1
|
Lapa T, Páscoa RNMJ, Coimbra F, Medeiros L, Gomes PS. Oral squamous cell carcinoma identification by FTIR spectroscopy of oral biofluids. Oral Dis 2024. [PMID: 39286967 DOI: 10.1111/odi.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES This case study evaluated the efficacy of mid-infrared spectroscopy on the identification of oral squamous cell carcinoma, following the assessment of unstimulated whole saliva. STUDY DESIGN AND METHODS The trial follows a matched case-control design. Saliva samples were characterized through mid-infrared spectroscopy, and chemometric tools were applied to distinguish between case and control participants, further identifying the spectral regions that played a pivotal role in the successful identification of oral squamous cell carcinoma. RESULTS Mid-infrared spectroscopy was capable to discriminate between cancer patients and matched controls with 100% of correct predictions. Additionally, the spectral regions mostly contributing to the successful prediction were identified and found to be potentially associated with significant molecular changes crucial to the carcinogenic process. CONCLUSION The application of mid-infrared spectroscopy in saliva analysis may be regarded as an innovative, noninvasive, low cost, and sensitive technique contributing to the identification of oral squamous cell carcionma.
Collapse
Affiliation(s)
- Teresa Lapa
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Ricardo N M J Páscoa
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Filipe Coimbra
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Luís Medeiros
- Department of Stomatology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Pedro S Gomes
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Inman JL, Wu Y, Chen L, Brydon E, Ghosh D, Wan KH, De Chant J, Obst-Huebl L, Nakamura K, Ralston CY, Celniker SE, Mao JH, Zwart PH, Holman HYN, Chang H, Brown JB, Snijders AM. Long-term, non-invasive FTIR detection of low-dose ionizing radiation exposure. Sci Rep 2024; 14:6119. [PMID: 38480827 PMCID: PMC10937999 DOI: 10.1038/s41598-024-56491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Non-invasive methods of detecting radiation exposure show promise to improve upon current approaches to biological dosimetry in ease, speed, and accuracy. Here we developed a pipeline that employs Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum to identify a signature of low dose ionizing radiation exposure in mouse ear pinnae over time. Mice exposed to 0.1 to 2 Gy total body irradiation were repeatedly measured by FTIR at the stratum corneum of the ear pinnae. We found significant discriminative power for all doses and time-points out to 90 days after exposure. Classification accuracy was maximized when testing 14 days after exposure (specificity > 0.9 with a sensitivity threshold of 0.9) and dropped by roughly 30% sensitivity at 90 days. Infrared frequencies point towards biological changes in DNA conformation, lipid oxidation and accumulation and shifts in protein secondary structure. Since only hundreds of samples were used to learn the highly discriminative signature, developing human-relevant diagnostic capabilities is likely feasible and this non-invasive procedure points toward rapid, non-invasive, and reagent-free biodosimetry applications at population scales.
Collapse
Affiliation(s)
- Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Yulun Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Liang Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Ella Brydon
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Dhruba Ghosh
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
| | - Kenneth H Wan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Jared De Chant
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Lieselotte Obst-Huebl
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Kei Nakamura
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Corie Y Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Peter H Zwart
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Hoi-Ying N Holman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| | - James B Brown
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
- Department of Statistics, University of California, Berkeley, CA, 94720, USA.
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Terpiłowska S, Pięta E, Roman M, Paluszkiewicz C, Kwiatek WM. Spectroscopic imaging to assess biochemical alterations in liver carcinoma cells exposed to transition metals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123228. [PMID: 37579664 DOI: 10.1016/j.saa.2023.123228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Despite the invaluable role of transition metals in every living organism, it should be remembered that failure to maintain the proper balance and exceed the appropriate dose may have the opposite effect. In the era of such a popular and propagated need for supplementation in the media, one should bear in mind the harmful effects that may become the result of improper and excessive intake of transition metals. This article establishes the feasibility of Raman (RS) and Fourier-transform infrared (FT-IR) spectroscopic imaging at the single-cell level to investigate the cellular response to various transition metals. These two non-destructive and perfectly complementary methods allow for in-depth monitoring of changes taking place within the cell under the influence of the agent used. HepG2 liver carcinoma cells were exposed to chromium, iron, cobalt, molybdenum, and nickel at 1 and 2 mM concentrations. Spectroscopic results were further supported by biological evaluation of selected caspases concentration. The caspase- 3, 6, 8, 9, and 12 concentrations were determined with the use of the enzyme-linked immunosorbent assay (ELISA) method. This study shows the induction of apoptosis in the intrinsic pathway by all studied transition metals. Cellular metabolism alterations are induced by mitochondrial metabolism changes and endoplasmic reticulum (ER) metabolism variations. Moreover, nickel induces not only the intrinsic pathway of apoptosis but also the extrinsic pathway of this process.
