1
|
Tain YL, Li LC, Kuo HC, Chen CJ, Hsu CN. Gestational Exposure to Nonsteroidal Anti-Inflammatory Drugs and Risk of Chronic Kidney Disease in Childhood. JAMA Pediatr 2024:2828039. [PMID: 39714827 DOI: 10.1001/jamapediatrics.2024.4409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Importance Gestational exposure to nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of adverse fetal kidney outcomes. However, details regarding timing, specific NSAIDs, and long-term childhood kidney outcomes are limited. Objective To evaluate the association between gestational exposure to NSAIDs and the risk of chronic kidney disease (CKD) in childhood. Design, Setting, and Participants This national cohort study assessed 1 025 255 children born alive in Taiwan from January 1, 2007, to December 31, 2017, with follow-up until December 31, 2021. Children without valid maternal-child linkage and with incomplete birth information were excluded. Data analysis was performed from November 30, 2023, to April 30, 2024. Exposure Maternal prescriptions for NSAIDs from the last menstrual period to birth. Main Outcomes and Measures The main outcome was childhood CKD, including congenital anomalies of the kidney and urinary tract and other kidney diseases. Cox proportional hazards regression models with stabilized inverse probability of treatment weighting (weighted hazard ratio [wHR]) and a robust sandwich estimator were used to estimate the relative risk of NSAID exposure in pregnancy, adjusted for newborn characteristics. Results This study included 163 516 singleton-born children (24.0%) whose mothers (mean [SD] age at birth of child, 31.25 [4.92] years) used at least 1 dispensing of an NSAID during pregnancy. Gestational NSAID exposure was significantly associated with a higher risk of childhood CKD (wHR, 1.10; 95% CI, 1.05-1.15). No association was observed between NSAID use and fetal nephrotoxicity in sibling comparisons. Elevated risks were revealed for exposure during the second trimester (wHR, 1.19; 95% CI, 1.11-1.28) and the third trimester (wHR, 1.12; 95% CI, 1.03-1.22) in singleton-born children. Specific NSAID exposures associated with higher CKD risk included indomethacin (wHR, 1.69; 95% CI, 1.10-2.60) and ketorolac (wHR, 1.28; 95% CI, 1.01-1.62) in the first trimester, diclofenac (wHR, 1.27; 95% CI, 1.13-1.42) and mefenamic acid (wHR, 1.29; 95% CI, 1.15-1.46) in the second trimester, and ibuprofen (wHR, 1.34; 95% CI, 1.07-1.68) in the third trimester. Conclusions and Relevance In this study, gestational exposure to NSAIDs was not associated with a substantial increase in the risk of childhood CKD when comparing between siblings. However, the findings underscore the need for caution when prescribing NSAIDs during pregnancy, particularly indomethacin and ketorolac in the first trimester, mefenamic acid and diclofenac in the second trimester, and ibuprofen in the third trimester, to ensure the safety of the offspring's kidneys.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Lung-Chih Li
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiao-Ching Kuo
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chiu-Ju Chen
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Tain YL, Hsu CN. Kidney Programming and Hypertension: Linking Prenatal Development to Adulthood. Int J Mol Sci 2024; 25:13610. [PMID: 39769369 PMCID: PMC11677590 DOI: 10.3390/ijms252413610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The complex relationship between kidney disease and hypertension represents a critical area of research, yet less attention has been devoted to exploring how this connection develops early in life. Various environmental factors during pregnancy and lactation can significantly impact kidney development, potentially leading to kidney programming that results in alterations in both structure and function. This early programming can contribute to adverse long-term kidney outcomes, such as hypertension. In the context of kidney programming, the molecular pathways involved in hypertension are intricate and include epigenetic modifications, oxidative stress, impaired nitric oxide pathway, inappropriate renin-angiotensin system (RAS) activation, disrupted nutrient sensing, gut microbiota dysbiosis, and altered sodium transport. This review examines each of these mechanisms and highlights reprogramming interventions proposed in preclinical studies to prevent hypertension related to kidney programming. Given that reprogramming strategies differ considerably from conventional treatments for hypertension in kidney disease, it is essential to shift focus toward understanding the processes of kidney programming and its role in the development of programmed hypertension.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Vendrig LM, Ten Hoor MAC, König BH, Lekkerkerker I, Renkema KY, Schreuder MF, van der Zanden LFM, van Eerde AM, Groen In 't Woud S, Mulder J, Westland R. Translational strategies to uncover the etiology of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2024:10.1007/s00467-024-06479-2. [PMID: 39373868 DOI: 10.1007/s00467-024-06479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
While up to 50% of children requiring kidney replacement therapy have congenital anomalies of the kidney and urinary tract (CAKUT), they represent only a fraction of the total patient population with CAKUT. The extreme variability in clinical outcome underlines the fundamental need to devise personalized clinical management strategies for individuals with CAKUT. Better understanding of the pathophysiology of abnormal kidney and urinary tract development provides a framework for precise diagnoses and prognostication of patients, the identification of biomarkers and disease modifiers, and, thus, the development of personalized strategies for treatment. In this review, we provide a state-of-the-art overview of the currently known genetic causes, including rare variants in kidney and urinary tract development genes, genomic disorders, and common variants that have been attributed to CAKUT. Furthermore, we discuss the impact of environmental factors and their interactions with developmental genes in kidney and urinary tract malformations. Finally, we present multi-angle translational modalities to validate candidate genes and environmental factors and shed light on future strategies to better understand the molecular underpinnings of CAKUT.
Collapse
Affiliation(s)
- Lisanne M Vendrig
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mayke A C Ten Hoor
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benthe H König
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Lekkerkerker
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y Renkema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Sander Groen In 't Woud
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Mulder
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Division of Nephrology, Department of Pediatrics, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Tain YL, Hsu CN. Preterm Birth and Kidney Health: From the Womb to the Rest of Life. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1213. [PMID: 39457178 PMCID: PMC11506578 DOI: 10.3390/children11101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Chronic kidney disease (CKD) is a widespread condition often resulting from multiple factors, including maternal influences. These risk factors not only heighten the likelihood of developing CKD but increase the risk of a preterm birth. Adverse events during nephrogenesis can disrupt kidney development, leading to a reduced number of nephrons. As survival rates for preterm infants improve, more individuals are living into adulthood, thereby elevating their risk of CKD later in life. This review aims to explore the connections between preterm birth, kidney development, and the increased risk of CKD, while proposing practical solutions for the future through a multidisciplinary approach. We examine human studies linking preterm birth to negative kidney outcomes, summarize animal models demonstrating kidney programming and reduced nephron numbers, and consolidate knowledge on common mechanisms driving kidney programming. Additionally, we discuss factors in the postnatal care environment that may act as secondary insults contributing to CKD risk, such as acute kidney injury (AKI), the use of nephrotoxic drugs, preterm nutrition, and catch-up growth. Finally, we outline recommendations for action, emphasizing the importance of avoiding modifiable risk factors and implementing early CKD screening for children born preterm. Together, we can ensure that advancements in kidney health keep pace with improvements in preterm care.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Tain YL, Li LC, Kuo HC, Hsu CN. Gestational Exposure to Maternal Systemic Glucocorticoids and Childhood Risk of CKD. Am J Kidney Dis 2024; 84:215-223.e1. [PMID: 38479460 DOI: 10.1053/j.ajkd.2024.01.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 07/23/2024]
Abstract
RATIONALE & OBJECTIVE The potential effects of antenatal glucocorticoid exposure on the health of children are unclear. We examined the association of gestational exposure to maternal systemic glucocorticoids and the risk of developing chronic kidney disease (CKD) in childhood. STUDY DESIGN Retrospective cohort study. SETTING & PARTICIPANTS Newborns cared for at the largest health care delivery system in Taiwan between 2004 and 2018. EXPOSURE Maternal prescriptions for systemic glucocorticoids between the last menstrual period and birth as a proxy for gestational exposure. OUTCOME Incidence of childhood CKD, including congenital anomalies of the kidney and urinary tract (CAKUT) and other kidney diseases (non-CAKUT), over 10 years. ANALYTICAL APPROACH Cox proportional hazards models with stabilized inverse probability of treatment weighting and robust sandwich estimator were used to estimate the average association between systemic glucocorticoids and incident CKD after adjustment for offspring characteristics (adjusted HR: AHR). RESULTS Among 23,363 singleton-born children, gestational systemic glucocorticoid exposure was significantly associated with a higher risk of childhood CKD (AHR, 1.69 [95% CI, 1.01-2.84]). Stratified analyses showed stronger associations between systemic glucocorticoids and childhood CKD within the strata of birth<37 weeks' gestational age (AHR, 2.38 [95% CI, 1.19-4.78]), male sex (AHR, 1.89 [95% CI, 1.00-3.55]), gestational exposure in the second trimester (AHR, 6.70 [95% CI, 2.17-20.64]), and total dose of>24mg hydrocortisone equivalent (AHR, 1.91 [95% CI, 1.05-3.47]). LIMITATIONS Study was limited to the Taiwan health care delivery system and childhood CKD events through the age of 10 years. CONCLUSIONS The findings of this study suggest that gestational exposure to systemic glucocorticoids is associated with the occurrence of kidney disease in childhood. If these findings are confirmed, they may inform clinicians who are considering prescribing systemic glucocorticoids during pregnancy. PLAIN-LANGUAGE SUMMARY In a singleton-born cohort of neonates, maternal exposure to antenatal systemic glucocorticoids was significantly associated with a 1.7-fold increased risk of the children developing chronic kidney disease over the first 10 years of life. Children of mothers who received>24mg of hydrocortisone equivalent, systemic glucocorticoid treatment in second trimester of gestation, and children born at<37 weeks of gestational age had a higher risk of childhood kidney disease after gestational systemic glucocorticoid exposure. If these findings are confirmed, they may inform clinicians who are considering prescribing systemic glucocorticoids during pregnancy.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Lung-Chih Li
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Department of Internal Medicine, Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Hsiao-Ching Kuo
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Baltogianni M, Dermitzaki N, Kosmeri C, Serbis A, Balomenou F, Giapros V. Reintroduction of Legacy Antibiotics in Neonatal Sepsis: The Special Role of Fosfomycin and Colistin. Antibiotics (Basel) 2024; 13:333. [PMID: 38667009 PMCID: PMC11047481 DOI: 10.3390/antibiotics13040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Neonatal sepsis is a leading cause of morbidity and mortality in neonates, particularly in low- and middle-income countries. The emergence of antimicrobial resistance is a rapidly growing global problem. A significant proportion of the pathogens that commonly cause neonatal sepsis are resistant to multiple antibiotics. Therefore, for the empirical treatment of neonatal sepsis, the repurposing of older antibiotics that are effective against multidrug-resistant pathogens is being investigated. This review aims to provide an overview of current research and experience using the repurposed antibiotics colistin and fosfomycin for the empirical treatment of neonatal sepsis. Based on current knowledge, colistin and fosfomycin may be potentially helpful for the empirical treatment of sepsis in neonates due to their efficacy against a wide range of pathogens and acceptable safety profile.
