1
|
Joseph K, Petrović B, Ibrahim SAS, Thiha A, Milić L, Ahmad MY, Pavlović N, Kojić S, Ibrahim F, Stojanović GM. Microfluidic and impedance analysis of rosemary essential oil: implications for dental health. Biomed Eng Online 2024; 23:111. [PMID: 39497132 DOI: 10.1186/s12938-024-01301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Oral health is closely linked to systemic conditions, particularly non-communicable diseases (NCDs), which can exacerbate oral issues. Essential oils (EOs) have emerged as potential alternatives for oral health due to their antibacterial, anti-inflammatory, and antioxidant properties. Among these, rosemary essential oil (REO) shows promise due to its various biological activities. This study investigates the potential of REO in dental applications using microfluidic devices and electrochemical impedance spectroscopy (EIS) to analyze the electrical properties of REO in artificial saliva (AS) mixtures. RESULTS The study demonstrated significant variations in impedance across different REO concentrations and their mixtures with AS. Higher impedance was observed in REO mixtures, particularly at lower frequencies, indicating distinct electrical properties compared to pure AS. The impedance of REO was influenced by its concentration, with a 1% REO solution showing higher impedance than a 4% solution, possibly due to micelle formation and changes in dielectric properties. Additionally, microfluidic devices enabled precise control over fluid interactions and real-time monitoring, offering valuable insights into REO's behavior in a simulated oral environment. The impedance data demonstrated significant differences in REO-AS mixtures, highlighting potential interactions critical for oral care applications. CONCLUSIONS Rosemary essential oil exhibits unique electrical properties, making it a promising candidate for dental applications, particularly in preventing and treating oral diseases. Microfluidic devices enhance the accuracy and reliability of studying REO's interactions with AS, providing a robust platform for future dental research. The findings suggest that REO could be effectively incorporated into oral care products, offering a natural alternative for combating oral pathogens, reducing inflammation, and protecting against oxidative stress. Future research should focus on clinical trials to validate these findings and explore the synergistic effects of REO with other essential oils.
Collapse
Affiliation(s)
- Karunan Joseph
- Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bojan Petrović
- Department of Dental Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Aung Thiha
- Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lazar Milić
- Faculty of Technical Science, University of Novi Sad, Novi Sad, Serbia
| | - Mohd Yazed Ahmad
- Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Sanja Kojić
- Faculty of Technical Science, University of Novi Sad, Novi Sad, Serbia.
| | - Fatimah Ibrahim
- Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | |
Collapse
|
2
|
Bisht A, Tewari D, Kumar S, Chandra S. Network pharmacology-based approach to investigate the molecular targets and molecular mechanisms of Rosmarinus officinalis L. for treating aging-related disorders. Biogerontology 2024; 25:793-808. [PMID: 39017748 DOI: 10.1007/s10522-024-10122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Aging, a natural biological process, presents challenges in maintaining physiological well-being and is associated with increased vulnerability to diseases. Addressing aging mechanisms is crucial for developing effective preventive and therapeutic strategies against age-related ailments. Rosmarinus officinalis L. is a medicinal herb widely used in traditional medicine, containing diverse bioactive compounds that have been studied for their antioxidant and anti-inflammatory properties, which are associated with potential health benefits. Using network pharmacology, this study investigates the anti-aging function and underlying mechanisms of R. officinalis. Through network pharmacology analysis, the top 10 hub genes were identified, including TNF, CTNNB1, JUN, MTOR, SIRT1, and others associated with the anti-aging effects. This analysis revealed a comprehensive network of interactions, providing a holistic perspective on the multi-target mechanism underlying Rosemary's anti-aging properties. GO and KEGG pathway enrichment analysis revealed the relevant biological processes, molecular functions, and cellular components involved in treating aging-related conditions. KEGG pathway analysis shows that anti-aging targets of R. officinalis involved endocrine resistance, pathways in cancer, and relaxin signaling pathways, among others, indicating multifaceted mechanisms. Genes like MAPK1, MMP9, and JUN emerged as significant players. These findings enhance our understanding of R. officinalis's potential in mitigating aging-related disorders through multi-target effects on various biological processes and pathways. Such approaches may reduce the risk of failure in single-target and symptom-based drug discovery and therapy.
Collapse
Affiliation(s)
- Amisha Bisht
- Department of Botany, Pt. Badridutt Pandey Campus Bageshwar, Soban Singh Jeena University, Almora, Uttarakhand, 263601, India
| | - Disha Tewari
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, 263136, India
| | - Sanjay Kumar
- Department of Botany, Pt. Badridutt Pandey Campus Bageshwar, Soban Singh Jeena University, Almora, Uttarakhand, 263601, India.
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, 263601, India.
| |
Collapse
|
3
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Toxicity and safety of rosemary (Rosmarinus officinalis): a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03336-9. [PMID: 39096378 DOI: 10.1007/s00210-024-03336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Rosemary (Rosmarinus officinalis) contains alkaloids, phenolic acids, saponins, tannins, diterpenes, flavonoids, and essential oils and has antioxidant, anti-inflammatory, antibacterial, anticancer, neuroprotective, cardioprotective, and hepatoprotective effects. While rosemary is generally considered safe for consumption and topical application, allergic reactions and dermatitis have been reported in some individuals. This paper provides an in-depth review of the current studies on rosemary toxicity, shedding light on its potential adverse effects and underlying mechanisms. METHODS Google Scholar, PubMed, Scopus, and Web of Science were used to perform extensive research from the inception of these databases until February 2024. RESULTS The toxicological effects explored include affecting several organs such as the liver and kidney by causing atrophic and degenerative changes, increasing blood urea nitrogen (BUN), aspartate aminotransferase (AST), and reducing total serum protein levels. Rosemary may induce reproductive toxicity by decreasing spermatogenesis in the testes, testosterone, sperm density, and motility. It might also trigger genotoxicity and anomalies in fetuses by increasing cytoplasmic membrane shrinkage, the formation of apoptotic bodies, internucleosomal deoxyribonucleic acid (DNA) fragmentation, and DNA ladder formation. CONCLUSION While rosemary is considered safe for food preservation, caution is warranted regarding chronic and high doses due to potential adverse effects on the kidneys, liver, reproductive system, and teratology. Additionally, it underscores the significance of considering drug interactions. The article also highlights the importance of considering toxicological data in realistic exposure situations and discusses the relevance of these findings for human health. Hence, further research is recommended to enhance our understanding of the toxicity profile associated with rosemary.
Collapse
Affiliation(s)
- Mahboobeh Ghasemzadeh Rahbardar
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
4
|
Singh A, Singh D, Tiwari N, Mittal P, Siddiqui MH, Mittal N. Exploring the therapeutic potential of rosemary compounds against Alzheimer's disease through GC-MS and molecular docking analysis. In Silico Pharmacol 2024; 12:63. [PMID: 39035101 PMCID: PMC11254900 DOI: 10.1007/s40203-024-00238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that is the leading cause of dementia in elderly individuals. Currently, there is no permanent treatment option available for this disorder, and the existing drug regimens are associated with limited effectiveness and side effects. To evaluate the neuroprotective effect of rosemary compounds, an extensive study was started with gas chromatography-mass spectrometry (GC-MS) analysis. GC-MS was performed to study the composition of rosemary essential oil and a total of 120 volatile compounds were identified. The 36 compounds from GC-MS data of rosemary essential oil having > 1% concentration in the oil were selected along with 3 already reported well-known non-volatile compounds of rosemary. se39 bioactive natural compounds of rosemary were docked against ACE, BACE1, GSK3, and TACE proteins, which are involved in AD progression. The top 3 compounds against each target protein were selected based on their binding energies and a total of 6 compounds were found as best candidates to target the AD; α Amyrin, Rosmanol, Androsta-1,4-dien-3-one,16,17-dihydroxy-(16.beta.,17.beta), Benzenesulfonamide,4-methyl-N-(5-nitro-2-pyridinyl), Methyl abietate, and Rosmarinic acid were the best compounds. The binding energy of α-Amyrin, Rosmanol, and Androsta-1,4-dien-3-one,16,17-dihydroxy-(16.beta.,17.beta) to ACE target is -10 kcal/mol, -9.3 kcal/mol, and - 9.3 kcal/mol, respectively. The best binding affinity was shown by complexes formed between GSK3-α-Amyrin (-9.1 kcal/mol), BACE1- α-Amyrin (-9.9 kcal/mol), and TACE- Benzenesulfonamide,4-methyl-N-(5-nitro-2-pyridinyl) (-9.1 kcal/mol). The comparative analysis between known inhibitors/ drugs of target proteins and the rosemary compound that shows the highest binding affinity against each protein also revealed the higher potential of rosemary natural compounds in terms of binding energy. The drug-likeliness properties like Lipinski's rule of five and the ADME/T analysis of top-selected compounds were screened through PkCSM and Deep-PK tools. The findings from this study suggested that rosemary compounds have the potential as a therapeutic lead for treating AD. This kind of experimental confirmation can lead to novel drug candidates against the pharmacological targets of AD. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00238-9.