Collapse
Affiliation(s)
- Sylwia Terpiłowska
- Jan Kochanowski University of Kielce, Collegium Medicum, Department of Surgical Medicine with the Laboratory of Medical Genetics, IX Wieków Kielc 19A Av., 25-317 Kielce, Poland.
| | - Ewa Pięta
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Maciej Roman
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | | | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
4
|
Kamińska K, Wiercigroch E, Małek K, Grzesiak M. Biomolecular composition of porcine ovarian follicles following in vitro treatment of vitamin D 3 and insulin alone or in combination. Reprod Biol 2023; 23:100818. [PMID: 37862827 DOI: 10.1016/j.repbio.2023.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
The study aimed to analyze changes in biomolecular composition of granulosa and theca interna cells of porcine ovarian follicles following in vitro treatment of vitamin D3 and insulin alone or in combination. Medium antral follicles (n = 4/each group) were cultured alone (C; control) or in the presence of 1α,25(OH)2D3 (VD; 100 ng/mL) and insulin (I; 10 ng/mL) separately or in combination, VD and I (VD+I). Then paraplast-embedded ovarian follicles were used for Fourier Transform Infrared (FTIR) spectroscopy and respective histological stainings. FTIR analysis revealed changes in the content of fibrous proteins (mainly collagens) within theca interna following vitamin D3 and insulin co-administration that was verified by Masson's trichrome staining. Treatment-dependent differences were also observed in the secondary structure of proteins, indicating enhanced conversion to α-helices in response to vitamin D3 and insulin action/interaction in both follicular compartments. In the granulosa and theca interna layers, tendency to lower DNA content in the VD+I group was noted and confirmed by Fulgen's staining. Finally, altered monosaccharides production in both follicular layers was found. Based on FTIR results, it is possible to attribute the observed alterations to biological processes that could be regulated by vitamin D3 and insulin in the porcine ovarian follicles.
Collapse
Affiliation(s)
- Kinga Kamińska
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Poland; Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Ewelina Wiercigroch
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamilla Małek
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
5
|
Agrawal T, Paul D, Saroj S, Ali A, Choubey V, Mukherjee D, Pal S, Rakshit T. Label-Free Physical-Analytical Techniques Reveal Epigenetic Modifications of Breast Cancer Chromosomes. J Phys Chem B 2023; 127:3534-3542. [PMID: 37036757 DOI: 10.1021/acs.jpcb.3c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Epigenetic dysregulation including DNA methylation and histone modifications is being increasingly recognized as a promising biomarker for the diagnosis and prognosis of cancer. Herein, we devised a label-free analytical toolbox comprising IR, UV-vis, CD spectroscopy, and cyclic voltammetry, which is capable to differentiate significantly hyper-methylated breast cancer chromosomes from the normal breast epithelial counterparts.
Collapse
Affiliation(s)
- Tanya Agrawal
- Department of Chemistry, Shiv Nadar IoE, Delhi-NCR, Uttar Pradesh 201314, India
| | - Debashish Paul
- Department of Chemistry, Shiv Nadar IoE, Delhi-NCR, Uttar Pradesh 201314, India
| | - Saroj Saroj
- Department of Chemistry, Shiv Nadar IoE, Delhi-NCR, Uttar Pradesh 201314, India
| | - Akbar Ali
- Department of Chemistry, Indian Institute of Technology, Bhilai, Chhattisgarh 492015, India
| | - Vivekanand Choubey
- Department of Chemistry, Shiv Nadar IoE, Delhi-NCR, Uttar Pradesh 201314, India
| | - Dipanjan Mukherjee
- Laboratory of Bioimaging and Pathologies, University of Strasbourg, F-67081 Strasbourg CEDEX, France
| | - Suchetan Pal
- Department of Chemistry, Indian Institute of Technology, Bhilai, Chhattisgarh 492015, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar IoE, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
6
|
Faria RA, Leal LB, Thebit MM, Pereira SWA, Serafim NR, Barauna VG, da Chagas E Silva Carvalho LF, Sartório CL, Gouvea SA. Potential Role of Fourier Transform Infrared Spectroscopy as a Screening Approach for Breast Cancer. APPLIED SPECTROSCOPY 2023; 77:405-417. [PMID: 36703259 DOI: 10.1177/00037028231156194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Breast cancer is a heterogeneous disease, and its spread involves a succession of clinical and pathological stages. Screening is predominantly based on mammography, which has critical limitations related to the effectiveness and production of false-positive or false-negative results, generating discomfort and low adherence. In this context, infrared with attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy emerges as a non-destructive sample tool, which is non-invasive, label-free, has a low operating-cost, and requires only a small amount of sample, including liquid plasma samples. We sought to evaluate the clinical applicability of ATR FT-IR in breast cancer screening. ATR FT-IR spectroscopy through its highest potential spectral biomarker could distinguish, by liquid plasma biopsy, breast cancer patients and healthy controls, obtaining a sensitivity of 97%, specificity of 93%, a receiver operating characteristic ROC curve of 97%, and a prediction accuracy of 94%. The main variance between the groups was mainly in the band 1511 cm-1 of the control group, 1502 and 1515 cm-1 of the cancer group, which are the peaks of the bands referring to proteins and amide II. ATR FT-IR spectroscopy has demonstrated to be a promising tool for breast cancer screening, given its time efficiency, cost of approach, and its high ability to distinguish between the liquid plasma samples of breast cancer patients and healthy controls.