Collapse
Affiliation(s)
- Maria Baltogianni
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| | - Niki Dermitzaki
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| | - Chrysoula Kosmeri
- Department of Paediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (C.K.); (A.S.)
| | - Anastasios Serbis
- Department of Paediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (C.K.); (A.S.)
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| |
Collapse
|
7
|
Chen CJ, Cheng MC, Hsu CN, Tain YL. Sulfur-Containing Amino Acids, Hydrogen Sulfide, and Sulfur Compounds on Kidney Health and Disease. Metabolites 2023; 13:688. [PMID: 37367846 DOI: 10.3390/metabo13060688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Hydrogen sulfide (H2S) plays a decisive role in kidney health and disease. H2S can ben synthesized via enzymatic and non-enzymatic pathways, as well as gut microbial origins. Kidney disease can originate in early life induced by various maternal insults throughout the process, namely renal programming. Sulfur-containing amino acids and sulfate are essential in normal pregnancy and fetal development. Dysregulated H2S signaling behind renal programming is linked to deficient nitric oxide, oxidative stress, the aberrant renin-angiotensin-aldosterone system, and gut microbiota dysbiosis. In animal models of renal programming, treatment with sulfur-containing amino acids, N-acetylcysteine, H2S donors, and organosulfur compounds during gestation and lactation could improve offspring's renal outcomes. In this review, we summarize current knowledge regarding sulfide/sulfate implicated in pregnancy and kidney development, current evidence supporting the interactions between H2S signaling and underlying mechanisms of renal programming, and recent advances in the beneficial actions of sulfide-related interventions on the prevention of kidney disease. Modifying H2S signaling is the novel therapeutic and preventive approach to reduce the global burden of kidney disease; however, more work is required to translate this into clinical practice.
Collapse
Affiliation(s)
- Chih-Jen Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ming-Chou Cheng
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Tannor EK, Chika OU, Okpechi IG. The Impact of Low Socioeconomic Status on Progression of Chronic Kidney Disease in Low- and Lower Middle-Income Countries. Semin Nephrol 2022; 42:151338. [DOI: 10.1016/j.semnephrol.2023.151338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Kidney Injuries and Evolution of Chronic Kidney Diseases Due to Neonatal Hyperoxia Exposure Based on Animal Studies. Int J Mol Sci 2022; 23:ijms23158492. [PMID: 35955627 PMCID: PMC9369080 DOI: 10.3390/ijms23158492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth interrupts the development and maturation of the kidneys during the critical growth period. The kidneys can also exhibit structural defects and functional impairment due to hyperoxia, as demonstrated by various animal studies. Furthermore, hyperoxia during nephrogenesis impairs renal tubular development and induces glomerular and tubular injuries, which manifest as renal corpuscle enlargement, renal tubular necrosis, interstitial inflammation, and kidney fibrosis. Preterm birth along with hyperoxia exposure induces a pathological predisposition to chronic kidney disease. Hyperoxia-induced kidney injuries are influenced by several molecular factors, including hypoxia-inducible factor-1α and interleukin-6/Smad2/transforming growth factor-β, and Wnt/β-catenin signaling pathways; these are key to cell proliferation, tissue inflammation, and cell membrane repair. Hyperoxia-induced oxidative stress is characterized by the attenuation or the induction of multiple molecular factors associated with kidney damage. This review focuses on the molecular pathways involved in the pathogenesis of hyperoxia-induced kidney injuries to establish a framework for potential interventions.
Collapse
|
10
|
Hsu CN, Tain YL. Chronic Kidney Disease and Gut Microbiota: What Is Their Connection in Early Life? Int J Mol Sci 2022; 23:3954. [PMID: 35409313 PMCID: PMC9000069 DOI: 10.3390/ijms23073954] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The gut-kidney interaction implicating chronic kidney disease (CKD) has been the focus of increasing interest in recent years. Gut microbiota-targeted therapies could prevent CKD and its comorbidities. Considering that CKD can originate in early life, its treatment and prevention should start in childhood or even earlier in fetal life. Therefore, a better understanding of how the early-life gut microbiome impacts CKD in later life and how to develop ideal early interventions are unmet needs to reduce CKD. The purpose of the current review is to summarize (1) the current evidence on the gut microbiota dysbiosis implicated in pediatric CKD; (2) current knowledge supporting the impact of the gut-kidney axis in CKD, including inflammation, immune response, alterations of microbiota compositions, short-chain fatty acids, and uremic toxins; and (3) an overview of the studies documenting early gut microbiota-targeted interventions in animal models of CKD of developmental origins. Treatment options include prebiotics, probiotics, postbiotics, etc. To accelerate the transition of gut microbiota-based therapies for early prevention of CKD, an extended comprehension of gut microbiota dysbiosis implicated in renal programming is needed, as well as a greater focus on pediatric CKD for further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
11
|
Fuchs MAA, Schrankl J, Leupold C, Wagner C, Kurtz A, Broeker KAE. Intact prostaglandin signaling through EP2 and EP4 receptors in stromal progenitor cells is required for normal development of the renal cortex in mice. Am J Physiol Renal Physiol 2022; 322:F295-F307. [PMID: 35037469 DOI: 10.1152/ajprenal.00414.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 01/20/2023] Open
Abstract
Cyclooxygenase (Cox) inhibitors are known to have severe side effects during renal development. These consist of reduced renal function, underdeveloped subcapsular glomeruli, interstitial fibrosis, and thinner cortical tissue. Global genetic deletion of Cox-2 mimics the phenotype observed after application of Cox inhibitors. This study aimed to investigate which cell types express Cox-2 and prostaglandin E2 receptors and what functions are mediated through this pathway during renal development. Expression of EP2 and EP4 mRNA was detected by RNAscope mainly in descendants of FoxD1+ stromal progenitors; EP1 and EP3, on the other hand, were expressed in tubules. Cox-2 mRNA was detected in medullary interstitial cells and macula densa cells. Functional investigations were performed with a cell-specific approach to delete Cox-2, EP2, and EP4 in FoxD1+ stromal progenitor cells. Our data show that Cox-2 expression in macula densa cells is sufficient to drive renal development. Deletion of EP2 or EP4 in FoxD1+ cells had no functional effect on renal development. Codeletion of EP2 and EP4 in FoxD1+ stromal cells, however, led to severe glomerular defects and a strong decline of glomerular filtration rate (1.316 ± 69.7 µL/min/100 g body wt in controls vs. 644.1 ± 64.58 µL/min/100 g body wt in FoxD1+/Cre EP2-/- EP4ff mice), similar to global deletion of Cox-2. Furthermore, EP2/EP4-deficient mice showed a significant increase in collagen production with a strong downregulation of renal renin expression. This study shows the distinct localization of EP receptors in mice. Functionally, we could identify EP2 and EP4 receptors in stromal FoxD1+ progenitor cells as essential receptor subtypes for normal renal development.NEW & NOTEWORTHY Cyclooxygenase-2 (Cox-2) produces prostaglandins that are essential for normal renal development. It is unclear in which cells Cox-2 and the receptors for prostaglandin E2 (EP receptors) are expressed during late nephrogenesis. This study identified the expression sites for EP subtypes and Cox-2 in neonatal mouse kidneys. Furthermore, it shows that stromal progenitor cells may require intact prostaglandin E2 signaling through EP2 and EP4 receptors for normal renal development.
Collapse
MESH Headings
- Animals
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Developmental
- Kidney Cortex/cytology
- Kidney Cortex/enzymology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Organogenesis
- Prostaglandins/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Stromal Cells/enzymology
- Mice
Collapse
Affiliation(s)
| | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Christina Leupold
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
12
|
Groen In't Woud S, van der Zanden LFM, Schreuder MF. Risk stratification for children with a solitary functioning kidney. Pediatr Nephrol 2021; 36:3499-3503. [PMID: 34137930 DOI: 10.1007/s00467-021-05168-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sander Groen In't Woud
- Department of Pediatric Nephrology, 804, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, PO Box 9101, 6500, HB, Nijmegen, The Netherlands.,Department for Health Evidence, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Loes F M van der Zanden
- Department for Health Evidence, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, 804, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, PO Box 9101, 6500, HB, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Hsu CN, Tain YL. The First Thousand Days: Kidney Health and Beyond. Healthcare (Basel) 2021; 9:1332. [PMID: 34683012 PMCID: PMC8544398 DOI: 10.3390/healthcare9101332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
The global burden of chronic kidney disease (CKD) is rising. A superior strategy to advance global kidney health is required to prevent and treat CKD early. Kidney development can be impacted during the first 1000 days of life by numerous factors, including malnutrition, maternal illness, exposure to chemicals, substance abuse, medication use, infection, and exogenous stress. In the current review, we summarize environmental risk factors reported thus far in clinical and experimental studies relating to the programming of kidney disease, and systematize the knowledge on common mechanisms underlying renal programming. The aim of this review is to discuss the primary and secondary prevention actions for enhancing kidney health from pregnancy to age 2. The final task is to address the potential interventions to target renal programming through updating animal studies. Together, we can enhance the future of global kidney health in the first 1000 days of life.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
14
|
Soares H, Moita R, Maneira P, Gonçalves A, Gomes A, Flor-de-Lima F, Costa S, Soares P, Pissarra S, Rocha G, Silva J, Clemente F, Pinto H, Guimarães H. Nephrotoxicity in Neonates. Neoreviews 2021; 22:e506-e520. [PMID: 34341158 DOI: 10.1542/neo.22-8-e506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute kidney injury (AKI) is classified based on prerenal, intrinsic, and postrenal causes. In the newborn, AKI can occur after an insult during the prenatal, perinatal, or postnatal period. AKI is usually an underrecognized condition and its true incidence is unknown. AKI may result from the administration of a number of different nephrotoxic medications, which are often used concurrently in critically ill neonates, exponentially increasing the risk of renal injury. Drug toxicity may also compromise the formation and development of nephrons, and this is particularly important in preterm infants, who have incomplete nephrogenesis. Little is known about the pharmacokinetics and pharmacodynamics of different medications used in neonates, especially for the most immature infant, and the use of most medications in this population is off label. Strategies to prevent AKI include the avoidance of hypotension, hypovolemia, fluid imbalances, hypoxia, and sepsis as well as judicious use of nephrotoxic medications. Treatment strategies aim to maintain fluids and electrolytic and acid-base homeostasis, along with an adequate nutritional status. Neonates are especially prone to long-term sequelae of AKI and benefit from long-term follow-up. This review summarizes the most relevant aspects of nephrotoxicity in neonates and describes the prevention, treatment, and follow-up of AKI in neonates.