Collapse
Affiliation(s)
- Anjali Singh
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Dewa Road, Barabanki, Uttar Pradesh 225003 India
| | - Dhananjay Singh
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Neeraj Tiwari
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Dewa Road, Barabanki, Uttar Pradesh 225003 India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401 India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Nishu Mittal
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Dewa Road, Barabanki, Uttar Pradesh 225003 India
| |
Collapse
|
5
|
Akotkar L, Aswar U, Ganeshpurkar A, Rathod K, Bagad P, Gurav S. Phytoconstituents Targeting the Serotonin 5-HT 3 Receptor: Promising Therapeutic Strategies for Neurological Disorders. ACS Pharmacol Transl Sci 2024; 7:1694-1710. [PMID: 38898946 PMCID: PMC11184608 DOI: 10.1021/acsptsci.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
The 5-hydroxytryptamine-3 receptor (5-HT3R), a subtype of serotonin receptor, is a ligand-gated ion channel crucial in mediating fast synaptic transmission in the central and peripheral nervous systems. This receptor significantly influences various neurological activities, encompassing neurotransmission, mood regulation, and cognitive processing; hence, it may serve as an innovative target for neurological disorders. Multiple studies have revealed promising results regarding the beneficial effects of these phytoconstituents and extracts on conditions such as nausea, vomiting, neuropathic pain depression, anxiety, Alzheimer's disease, cognition, epilepsy, sleep, and dyskinesia via modulation of 5-HT3R in the pathophysiology of neurological disorder. The review delves into a detailed exploration of in silico, in vitro, and in vivo studies and clinical studies that discussed phytoconstituents acting on 5-HT3R and attenuates difficulties in neurological diseases. The diverse mechanisms by which plant-derived phytoconstituents influence 5-HT3R activity offer exciting avenues for developing innovative therapeutic interventions. Besides producing an agonistic or antagonistic effect, some phytoconstituents exert modulatory effects on 5-HT3R activity through multifaceted mechanisms. These include γ-aminobutyric acid and cholinergic neuronal pathways, interactions with neurokinin (NK)-1, NK2, serotonergic, and γ-aminobutyric acid(GABA)ergic systems, dopaminergic influences, and mediation of calcium ions release and inflammatory cascades. Notably, the phytoconstituent's capacity to reduce oxidative stress has also emerged as a significant factor contributing to their modulatory role. Despite the promising implications, there is currently a dearth of exploration needed to understand the effect of phytochemicals on the 5-HT3R. Comprehensive preclinical and clinical research is of the utmost importance to broaden our knowledge of the potential therapeutic benefits associated with these substances.
Collapse
Affiliation(s)
- Likhit Akotkar
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Urmila Aswar
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Ankit Ganeshpurkar
- Department
of Pharmaceutical Chemistry, Poona College
of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune411038, India
| | - Kundlik Rathod
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Pradnya Bagad
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Shailendra Gurav
- Department
of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403001, India
| |
Collapse
|
6
|
Pérez-Piñero S, Muñoz-Carrillo JC, Echepare-Taberna J, Luque-Rubia AJ, Millán Rivero JE, Muñoz-Cámara M, Díaz Silvente MJ, Valero Merlos E, Ávila-Gandía V, Caturla N, Navarro P, Cabrera M, López-Román FJ. Dietary supplementation with plant extracts for amelioration of persistent myofascial discomfort in the cervical and back regions: a randomized double-blind controlled study. Front Nutr 2024; 11:1403108. [PMID: 38887495 PMCID: PMC11182357 DOI: 10.3389/fnut.2024.1403108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Background Back pain is a common health problem that affects both workers and older people, reducing their quality of life. The primary objective was to assess the effect of dietary supplementation with plant extracts of rosemary, ashwagandha, and sesame consumed for 12 weeks on the intensity of back pain. Methods A single-center randomized double-blind study with three parallel arms depending on the product consumed. The duration of treatment was 12 weeks. The investigational product, Berelief®, contained a blend of three polyphenolic standardized extracts: rosemary (Rosmarinus officinalis L.), ashwagandha (Withania somnifera L.), and sesame (Sesamum indicum L.) seed. Two doses were tested: low dose (400 mg) and high dose (800 mg). There were 42 subjects in the placebo group, 39 in the low dose and 42 in the high dose groups. Study variables included back pain intensity [VAS score, Patient-Reported Outcomes Measurement Information System (PROMIS-29), and Cornell Musculoskeletal Discomfort Questionnaire; functionality Roland-Morris Disability (RMD) questionnaire]; quality of life (QoL) [36-item Short Form Survey (SF-36), the Beck Depression Inventory-II (BDI-II), the State-Trait Anxiety Inventory (STAI), and the Perceived Stress Scale (PSS)]; sleep quality [accelerometer and Pittsburgh Sleep Quality Index (PSQI)]. Results The improvement in back pain recorded by the visual analogue scale (VAS) at the study visits after the beginning of treatment, as well as on a weekly basis recorded in the diary card was significantly higher in the intervention group than in the placebo group (p < 0.044 dose-low; p < 0.005 dose-high). Significant differences in pain intensity of the PROMIS-29 (p = 0.002) and upper back pain in the Cornell questionnaire (p = 0.011) in favour of the investigational product were found. Furthermore, benefits in improving health-related quality of life, mood and sleep quality were also detected. Conclusion Dietary supplementation for 12 weeks of a blend of polyphenolic standardized extracts of rosemary, ashwagandha, and sesame was effective in reducing the intensity of pain in subjects with chronic myofascial cervical and back pain.
Collapse
Affiliation(s)
- Silvia Pérez-Piñero
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | | | - Jon Echepare-Taberna
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | | | | | | | | | - Eloina Valero Merlos
- Faculty of Nursing, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Vicente Ávila-Gandía
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | | | | | | | - Francisco Javier López-Román
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
- Primary Care Research Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
7
|
Yimam M, Horm T, O'Neal A, Jiao P, Hong M, Jia Q. An Aloe-Based Composition Constituting Polysaccharides and Polyphenols Protected Mice against D-Galactose-Induced Immunosenescence. J Immunol Res 2024; 2024:9307906. [PMID: 38516617 PMCID: PMC10957255 DOI: 10.1155/2024/9307906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/09/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
A decline in immune response, exhibited in the form of immunosenescence and inflammaging, is an age-associated disturbance of the immune system known to predispose the elderly to a greater susceptibility to infection and poor vaccine response. Polysaccharides and polyphenols from botanicals are known for their immune modulation effects. Here we evaluated a standardized mushroom-based composition, UP360, from Aloe barbadensis, Poria cocos, and Rosmarinus officinalis, as a natural nutritional supplement for a balanced immune response in an accelerated aging mouse model. Immunosenescence was induced by continual subcutaneous injection of D-galactose (D-gal) at a dose of 500 mg/kg/day to CD-1 mice. UP360 was administered at oral doses of 200 and 400 mg/kg to the mice starting on the 5th week of D-gal injection. The study lasted for a total of 9 weeks. All mice were given a quadrivalent influenza vaccine at 3 µg/animal via intramuscular injection 14 days before the end of the study. A group of D-gal-treated mice treated at 400 mg/kg/day UP360 was kept without vaccination. Whole blood, serum, spleen homogenate, and thymus tissues were used for analysis. UP360 was found to improve the immune response as evidenced by stimulation of innate and adaptive immune responses, increase antioxidant capacity as reflected by augmented SOD and Nrf2, and preserve vital immune organs, such as the thymus, from aging-associated damage. The findings depicted in this report show the effect of the composition in activating and maintaining homeostasis of the immune system both during active infections and as a preventive measure to help prime the immune system. These data warrant further clinical study to explore the potential application of the mushroom-based composition as an adjunct nutritional supplement for a balanced immune response.