Collapse
Affiliation(s)
- Rodrigo A Faria
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | - Leonardo B Leal
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | - Marcela M Thebit
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | - Sergio W A Pereira
- Mastology Service Evangelical Hospital of Vila Velha, Vila Velha, Brazil
| | - Neuzimar R Serafim
- Mastology Service Evangelical Hospital of Vila Velha, Vila Velha, Brazil
| | - Valerio G Barauna
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | | | - Carmem L Sartório
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | - Sonia A Gouvea
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
7
|
Stefanakis M, Bassler MC, Walczuch TR, Gerhard-Hartmann E, Youssef A, Scherzad A, Stöth MB, Ostertag E, Hagen R, Steinke MR, Hackenberg S, Brecht M, Meyer TJ. The Impact of Tissue Preparation on Salivary Gland Tumors Investigated by Fourier-Transform Infrared Microspectroscopy. J Clin Med 2023; 12:569. [PMID: 36675498 PMCID: PMC9864841 DOI: 10.3390/jcm12020569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Due to the wide variety of benign and malignant salivary gland tumors, classification and malignant behavior determination based on histomorphological criteria can be difficult and sometimes impossible. Spectroscopical procedures can acquire molecular biological information without destroying the tissue within the measurement processes. Since several tissue preparation procedures exist, our study investigated the impact of these preparations on the chemical composition of healthy and tumorous salivary gland tissue by Fourier-transform infrared (FTIR) microspectroscopy. Sequential tissue cross-sections were prepared from native, formalin-fixed and formalin-fixed paraffin-embedded (FFPE) tissue and analyzed. The FFPE cross-sections were dewaxed and remeasured. By using principal component analysis (PCA) combined with a discriminant analysis (DA), robust models for the distinction of sample preparations were built individually for each parotid tissue type. As a result, the PCA-DA model evaluation showed a high similarity between native and formalin-fixed tissues based on their chemical composition. Thus, formalin-fixed tissues are highly representative of the native samples and facilitate a transfer from scientific laboratory analysis into the clinical routine due to their robust nature. Furthermore, the dewaxing of the cross-sections entails the loss of molecular information. Our study successfully demonstrated how FTIR microspectroscopy can be used as a powerful tool within existing clinical workflows.
Collapse
Affiliation(s)
- Mona Stefanakis
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Miriam C. Bassler
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Tobias R. Walczuch
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
| | - Elena Gerhard-Hartmann
- Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Almoatazbellah Youssef
- Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Manuel Bernd Stöth
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Edwin Ostertag
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Maria R. Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Röntgenring 11, 97070 Würzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology—Head and Neck Surgery, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Marc Brecht
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Till Jasper Meyer
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| |
Collapse
|
8
|
Peng W, Yin J, Ma J, Zhou X, Chang C. Identification of hepatocellular carcinoma and paracancerous tissue based on the peak area in FTIR microspectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3115-3124. [PMID: 35920728 DOI: 10.1039/d2ay00640e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary hepatic malignancies across the world. The annual incidence and death rates have increased at the highest rate of all cancers in recent years. Surgical resection is a potentially curative option for solitary HCC or unilobar disease without evidence of metastases or vascular invasion. This study focuses on the molecular differences between the HCC foci and paracancerous tissues and provides some valuable biomarkers based on the vibrational spectrum. Fourier transform infrared (FTIR) spectroscopy is a non-invasive and qualitative and semi-quantitative analysis technique that has been widely applied for the identification of macromolecular changes in biological tissues. In this study, the FTIR spectra of the HCC foci and the paracancerous tissues were recorded separately, and ten areas under the absorption peaks of all the specimens were calculated. The result demonstrates that the areas of protein-related absorption peaks at 1398 cm-1, 1548 cm-1, 1654 cm-1 and 3070 cm-1 may be the key indicators of the two different regions. After coupling with the classification algorithms of k-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM), it was found that SVM with an RBF kernel performed best with the AUC (area under the ROC curve) reaching 0.997, and the performance was better than the feature based on the full spectrum. This reveals that the peak area-based FTIR spectra combined with the SVM algorithm may be a promising tool in identifying the HCC foci and the paracancerous tissues.
Collapse
Affiliation(s)
- Wenyu Peng
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Junkai Yin
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Jing Ma
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Xiaojie Zhou
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| |
Collapse
|
9
|
Oral lichen planus identification by mid-infrared spectroscopy of oral biofluids: A case-control study. Clin Chim Acta 2022; 530:126-133. [PMID: 35390336 DOI: 10.1016/j.cca.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS This study aims to access the effectiveness of mid-infrared (MIR) spectroscopy on the identification of the reticular form of OLP, following the assessment of gingival crevicular fluid (GCF) and oral mucosa transudate (OMT). MATERIAL AND METHODS The trial follows a case-control design. Samples were characterized through MIR spectroscopy and chemometric tools were applied to distinguish between case and control participants, further identifying the spectral regions with the highest contribution to the developed models. RESULTS MIR spectroscopy was capable to discriminate between OLP patients and controls with 95.1% and 85.4% of correct predictions, regarding GCF and OMT samples, respectively. Additionally, the spectral regions mostly contributing to the successful prediction were identified, and possibly related with the distinctive presence of amino acids/proteins and oxidative stress mediators in oral biofluids, supporting the role of the immune-inflammatory activation on OLP etiology and disease course. CONCLUSION MIR spectroscopy analysis of GCF and OMT may be regarded as an innovative, non-invasive, low cost and sensitive technique, contributing to the identification of the reticular from of OLP.