Collapse
Affiliation(s)
- Henrique Soares
- Neonatal Intensive Care Unit, Neonatology Department.,Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine of Porto University, Porto, Portugal
| | - Rita Moita
- Neonatal Intensive Care Unit, Neonatology Department.,Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine of Porto University, Porto, Portugal
| | - Pedro Maneira
- Neonatal Intensive Care Unit, Neonatology Department
| | | | - Ana Gomes
- Neonatal Intensive Care Unit, Neonatology Department.,Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine of Porto University, Porto, Portugal
| | - Filipa Flor-de-Lima
- Neonatal Intensive Care Unit, Neonatology Department.,Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine of Porto University, Porto, Portugal
| | - Sandra Costa
- Neonatal Intensive Care Unit, Neonatology Department.,Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine of Porto University, Porto, Portugal
| | - Paulo Soares
- Neonatal Intensive Care Unit, Neonatology Department
| | - Susana Pissarra
- Neonatal Intensive Care Unit, Neonatology Department.,Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine of Porto University, Porto, Portugal
| | - Gustavo Rocha
- Neonatal Intensive Care Unit, Neonatology Department.,Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine of Porto University, Porto, Portugal
| | - Jorge Silva
- Neonatal Intensive Care Unit, Neonatology Department.,Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine of Porto University, Porto, Portugal
| | - Fátima Clemente
- Neonatal Intensive Care Unit, Neonatology Department.,Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine of Porto University, Porto, Portugal
| | - Helena Pinto
- Neonatal Intensive Care Unit, Neonatology Department.,Pediatrics Nephrology Unit, Pediatric Department, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Hercília Guimarães
- Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine of Porto University, Porto, Portugal
| |
Collapse
|
15
|
Doxorubicin-Induced Fetal Mesangial Cell Death Occurs Independently of TRPC6 Channel Upregulation but Involves Mitochondrial Generation of Reactive Oxygen Species. Int J Mol Sci 2021; 22:ijms22147589. [PMID: 34299212 PMCID: PMC8305841 DOI: 10.3390/ijms22147589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX), a category D pregnancy drug, is a chemotherapeutic agent that has been shown in animal studies to induce fetal toxicity, including renal abnormalities. Upregulation of the transient receptor potential cation (TRPC) 6 channel is involved in DOX-induced podocyte apoptosis. We have previously reported that TRPC6-mediated Ca2+ signaling promotes neonatal glomerular mesangial cell (GMC) death. However, it is unknown whether DOX alters mesangial TRPC expression or viability in the fetus. In this study, cell growth was tracked in control and DOX-treated primary GMCs derived from fetal pigs. Live-cell imaging demonstrated that exposure to DOX inhibited the proliferation of fetal pig GMCs and induced cell death. DOX did not alter the TRPC3 expression levels. By contrast, TRPC6 protein expression in the cells was markedly reduced by DOX. DOX treatment also attenuated the TRPC6-mediated intracellular Ca2+ elevation. DOX stimulated mitochondrial reactive oxygen species (mtROS) generation and mitophagy by the GMCs. The DOX-induced mtROS generation and apoptosis were reversed by the mitochondria-targeted antioxidant mitoquinone. These data suggest that DOX-induced fetal pig GMC apoptosis is independent of TRPC6 channel upregulation but requires mtROS production. The mtROS-dependent GMC death may contribute to DOX-induced fetal nephrotoxicity when administered prenatally.
Collapse
|
16
|
Elshopakey GE, Almeer R, Alfaraj S, Albasher G, Abdelgawad ME, Abdel Moneim AE, Essawy EA. Zingerone mitigates inflammation, apoptosis and oxidative injuries associated with renal impairment in adriamycin-intoxicated mice. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1923528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alfaraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Essameldin Abdelgawad
- Biochemistry & Molecular Biotechnology Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
- Innovative Cellular Microenvironment Optimization Platform (ICMOP), Helwan University, Cairo, Egypt
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ehab A. Essawy
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
17
|
Assessment of nephron number and single-nephron glomerular filtration rate in a clinical setting. Hypertens Res 2021; 44:605-617. [PMID: 33526913 DOI: 10.1038/s41440-020-00612-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 01/31/2023]
Abstract
Total nephron counts vary widely between individuals and may affect susceptibility to certain diseases, including hypertension and chronic kidney disease. Detailed analyses of whole kidneys collected from autopsy patients remain the only method for accurately counting nephrons in humans, with no equivalent option in living subjects. Current technological advances have enabled estimations of nephron numbers in vivo, particularly the use of total nephron number and whole-kidney glomerular filtration rate to estimate the mean single-nephron glomerular filtration rate. The use of this method would allow physicians to detect dynamic changes in filtration function at the single-nephron level rather than to simply count the number of nephrons that appear to be functioning. Currently available methods for estimating total nephron number in clinical practice have the potential to overcome limitations associated with autopsy analyses and may therefore pave the way for new therapeutic interventions and improved clinical outcomes.
Collapse
|
18
|
D'Agate S, Musuamba FT, Jacqz-Aigrain E, Della Pasqua O. Simplified Dosing Regimens for Gentamicin in Neonatal Sepsis. Front Pharmacol 2021; 12:624662. [PMID: 33762945 PMCID: PMC7982486 DOI: 10.3389/fphar.2021.624662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The effectiveness of antibiotics for the treatment of severe bacterial infections in newborns in resource-limited settings has been determined by empirical evidence. However, such an approach does not warrant optimal exposure to antibiotic agents, which are known to show different disposition characteristics in this population. Here we evaluate the rationale for a simplified regimen of gentamicin taking into account the effect of body size and organ maturation on pharmacokinetics. The analysis is supported by efficacy data from a series of clinical trials in this population. Methods: A previously published pharmacokinetic model was used to simulate gentamicin concentration vs. time profiles in a virtual cohort of neonates. Model predictive performance was assessed by supplementary external validation procedures using therapeutic drug monitoring data collected in neonates and young infants with or without sepsis. Subsequently, clinical trial simulations were performed to characterize the exposure to intra-muscular gentamicin after a q.d. regimen. The selection of a simplified regimen was based on peak and trough drug levels during the course of treatment. Results: In contrast to current World Health Organization guidelines, which recommend gentamicin doses between 5 and 7.5 mg/kg, our analysis shows that gentamicin can be used as a fixed dose regimen according to three weight-bands: 10 mg for patients with body weight <2.5 kg, 16 mg for patients with body weight between 2.5 and 4 kg, and 30 mg for those with body weight >4 kg. Conclusion: The choice of the dose of an antibiotic must be supported by a strong scientific rationale, taking into account the differences in drug disposition in the target patient population. Our analysis reveals that a simplified regimen is feasible and could be used in resource-limited settings for the treatment of sepsis in neonates and young infants with sepsis aged 0–59 days.
Collapse
Affiliation(s)
- S D'Agate
- Clinical Pharmacology and Therapeutics Group, University College London, London, United Kingdom
| | - F Tshinanu Musuamba
- Clinical Pharmacology and Therapeutics Group, University College London, London, United Kingdom
| | - E Jacqz-Aigrain
- Department of Paediatric Pharmacology and Pharmacogenetics, Centre Hospitalier Universitaire, Hôpital Robert Debré, Paris, France
| | - O Della Pasqua
- Clinical Pharmacology and Therapeutics Group, University College London, London, United Kingdom
| |
Collapse
|
19
|
Filler G, Bhayana V, Schott C, Díaz‐González de Ferris ME. How should we assess renal function in neonates and infants? Acta Paediatr 2021; 110:773-780. [PMID: 32869283 DOI: 10.1111/apa.15557] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
AIM Review of current knowledge on assessing renal function in term and preterm neonates. METHODS Literature review and analysis of own data. RESULTS Prematurity, genetic, environmental and maternal factors may alter peak nephron endowment and life-long renal function. Nephrogenesis continues until 34-36 weeks of gestation, but it is altered with premature delivery. Variability of nephron endowment has a substantial impact on the clearance of renally excreted drugs. Postnatally, glomerular function rate (GFR) increases daily, doubles by two weeks, and slowly reaches full maturity at 18 months of age. Ideally, renal function biomarkers should be expressed as age-independent z-scores, and evidence suggests indexing these values to post-conceptual age rather than chronological age. Newborn and maternal serum creatinine correlate tightly for more than 72 hours after delivery, rendering this biomarker unsuitable for the assessment of neonatal renal function. Cystatin C does not cross the placenta and may be the preferred biomarker in the neonate. Here, we provide preliminary data on the natural evolution of the cystatin C eGFR in infancy. CONCLUSION Cystatin C may be superior for GFR estimation in neonates, but the best approach to drug dosing of renally excreted drugs remains to be established.