Collapse
Affiliation(s)
- Mesfin Yimam
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Teresa Horm
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Alexandria O'Neal
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Ping Jiao
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Mei Hong
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Qi Jia
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| |
Collapse
|
8
|
Pezantes-Orellana C, German Bermúdez F, Matías De la Cruz C, Montalvo JL, Orellana-Manzano A. Essential oils: a systematic review on revolutionizing health, nutrition, and omics for optimal well-being. Front Med (Lausanne) 2024; 11:1337785. [PMID: 38435393 PMCID: PMC10905622 DOI: 10.3389/fmed.2024.1337785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Essential oils from various plants have diverse therapeutic properties and are researched extensively. They have applications in medicine, aromatherapy, microbiology, agriculture, livestock, and the food industry, benefiting the population. Methods This systematic review followed the PRISMA verification protocol. The study focused on the anti-inflammatory effects, nutraceutical properties, antioxidant and antibacterial activity of essential oils in lemon, orange, cumin, cinnamon, coriander, rosemary, thyme, and parsley. We also looked at their presence in the diet, their effect, their mechanism of action on health, and the most important active compounds. The search was conducted in the PubMed database for the last 12 years of publications, including in vitro, in vivo, and online cell model tests. Results Essential oils have been shown to have multiple health benefits, primarily due to their antimicrobial and anti-inflammatory effects. The mechanism of action of cinnamon oil alters bacterial membranes, modifies lipid profiles, and inhibits cell division, giving a potential benefit in protection against colitis. On the other hand, a significant improvement was observed in the diastolic pressure of patients with metabolic syndrome when supplementing them with cumin essential oil. The antimicrobial properties of coriander essential oil, especially its application in seafood like tilapia, demonstrate efficacy in improving health and resistance to bacterial infections. Cumin essential oil treats inflammation. Parsley essential oil is an antioxidant. Orange peel oil is antibacterial, antifungal, antiparasitic, and pro-oxidative. Lemon essential oil affects mouse intestinal microbiota. Thyme essential oil protects the colon against damage and DNA methylation. Carnosic acid in rosemary oil can reduce prostate cancer cell viability by modifying the endoplasmic reticulum function. Conclusion and discussion Essential oils have many therapeutic and antiparasitic properties. They are beneficial to human health in many ways. However, to understand their potential benefits, more research is needed regarding essential oils such as coriander, parsley, rosemary, cumin, and thyme. These research gaps are relevant since they restrict understanding of the possible benefits of these crucial oils for health-related contexts.
Collapse
Affiliation(s)
| | - Fátima German Bermúdez
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Carmen Matías De la Cruz
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | | | - Andrea Orellana-Manzano
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| |
Collapse
|
9
|
Ghasemzadeh Rahbardar M, Eisvand F, Rameshrad M, Razavi BM, Tabatabaee Yazdi A, Hosseinzadeh H. Carnosic acid mitigates doxorubicin-induced cardiac toxicity: Evidence from animal and cell model investigations. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:425-438. [PMID: 38419896 PMCID: PMC10897553 DOI: 10.22038/ijbms.2023.71508.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/01/2023] [Indexed: 03/02/2024]
Abstract
Objectives Utilization of doxorubicin (DOX) as a chemotherapy medication is limited due to its cardiotoxic effects. Carnosic acid exerts antioxidant, anti-inflammatory, besides cytoprotective effects. The objective of this study was to investigate the ability of carnosic acid to protect rat hearts and the MCF7 cell line against cardiotoxicity induced by DOX. Materials and Methods The study involved the classification of male Wistar rats into seven groups: 1) Control 2) DOX (2 mg/kg, every 48h, IP, 12d), 3-5) Carnosic acid (10, 20, 40 mg/kg/day, IP, 16d)+ DOX, 6) Vitamin E (200 mg/kg, every 48h, IP, 16d)+ DOX 7) Carnosic acid (40 mg/kg/day, IP, 16d). Finally, cardiac histopathological alterations, ECG factors, carotid blood pressure, left ventricular function, heart-to-body weight ratio, oxidative (MDA, GSH), inflammatory (IL-1β, TNF-α), plus apoptosis (caspase 3, 8, 9, Bcl-2, Bax) markers were evaluated. DOX toxicity and carnosic acid ameliorative effect were evaluated on MCF7 cells using the MTT assay. Results DOX augmented the QRS duration, QA, RRI, STI, and heart-to-body weight ratio, and reduced HR, LVDP, Min dP/dt, Max dP/dt, blood pressure, boosted MDA, TNF-α, IL1-β, caspase 3,8,9, Bax/Bcl-2 ratio, decreased GSH content, caused fibrosis, necrosis, and cytoplasmic vacuolization in cardiac tissue but carnosic acid administration reduced the toxic effects of DOX. The cytotoxic effects of DOX were not affected by carnosic acid at concentrations of 5 and 10 μM. Conclusion Carnosic acid as an anti-inflammatory and antioxidant substance is effective in reducing DOX-induced damage by enhancing antioxidant defense and modifying inflammatory signal pathway activity and can be used as an adjunct in treating DOX cardiotoxicity.
Collapse
Affiliation(s)
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Tabatabaee Yazdi
- Ghaem Hospital, Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Oresanya IO, Orhan IE. Deciphering Neuroprotective Effect of Rosmarinus officinalis L. (syn. Salvia rosmarinus Spenn.) through Preclinical and Clinical Studies. Curr Drug Targets 2024; 25:330-352. [PMID: 38258779 DOI: 10.2174/0113894501255093240117092328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Rosmarinus officinalis L. (RO, rosemary) is a well-known medicinal, aromatic, and culinary herb with traditional use in European folk medicine against memory deficits and neurodegenerative disorders. This review highlights the different neuroprotective activities of RO investigated in both preclinical and clinical studies, as well as in silico molecular docking of bioactive compounds found in RO. The neuroprotective effect of RO was searched through databases including PubMed, Web of Science (WoS), Scopus, and Clinical Trials using the keywords "Rosmarinus officinalis, rosemary, neuroprotective effect, memory, cognitive dysfunction, Alzheimer's disease." RO, which is rich in secondary metabolites that have memory-enhancing potential, has displayed neuroprotection through different molecular mechanisms such as inhibition of cholinesterase, modulation of dopaminergic and oxytocinergic systems, mediation of oxidative and inflammatory proteins, involved in neuropathic pain, among others. RO extracts exhibited antidepressant and anxiolytic activities. Also, the plant has shown efficacy in scopolamine-, lipopolysaccharide-, AlCl3-, and H2O2-induced amnesia as well as amyloid-beta- and ibotenic acid-induced neurotoxicity and chronic constriction injury-related oxidative stress memory and cognitive impairments in animal models. A few clinical studies available supported the neuroprotective effects of RO and its constituents. However, more clinical studies are needed to confirm results from preclinical studies further and should include not only placebo-controlled studies but also studies including positive controls using approved drugs. Many studies underlined that constituents of RO may have the potential for developing drug candidates against Alzheimer's disease that possess high bioavailability, low toxicity, and enhanced penetration to CNS, as revealed from the experimental and molecular docking analysis.
Collapse
Affiliation(s)
- Ibukun O Oresanya
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Ilkay E Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No. 112, 06670 Ankara, Türkiye
| |
Collapse
|
11
|
Eslami Farsani M, Razavi S, Rasoolijazi H, Esfandiari E, Seyedebrahimi R, Ababzadeh S. Neuroprotective effects of rosemary extract on white matter of prefrontal cortex in old rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:518-523. [PMID: 38419891 PMCID: PMC10897559 DOI: 10.22038/ijbms.2023.74168.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/19/2023] [Indexed: 03/02/2024]
Abstract
Objectives During aging, cerebral structures undergo changes due to oxidative stress. The consumption of some plants seems to improve neurological health. For example, rosemary extract (RE) which is widely used as a flavoring food has anti-inflammatory and anti-oxidant activities. Therefore, we aimed to study the effect of RE on the changes related to the aging process in the prefrontal cortex (PFC). Materials and Methods Twenty-four male Wistar rats including young and old were purchased. Each group was divided into two subgroups: vehicle and rosemary (old vehicle (OV), old rosemary (OR), young vehicle (YV), and young rosemary (YR) groups). Then, we examined the number of intact neurons, myelin base protein (MBP), white matter (WM), levels of malondialdehyde (MDA), and glutathione peroxidase (GPx) in the PFC. Results The results showed that in the old vehicle rats compared to the young group without treatment, except for the MDA level (which increased), other variables significantly decreased (P≤0.05). Additionally, RE consumption demonstrated a significant elevation of WMA, MBP intensity, number of intact neurons, and GPx activity level, while MDA levels significantly reduced in the treated old rats compared to the old vehicle group (P≤0.05). However, there was no significant difference between the OR and YV groups (P≥0.05). Conclusion Overall, it seems that RE can protect and improve aging damages in the PFC due to its anti-oxidant properties. So, the use of RE can be a suitable strategy to prevent aging complications in the brain.