Collapse
|
10
|
Pocasap P, Nonpunya A, Weerapreeyakul N. Pinus kesiya Royle ex Gordon induces apoptotic cell death in hepatocellular carcinoma HepG2 cell via intrinsic pathway by PARP and Topoisomerase I suppression. Biomed Pharmacother 2021; 139:111628. [PMID: 33940508 DOI: 10.1016/j.biopha.2021.111628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022] Open
Abstract
Pinus kesiya Royle ex Gordon (PK), widely found in Southeast Asia, has been traditionally used for the treatment of several illnesses. Our previous studies showed that PK was highly cytotoxicity against liver cancer cells. The detailed mechanism of anticancer action of 50% hydro-ethanolic extract of PK's twig was, therefore, investigated in hepatocellular carcinoma HepG2 cells. Cytotoxicity of PK was determined by using NR assay, followed by determination of the mode of cell death by flow cytometry. The apoptosis-inducing effect was determined based on caspases activity, mitochondria membrane potential change, and expression of proteins related to apoptosis by western blot. The biomolecular alteration in the PK-treated HepG2 cells was investigated by FTIR microspectroscopy. Inhibition of topoisomerase I enzyme was determined by using DNA relaxation assay. Results showed that PK displayed high selective cytotoxicity and induced apoptosis against HepG2. FTIR microspectroscopy indicated that PK altered major biomolecules in HepG2 different from melphalan (a positive control), indicating a different mechanism of anticancer action. PK induced apoptotic cell death through the intrinsic pathway by increasing caspases 9 and 3/7 activity, increasing Bax, and decreasing Bcl-2 expression leading to mitochondrial membrane potential changes. PK also inhibited Top I and PARP activity that triggered an intrinsic apoptotic pathway. The phytochemical test presented terpenoids (i.e., α-pinene confirmed by GC-MS), alkaloids, steroids, xanthone, reducing sugar, and saponin. α-Pinene exhibited low cytotoxicity against HepG2, therefore, several terpene derivatives may work synergistically for inducing apoptosis. Our data demonstrated that PK has the potential for further study with chemotherapeutic purposes.
Collapse
Affiliation(s)
- Piman Pocasap
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Research Institute for Human High Performance and Health Promotion, Khon Kaen University, 40002, Thailand.
| | - Apiyada Nonpunya
- Merz Healthcare (Thailand) Company Limited, Bangkok 10110 Thailand.
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, 40002, Thailand; Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
11
|
Li L, Wu J, Yang L, Wang H, Xu Y, Shen K. Fourier Transform Infrared Spectroscopy: An Innovative Method for the Diagnosis of Ovarian Cancer. Cancer Manag Res 2021; 13:2389-2399. [PMID: 33737836 PMCID: PMC7965685 DOI: 10.2147/cmar.s291906] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy due to the late diagnoses at advanced stages, drug resistance and the high recurrence rate. Thus, there is an urgent need to develop new techniques to diagnose and monitor ovarian cancer patients. Fourier transform infrared (FTIR) spectroscopy has great potential in the diagnosis of this disease, as well as the real-time monitoring of cancer development and chemoresistance. As a noninvasive, simple and convenient technique, it can not only distinguish the molecular differences between normal and malignant tissues, but also be used to identify the characteristics of different types of ovarian cancer. FTIR spectroscopy is also widely used in monitoring cancer cells in response to antitumor drugs, distinguishing cells in different growth states, and identifying new synthetic drugs. In this paper, the applications of FTIR spectroscopy for ovarian cancer diagnosis and other works carried out so far are described in detail.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
| | - Huizi Wang
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
12
|
Fraga-Corral M, Carpena M, Garcia-Oliveira P, Pereira AG, Prieto MA, Simal-Gandara J. Analytical Metabolomics and Applications in Health, Environmental and Food Science. Crit Rev Anal Chem 2020; 52:712-734. [DOI: 10.1080/10408347.2020.1823811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - A. G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| |
Collapse
|
13
|
Felgueiras J, Silva JV, Nunes A, Fernandes I, Patrício A, Maia N, Pelech S, Fardilha M. Investigation of spectroscopic and proteomic alterations underlying prostate carcinogenesis. J Proteomics 2020; 226:103888. [DOI: 10.1016/j.jprot.2020.103888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
|
14
|
Gavgiotaki E, Filippidis G, Tsafas V, Bovasianos S, Kenanakis G, Georgoulias V, Tzardi M, Agelaki S, Athanassakis I. Third Harmonic Generation microscopy distinguishes malignant cell grade in human breast tissue biopsies. Sci Rep 2020; 10:11055. [PMID: 32632110 PMCID: PMC7338369 DOI: 10.1038/s41598-020-67857-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/10/2020] [Indexed: 11/25/2022] Open
Abstract
The ability to distinguish and grade malignant cells during surgical procedures in a fast, non-invasive and staining-free manner is of high importance in tumor management. To this extend, Third Harmonic Generation (THG), Second Harmonic Generation (SHG) and Fourier-Transform Infrared (FTIR) spectroscopy were applied to discriminate malignant from healthy cells in human breast tissue biopsies. Indeed, integration of non-linear processes into a single, unified microscopy platform offered complementary structural information within individual cells at the submicron level. Using a single laser beam, label-free THG imaging techniques provided important morphological information as to the mean nuclear and cytoplasmic area, cell volume and tissue intensity, which upon quantification could not only distinguish cancerous from benign breast tissues but also define disease severity. Simultaneously, collagen fibers that could be detected by SHG imaging showed a well structured continuity in benign tumor tissues, which were gradually disoriented along with disease severity. Combination of THG imaging with FTIR spectroscopy could provide a clearer distinction among the different grades of breast cancer, since FTIR analysis showed increased lipid concentrations in malignant tissues. Thus, the use of non-linear optical microscopy can be considered as powerful and harmless tool for tumor cell diagnostics even during real time surgery procedures.