Collapse
Affiliation(s)
- Guido Filler
- Departments of Paediatrics, Medicine, and The Lilibeth Caberto Kidney Clinical Research Unit Western University London ON Canada
- Department of Pathology and Laboratory Medicine University of Western Ontario London Ontario Canada
| | - Vipin Bhayana
- Department of Pathology and Laboratory Medicine University of Western Ontario London Ontario Canada
| | - Clara Schott
- Schulich School of Medicine and Dentistry University of Western Ontario London Ontario Canada
| | | |
Collapse
|
20
|
Hsu CN, Tain YL. Targeting the Renin-Angiotensin-Aldosterone System to Prevent Hypertension and Kidney Disease of Developmental Origins. Int J Mol Sci 2021; 22:ijms22052298. [PMID: 33669059 PMCID: PMC7956566 DOI: 10.3390/ijms22052298] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) is implicated in hypertension and kidney disease. The developing kidney can be programmed by various early-life insults by so-called renal programming, resulting in hypertension and kidney disease in adulthood. This theory is known as developmental origins of health and disease (DOHaD). Conversely, early RAAS-based interventions could reverse program processes to prevent a disease from occurring by so-called reprogramming. In the current review, we mainly summarize (1) the current knowledge on the RAAS implicated in renal programming; (2) current evidence supporting the connections between the aberrant RAAS and other mechanisms behind renal programming, such as oxidative stress, nitric oxide deficiency, epigenetic regulation, and gut microbiota dysbiosis; and (3) an overview of how RAAS-based reprogramming interventions may prevent hypertension and kidney disease of developmental origins. To accelerate the transition of RAAS-based interventions for prevention of hypertension and kidney disease, an extended comprehension of the RAAS implicated in renal programming is needed, as well as a greater focus on further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-975-056-995; Fax: +886-7733-8009
| |
Collapse
|
21
|
Wei Q, Zhang L, Duan MF, Wang YM, Huang N, Song CR. Use of angiotensin II receptor blocker during pregnancy: A case report. Medicine (Baltimore) 2021; 100:e24304. [PMID: 33546057 PMCID: PMC7837885 DOI: 10.1097/md.0000000000024304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Drugs that affect the renin-angiotensin system, such as angiotensin II receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors are not typically recommended for pregnant women because of their potential fetal toxicity. CASE STUDY A 32-year-old pregnant woman with nephrotic syndrome lasting more than 5 years became pregnant for the first time. She had been taking losartan tablets before and during pregnancy. Ultrasound at 24+2 weeks of pregnancy showed oligohydramnios, and the maximum vertical depth of amniotic fluid volume was 1.4 cm. Follow-up ultrasound examinations every 2 weeks showed persistent oligohydramnios [amniotic fluid volume: 1.1-3.4 cm, amniotic fluid index 1.9-6.9 cm]. B-ultrasound at 30+2 weeks showed slightly enhanced fetal renal cortex echo. The patient was treated at 32+2 weeks of pregnancy at our hospital. DIAGNOSES Nephrotic syndrome and oligohydramnios. INTERVENTIONS Losartan was discontinued and replaced by nifedipine controlled-release tablets to lower blood pressure. The amount of amniotic fluid gradually increased to normal levels within 8 days. The patient was discharged at 33+2 weeks of pregnancy for follow-up. At 34+4 weeks, blood pressure had increased to 177/113 mm Hg and the patient was re-hospitalized with nephrotic syndrome complicated by preeclampsia. Due to progression of severe preeclampsia, elective cesarean section was performed at 35+3 weeks. After delivery, losartan and nifedipine were prescribed to continue lowering blood pressure. The patient was discharged 4 days after surgery. OUTCOMES Losartan use was terminated at 32+2 weeks of pregnancy. Amniotic fluid returned to normal after 8 days and the baby was delivered after 22 days. At last follow-up, the infant was 24 months old and healthy. CONCLUSION Although ARBs are effective for treating hypertension, they should be replaced by other classes of anti-hypertensive drugs in pregnant women. Pregnant women who elect to continue using ARBs should be informed about risks, they should be carefully monitored during pregnancy, and their pregnancy should be allowed to proceed as long as clinically feasible in order to optimize maternal and infant outcomes.
Collapse
|
22
|
Westland R, Renkema KY, Knoers NV. Clinical Integration of Genome Diagnostics for Congenital Anomalies of the Kidney and Urinary Tract. Clin J Am Soc Nephrol 2021; 16:128-137. [PMID: 32312792 PMCID: PMC7792653 DOI: 10.2215/cjn.14661119] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Revolutions in genetics, epigenetics, and bioinformatics are currently changing the outline of diagnostics and clinical medicine. From a nephrologist's perspective, individuals with congenital anomalies of the kidney and urinary tract (CAKUT) are an important patient category: not only is CAKUT the predominant cause of kidney failure in children and young adults, but the strong phenotypic and genotypic heterogeneity of kidney and urinary tract malformations has hampered standardization of clinical decision making until now. However, patients with CAKUT may benefit from precision medicine, including an integrated diagnostics trajectory, genetic counseling, and personalized management to improve clinical outcomes of developmental kidney and urinary tract defects. In this review, we discuss the present understanding of the molecular etiology of CAKUT and the currently available genome diagnostic modalities in the clinical care of patients with CAKUT. Finally, we discuss how clinical integration of findings from large-scale genetic, epigenetic, and gene-environment interaction studies may improve the prognosis of all individuals with CAKUT.
Collapse
Affiliation(s)
- Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nine V.A.M. Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Peahl AF, Morgan DM, Dalton VK, Zivin K, Lai YL, Hu HM, Langen E, Low LK, Brummett CM, Waljee JF, Bauer ME. New persistent opioid use after acute opioid prescribing in pregnancy: a nationwide analysis. Am J Obstet Gynecol 2020; 223:566.e1-566.e13. [PMID: 32217114 PMCID: PMC7508788 DOI: 10.1016/j.ajog.2020.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the association between opioid prescribing during pregnancy and new persistent opioid use in the year following delivery. MATERIALS AND METHODS This nationwide retrospective cohort study included patients aged 12-55 years in Optum's deidentified Clinformatics Data Mart Database who were undergoing vaginal delivery or cesarean delivery from 2008 to 2016, with continuous enrollment from 2 years before birth to 1 year postdischarge. Women were included if they were opioid naive in pregnancy (ie, did not fill an opioid prescription 2 years to 9 months before delivery) and did not undergo a procedure within the year after discharge. The exposure was filling an opioid prescription in pregnancy. The primary outcome was new persistent opioid use, defined as a pharmacy claim for ≥1 opioid prescription between 4 and 90 days postdischarge and ≥1 prescription between 91 and 365 days postdischarge. Clinical and demographic covariates were included. Analyses included descriptive statistics and multivariable logistic regression, adjusting for clinical and demographic covariates. RESULTS Of 158,425 childbirths identified, 101,013 (63.8%) were by vaginal delivery and 57,412 (36.2%) cesarean delivery. Among all patients, 6.0% (9429) filled an opioid prescription during pregnancy. The factors associated with filling an opioid in pregnancy were having a nondelivery procedure in pregnancy (adjusted odds ratio, 9.60; 95% confidence interval, 8.81-10.47) and having an emergency room visit during pregnancy (adjusted odds ratio, 2.48; 95% confidence interval, 2.37-2.59). Of women who received an opioid in pregnancy, 4% (379) developed new persistent opioid use. The factors most associated with new persistent opioid use were receiving an opioid prescription during pregnancy (adjusted odds ratio, 3.45; 95% confidence interval, 3.04-3.92) and filling a peripartum opioid prescription (1 week prior to 3 days postdischarge) adjusted odds ratio, 2.28, 95% confidence interval (2.02-2.57). Though having a procedure during pregnancy was associated with increased receipt of an opioid prescription, it was also associated with reduced new persistent opioid use (adjusted odds ratio, 0.72; 95% confidence interval, 0.52-0.99). CONCLUSION Women who receive an opioid prescription during pregnancy are more likely to experience new persistent opioid use. Maternity care providers must balance pain management in pregnancy with potential risks of opioids.
Collapse
Affiliation(s)
- Alex F Peahl
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Institute for Health Policy and Innovation, University of Michigan, Ann Arbor, MI; National Clinician Scholars Program, Institute for Health Policy and Innovation, University of Michigan, Ann Arbor, MI.
| | - Daniel M Morgan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Institute for Health Policy and Innovation, University of Michigan, Ann Arbor, MI
| | - Vanessa K Dalton
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Institute for Health Policy and Innovation, University of Michigan, Ann Arbor, MI; Program on Women's Health Care Effectiveness Research (PWHER), University of Michigan, Ann Arbor, MI
| | - Kara Zivin
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Institute for Health Policy and Innovation, University of Michigan, Ann Arbor, MI; University of Michigan Medical School, Department of Psychiatry, Center for Clinical Management Research, VA Ann Arbor Healthcare System, University of Michigan School of Public Health, and the Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Yen-Ling Lai
- Michigan Opioid Prescribing Engagement Network, Ann Arbor, MI
| | - Hsou Mei Hu
- Michigan Opioid Prescribing Engagement Network, Ann Arbor, MI
| | - Elizabeth Langen
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
| | - Lisa Kane Low
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Institute for Health Policy and Innovation, University of Michigan, Ann Arbor, MI; School of Nursing, Women's Studies Department, University of Michigan, Ann Arbor, MI
| | - Chad M Brummett
- Michigan Opioid Prescribing Engagement Network, Ann Arbor, MI; Department of Anesthesiology, Michigan Medicine, Ann Arbor, Michigan
| | - Jennifer F Waljee
- Program on Women's Health Care Effectiveness Research (PWHER), University of Michigan, Ann Arbor, MI; Michigan Opioid Prescribing Engagement Network, Ann Arbor, MI; Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Melissa E Bauer
- School of Nursing, Women's Studies Department, University of Michigan, Ann Arbor, MI
| |
Collapse
|
24
|
Nishizaki N, Matsuda A, Yoneyama T, Watanabe A, Obinata K, Shimizu T. The influence on renal function of ibuprofen treatment for patent ductus arteriosus in extremely low birthweight infants. Pediatr Int 2020; 62:193-199. [PMID: 31756017 DOI: 10.1111/ped.14057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ibuprofen (IBU) has been used recently for the treatment of patent ductus arteriosus (PDA) in Japan. We aimed to investigate the efficacy and adverse events of IBU and compare them with those of indomethacin (IND) as PDA treatment for extremely low-birthweight infants (ELBWIs), focusing on short-term renal function. METHODS A case-control study was conducted on 16 ELBWIs. The data from eligible patients were divided into two groups. Ten patients had undergone IND treatment (IND group) between January 2017 and June 2018, whereas six had undergone IBU treatment (IBU group) for PDA between July 2018 and December 2018. The IND group received 0.1 mg/kg/12h IND IV infusion for three doses, whereas the IBU group received 10 mg/kg IV IBU infusion followed by 5 mg/kg/day for 2 days. We compared the efficacy for PDA closure and renal impairment between the two groups. RESULTS No significant differences in primary closure rates and the PDA ligation required were observed between the two groups. No significant differences were observed between the incidence of intraventricular hemorrhage and gastrointestinal complications in both groups. Changes in urine volume (%) in the IBU group were significantly higher than in the IND group at 24-36 h post-administration. The urinary L-type fatty acid binding protein concentration level at 7 days of life was significantly lower in the IBU group than in the IND group. CONCLUSION Although IBU was comparable to IND in PDA closure rate, IBU was superior to short-term renal injury in ELBWIs.