Collapse
Affiliation(s)
- Mohsen Eslami Farsani
- Anatomy Department, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Homa Rasoolijazi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reihaneh Seyedebrahimi
- Anatomy Department, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Tissue Engineering and Applied Cell Sciences Department, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
12
|
Maring M, Balaji C, Komala M, Nandi S, Latha S, Raghavendran HB. Aromatic Plants as Potential Resources to Combat Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:1434-1465. [PMID: 37861046 DOI: 10.2174/0113862073267213231004094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Osteoarthritis, which affects an estimated 10% of men and 18% of women over the age of 60 and is increasing in genetic prevalence and incidence, is acknowledged as the condition that degrades the quality of life for older adults in the world. There is currently no known treatment for osteoarthritis. The majority of therapeutic methods slow the progression of arthritis or treat its symptoms, making effective treatment to end the degenerative process of arthritis elusive. When non-pharmacological therapy is ineffective, various pharmacological therapies may be used to treat osteoarthritis. Pharmacological therapy, however, can have major adverse effects and be very expensive. As a result, alternative remedies have been researched. The promise for the safe and efficient management of osteoarthritis has been demonstrated by herbal remedies. Experimental research suggests that herbal extracts and compounds can reduce inflammation, inhibit catabolic processes, and promote anabolic processes that are important for treating osteoarthritis. Due to their therapeutic and innate pharmacological qualities, aromatic herbs are frequently employed as herbal remedies. Recent research has shown that aromatic plants have the potency to treat osteoarthritis. Additionally, complex mixtures of essential oils and their bioactive ingredients, which have anti-inflammatory and antioxidant properties and are obtained from aromatic plants, are frequently utilized as complementary therapies for osteoarthritis. To establish new study avenues, the advantageous anti-osteoarthritic effects of aromatic herbal medicines, including plants, essential oils, and their bioactive components, are extensively discussed.
Collapse
Affiliation(s)
- Maphibanri Maring
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - C Balaji
- Department of Rheumatology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - M Komala
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - S Latha
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - H Balaji Raghavendran
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
13
|
Manville RW, Baldwin SN, Eriksen EØ, Jepps TA, Abbott GW. Medicinal plant rosemary relaxes blood vessels by activating vascular smooth muscle KCNQ channels. FASEB J 2023; 37:e23125. [PMID: 37535015 PMCID: PMC10437472 DOI: 10.1096/fj.202301132r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The evergreen plant rosemary (Salvia rosmarinus) has been employed medicinally for centuries as a memory aid, analgesic, spasmolytic, vasorelaxant and antihypertensive, with recent preclinical and clinical evidence rationalizing some applications. Voltage-gated potassium (Kv) channels in the KCNQ (Kv7) subfamily are highly influential in the nervous system, muscle and epithelia. KCNQ4 and KCNQ5 regulate vascular smooth muscle excitability and contractility and are implicated as antihypertensive drug targets. Here, we found that rosemary extract potentiates homomeric and heteromeric KCNQ4 and KCNQ5 activity, resulting in membrane hyperpolarization. Two rosemary diterpenes, carnosol and carnosic acid, underlie the effects and, like rosemary, are efficacious KCNQ-dependent vasorelaxants, quantified by myography in rat mesenteric arteries. Sex- and estrous cycle stage-dependence of the vasorelaxation matches sex- and estrous cycle stage-dependent KCNQ expression. The results uncover a molecular mechanism underlying rosemary vasorelaxant effects and identify new chemical spaces for KCNQ-dependent vasorelaxants.
Collapse
Affiliation(s)
- Rían W. Manville
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Samuel N. Baldwin
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil Ørnberg Eriksen
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A. Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
14
|
Li K, Wu J, Xu S, Li X, Zhang Y, Gao XJ. Rosmarinic acid alleviates intestinal inflammatory damage and inhibits endoplasmic reticulum stress and smooth muscle contraction abnormalities in intestinal tissues by regulating gut microbiota. Microbiol Spectr 2023; 11:e0191423. [PMID: 37594285 PMCID: PMC10654191 DOI: 10.1128/spectrum.01914-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
The host-bacterial interactions play the key role in inflammatory bowel disease (IBD). Dysbiosis of the intestinal flora can lead to pathological changes in the intestine. Rosmarinic acid (RA) is a natural phenolic acid compound with antioxidant, anti-cancer, anti-inflammatory, anti-apoptotic, anti-fibrotic, and anti-bacterial activities that has a palliative effect on acute IBD. We have established an in vivo model for mice. Histological staining was performed to directly observe RA alterations in the intestinal tract. The alteration of RA on mouse intestinal flora was observed by 16S rRNA high-throughput sequencing, and the effect of RA on intestinal mechanism of action was detected by qPCR and western blot. The results showed that RA had a significant protective effect on the intestine. RA upregulated the abundance of Lactobacillus johnsonii and Candidatus Arthromitus sp SFB-mouse-NL and downregulated the abundance of Bifidobacterium pseudolongum, Escherichia coli, and Romboutsia ilealis. RA downregulated the expressions of ROCK, RhoA, CaM, MLC, MLCK, ZEB1, ZO-1, ZO-2, occludin, E-cadherin, IL-1β, IL-6, TNF-α, GRP78, PERK, IRE1, ATF6, CHOP, Caspase12, Caspase9, Caspase3, Bax, Cytc, RIPK1, RIPK3, MLKL, and upregulated the expression of IL-10 and Bcl-2. These results displayed that RA inhibited the inflammation, which is caused by tight junction damage, by repairing intestinal flora dysbiosis, relieved endoplasmic reticulum stress, inhibited cell death, and corrected smooth muscle contractile dysregulation. The results of this study revealed RA could have a protective effect on the small intestine of mice by regulating intestinal flora. IMPORTANCE Inflammatory bowel disease (IBD) is a chronic, relapsing, remitting disorder of the gastrointestinal system. In this study, we investigated the protective effects of rosmarinic acid on the intestinal tract. The results showed that RA was effective in reducing inflammatory damage, endoplasmic reticulum stress, smooth muscle contraction abnormalities, and regulating intestinal flora disorders.
Collapse
Affiliation(s)
- Kan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Jiawei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Shuang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xueying Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Yanhe Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xue-jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Cao X, Zhou J, Liu J, Chen H, Zheng W. Aromatherapy in anxiety, depression, and insomnia: A bibliometric study and visualization analysis. Heliyon 2023; 9:e18380. [PMID: 37519641 PMCID: PMC10375858 DOI: 10.1016/j.heliyon.2023.e18380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023] Open
Abstract
Aromatherapy is a natural treatment method that uses essential oils (EOs) extracted from aromatic plants; EOs and their components exhibit a wide range of pharmacological activities, with a special focus on their implementation toward mental disorders, such as anxiety and depression. This study aimed to identify the scientific output and activity related to aromatherapy in anxiety, depression, and insomnia through bibliometric approaches. In this bibliometric study, we utilized CiteSpace and VOSviewer to evaluate the Web of Science Core Collection publications and to build visualizing maps to analyze the research progress on this topic between 2001 and 2021. A total of 1159 original and review articles in English, published in 578 different peer-reviewed journals by 260 authors, were identified. In the recent two decades, there was a steady increase in the number of published articles, especially in the following five years. All publications were distributed among 88 countries/regions. The United States had the most publications, with 188 (16.22%) articles, followed by China [131 (11.30%)], Brazil [110 (9.49%)], and Japan [85 (7.33%)]. Most studies were published in the Journal of Ethnopharmacology, and Physiology & Behavior was the most cited journal. Hritcu L was the top published scientist and Gupta SC was the most frequently co-cited. The knowledge base of this field research mainly included the related efficacy of aromatherapy/EOs, application status, and biochemical mechanism. And the keyword co-occurrence analysis revealed that the topics "oxidative stress," "chemical composition," "systematic review," and "sleep quality" were research frontiers. In conclusion, this comprehensive bibliometric study provides an updated perspective on research hotspots of aromatherapy in anxiety or depression and developmental tendencies of natural remedies for mental health. In addition, this study could also provide valuable information for research teams, practitioners, and decision-makers when designing and implementing natural treatment methods for mental health-promoting interventions for individuals with mood disorders.