Collapse
Affiliation(s)
- Evangelia Gavgiotaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece.,Medical School, University of Crete, 70013, Heraklion, Crete, Greece
| | - George Filippidis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece.
| | - Vassilis Tsafas
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece.,Department of Physics, University of Crete, 70013, Heraklion, Crete, Greece
| | - Savvas Bovasianos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece.,Department of Physics, University of Crete, 70013, Heraklion, Crete, Greece
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece
| | | | - Maria Tzardi
- Medical School, University of Crete, 70013, Heraklion, Crete, Greece
| | - Sofia Agelaki
- Medical School, University of Crete, 70013, Heraklion, Crete, Greece
| | - Irene Athanassakis
- Department of Biology, University of Crete, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
15
|
Sablinskas V, Bandzeviciute R, Velicka M, Ceponkus J, Urboniene V, Jankevicius F, Laurinavičius A, Dasevičius D, Steiner G. Fiber attenuated total reflection infrared spectroscopy of kidney tissue during live surgery. JOURNAL OF BIOPHOTONICS 2020; 13:e202000018. [PMID: 32249545 DOI: 10.1002/jbio.202000018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
More than 90% of solid kidney tumors are cancerous and have to be treated by surgical resection where surgical outcomes and patient prognosis are dependent on the tumor discrimination. The development of alternative approaches based on a new generation of fiber attenuated total reflection (ATR) probes could aid tumor identification even under intrasurgical conditions. Herein, fiber ATR IR spectroscopy is employed to distinguish normal and cancerous kidney tissues. Freshly resected tissue samples from 34 patients are investigated under nearly native conditions. Spectral marker bands that allow a reliable discrimination between tumor and normal tissue are identified by a supervised classification algorithm. The absorbance values of the bands at 1025, 1155 and 1240 cm-1 assigned to glycogen and fructose 1,6-bisphosphatase are used as the clearest markers for the tissue discrimination. Absorbance threshold values for tumor and normal tissue are determined by discriminant analysis. This new approach allows the surgeon to make a clinical diagnosis.
Collapse
Affiliation(s)
- Valdas Sablinskas
- Institute of Chemical Physics, Vilnius University, Vilnius, Lithuania
| | | | - Martynas Velicka
- Institute of Chemical Physics, Vilnius University, Vilnius, Lithuania
| | - Justinas Ceponkus
- Institute of Chemical Physics, Vilnius University, Vilnius, Lithuania
| | - Vidita Urboniene
- Institute of Chemical Physics, Vilnius University, Vilnius, Lithuania
| | - Feliksas Jankevicius
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
| | - Arvydas Laurinavičius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Darius Dasevičius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Gerald Steiner
- Faculty of Medicine Carl Gustav Carus, Clinical Sensoring and Monitoring, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
16
|
FTIR Microspectroscopy for the Assessment of Mycoplasmas in HepG2 Cell Culture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To assess the presence and absence of mycoplasma contamination in cell culture, Fourier transform infrared (FTIR) microspectroscopy, coupled with multivariate analysis, was deployed to determine the biomolecular changes in hepatocellular carcinoma cells, HepG2, before and after mycoplasma contamination. The contaminated HepG2 cells were treated with antibiotic BM-Cyclin to decontaminate the mycoplasma, and polymerase chain reaction (PCR) was then performed to confirm the presence or the absence of mycoplasma contamination. The contaminated and decontaminated HepG2 cells were analyzed by FTIR microspectroscopy with principal component analysis (PCA) and peak integral area analysis. The results showed that the FTIR spectra of contaminated HepG2 cells demonstrated the alteration in the IR spectra corresponding to the lipid, protein, and nucleic acid regions. PCA analysis distinguished the spectral differences between the groups of mycoplasma-contaminated and -decontaminated cells. The PCA loading plots suggest that lipid and protein are the main contributed molecules for the difference between these two cell groups. Peak integral area analysis illustrated the increase of lipid and nucleic acid and the decrease of protein contents in the contaminated HepG2 cells. FTIR microspectroscopy is, therefore, proven to be a potential tool for assessing mycoplasma removal by monitoring biomolecular alterations in cell culture.