Collapse
Affiliation(s)
- Naoto Nishizaki
- Department of Pediatrics, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Akina Matsuda
- Department of Pediatrics, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Toshiyuki Yoneyama
- Department of Pediatrics, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Akiko Watanabe
- Department of Pediatrics, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Kaoru Obinata
- Department of Pediatrics, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Elmore SA, Kavari SL, Hoenerhoff MJ, Mahler B, Scott BE, Yabe K, Seely JC. Histology Atlas of the Developing Mouse Urinary System With Emphasis on Prenatal Days E10.5-E18.5. Toxicol Pathol 2019; 47:865-886. [PMID: 31599209 PMCID: PMC6814567 DOI: 10.1177/0192623319873871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Congenital abnormalities of the urinary tract are some of the most common human developmental abnormalities. Several genetically engineered mouse models have been developed to mimic these abnormalities and aim to better understand the molecular mechanisms of disease. This atlas has been developed as an aid to pathologists and other biomedical scientists for identification of abnormalities in the developing murine urinary tract by cataloguing normal structures at each stage of development. Hematoxylin and eosin- and immunohistochemical-stained sections are provided, with a focus on E10.5-E18.5, as well as a brief discussion of postnatal events in urinary tract development. A section on abnormalities in the development of the urinary tract is also provided, and molecular mechanisms are presented as supplementary material. Additionally, overviews of the 2 key processes of kidney development, branching morphogenesis and nephrogenesis, are provided to aid in the understanding of the complex organogenesis of the kidney. One of the key findings of this atlas is the histological identification of the ureteric bud at E10.5, as previous literature has provided conflicting reports on the initial point of budding. Furthermore, attention is paid to points where murine development is significantly distinct from human development, namely, in the cessation of nephrogenesis.
Collapse
Affiliation(s)
- Susan A Elmore
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Sanam L Kavari
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Mark J Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Beth Mahler
- Experimental Pathology Laboratories, Inc, Research Triangle Park, NC, USA
| | | | - Koichi Yabe
- Pharmacovigilance Department, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | - John C Seely
- Experimental Pathology Laboratories, Inc, Research Triangle Park, NC, USA
| |
Collapse
|
26
|
Talati AN, Webster CM, Vora NL. Prenatal genetic considerations of congenital anomalies of the kidney and urinary tract (CAKUT). Prenat Diagn 2019; 39:679-692. [PMID: 31343747 DOI: 10.1002/pd.5536] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/20/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) constitute 20% of all congenital malformations occurring in one in 500 live births. Worldwide, CAKUT are responsible for 40% to 50% of pediatric and 7% of adult end-stage renal disease. Pathogenic variants in genes causing CAKUT include monogenic diseases such as polycystic kidney disease and ciliopathies, as well as syndromes that include isolated kidney disease in conjunction with other abnormalities. Prenatal diagnosis most often occurs using ultrasonography; however, further genetic diagnosis may be made using a variety of testing strategies. Family history and pathologic examination can also provide information to improve the ability to make a prenatal diagnosis of CAKUT. Here, we provide a comprehensive overview of genetic considerations in the prenatal diagnosis of CAKUT disorders. Specifically, we discuss monogenic causes of CAKUT, associated ultrasound characteristics, and considerations for genetic diagnosis, antenatal care, and postnatal care.
Collapse
Affiliation(s)
- Asha N Talati
- Department of Obstetrics and Gynecology, DRAFT, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carolyn M Webster
- Department of Obstetrics and Gynecology, DRAFT, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neeta L Vora
- Department of Obstetrics and Gynecology, DRAFT, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Zalewska A. Developmental milestones in neonatal and juvenile C57Bl/6 mouse - Indications for the design of juvenile toxicity studies. Reprod Toxicol 2019; 88:91-128. [PMID: 31386883 DOI: 10.1016/j.reprotox.2019.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023]
Abstract
There is a growing demand for wild type mice and mouse models of disease that may be more representative of human conditions but there is little information on neonatal and juvenile mouse anatomy. This project produces sound and comprehensive histology background data on the developing neonatal mouse at different time points from Day 0 until Day 28. The work describes optimal methods for tissue harvesting, fixation and processing from the neonatal and juvenile mice which can be used in routine toxicology studies. A review of the available literature revealed inconsistencies in the developmental milestones reported in the mouse. Although it is true that the sequence of events during the development is virtually the same in mice and rats, important developmental milestones in the mouse often happen earlier than in the rat, and these species should not be used interchangeably.
Collapse
Affiliation(s)
- Aleksandra Zalewska
- Sequani Limited, Bromyard Road, Ledbury, HR8 1LH, Herefordshire, United Kingdom.
| |
Collapse
|
28
|
Waldherr S, Fichtner A, Beedgen B, Bruckner T, Schaefer F, Tönshoff B, Pöschl J, Westhoff TH, Westhoff JH. Urinary acute kidney injury biomarkers in very low-birth-weight infants on indomethacin for patent ductus arteriosus. Pediatr Res 2019; 85:678-686. [PMID: 30745571 DOI: 10.1038/s41390-019-0332-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Serum creatinine (SCr)- or urine output-based definitions of acute kidney injury (AKI) have important limitations in neonates. This study evaluates the diagnostic value of urinary biomarkers in very low-birth-weight (VLBW) infants receiving indomethacin for closure of a patent ductus arteriosus (PDA). METHODS Prospective cohort study in 14 indomethacin-treated VLBW infants and 18 VLBW infants without indomethacin as controls. Urinary biomarkers were measured before, during, and after indomethacin administration. RESULTS Indomethacin therapy was associated with significantly higher SCr concentrations at 36, 84, and 120 h compared to controls. At 36 h, three indomethacin-treated patients met the criteria for neonatal modified Kidney Disease: Improving Global Outcomes (KDIGO) AKI. The product of urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 ([TIMP-2]•[IGFBP7]) was significantly elevated in the AKI subgroup at 12 h (P < 0.05), hence 24 h earlier than the increase in SCr. Urinary neutrophil gelatinase-associated lipocalin (NGAL) and calprotectin were significantly increased in the indomethacin group at 12 h (P < 0.05), irrespective of fulfillment of the AKI criteria. Urinary kidney injury molecule-1 (KIM-1) was not significantly altered. CONCLUSION While urinary [TIMP-2]•[IGFBP7] proves valuable for the early diagnosis of neonatal modified KDIGO-defined AKI, elevated urinary NGAL and calprotectin concentrations in indomethacin-treated VLBW infants not fulfilling the AKI criteria may indicate subclinical kidney injury.
Collapse
Affiliation(s)
- Sina Waldherr
- Department of Neonatology, University Children's Hospital, Heidelberg, Germany
| | - Alexander Fichtner
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Bernd Beedgen
- Department of Neonatology, University Children's Hospital, Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Franz Schaefer
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Johannes Pöschl
- Department of Neonatology, University Children's Hospital, Heidelberg, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University of Bochum, Herne, Germany
| | - Jens H Westhoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany.
| |
Collapse
|
29
|
Rasmussen M, Sunde L, Nielsen ML, Ramsing M, Petersen A, Hjortshøj TD, Olsen TE, Tabor A, Hertz JM, Johnsen I, Sperling L, Petersen OB, Jensen UB, Møller FG, Petersen MB, Lildballe DL. Targeted gene sequencing and whole-exome sequencing in autopsied fetuses with prenatally diagnosed kidney anomalies. Clin Genet 2018; 93:860-869. [PMID: 29194579 DOI: 10.1111/cge.13185] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/16/2023]
Abstract
Identification of fetal kidney anomalies invites questions about underlying causes and recurrence risk in future pregnancies. We therefore investigated the diagnostic yield of next-generation sequencing in fetuses with bilateral kidney anomalies and the correlation between disrupted genes and fetal phenotypes. Fetuses with bilateral kidney anomalies were screened using an in-house-designed kidney-gene panel. In families where candidate variants were not identified, whole-exome sequencing was performed. Genes uncovered by this analysis were added to our kidney panel. We identified likely deleterious variants in 11 of 56 (20%) families. The kidney-gene analysis revealed likely deleterious variants in known kidney developmental genes in 6 fetuses and TMEM67 variants in 2 unrelated fetuses. Kidney histology was similar in the latter 2 fetuses-presenting a distinct prenatal form of nephronophthisis. Exome sequencing identified ROBO1 variants in one family and a GREB1L variant in another family. GREB1L and ROBO1 were added to our kidney-gene panel and additional variants were identified. Next-generation sequencing substantially contributes to identifying causes of fetal kidney anomalies. Genetic causes may be supported by histological examination of the kidneys. This is the first time that SLIT-ROBO signaling is implicated in human bilateral kidney agenesis.