Collapse
Affiliation(s)
- Xia Cao
- Health Management Center, The Third Xiangya Hospital of Central South University, China
| | - Jiansong Zhou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, China
| | - Jiali Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, China
| | - Hui Chen
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, China
| | - Wei Zheng
- Department of Radiology, The Third Xiangya Hospital of Central South University, China
| |
Collapse
|
16
|
Manville RW, Hogenkamp D, Abbott GW. Ancient medicinal plant rosemary contains a highly efficacious and isoform-selective KCNQ potassium channel opener. Commun Biol 2023; 6:644. [PMID: 37322081 PMCID: PMC10272180 DOI: 10.1038/s42003-023-05021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Voltage-gated potassium (Kv) channels in the KCNQ subfamily serve essential roles in the nervous system, heart, muscle and epithelia. Different heteromeric KCNQ complexes likely serve distinct functions in the brain but heteromer subtype-specific small molecules for research or therapy are lacking. Rosemary (Salvia rosmarinus) is an evergreen plant used medicinally for millennia for neurological and other disorders. Here, we report that rosemary extract is a highly efficacious opener of heteromeric KCNQ3/5 channels, with weak effects on KCNQ2/3. Using functional screening we find that carnosic acid, a phenolic diterpene from rosemary, is a potent, highly efficacious, PIP2 depletion-resistant KCNQ3 opener with lesser effects on KCNQ5 and none on KCNQ1 or KCNQ2. Carnosic acid is also highly selective for KCNQ3/5 over KCNQ2/3 heteromers. Medicinal chemistry, in silico docking, and mutagenesis reveal that carboxylate-guanidinium ionic bonding with an S4-5 linker arginine underlies the KCNQ3 opening proficiency of carnosic acid, the effects of which on KCNQ3/5 suggest unique therapeutic potential and a molecular basis for ancient neurotherapeutic use of rosemary.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Derk Hogenkamp
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
17
|
Abdelrazik E, Hassan HM, Hamza E, Ezz Elregal FM, Elnagdy MH, Abdulhai EA. Beneficial role of rosemary extract on oxidative stress-mediated neuronal apoptosis in rotenone-induced attention deficit hyperactivity disease in juvenile rat model. ACTA BIO-MEDICA : ATENEI PARMENSIS 2023; 94:e2023104. [PMID: 37326266 PMCID: PMC10308472 DOI: 10.23750/abm.v94i3.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIM Attention deficit hyperactivity disorder (ADHD) is heterogeneous neurobehavioral disorders that co-exist with cognitive and learning deficits affecting 3-7% of children. We study the role of rosemary in the protection of the prefrontal cortical neurons against rotenone-induced ADHD in juvenile rats. METHODS Twenty-four juvenile rats were divided into four groups (n=6): control group, received olive oil 0.5 ml/kg/day/ I.P. for 4 weeks, rosemary group received rosemary 75 mg/kg/day/ I.P. for 4 weeks, rotenone group received rotenone 1 mg/kg/day/ I.P. dissolved in olive oil for 4 days and combined group received rotenone 1 mg/kg/day/ I.P. for 4 days and rosemary 75 mg/kg/day/ I.P. for 4 weeks. RESULTS Rotenone group showed higher impulsivity with reduction in the recognition index and total locomotor activity. However, combined group showed significant improvement in the recognition index and the total locomotor activity. Neurochemical analysis disclosed that rotenone decreased levels of GSH and significantly increased lipid peroxidation and oxidative stress. The administration of rosemary amended these neurochemical changes. Rotenone caused a significant increase in serum amyloid protein A and C-reactive protein levels indicating a marked state of inflammation. Rosemary ameliorated these biochemical changes. The immunohistochemical expression of tyrosine hydroxylase was decreased in the rotenone group. On the other hand, caspase-3 was increased in the rotenone group. PCR confirmed immunohistochemical results for gene expression. CONCLUSIONS The findings of the behavioral, neurochemical, biochemical, immunohistochemical and molecular outcomes suggested that rosemary could fight oxidative stress, inflammation and apoptosis in the prefrontal cortex of rotenone-induced ADHD in juvenile rats.
Collapse
Affiliation(s)
- Eman Abdelrazik
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt. .
| | - Hend M Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt. .
| | - Eman Hamza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt/ Department of Biochemistry and Molecular Biology, Horus University, Damietta, Egypt..
| | - Farah M Ezz Elregal
- Medical Student, Faculty of Medicine, Mansoura University, Mansoura, Egypt. .
| | - Marwa H Elnagdy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt..
| | - Eman A Abdulhai
- Department of Pediatrics (pediatric neurology), Faculty of Medicine, Mansoura University, Mansoura, Egypt. .
| |
Collapse
|
18
|
Kumar L, Deshmukh RK, Hakim L, Gaikwad KK. Halloysite Nanotube as a Functional Material for Active Food Packaging Application: A Review. FOOD BIOPROCESS TECH 2023:1-14. [PMID: 37363381 PMCID: PMC10151217 DOI: 10.1007/s11947-023-03092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Halloysite nanotubes (HNTs) are naturally occurring nanomaterials with a tubular shape and high aspect ratio, a promising functional additive for active food packaging applications. HNTs have been shown to possess unique properties such as high surface area, thermal stability, and biocompatibility, making them attractive for active food packaging materials. This review summarizes recent research on the use of HNTs as functional additives in active food packaging applications, including antimicrobial packaging, ethylene scavenging packaging, moisture, and gas barrier packaging. The potential benefits and challenges associated with the incorporation of HNTs into food packaging materials are discussed. The various modification methods, such as the physical, chemical, biological, and electrostatic methods, along with their impact on the properties of HNTs, are discussed. The advantages and challenges associated with each modification approach are also evaluated. Overall, the modification of HNTs has opened new possibilities for the development of advanced packaging materials with improved performance for various functional food packaging materials with enhanced properties and extended shelf life.
Collapse
Affiliation(s)
- Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Lokman Hakim
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| |
Collapse
|
19
|
Verrillo M, Koellensperger G, Puehringer M, Cozzolino V, Spaccini R, Rampler E. Evaluation of Sustainable Recycled Products to Increase the Production of Nutraceutical and Antibacterial Molecules in Basil Plants by a Combined Metabolomic Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:513. [PMID: 36771598 PMCID: PMC9919386 DOI: 10.3390/plants12030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND An important goal of modern medicine is the development of products deriving from natural sources to improve environmental sustainability. In this study, humic substances (HS) and compost teas (CTs) extracted from artichoke (ART) and coffee grounds (COF) as recycled biomasses were employed on Ocimum basilicum plants to optimize the yield of specific metabolites with nutraceutical and antibacterial features by applying sustainable strategies. METHODS The molecular characteristics of compost derivates were elucidated by Nuclear Magnetic Resonance spectroscopy to investigate the structure-activity relationship between organic extracts and their bioactive potential. Additionally, combined untargeted and targeted metabolomics workflows were applied to plants treated with different concentrations of compost extracts. RESULTS The substances HS-ART and CT-COF improved both antioxidant activity (TEAC values between 39 and 55 μmol g-1) and the antimicrobial efficacy (MIC value between 3.7 and 1.3 μg mL-1) of basil metabolites. The metabolomic approach identified about 149 metabolites related to the applied treatments. Targeted metabolite quantification further highlighted the eliciting effect of HS-ART and CT-COF on the synthesis of aromatic amino acids and phenolic compounds for nutraceutical application. CONCLUSIONS The combination of molecular characterization, biological assays, and an advanced metabolomic approach, provided innovative insight into the valorization of recycled biomass to increase the availability of natural compounds employed in the medical field.
Collapse
Affiliation(s)
- Mariavittoria Verrillo
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- Centro Interdipartimentale di Ricerca per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare, ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Marlene Puehringer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Vincenza Cozzolino
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- Centro Interdipartimentale di Ricerca per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare, ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Riccardo Spaccini
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- Centro Interdipartimentale di Ricerca per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare, ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
20
|
Couteau C, Diarra H, Lecoq M, Ali A, Bernet &, Coiffard L. The Role of Essential Oils in Homemade Cosmetics: A Study of 140 Recipes. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2023; 16:18-24. [PMID: 36743973 PMCID: PMC9891214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two recent trends that have developed simultaneously are a mistrust of health products by some of the population and the growing popularity of essential oils. The objective of this study was to analyze recipes with essential oils found on the internet and to assess their level of photoprotective efficacy. Therefore, we conducted a study of 140 recipes for personal care and hygiene products that incorporate one or more essential oils. This analysis revealed that numerous essential oils are called for in these recipes, derived from plants belonging to a wide diversity of botanical families. There was a significant difference (p=0.0026) in the number of essential oils listed in the recipes for facial care and body care recipes. There was also a statistically significant difference (p=2.54E-5) in the amount of essential oil to be added, expressed in drops, according to the type of product being made. A common characteristic of most of the recipes was the absence of any antimicrobial agents or antioxidants, which poses serious issues of preservation for the finished products. Recipes with essential oils pose many issues. The first issue lies in the quantities of the different raw materials to be incorporated; it influences the final essential oil concentration. The second issue concerns the adverse effects (photosensitization, for example) and contraindications (pregnant women, nursing women) of certain essential oils. Finally, it is not possible to carry out physicochemical testing raw materials and finish preparation.