Collapse
|
17
|
Gieroba B, Arczewska M, Sławińska-Brych A, Rzeski W, Stepulak A, Gagoś M. Prostate and breast cancer cells death induced by xanthohumol investigated with Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118112. [PMID: 32014658 DOI: 10.1016/j.saa.2020.118112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Fourier Transform Infrared spectroscopy was applied to detect in vitro cell death induced in prostate (PC-3) and breast (T47D) cancer cell lines treated with xanthohumol (XN). After incubation of the cancer cells with XN, specific spectral shifts in the infrared spectra arising from selected cellular components were identified that reflected biochemical changes characteristic for apoptosis and necrosis. Detailed analysis of specific absorbance intensity ratios revealed the compositional changes in the secondary structure of proteins and membrane lipids. In this study, for the first time we examined the changes in these molecular components and linked them to deduce the involvement of molecular mechanisms in the XN-induced death of the selected cancer cells. We showed that XN concentration-dependent changes were attributed to phospholipid ester carbonyl groups, especially in the case of T47D cells, suggesting that XN acts as an inhibitor of cell proliferation. Additionally, we observed distinct changes in the region assigned to the absorption of DNA, which were correlated with a specific marker of cell death and dependent on the XN dose and the type of cancer cells. The microscopic observation and flow cytometry analysis revealed that the decrease in cancer cell viability was mainly related to the induction of necrotic cell death. Moreover, the T47D cells were slightly more sensitive to XN than the PC-3 cells. Considering the results obtained, it can be assumed that apoptosis and necrosis induced by XN may contribute to the anti-proliferative and cytotoxic properties of this flavonoid against cancer cell lines PC-3 and T47D.
Collapse
Affiliation(s)
- Barbara Gieroba
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Marta Arczewska
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Wojciech Rzeski
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; Department of Medical Biology, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
18
|
Breast cancer detection by ATR-FTIR spectroscopy of blood serum and multivariate data-analysis. Talanta 2020; 214:120857. [PMID: 32278436 DOI: 10.1016/j.talanta.2020.120857] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Detection of breast cancer has particular importance for the diagnosis of cancer diseases. This is the most common type of cancer among women. Breast cancer is a malignant tumor of the glandular tissue of the breast. It is proposed to use infrared spectroscopy of blood serum as a simple and quick way to detect breast cancer. The paper presents the results of research using the methods of multivariate processing of IR spectra of human blood serum obtained by ATR-FTIR spectroscopy. The paper presents the results of research using the methods of multivariate processing of IR spectra of human blood serum obtained by ATR-FTIR spectroscopy. A sufficiently large sample of patients and healthy donors was diagnosed. Blood samples are examined from 66 patients who are clinically diagnosed with breast cancer and 80 healthy volunteers. A feature of the applied approach was a combination of the method of principal component analysis (PCA) and principal component regression (PCR) for processing the IR spectra of blood serum. The PCA method allows us to determine the spectral bands referring for the intensity differences between the control group and the patient group. Shown, that the range of 1306-1250cm-1 in the IR spectrum of blood serum is diagnostically significant for breast cancer. This range corresponds to the vibrations of several functional groups of DNA and RNA, which play a key role in discrimination in breast cancer screening using ATR-FTIR spectroscopy. It is shown that the proposed method has advantages in ease of use for clinical diagnosis and gives good results for the identification of breast cancer. The values of sensitivity (92.3%) and specificity (87.1%) obtained using the PCR method are close to those of mammography and ultrasound. This indicates the possibility of using this method in real clinical laboratory diagnostics.
Collapse
|
19
|
Rakib F, Ali CM, Yousuf M, Afifi M, Bhatt PR, Ullah E, Al-Saad K, Ali MHM. Investigation of Biochemical Alterations in Ischemic Stroke Using Fourier Transform Infrared Imaging Spectroscopy-A Preliminary Study. Brain Sci 2019; 9:brainsci9110293. [PMID: 31717715 PMCID: PMC6895834 DOI: 10.3390/brainsci9110293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: Brain damage, long-term disability and death are the dreadful consequences of ischemic stroke. It causes imbalance in the biochemical constituents that distorts the brain dynamics. Understanding the sub-cellular alterations associated with the stroke will contribute to deeper molecular understanding of brain plasticity and recovery. Current routine approaches examining lipid and protein biochemical changes post stoke can be difficult. Fourier Transform Infrared (FTIR) imaging spectroscopy can play a vital role in detecting these molecular alterations on a sub-cellular level due to its high spatial resolution, accuracy and sensitivity. This study investigates the biochemical and molecular changes in peri-infract zone (PIZ) (contiguous area not completely damaged by stroke) and ipsi-lesional white matter (WM) (right below the stroke and PIZ regions) nine weeks post photothrombotic ischemic stroke in rats. Materials and Methods: FTIR imaging spectroscopy and transmission electron microscopy (TEM) techniques were applied to investigate brain tissue samples while hematoxylin and eosin (H&E) stained images of adjacent sections were prepared for comparison and examination the morphological changes post stroke. Results: TEM results revealed shearing of myelin sheaths and loss of cell membrane, structure and integrity after ischemic stroke. FTIR results showed that ipsi-lesional PIZ and WM experienced reduction in total protein and total lipid content compared to contra-lesional hemisphere. The lipid/protein ratio reduced in PIZ and adjacent WM indicated lipid peroxidation, which results in lipid chain fragmentation and an increase in olefinic content. Protein structural change is observed in PIZ due to the shift from random coli and α-helical structures to β-sheet conformation. Conclusion: FTIR imaging bio-spectroscopy provide novel biochemical information at sub-cellular levels that be difficult to be obtained by routine approaches. The results suggest that successful therapeutic strategy that is based on administration of anti-oxidant therapy, which could reduce and prevent neurotoxicity by scavenging the lipid peroxidation products. This approach will mitigate tissue damage in chronic ischemic period. FTIR imaging bio-spectroscopy can be used as a powerful tool and offer new approach in stroke and neurodegenerative diseases research.