Collapse
Affiliation(s)
- M Rasmussen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - L Sunde
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - M L Nielsen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - M Ramsing
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - A Petersen
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - T D Hjortshøj
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - T E Olsen
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - A Tabor
- Department of Obstetrics, Center of Fetal Medicine, Rigshospitalet, Copenhagen, Denmark
| | - J M Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - I Johnsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - L Sperling
- Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - O B Petersen
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
| | - U B Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - F G Møller
- Department of Pediatrics, Herning Regional Hospital, Herning, Denmark
| | - M B Petersen
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - D L Lildballe
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
30
|
Tain YL, Chan SHH, Chan JYH. Biochemical basis for pharmacological intervention as a reprogramming strategy against hypertension and kidney disease of developmental origin. Biochem Pharmacol 2018; 153:82-90. [PMID: 29309755 DOI: 10.1016/j.bcp.2018.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 02/08/2023]
Abstract
The concept of "developmental origins of health and disease" (DOHaD) stipulates that both hypertension and kidney disease may take origin from early-life insults. The DOHaD concept also offers reprogramming strategies aiming at shifting therapeutic interventions from adulthood to early life, even before clinical symptoms are evident. Based on those two concepts, this review will present the evidence for the existence of, and the programming mechanisms in, kidney developmental programming that may lead to hypertension and kidney disease. This will be followed by potential pharmacological interventions that may serve as a reprogramming strategy to counter the rising epidemic of hypertension and kidney disease. We point out that before patients could benefit from this strategy, the most pressing issue is for the growing body of evidence from animal studies in support of pharmacological intervention as a reprogramming strategy to long-term protect against hypertension and kidney disease of developmental origins to be validated clinically and the critical window, drug dose, dosing regimen, and therapeutic duration identified.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| |
Collapse
|
31
|
Risk of nonsteroidal anti-inflammatory drug-associated renal dysfunction among neonates diagnosed with patent ductus arteriosus and treated with gentamicin. J Perinatol 2017; 37:1093-1102. [PMID: 28594394 DOI: 10.1038/jp.2017.80] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the risk of nonsteroidal anti-inflammatory drug (NSAID) therapy-associated acute kidney injury (AKI) among neonates diagnosed with patent ductus arteriosus (PDA) who are treated with gentamicin. STUDY DESIGN Multicenter retrospective observational study of patients ⩽44 postmenstrual weeks of age diagnosed with PDA who received gentamicin during hospitalization between January 2006 and December 2014. Patients with and without NSAID exposure were matched on covariates associated with AKI and NSAID therapy. The primary end point, AKI, was defined according to Kidney Disease Improving Global Outcomes neonatal criteria. RESULTS The rate of AKI for the entire cohort (n=594) was 12% (n=71). Among neonates receiving NSAIDS, 14.8% (n=44) experienced an AKI as compared to 9.1% (n=27) for those who were not exposed (relative risk, 1.6; 95% confidence interval, 1.0 to 2.6). Therefore, the attributable risk of NSAID use was 5.7% (95% confidence interval, 0.5 to 11.0). CONCLUSION Among neonates with PDA and receiving gentamicin, NSAID therapy increases the risk of AKI by about 6%.
Collapse
|
32
|
Sucipto TH, Aisyah N, Lestari P, Sacharisa WP, Setyawati H. BETEL LEAF ESSENTIAL OIL (Piper betle L.) FOR PEOPLE WITH FREEZING FACTORS BLOOD DISORDERS. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2017. [DOI: 10.20473/ijtid.v6i3.1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Betel leaf (Piper betle L.) is a medicinal plant. There betel leaf essential oil content and show a variety of biological activity, including antibacterial. The purpose of this study was to determine the effect of betel leaf essential oil on blood coagulation in patients with factor VIII and IX of blood plasma disorders. Isolation of essential oil made by steam distillation method using two kinds of solvents distilled water and n-hexane. N-hexane extract obtained is separated by liquid-liquid extraction and rotary evaporator. The test results of blood clots increases as the concentration of essential oils, namely essential oils ½ times dilution of 99.67 seconds; dilution ¼ times 127 seconds; dilution 1/8 times 179 seconds; and dilution 1/16 times 242.67 seconds.
Collapse
|
33
|
Seely JC. A brief review of kidney development, maturation, developmental abnormalities, and drug toxicity: juvenile animal relevancy. J Toxicol Pathol 2017; 30:125-133. [PMID: 28458450 PMCID: PMC5406591 DOI: 10.1293/tox.2017-0006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/23/2023] Open
Abstract
Nonclinical juvenile animal tests perform a valuable role in determining adverse drug effects during periods of organogenesis and/or functional maturation. Developmental anatomic and functional maturation time points are important to consider between juveniles and adults when regarding different organ toxicities in response to drug administration. The kidney is an example of a major organ that has differences in these time points in comparing juveniles to adults and in contrasting humans to laboratory animal species. Toxicologic pathologists, involved in juvenile studies, need to be aware of these time points which are age-related exposure periods of sensitivity to drug toxicity. Age-related developmental anatomic and functional maturation are factors which can affect the way that a drug is absorbed, distributed, metabolized, and excreted (ADME). Changes to any component of ADME may alter drug toxicity resulting in kidney abnormalities, nephrotoxicity, or maturational disorders. Juvenile animal kidneys may either be less resistant or more resistant to known adult nephrotoxic drug effects. Furthermore, drug toxicity observed in juvenile animal kidneys may not always correspond to similar toxicities in humans. Juvenile animal nonclinical toxicology studies targeting the kidneys have to be carefully planned to attain the maximum knowledge from each study.
Collapse
Affiliation(s)
- John Curtis Seely
- Experimental Pathology Laboratories, Inc., P.O. Box 12766, Research Triangle Park, NC 27709, USA
| |
Collapse
|
34
|
Caetano-Pinto P, Jansen J, Assaraf YG, Masereeuw R. The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resist Updat 2017; 30:15-27. [DOI: 10.1016/j.drup.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
|
35
|
Yang N, Sun R, Zhao Y, He J, Zhen L, Guo J, Geng J, Xie Y, Wang J, Feng S, Fei F, Liao X, Zhu X, Wang H, Fu F, Aa J, Wang G. High fat diet aggravates the nephrotoxicity of berberrubine by influencing on its pharmacokinetic profile. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:319-327. [PMID: 27525563 DOI: 10.1016/j.etap.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Berberrubine (BRB), the active metabolite of berberine (BBR), possesses various pharmacological activities. In this study, we found BRB showed not only a stronger lipid-lowering effect than berberine but also a specific nephrotoxicity in mice fed with high fat diet (HFD). To explore the underlying mechanism, the pharmacokinetics of BRB were evaluated. There was a greater in vivo exposure of BRB in C57BL/6J mice fed with HFD than with routine chows, in terms of Cmax, AUC0-t, levels of BRB in kidney and urinary excretion. Moreover, in vitro assessment clearly showed BRB had a toxic effect on renal cell lines, while the primary metabolite, berberrubine-9-O-β-d-glucuronide (BRBG), did not show any obvious toxicity. These results suggested HFD aggravated BRB-induced nephrotoxicity by promoting the in vivo exposure of BRB especially in urine and kidney. Although our previous study indicated BRB could be metabolized into BRBG, BRBG did not show any obvious toxicity in vitro.
Collapse
Affiliation(s)
- Na Yang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Runbin Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuqing Zhao
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jun He
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Le Zhen
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiahua Guo
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianliang Geng
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiankun Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Siqi Feng
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fei Fei
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaoying Liao
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuanxuan Zhu
- Department of Pharmacology, Clinical Research Institute of Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210009, PR China
| | - Hongbo Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Pharmacy School at Yantai University, Yantai 264005, PR China
| | - Fenghua Fu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Pharmacy School at Yantai University, Yantai 264005, PR China
| | - Jiye Aa
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
36
|
The spectrum of onset of acute kidney injury in premature infants less than 30 weeks gestation. J Perinatol 2016; 36:474-80. [PMID: 26796125 DOI: 10.1038/jp.2015.217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/05/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine risk factors for acute kidney injury (AKI) in preterm infants as a function of time of onset. STUDY DESIGN In this 5 1/2-year, single-center, retrospective study, incidence and timing of AKI was determined using modified Acute Kidney Injury Network criteria. Characteristics of newborns with and without AKI were compared by chi square and t-tests. Logistic regression was used to examine risk factors for AKI as a function of time of onset and potential confounders. RESULT AKI occurred in 30.3% of 357 neonates; 72.2% was stage 1. Gestational ages (GA), initial Cr, maternal magnesium and volume resuscitation were associated with early AKI (days 0 to 1). Volume resuscitation, umbilical arterial line and receipt of non-steroidal anti-inflammatory drug (NSAID) for patent ductus arteriosus were associated with intermediate AKI (days 2 to 5). GA, steroids for early hypotension, necrotizing enterocolitis and sepsis were associated with late AKI (⩾day 6). CONCLUSION Stage 1 AKI is a common morbidity in our population. Risk factors for AKI in our population differed with time of onset.
Collapse
|
37
|
Remick AK, Catlin NR, Quist EM, Steinbach TJ, Dixon D. Juvenile Toxicology: Relevance and Challenges for Toxicologists and Pathologists. Toxicol Pathol 2015; 43:1166-71. [PMID: 26220944 PMCID: PMC4670269 DOI: 10.1177/0192623315595883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Society of Toxicologic Pathology (STP) Education Committee and the STP Reproductive Special Interest Group held a North Carolina regional meeting entitled, "Juvenile Toxicology: Relevance and Challenges for Toxicologists and Pathologists" on March 13, 2015, at the National Institute of Environmental Health Sciences/National Toxicology Program in Research Triangle Park, North Carolina. The purpose of this regional meeting was to familiarize attendees with the topic of juvenile toxicity testing and discuss its relevance to clinical pediatric medicine, regulatory perspectives, challenges of appropriate study design confronted by toxicologists, and challenges of histopathologic examination and interpretation of juvenile tissues faced by pathologists. The 1-day meeting was a success with over 60 attendees representing industry, government, research organizations, and academia.