Collapse
Affiliation(s)
- Céline Couteau
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
| | - Harona Diarra
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
- Mr. Diarra is with University of Paris-Saclay, Faculty of Pharamacy in Châtenay-Malabry, France
| | - Manon Lecoq
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
| | - Aline Ali
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
| | - >Mélanie Bernet
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
| | - Laurence Coiffard
- All authors are with the University of Nantes, Faculty of Pharmacy in Nantes, France
| |
Collapse
|
21
|
Jalali J, Ghasemzadeh Rahbardar M. Ameliorative effects of Portulaca oleracea L. (purslane) and its active constituents on nervous system disorders: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:2-12. [PMID: 36594059 PMCID: PMC9790064 DOI: 10.22038/ijbms.2022.65764.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/01/2022] [Indexed: 01/04/2023]
Abstract
Nowadays, the global interest in the use of herbal medicines and their main components in developing novel effective medications with fewer adverse effects is rising. Precise medicinal plants have potential advantageous applications for several neurodegenerative disorders. Portulaca oleracea L. (purslane) belongs to the Portulacaceae Juss family. In folk medicine, it has been used as a febrifuge, antiseptic, vermifuge, and in treating arthritis, burns, cough, headache, intestine, stomach, liver disorders, as well as shortness of breath. Pharmacological investigations have also disclosed its antioxidant, anti-inflammatory, anti-apoptotic, immunomodulatory, antidepressant, anxiolytic, and neuroprotective properties. The current work prepared an updated and broad literature review on purslane highlighting its therapeutic effects on some nervous system disorders. It has been shown that P. oleracea and its active constituents have considerable neuroregenerative, neuroprotective, and antinociceptive properties. Accordingly, our team classified and discussed the outcomes of some nervous system disorders comprising Alzheimer's disease, Parkinson's disease, depression, epilepsy, anxiety, psychosis, drug dependence, hypoxia, and pain; although, additional preclinical and clinical assessments are necessary to reinforce the beneficial effects of purslane on nervous system disorders.
Collapse
Affiliation(s)
| | - Mahboobeh Ghasemzadeh Rahbardar
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Mahboobeh Ghasemzadeh Rahbardar. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Zhang CS, Lyu S, Zhang AL, Guo X, Sun J, Lu C, Luo X, Xue CC. Natural products for migraine: Data-mining analyses of Chinese Medicine classical literature. Front Pharmacol 2022; 13:995559. [PMID: 36386198 PMCID: PMC9650126 DOI: 10.3389/fphar.2022.995559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/13/2022] [Indexed: 08/12/2024] Open
Abstract
Background: Treatment effect of current pharmacotherapies for migraine is unsatisfying. Discovering new anti-migraine natural products and nutraceuticals from large collections of Chinese medicine classical literature may assist to address this gap. Methods: We conducted a comprehensive search in the Encyclopedia of Traditional Chinese Medicine (version 5.0) to obtain migraine-related citations, then screened and scored these citations to identify clinical management of migraine using oral herbal medicine in history. Information of formulae, herbs and symptoms were further extracted. After standardisation, these data were analysed using frequency analysis and the Apriori algorithm. Anti-migraine effects and mechanisms of actions of the main herbs and formula were summarised. Results: Among 614 eligible citations, the most frequently used formula was chuan xiong cha tiao san (CXCTS), and the most frequently used herb was chuan xiong. Dietary medicinal herbs including gan cao, bai zhi, bo he, tian ma and sheng jiang were identified. Strong associations were constructed among the herb ingredients of CXCTS formula. Symptoms of chronic duration and unilateral headache were closely related with herbs of chuan xiong, gan cao, fang feng, qiang huo and cha. Symptoms of vomiting and nausea were specifically related to herbs of sheng jiang and ban xia. Conclusion: The herb ingredients of CXCTS which presented anti-migraine effects with reliable evidence of anti-migraine actions can be selected as potential drug discovery candidates, while dietary medicinal herbs including sheng jiang, bo he, cha, bai zhi, tian ma, and gan cao can be further explored as nutraceuticals for migraine.
Collapse
Affiliation(s)
- Claire Shuiqing Zhang
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Shaohua Lyu
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Anthony Lin Zhang
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Xinfeng Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jingbo Sun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Chuanjian Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiaodong Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Charlie Changli Xue
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
23
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
24
|
Vieira C, Rebocho S, Craveiro R, Paiva A, Duarte ARC. Selective extraction and stabilization of bioactive compounds from rosemary leaves using a biphasic NADES. Front Chem 2022; 10:954835. [PMID: 36034659 PMCID: PMC9412766 DOI: 10.3389/fchem.2022.954835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Rosemary (Rosmarinus officinalis) is a natural source of bioactive compounds that have high antioxidant activity. It has been in use as a medicinal herb since ancient times, and it currently is in widespread use due to its inherent pharmacological and therapeutic potential, in the pharmaceutical, food, and cosmetic industries. Natural deep eutectic systems (NADESs) have recently been considered as suitable extraction solvents for bioactive compounds, with high solvent power, low toxicity, biodegradability, and low environmental impact. The present work concerns the extraction of compounds such as rosmarinic acid, carnosol, carnosic acid, and caffeic acid, from rosemary using NADESs. This extraction was carried out using heat and stirring (HS) and ultrasound-assisted extraction (UAE). A NADES composed of menthol and lauric acid at a molar ratio of 2:1 (Me:Lau) extracted carnosic acid and carnosol preferentially, showing that this NADES exhibits selectivity for nonpolar compounds. On the other hand, a system of lactic acid and glucose (LA:Glu (5:1)) extracted preferentially rosmaniric acid, which is a more polar compound. Taking advantage of the different polarities of these NADESs, a simultaneous extraction was carried out, where the two NADESs form a biphasic system. The system LA:Glu (5:1)/Men:Lau (2:1) presented the most promising results, reaching 1.00 ± 0.12 mg of rosmarinic acid/g rosemary and 0.26 ± 0.04 mg caffeic acid/g rosemary in the more polar phase and 2.30 ± 0.18 mg of carnosol/g of rosemary and 17.54 ± 1.88 mg carnosic acid/g rosemary in the nonpolar phase. This work reveals that is possible to use two different systems at the same time and extract different compounds in a single-step process under the same conditions. NADESs are also reported to stabilize bioactive compounds, due to their interactions established with NADES components. To determine the stability of the extracts over time, the compounds of interest were quantified by HPLC at different time points. This allows the conclusion that bioactive compounds from rosemary were stable in NADESs for long periods of time; in particular, carnosic acid presented a decrease of only 25% in its antioxidant activity after 3 months, whereas the carnosic acid extracted and kept in the methanol was no longer detected after 15 days. The stabilizing ability of NADESs to extract phenolic/bioactive compounds shows a great promise for future industrial applications.
Collapse
|
25
|
The Potential of Lamiaceae Herbs for Mitigation of Overweight, Obesity, and Fatty Liver: Studies and Perspectives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155043. [PMID: 35956991 PMCID: PMC9370348 DOI: 10.3390/molecules27155043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Numerous plants, plant extracts, and plant-derived compounds are being explored for their beneficial effects against overweight and liver diseases. Obesity is associated with the increased prevalence of non-alcoholic fatty liver disease (NAFLD), becoming the most common liver disease in Western countries. Obesity and NAFLD are closely associated with many other metabolic alternations such as insulin resistance, diabetes mellitus, and cardiovascular diseases. Many herbs of the Lamiaceae family are widely employed as food and spices in the Mediterranean area, but also in folk medicine, and their use for the management of metabolic disorders is well documented. Hereby, we summarized the scientific results of the medicinal and nutraceutical potential of plants from the Lamiaceae family for prevention and mitigation of overweight and fatty liver. The evidence indicates that Lamiaceae plants may be a cost-effective source of nutraceuticals and/or phytochemicals to be used in the management of metabolic-related conditions such as obesity and NAFLD. PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets.
Collapse
|
26
|
Ridouh I, Hackshaw KV. Essential Oils and Neuropathic Pain. PLANTS (BASEL, SWITZERLAND) 2022; 11:1797. [PMID: 35890431 PMCID: PMC9323890 DOI: 10.3390/plants11141797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Neuropathic pain is one of the most prominent chronic pain syndromes, affecting almost 10% of the United States population. While there are a variety of established pharmacologic and non-pharmacologic treatment options, including tricyclic antidepressants (TCAs), serotonin-noradrenaline reuptake inhibitors, anticonvulsants, trigger point injections, and spinal cord stimulators, many patients continue to have chronic pain or suboptimal symptom control. This has led to an increased interest in alternative solutions for neuropathic pain such as nutritional supplements and essential oils. In this review, we explore the literature on the most commonly cited essential oils, including lavender, bergamot, rosemary, nutmeg, Billy goat weed, and eucalyptus. However, the literature is limited and largely comprised of preclinical animal models and a few experimental studies, some of which were poorly designed and did not clearly isolate the effects of the essential oil treatment. Additionally, no standardized method of dosing or route of administration has been established. Further randomized control studies isolating the active components of various essential oils are needed to provide conclusive evidence on the use of essential oils for neuropathic pain. In this review, we explore the basis behind some of the essential oils of interest to patients with neuropathic pain seen in rheumatology clinics.
