34533400 DOI: 10.1152/ajpheart.00198.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 01/23/2023]
Abstract
Multiple mouse lines lacking the orphan G protein-coupled receptor, GPR37L1, have elicited disparate cardiovascular phenotypes. The first Gpr37l1 knockout mice study to be published reported a marked elevation in systolic blood pressure (SBP; ∼60 mmHg), revealing a potential therapeutic opportunity. The phenotype differed from our own independently generated knockout line, where male mice exhibited equivalent baseline blood pressure to wild type. Here, we attempted to reproduce the first study by characterizing the cardiovascular phenotype of both the original knockout and transgenic lines alongside a C57BL/6J control line, using the same method of blood pressure measurement. The present study supports the findings from our independently developed Gpr37l1 knockout line, finding that SBP and diastolic blood pressure (DBP) are not different in the original Gpr37l1 knockout male mice (SBP: 130.9 ± 5.3 mmHg; DBP: 90.7 ± 3.0 mmHg) compared with C57BL/6J mice (SBP: 123.1 ± 4.1 mmHg; DBP: 87.0 ± 2.7 mmHg). Instead, we attribute the apparent hypertension of the knockout line originally described to comparison with a seemingly hypotensive transgenic line (SBP 103.7 ± 5.0 mmHg; DBP 71.9 ± 3.7 mmHg). Additionally, we quantified myocardial GPR37L1 transcript in humans, which was suggested to be downregulated in cardiovascular disease. We found that GPR37L1 has very low native transcript levels in human myocardium and that expression is not different in tissue samples from patients with heart failure compared with sex-matched healthy control tissue. These findings indicate that cardiac GPR37L1 expression is unlikely to contribute to the pathophysiology of human heart failure.NEW & NOTEWORTHY This study characterizes systolic blood pressure (SBP) in a Gpr37l1 knockout mouse line, which was previously reported to have ∼60 mmHg higher SBP compared with a transgenic line. We observed only a ∼27 mmHg SBP difference between the lines. However, when compared with C57BL/6J mice, knockout mice showed no difference in SBP. We also investigated GPR37L1 mRNA abundance in human hearts and observed no difference between healthy and failing heart samples.
Collapse
Affiliation(s)
- Margaret A Mouat
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Jianxin Wu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Cristobal G Dos Remedios
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Michael P Feneley
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Robert M Graham
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| |
Collapse
|