Collapse
Affiliation(s)
| | - Natasha R Catlin
- Developmental and Reproductive Toxicology Group, Toxicology Branch, National Toxicology Program (NTP) Division, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Erin M Quist
- Reproductive Endocrinology Group, National Toxicology Program Laboratory (NTPL), and NTP Pathology Group, Cellular & Molecular Pathology Branch, NTP Division, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Darlene Dixon
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
38
|
Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC, Bhatnagar V. Handling of Drugs, Metabolites, and Uremic Toxins by Kidney Proximal Tubule Drug Transporters. Clin J Am Soc Nephrol 2015; 10:2039-49. [PMID: 26490509 DOI: 10.2215/cjn.02440314] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/28/2014] [Indexed: 01/22/2023]
Abstract
The proximal tubule of the kidney plays a crucial role in the renal handling of drugs (e.g., diuretics), uremic toxins (e.g., indoxyl sulfate), environmental toxins (e.g., mercury, aristolochic acid), metabolites (e.g., uric acid), dietary compounds, and signaling molecules. This process is dependent on many multispecific transporters of the solute carrier (SLC) superfamily, including organic anion transporter (OAT) and organic cation transporter (OCT) subfamilies, and the ATP-binding cassette (ABC) superfamily. We review the basic physiology of these SLC and ABC transporters, many of which are often called drug transporters. With an emphasis on OAT1 (SLC22A6), the closely related OAT3 (SLC22A8), and OCT2 (SLC22A2), we explore the implications of recent in vitro, in vivo, and clinical data pertinent to the kidney. The analysis of murine knockouts has revealed a key role for these transporters in the renal handling not only of drugs and toxins but also of gut microbiome products, as well as liver-derived phase 1 and phase 2 metabolites, including putative uremic toxins (among other molecules of metabolic and clinical importance). Functional activity of these transporters (and polymorphisms affecting it) plays a key role in drug handling and nephrotoxicity. These transporters may also play a role in remote sensing and signaling, as part of a versatile small molecule communication network operative throughout the body in normal and diseased states, such as AKI and CKD.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Medicine, Department of Pediatrics, Department of Cell & Molecular Medicine,
| | | | | | - Melanie P Hoenig
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Roland C Blantz
- Division of Nephrology-Hypertension, and Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Vibha Bhatnagar
- Division of Family & Preventative Medicine, University of California-San Diego, La Jolla, California
| |
Collapse
|
39
|
Bábíčková J, Borbélyová V, Tóthová L, Kubišová K, Janega P, Hodosy J, Celec P. The renal effects of prenatal testosterone in rats. J Urol 2015; 193:1700-8. [PMID: 25577974 DOI: 10.1016/j.juro.2014.12.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2014] [Indexed: 12/15/2022]
Abstract
PURPOSE Previous studies have shown that prenatal testosterone affects the development of not only reproductive organs but also the brain and even glucose metabolism. Whether prenatal testosterone influences the kidney development is largely unknown. We analyzed whether testosterone modulation during prenatal development would affect renal function and the number of nephrons in adult offspring. MATERIALS AND METHODS Pregnant rats were treated with olive oil, testosterone (2 mg/kg), the androgen receptor blocker flutamide (5 mg/kg) or testosterone plus flutamide via daily intramuscular injections from gestation day 14 until delivery. Renal histology and functional parameters were assessed in male and female adult offspring. Macerated kidneys were used for nephron counting. RESULTS Prenatal testosterone administration increased proteinuria in male rats by 256%. A similar 134% effect in female rats was not statistically significant. This effect was prevented when flutamide was co-administered. In male rats prenatal testosterone increased blood urea nitrogen. In female rats flutamide increased creatinine clearance. In male rats prenatal testosterone and flutamide led to higher and lower, respectively, interstitial collagen deposition in adulthood. CONCLUSIONS Prenatal testosterone induces proteinuria in adulthood. This effect is mediated via androgen receptor. Additional effects seem to be sex specific. Further studies should focus on the timing and dosing of testosterone as well as the applicability to human development.
Collapse
Affiliation(s)
- Janka Bábíčková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - L'ubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Kubišová
- Institute of Pathology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Pavol Janega
- Institute of Pathology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Institute of Physiology, Comenius University, Bratislava, Slovakia; Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
40
|
Ueki N, Takeda S, Koya D, Kanasaki K. The relevance of the Renin-Angiotensin system in the development of drugs to combat preeclampsia. Int J Endocrinol 2015; 2015:572713. [PMID: 26000015 PMCID: PMC4426891 DOI: 10.1155/2015/572713] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/28/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia is a hypertensive disorder that occurs during pregnancy. It has an unknown etiology and affects approximately 5-8% of pregnancies worldwide. The pathophysiology of preeclampsia is not yet known, and preeclampsia has been called "a disease of theories." The central symptom of preeclampsia is hypertension. However, the etiology of the hypertension is unknown. In this review, we analyze the molecular mechanisms of preeclampsia with a particular focus on the pathogenesis of the hypertension in preeclampsia and its association with the renin-angiotensin system. In addition, we propose potential alternative strategies to target the renin-angiotensin system, which is enhanced during pregnancy.
Collapse
Affiliation(s)
- Norikazu Ueki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo 113-8431, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo 113-8431, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
- *Keizo Kanasaki:
| |
Collapse
|
41
|
Schreuder MF, Bueters RRG, Allegaert K. The interplay between drugs and the kidney in premature neonates. Pediatr Nephrol 2014; 29:2083-91. [PMID: 24217783 DOI: 10.1007/s00467-013-2651-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 02/06/2023]
Abstract
The kidney plays a central role in the clearance of drugs. However, renal drug handling entails more than glomerular filtration and includes tubular excretion and reabsorption, and intracellular metabolization by cellular enzyme systems, such as the Cytochrome P450 isoenzymes. All these processes show maturation from birth onwards, which is one of the reasons why drug dosing in children is not simply similar to dosing in small adults. As kidney development normally finishes around the 36th week of gestation, being born prematurely will result in even more immature renal drug handling. Environmental effects, such as extra-uterine growth restriction, sepsis, asphyxia, or drug treatments like caffeine, aminoglycosides, or non-steroidal anti-inflammatory drugs, may further hamper drug handling in the kidney. Dosing in preterm neonates is therefore dependent on many factors that need to be taken into account. Drug treatment may significantly hamper postnatal kidney development in preterm neonates, just like renal immaturity has an impact on drug handling. The restricted kidney development results in a lower number of nephrons that may have several long-term sequelae, such as hypertension, albuminuria, and renal failure. This review focuses on the interplay between drugs and the kidney in premature neonates.
Collapse
Affiliation(s)
- Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands,
| | | | | |
Collapse
|
42
|
Abstract
The normal development of the kidney may be affected by several factors, including abnormalities in placental function, resulting in fetal growth restriction, exposure to maternal disease states, including hypertension and diabetes, antenatal steroids, chorioamnionitis, and preterm delivery. After preterm birth, several further insults may occur that may influence nephrogenesis and renal health, including exposure to nephrotoxic medications, postnatal growth failure, and obesity after growth restriction. In this review article, common clinical neonatal scenarios are used to highlight these renal risk factors, and the animal and human evidence on which these risk factors are based are discussed.
Collapse
Affiliation(s)
- Megan Sutherland
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - Dana Ryan
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - M Jane Black
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - Alison L Kent
- Department of Neonatology, Centenary Hospital for Women and Children, Canberra Hospital, PO Box 11, Woden 2606, Australian Capital Territory, Australia; Australian National University Medical School, Canberra 2601, Australian Capital Territory, Australia.
| |
Collapse
|
43
|
Gubhaju L, Sutherland MR, Horne RSC, Medhurst A, Kent AL, Ramsden A, Moore L, Singh G, Hoy WE, Black MJ. Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol 2014; 307:F149-58. [PMID: 24899060 DOI: 10.1152/ajprenal.00439.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Worldwide, approximately 10% of neonates are born preterm. The majority of preterm neonates are born when the kidneys are still developing; therefore, during the early postnatal period renal function is likely reflective of renal immaturity and/or injury. This study evaluated glomerular and tubular function and urinary neutrophil gelatinase-associated lipocalin (NGAL; a marker of renal injury) in preterm neonates during the first month of life. Preterm and term infants were recruited from Monash Newborn (neonatal intensive care unit at Monash Medical Centre) and Jesse McPherson Private Hospital, respectively. Infants were grouped according to gestational age at birth: ≤28 wk (n = 33), 29-31 wk (n = 44), 32-36 wk (n = 32), and term (≥37 wk (n = 22)). Measures of glomerular and tubular function were assessed on postnatal days 3-7, 14, 21, and 28. Glomerular and tubular function was significantly affected by gestational age at birth, as well as by postnatal age. By postnatal day 28, creatinine clearance remained significantly lower among preterm neonates compared with term infants; however, sodium excretion was not significantly different. Pathological proteinuria and high urinary NGAL levels were observed in a number of neonates, which may be indicative of renal injury; however, there was no correlation between the two markers. Findings suggest that neonatal renal function is predominantly influenced by renal maturity, and there was high capacity for postnatal tubular maturation among preterm neonates. There is insufficient evidence to suggest that urinary NGAL is a useful marker of renal injury in the preterm neonate.