Collapse
Affiliation(s)
- Imane Ridouh
- Dell Medical School, University of Texas, 1601 Trinity St., Austin, TX 78712, USA;
| | - Kevin V. Hackshaw
- Dell Medical School, University of Texas, 1601 Trinity St., Austin, TX 78712, USA;
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, University of Texas, 1601 Trinity St., Austin, TX 78712, USA
| |
Collapse
|
27
|
Sánchez-Martínez JD, Valdés A, Gallego R, Suárez-Montenegro ZJ, Alarcón M, Ibañez E, Alvarez-Rivera G, Cifuentes A. Blood–Brain Barrier Permeability Study of Potential Neuroprotective Compounds Recovered From Plants and Agri-Food by-Products. Front Nutr 2022; 9:924596. [PMID: 35782945 PMCID: PMC9243654 DOI: 10.3389/fnut.2022.924596] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Plants and agri-food by-products represent a wide and renewable source of bioactive compounds with neuroprotective properties. In this research, various green extraction techniques were employed to recover bioactive molecules from Kalanchoe daigremontiana (kalanchoe), epicarp of Cyphomandra betacea (tamarillo), and cooperage woods from Robinia pseudoacacia (acacia) and Nothofagus pumilio (lenga), as well as a reference extract (positive control) from Rosmarinus officinalis L. (rosemary). The neuroprotective capacity of these plant extracts was evaluated in a set of in vitro assays, including enzymatic [acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and lipoxygenase (LOX)] and antioxidant [ABTS, and reactive oxygen and nitrogen species (ROS and RNS)] bioactivity tests. Extracts were also submitted to a parallel artificial membrane permeability assay mimicking the blood–brain barrier (PAMPA-BBB) and to two cell viability assays in HK-2 and SH-SY5Y cell lines. Comprehensive phytochemical profiling based on liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS) analysis showed enriched content of phenolic and terpenoid compounds in the target extracts. Moreover, in vitro bioactivity tests showed promising neuroprotective capacity, particularly for supercritical-fluid extraction (SFE) extract from acacia (ABTS IC50 = 0.11 μg ml−1; ROS IC50 = 1.56 μg ml−1; AChE IC50 = 4.23 μg ml−1; BChE IC50 = 1.20 μg ml−1; and LOX IC50 = 4.37 μg ml−1), whereas PAMPA-BBB assays revealed high perfusion capacity of some representative compounds, such as phenolic acids or flavonoids. Regarding cytotoxic assays, tamarillo and rosemary SFE extracts can be considered as non-toxic, acacia SFE extract and lenga pressurized liquid extraction (PLE) extract as mild-cytotoxic, and kalanchoe as highly toxic extracts. The obtained results demonstrate the great potential of the studied biomass extracts to be transformed into valuable food additives, food supplements, or nutraceuticals with promising neuroprotective properties.
Collapse
Affiliation(s)
- José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Rocio Gallego
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Zully Jimena Suárez-Montenegro
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marina Alarcón
- Area of Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
- *Correspondence: Gerardo Alvarez-Rivera
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Alejandro Cifuentes
| |
Collapse
|
28
|
Noori T, Sureda A, Sobarzo-Sánchez E, Shirooie S. The Role of Natural Products in Treatment of Depressive Disorder. Curr Neuropharmacol 2022; 20:929-949. [PMID: 34979889 PMCID: PMC9881107 DOI: 10.2174/1570159x20666220103140834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Depressive disorder is one of the most common psychiatric syndromes that, if left untreated, can cause many disturbances in a person's life. Numerous factors are involved in depression, including inflammation, brain-derived neurotrophic factor (BDNF), GABAergic system, hypothalamic- pituitary-adrenal (HPA) Axis, monoamine neurotransmitters (serotonin (5-HT), noradrenaline, and dopamine). Common treatments for depression are selective serotonin reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors, but these drugs have several side effects such as anxiety, diarrhea, constipation, weight loss, and sexual dysfunctions. These agents only reduce the symptoms and temporarily reduce the rate of cognitive impairment associated with depression. As a result, extensive research has recently been conducted on the potential use of antidepressant and sedative herbs. According to the available data, herbs used in traditional medicine can be significantly effective in reducing depression, depressive symptoms and improving patients' performance. The present study provides a summary of biomarkers and therapeutic goals of depression and shows that natural products such as saffron or genipin have antidepressant effects. Some of the useful natural products and their mechanisms were evaluated. Data on various herbs and natural isolated compounds reported to prevent and reduce depressive symptoms is also discussed.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de Mallorca E-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile; Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
29
|
Wu Q, Duan WZ, Chen JB, Zhao XP, Li XJ, Liu YY, Ma QY, Xue Z, Chen JX. Extracellular Vesicles: Emerging Roles in Developing Therapeutic Approach and Delivery Tool of Chinese Herbal Medicine for the Treatment of Depressive Disorder. Front Pharmacol 2022; 13:843412. [PMID: 35401216 PMCID: PMC8988068 DOI: 10.3389/fphar.2022.843412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/28/2022] [Indexed: 01/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells, which play an essential role in intercellular communication by delivering cellular components including DNA, RNA, lipids, metabolites, cytoplasm, and cell surface proteins into recipient cells. EVs play a vital role in the pathogenesis of depression by transporting miRNA and effector molecules such as BDNF, IL34. Considering that some herbal therapies exhibit antidepressant effects, EVs might be a practical delivery approach for herbal medicine. Since EVs can cross the blood-brain barrier (BBB), one of the advantages of EV-mediated herbal drug delivery for treating depression with Chinese herbal medicine (CHM) is that EVs can transfer herbal medicine into the brain cells. This review focuses on discussing the roles of EVs in the pathophysiology of depression and outlines the emerging application of EVs in delivering CHM for the treatment of depression.
Collapse
Affiliation(s)
- Qian Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wen-Zhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jian-Bei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Peng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Yu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
30
|
Sun J, Sun P, Kang C, Zhang L, Guo L, Kou Y. Chemical composition and biological activities of essential oils from six lamiaceae folk medicinal plants. FRONTIERS IN PLANT SCIENCE 2022; 13:919294. [PMID: 35979072 PMCID: PMC9376358 DOI: 10.3389/fpls.2022.919294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 05/13/2023]
Abstract
Essential oils have attracted wide attention in recent years due to their extensive applications in natural functional ingredients, pharmaceutical preparations, biomedical products, and the cosmetics industry. In this study, the chemical compositions and biological activities of essential oils extracted from six Lamiaceae herbs, including Pogostemon cablin (Blanco) Benth. (PCEO), Perilla frutescens (L.) Britton (PFEO), Salvia japonica Thunb. (SJEO), Rosmarinus officinalis L. (ROEO), Lavandula angustifolia Mill. (LAEO), and Agastache rugosa (Fisch. & C. A. Mey.) Kuntze (AREO), were determined and analyzed. A total of 167 components were identified from the six essential oils by GC-MS analysis, with 35, 24, 47, 46, 54, and 37 components in PCEO, PFEO, SJEO, ROEO, LAEO, and AREO, respectively. Hierarchical cluster analysis of chemical compositions showed that the composition of the six essential oils was significantly different in content, and they were clearly divided into six classes. However, all of these six essential oils exhibited promising anti-inflammatory activity by inhibiting the expression of interleukin-1, interleukin-6, tumor necrosis factor-α, and cyclooxygenase-2 in rats with adjuvant arthritis, among which PFEO had the best performance. In addition, the six essential oils displayed significant cytotoxicity on B16 (IC50 = 86.91-228.91 μg/mL) and LNCaP cell lines (IC50 = 116.4-189.63 μg/mL). Meanwhile, all of them presented satisfactory antioxidant activity (IC50 = 4.88-13.89 μg/mL) compared with Trolox C (IC50 = 13.83 μg/mL), and SJEO (IC50 = 7.93 μg/mL) served as an optimal candidate natural antioxidant by DPPH assay. Taken together, these results indicate that the six Lamiaceae essential oils manifest excellent and diverse biological activities, enabling them to be used as perfect natural functional ingredients in antioxidant, antitumor, or anti-arthritic drugs. This study provides more references for pharmaphylogeny research and drug discovery from folk medicinal plants.