Collapse
Affiliation(s)
- Fazle Rakib
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Carmen M. Ali
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Mohammed Yousuf
- Central Laboratory Unit (CLU), Qatar University, Doha 2713, Qatar;
| | - Mohammed Afifi
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Pooja R. Bhatt
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Ehsan Ullah
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar;
| | - Khalid Al-Saad
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
- Correspondence: (K.A.-S.); (M.H.M.A.)
| | - Mohamed H. M. Ali
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar
- Qatar National Library, Doha 5825, Qatar
- Correspondence: (K.A.-S.); (M.H.M.A.)
| |
Collapse
|
20
|
Sarkar R, Kishida S, Kishida M, Nakamura N, Kibe T, Karmakar D, Chaudhuri CR, Barui A. Effect of cigarette smoke extract on mitochondrial heme-metabolism: An in vitro model of oral cancer progression. Toxicol In Vitro 2019; 60:336-346. [PMID: 31247333 DOI: 10.1016/j.tiv.2019.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 11/23/2022]
Abstract
Tobacco smoking is considered as one of the major risk factors for development of oral cancer. In vitro studies indicate that cigarette smoke initiates transformation of epithelial cells toward development of oral cancer through altering mitochondrial metabolic pathways. However the present in vitro models need to be improved to correlate these molecular changes with epithelial transformations. In present study, we investigated the association of mitochondrial metabolic events with oral cancer progression under cigarette smoke extract (CSE). In this regard, an in vitro model of oral keratinocyte cell line (MOE1A) was developed by exposing them with different concentrations of CSE. Alterations in cellular phenomena were confirmed by Fourier-transform infrared spectroscopy (FTIR) study, which indicated changes in important functional groups of CSE-induced oral cells. Enhanced reactive oxygen species (ROS) of exposed cells altered the mitochondrial metabolic activities in terms of increased mitochondrial mass and DNA content. Further, mitochondrial heme-metabolism was investigated and real-time PCR study showed altered expression of important genes like ALAS1, ABCB6, CPOX, FECH, HO-1. Both transcriptomic and proteomic studies showed up- and down-regulation of important biomarkers related to cellular cancer progression. Overall data suggest that CSE alters mitochondrial heme metabolic pathway and initiates cancer progression through modifying cellar biomarkers in oral epithelial cells.
Collapse
Affiliation(s)
- Ripon Sarkar
- Centre for Healthcare Science and Technology, Indian Institute of Engineering of Science and Technology Shibpur, Howrah 711103, India
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Michiko Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Norifumi Nakamura
- Department of Oral & Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Toshiro Kibe
- Department of Oral & Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | | | - Chirasree Roy Chaudhuri
- Department of Electronics & Telecommunication Engineering, Indian Institute of Engineering of Science and Technology Shibpur, Howrah 711103, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering of Science and Technology Shibpur, Howrah 711103, India.
| |
Collapse
|
21
|
Abstract
Fourier transform-infrared spectroscopy (FT-IR) represents an attractive molecular diagnostic modality for translation to the clinic, where comprehensive chemical profiling of biological samples may revolutionize a myriad of pathways in clinical settings. Principally, FT-IR provides a rapid, cost-effective platform to obtain a molecular fingerprint of clinical samples based on vibrational transitions of chemical bonds upon interaction with infrared light. To date, considerable research activities have demonstrated competitive to superior performance of FT-IR strategies in comparison to conventional techniques, with particular promise for earlier, accessible disease diagnostics, thereby improving patient outcomes. However, amidst the changing healthcare landscape in times of aging populations and increased prevalence of cancer and chronic disease, routine adoption of FT-IR within clinical laboratories has remained elusive. Hence, this perspective shall outline the significant clinical potential of FT-IR diagnostics and subsequently address current barriers to translation from the perspective of all stakeholders, in the context of biofluid, histopathology, cytology, microbiology, and biomarker discovery frameworks. Thereafter, future perspectives of FT-IR for healthcare will be discussed, with consideration of recent technological advances that may facilitate future clinical translation.