Collapse
Affiliation(s)
- Lina Gubhaju
- Preventative Health, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Megan R Sutherland
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Rosemary S C Horne
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Alison Medhurst
- Monash Newborn, Monash Medical Centre, Clayton, Victoria, Australia
| | - Alison L Kent
- Department of Neonatology, Canberra Hospital, and the Australian National University Medical School, Canberra, Australian Capital Territory, Australia
| | - Andrew Ramsden
- Monash Newborn, Monash Medical Centre, Clayton, Victoria, Australia
| | - Lynette Moore
- Department of Surgical Pathology, South Australia Pathology, Women's and Children's Hospital, North Adelaide and the University of Adelaide, Adelaide, South Australia, Australia
| | - Gurmeet Singh
- Menzies School of Health Research and the Royal Darwin Hospital, Casuarina, Northern Territory, Australia; and
| | - Wendy E Hoy
- Centre for Chronic Disease, University of Queensland, Brisbane, Queensland, Australia
| | - M Jane Black
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia;
| |
Collapse
|
44
|
Tsuboi N, Kanzaki G, Koike K, Kawamura T, Ogura M, Yokoo T. Clinicopathological assessment of the nephron number. Clin Kidney J 2014; 7:107-14. [PMID: 25852857 PMCID: PMC4377791 DOI: 10.1093/ckj/sfu018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 02/06/2023] Open
Abstract
Recent studies have demonstrated much larger variability in the total number of nephrons in normal populations than previously suspected. In addition, it has been suggested that individuals with a low nephron number may have an increased lifetime risk of hypertension or renal insufficiency, emphasizing the importance of evaluating the nephron number in each individual. In view of the fact that all previous reports of the nephron number were based on analyses of autopsy kidneys, the identification of surrogate markers detectable in living subjects is needed in order to enhance understanding of the clinical significance of this parameter. In this review, we summarize the clinicopathological factors and findings indicating a reduction in the nephron number, focusing particularly on those found at the time of a preserved renal function.
Collapse
Affiliation(s)
- Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Kentaro Koike
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Tetsuya Kawamura
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Makoto Ogura
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| |
Collapse
|
45
|
Delclos KB, Camacho L, Lewis SM, Vanlandingham MM, Latendresse JR, Olson GR, Davis KJ, Patton RE, Gamboa da Costa G, Woodling KA, Bryant MS, Chidambaram M, Trbojevich R, Juliar BE, Felton RP, Thorn BT. Toxicity evaluation of bisphenol A administered by gavage to Sprague Dawley rats from gestation day 6 through postnatal day 90. Toxicol Sci 2014; 139:174-97. [PMID: 24496637 DOI: 10.1093/toxsci/kfu022] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is a high production volume industrial chemical to which there is widespread human oral exposure. Guideline studies used to set regulatory limits detected adverse effects only at doses well above human exposures and established a no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day. However, many reported animal studies link BPA to potentially adverse effects on multiple organ systems at doses below the NOAEL. The primary goals of the subchronic study reported here were to identify adverse effects induced by orally (gavage) administered BPA below the NOAEL, to characterize the dose response for such effects and to determine doses for a subsequent chronic study. Sprague Dawley rat dams were dosed daily from gestation day 6 until the start of labor, and their pups were directly dosed from day 1 after birth to termination. The primary focus was on seven equally spaced BPA doses (2.5-2700 μg/kg bw/day). Also included were a naïve control, two doses of ethinyl estradiol (EE2) to demonstrate the estrogen responsiveness of the animal model, and two high BPA doses (100,000 and 300,000 μg/kg bw/day) expected from guideline studies to produce adverse effects. Clear adverse effects of BPA, including depressed gestational and postnatal body weight gain, effects on the ovary (increased cystic follicles, depleted corpora lutea, and antral follicles), and serum hormones (increased serum estradiol and prolactin and decreased progesterone), were observed only at the two high doses of BPA. BPA-induced effects partially overlapped those induced by EE2, consistent with the known weak estrogenic activity of BPA.
Collapse
Affiliation(s)
- K Barry Delclos
- Division of Biochemical Toxicology, 3900 NCTR Road, Jefferson, Arkansas 72079
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bueters RR, Klaasen A, van den Heuvel LP, Schreuder MF. Effect of NSAIDs and diuretics on nephrogenesis in an ex vivo embryogenic kidney model. ACTA ACUST UNITED AC 2014; 98:486-92. [PMID: 24408660 DOI: 10.1002/bdrb.21090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/04/2013] [Indexed: 11/06/2022]
Abstract
The kidney is one of the key organs in clearing foreign compounds. The effects of drugs on the developing kidney are relatively unknown. We studied the direct effect of furosemide, hydrochlorothiazide, ibuprofen, and indomethacin on kidney development in an ex vivo embryonic kidney model. At embryonic day 13, metanephroi were dissected from mice and cultured in control media or media supplemented with various clinically relevant concentrations of drugs. The ureteric tree was visualized by whole-mount staining and branching was evaluated by counting. Additionally, gene expression levels of Wt1, Sox9, Bmp7, Fgf8, and Gdnf were investigated. No distinct differences were noted on either ureteric tip development or gene expression analysis for each drug after 24 hr of exposure. Even though short-term exposure to clinically relevant concentrations seems not to disturb renal development, future research is needed to study prolonged or repeated exposures.
Collapse
Affiliation(s)
- Ruud Rg Bueters
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
47
|
Sutherland MR, Bertagnolli M, Lukaszewski MA, Huyard F, Yzydorczyk C, Luu TM, Nuyt AM. Preterm Birth and Hypertension Risk. Hypertension 2014; 63:12-8. [DOI: 10.1161/hypertensionaha.113.01276] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Megan R. Sutherland
- From the Department of Pediatrics, Sainte-Justine University Hospital and Research Center, Université de Montréal, Montréal, Quebec, Canada
| | - Mariane Bertagnolli
- From the Department of Pediatrics, Sainte-Justine University Hospital and Research Center, Université de Montréal, Montréal, Quebec, Canada
| | - Marie-Amélie Lukaszewski
- From the Department of Pediatrics, Sainte-Justine University Hospital and Research Center, Université de Montréal, Montréal, Quebec, Canada
| | - Fanny Huyard
- From the Department of Pediatrics, Sainte-Justine University Hospital and Research Center, Université de Montréal, Montréal, Quebec, Canada
| | - Catherine Yzydorczyk
- From the Department of Pediatrics, Sainte-Justine University Hospital and Research Center, Université de Montréal, Montréal, Quebec, Canada
| | - Thuy Mai Luu
- From the Department of Pediatrics, Sainte-Justine University Hospital and Research Center, Université de Montréal, Montréal, Quebec, Canada
| | - Anne Monique Nuyt
- From the Department of Pediatrics, Sainte-Justine University Hospital and Research Center, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
48
|
Westland R, Schreuder MF, van Goudoever JB, Sanna-Cherchi S, van Wijk JAE. Clinical implications of the solitary functioning kidney. Clin J Am Soc Nephrol 2013; 9:978-86. [PMID: 24370773 DOI: 10.2215/cjn.08900813] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Congenital anomalies of the kidney and urinary tract are the major cause of ESRD in childhood. Children with a solitary functioning kidney form an important subgroup of congenital anomalies of the kidney and urinary tract patients, and a significant fraction of these children is at risk for progression to CKD. However, challenges remain in distinguishing patients with a high risk for disease progression from those patients without a high risk of disease progression. Although it is hypothesized that glomerular hyperfiltration in the lowered number of nephrons underlies the impaired renal prognosis in the solitary functioning kidney, the high proportion of ipsilateral congenital anomalies of the kidney and urinary tract in these patients may further influence clinical outcome. Pathogenic genetic and environmental factors in renal development have increasingly been identified and may play a crucial role in establishing a correct diagnosis and prognosis for these patients. With fetal ultrasound now enabling prenatal identification of individuals with a solitary functioning kidney, an early evaluation of risk factors for renal injury would allow for differentiation between patients with and without an increased risk for CKD. This review describes the underlying causes and consequences of the solitary functioning kidney from childhood together with its clinical implications. Finally, guidelines for follow-up of solitary functioning kidney patients are recommended.
Collapse
Affiliation(s)
- Rik Westland
- Departments of Pediatric Nephrology and, §Pediatrics, VU University Medical Center, Amsterdam, The Netherlands;, †Division of Nephrology, Columbia University, New York, New York;, ‡Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, ‖Department of Pediatrics, Emma Children's Hospital, Amsterdam Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Qiu Y, Hong M, Li H, Tang N, Ma J, Hsu CH, Dong W. Time-series pattern of gene expression profile in gentamycin-induced nephrotoxicity. Toxicol Mech Methods 2013; 24:142-50. [PMID: 24274596 DOI: 10.3109/15376516.2013.869780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There have been many studies investigating the genomic biomarker and/or molecular mechanism of nephrotoxicity using microarray. However, most of these researches were carried out by studying gene expression changes at one specific time point. As gene expression varies with time and disease stage, the current study investigated the time-series pattern of gene expression in a rat model using a typical nephrotoxic compound. Rats were administrated with 80 mg/kg gentamycin or saline by intramuscular injection for 14 consecutive days followed by a 28-d recovery. Rats were scarified on D2, D4, D8, D15 and Recovery Day (R29), when kidneys were obtained for whole-genome microarray analysis and histological examination. Urine was collected at each necropsy for kidney injury molecular-1 (KIM-1) analysis. The KIM-1 detection and histological examination confirmed the nephrotoxicity. After differentially expression genes (DEGs) identification, there were 4360 and 4323 regulated genes for females and males, respectively. However, few overlapping expression genes co-regluated at each time point were found. By principle component analysis (PCA) and hierarchical cluster, the gene expression patterns were observed to be apparently associated with the disease stage. GO Annotation showed (1) immune response and related process, response to wounding, cell locomotion on D2; (2) cell death and apoptosis was also noted on D4; (3) processes of organic acid or carboxylic acid, apoptosis or cell death on D8 and D15; (4) processes of cell cycle, mitosis, division cell cycle on R29. In conclusion, the authors mapped the time-series gene expression patterns at the initiation, development and recovery stage of gentamycin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yunliang Qiu
- National Shanghai Center for New Drug Safety Evaluation and Research , Shanghai , China and
| | | | | | | | | | | | | |
Collapse
|
50
|
How much do we know about drug handling by SLC and ABC drug transporters in children? Clin Pharmacol Ther 2013; 94:27-9. [PMID: 23778708 DOI: 10.1038/clpt.2013.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although solute carrier (SLC) and ATP-binding cassette (ABC) transporters are critical to the absorption, distribution, and elimination of many small-molecule drugs in children, how these transporters regulate pediatric drug handling remains unclear. For proper dosing and to diminish toxicity, we need a better understanding of how organ development and functional maturation, as well as developmental changes in systemic physiology, impact transporter-mediated drug handling at pediatric developmental stages from the preterm infant through adolescence.
Collapse
|