Collapse
Affiliation(s)
- Jiahui Sun
- National Resources Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Sun
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Chuanzhi Kang
- National Resources Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanyue Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
- Lanyue Zhang
| | - Lanping Guo
- National Resources Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Lanping Guo
| | - Yaping Kou
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Yaping Kou
| |
Collapse
|
31
|
Salamatullah AM, Hayat K, Arzoo S, Alzahrani A, Ahmed MA, Yehia HM, Alsulami T, Al-Badr N, Al-Zaied BAM, Althbiti MM. Boiling Technique-Based Food Processing Effects on the Bioactive and Antimicrobial Properties of Basil and Rosemary. Molecules 2021; 26:molecules26237373. [PMID: 34885955 PMCID: PMC8658947 DOI: 10.3390/molecules26237373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Rosemary (Rosmarinus officinalis) and basil (Ocimum sanctum Linn) are mostly used as herbal teas, made by steeping whole or ground herbs in boiling water. Hence, it is important to know the effect of boiling time on the bioactivity of these herbs. The effect of different boiling times (5, 10, and 15 min) on the antioxidant and antimicrobial properties, and some selected phenolic compounds of these herbs was examined in this study. Experimental results revealed that basil displayed the highest total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity when it was boiled for 5 min, and the lowest TPC was obtained when it was boiled for 15 min. On the other hand, rosemary had the highest TPC, TFC, and antioxidant potential after being boiled for 15 min, while it had the lowest after being boiled for 5 min. There was no growth inhibition of rosemary extracts against gram-negative bacteria, whereas higher growth inhibition was observed against gram-positive bacteria. The MIC and MBC of rosemary ethanolic extract against Listeria monocytogenes were 5 and 5 mg/mL and against B. subtilis were 10 and 10 mg/mL, respectively. While MIC and MBC of methanolic extract against L. monocytogenes were 5 and 5 mg/mL and against Bacillus subtilis were and 5 and 5 mg/mL, respectively. Salicylic acid was the most abundant (324.7 mg/100 g dry weight (dw)) phenolic compound in the rosemary sample boiled for 5 min, and acetyl salicylic acid was the most abundant (122.61 mg/10 g dw) phenolic compound in the basil sample boiled for 15 min.
Collapse
|
32
|
M Awad S, M El-Sheikh N, Abdel-Sabour Ali H, Ismail Abo El-Fadl HM. Moringa, Rosemary and Purslane Leaves Extracts Alleviate Metabolic Syndrome in Rats Induced by High Fat-High Fructose Diet. Pak J Biol Sci 2021; 24:1022-1033. [PMID: 34842371 DOI: 10.3923/pjbs.2021.1022.1033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Metabolic syndrome is a cluster of metabolic abnormalities characterized by obesity, insulin resistance and dyslipidemia. This study aimed to investigate the impact of moringa, rosemary and purslane leave water extracts on metabolic syndrome in rats. <b>Materials and Methods:</b> Phenolic compounds in the plant leaves water extracts were determined by HPLC. Fifty adult male albino rats Sprague-Dawley strain were equally divided into five groups, group (1) Normal rats fed on the balanced diet, group (2) Metabolic syndrome rats fed on High Fat-High Fructose Diet (HF-HFD). The other three groups were fed on HF-HFD and orally administered 200 mg kg<sup></sup><sup>1</sup> b.wt. daily of the tested plant's leaves water extracts, respectively, for 12 weeks. Some anthropometric measurements (BMI, Lee index and adiposity index), biochemical parameters such as glucose hemostasis parameters (glucose, Insulin, HOMA-IR and GLP-1), lipids profile (TAGs, TC, LDL-C, HDL-C, free fatty acids, Apo-B and Apo A1), adipokines (leptin and adiponectin), some inflammatory markers (TNF-α and IL-6) and oxidative stress markers (PCC, NO and MDA), some anti-oxidant markers (GSH, CAT and TAOC) as well as, the gene expression level of endothelial nitric oxide synthase were determined. <b>Results:</b> The results revealed that feeding rats with HF-HFD for 12 weeks significantly increased anthropometric measurements, some inflammatory markers and oxidative stress markers and worsen glucose hemostasis parameters, lipids profile, adipokines and endothelial function as compared to the normal group. Moreover, co-administration of the tested plant's extracts at the tested dose to HF-HFD fed rats reduced the development of indicators of metabolic syndrome when compared to the metabolic syndrome group. <b>Conclusion:</b> The administered plant leaves water extracts at the tested dose could improve the features of metabolic syndrome. Rosemary leaves water extract has more effect in comparison with the other extracts.
Collapse
|
33
|
Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic Stress and Oxidative Stress as Common Factors of the Pathogenesis of Depression and Alzheimer's Disease: The Role of Antioxidants in Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10091439. [PMID: 34573069 PMCID: PMC8470444 DOI: 10.3390/antiox10091439] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a growing body of scientific research showing the link between depression and dementia in Alzheimer’s disease (AD). The chronic stress contributes to the formation of oxidative stress in the parts of the brain involved in the development of depression and AD. The scientific literature reports the significant role of antioxidants, which are highly effective in treating these diseases. In this review, we have summarized the relationship between chronic stress, oxidative stress, and the changes in the brain they cause occurring in the brain. Among all the compounds showing antioxidant properties, the most promising results in AD treatment were observed for Vitamin E, coenzyme Q10 (CoQ10), melatonin, polyphenols, curcumin, and selenium. In case of depression treatment, the greatest potential was observed in curcumin, zinc, selenium, vitamin E, and saffron.
Collapse
|
34
|
Wang CC, Hsieh PW, Kuo JR, Wang SJ. Rosmarinic Acid, a Bioactive Phenolic Compound, Inhibits Glutamate Release from Rat Cerebrocortical Synaptosomes through GABA A Receptor Activation. Biomolecules 2021; 11:1029. [PMID: 34356653 PMCID: PMC8301814 DOI: 10.3390/biom11071029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Rosmarinic acid, a major component of rosemary, is a polyphenolic compound with potential neuroprotective effects. Asreducing the synaptic release of glutamate is crucial to achieving neuroprotectant's pharmacotherapeutic effects, the effect of rosmarinic acid on glutamate release was investigated in rat cerebrocortical nerve terminals (synaptosomes). Rosmarinic acid depressed the 4-aminopyridine (4-AP)-induced glutamate release in a concentration-dependent manner. The removal of extracellular calcium and the blockade of vesicular transporters prevented the inhibition of glutamate release by rosmarinic acid. Rosmarinic acid reduced 4-AP-induced intrasynaptosomal Ca2+ elevation. The inhibition of N-, P/Q-type Ca2+ channels and the calcium/calmodulin-dependent kinase II (CaMKII) prevented rosmarinic acid from having effects on glutamate release. Rosmarinic acid also reduced the 4-AP-induced activation of CaMKII and the subsequent phosphorylation of synapsin I, the main presynaptic target of CaMKII. In addition, immunocytochemistry confirmed the presence of GABAA receptors. GABAA receptor agonist and antagonist blocked the inhibitory effect of rosmarinic acid on 4-AP-evoked glutamate release. Docking data also revealed that rosmarinic acid formed a hydrogen bond with the amino acid residues of GABAA receptor. These results suggested that rosmarinic acid activates GABAA receptors in cerebrocortical synaptosomes to decrease Ca2+ influx and CaMKII/synapsin I pathway to inhibit the evoked glutamate release.
Collapse
Affiliation(s)
- Che-Chuan Wang
- Chi Mei Medical Center, Department of Neurosurgery, Tainan 71004, Taiwan; (C.-C.W.); (J.-R.K.)
- Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Pei-Wen Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan
| | - Jinn-Rung Kuo
- Chi Mei Medical Center, Department of Neurosurgery, Tainan 71004, Taiwan; (C.-C.W.); (J.-R.K.)
- Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Su-Jane Wang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
35
|
Veenstra JP, Johnson JJ. Rosemary ( Salvia rosmarinus): Health-promoting benefits and food preservative properties. INTERNATIONAL JOURNAL OF NUTRITION 2021; 6:1-10. [PMID: 34651071 PMCID: PMC8513767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural food preservatives in the form of herb extracts and spices are increasing in popularity due to their potential to replace synthetic compounds traditionally used as food preservatives. Rosemary (Salvia rosmarinus) is an herb that has been traditionally used as an anti-inflammatory and analgesic agent, and currently is being studied for anti-cancer and hepatoprotective properties. Rosemary also has been reported to be an effective food preservative due to its high anti-oxidant and anti-microbial activities. These properties allow rosemary prevent microbial growth while decreasing food spoilage through oxidation. Rosemary contains several classes of compounds, including diterpenes, polyphenols, and flavonoids, which can differ between extracts depending on the extraction method. In particular, the diterpenes carnosol and carnosic acid are two of the most abundant phytochemicals found in rosemary, and these compounds contribute up to 90% of the anti-oxidant potential of the herb. Additionally, several in vivo studies have shown that rosemary administration has a positive impact on gastrointestinal (GI) health through decreased oxidative stress and inflammation in the GI tract. The objective of this review is to highlight the food preservative potential of rosemary and detail several studies that investigate rosemary to improve in vivo GI health.
Collapse
Affiliation(s)
- Jacob P Veenstra
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmacy Practice
| | - Jeremy J Johnson
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmacy Practice
| |
Collapse
|