Collapse
Affiliation(s)
- Duncan Finlayson
- Centre for Doctoral Training in Medical Devices and Health Technologies, Department of Biomedical Engineering , University of Strathclyde , Wolfson Centre, 106 Rottenrow , Glasgow G4 0NW , U.K.,WestCHEM , Department of Pure and Applied Chemistry , Technology and Innovation Centre, 99 George Street , Glasgow G1 1RD , U.K
| | - Christopher Rinaldi
- Centre for Doctoral Training in Medical Devices and Health Technologies, Department of Biomedical Engineering , University of Strathclyde , Wolfson Centre, 106 Rottenrow , Glasgow G4 0NW , U.K.,WestCHEM , Department of Pure and Applied Chemistry , Technology and Innovation Centre, 99 George Street , Glasgow G1 1RD , U.K
| | - Matthew J Baker
- WestCHEM , Department of Pure and Applied Chemistry , Technology and Innovation Centre, 99 George Street , Glasgow G1 1RD , U.K.,ClinSpec Diagnostics Ltd. , Technology and Innovation Centre, 99 George Street , Glasgow G11RD , U.K
| |
Collapse
|
22
|
Chrabaszcz K, Jasztal A, Smęda M, Zieliński B, Blat A, Diem M, Chlopicki S, Malek K, Marzec KM. Label-free FTIR spectroscopy detects and visualizes the early stage of pulmonary micrometastasis seeded from breast carcinoma. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3574-3584. [DOI: 10.1016/j.bbadis.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022]
|
23
|
Latini G, De Felice C, Barducci A, Dipaola L, Gentile M, Andreassi MG, Correale M, Bianciardi G. Clinical biomarkers for cancer recognition and prevention: A novel approach with optical measurements. Cancer Biomark 2018; 22:179-198. [PMID: 29689703 DOI: 10.3233/cbm-170050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is the most important cause of death worldwide, and early cancer detection is the most fundamental factor for efficacy of treatment, prognosis, and increasing survival rate. Over the years great effort has been devoted to discovering and testing new biomarkers that can improve its diagnosis, especially at an early stage. Here we report the potential usefulness of new, easily applicable, non-invasive and relatively low-cost clinical biomarkers, based on abnormalities of oral mucosa spectral reflectance and fractal geometry of the vascular networks in several different tissues, for identification of hereditary non-polyposis colorectal cancer carriers as well for detection of other tumors, even at an early stage. In the near future the methodology/technology of these procedures should be improved, thus making possible their applicability worldwide as screening tools for early recognition and prevention of cancer.
Collapse
Affiliation(s)
- Giuseppe Latini
- Neonatal Intensive Care Unit, Perrino Hospital Brindisi-Italy, Brindisi, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Policlinico "Le Scotte" viale Bracci, Siena, Italy
| | | | - Lucia Dipaola
- Research Unit of Lecce, Clinical Physiology Institute, National Research Council of Italy, Rome, Italy
| | - Mattia Gentile
- Medical Genetics Unit, IRCCS S. De Bellis, Castellana Grotte, Bari, Italy
| | - Maria Grazia Andreassi
- Genetics Research Unit, Clinical Physiology Institute, National Research Council of Italy, Rome, Italy
| | - Mario Correale
- Clinical Pathology Unit, IRCCS S. De Bellis, Castellana Grotte, Bari, Italy
| | - Giorgio Bianciardi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
24
|
Grzelak MM, Wróbel PM, Lankosz M, Stęgowski Z, Chmura Ł, Adamek D, Hesse B, Castillo-Michel H. Diagnosis of ovarian tumour tissues by SR-FTIR spectroscopy: A pilot study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:48-55. [PMID: 29859492 DOI: 10.1016/j.saa.2018.05.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/27/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Ovarian cancer is the seventh most common cancer among women across the world with very high mortality rates. Histology is considered the gold standard for tumour diagnosis. FTIR spectroscopy is relies on registering biochemical differences in the samples analysed, including biological specimens. Therefore, the Synchrotron radiation based-Fourier transform infrared spectroscopy (SR-FTIR) was used for the preliminary investigation of the molecular composition of the human, non-fixed ovarian neoplastic tissues with different type of biological potential. The study that was carried out on thin tissue sections, placed on barium fluoride infrared windows, was focused on investigating spatial distribution of the biochemical markers in various ovarian tumours. Since the structural constituents of tissues accumulate different molecules which may correspond to the specific type of ovarian tumours, the main goal of this study was to check if the mean intensities of the spectral lines of some bio-molecules can be treated as ovarian cancer bio-indicators. Moreover, an attempt to identify and understand the underlying biochemical changes associated with the disease was carried out. The major spectral differences in the frequency and intensities were identified as bonds of lipids, protein massif and nucleic acids. The results obtained suggest that Fourier transform infrared spectroscopy can be used as a supporting tool in the analysis of neoplastic ovarian tissue.
Collapse
Affiliation(s)
- M M Grzelak
- AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - P M Wróbel
- AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - M Lankosz
- AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Z Stęgowski
- AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Ł Chmura
- Chair of Pathomorphology, Faculty of Medicine, Jagiellonian University, Grzegórzecka 16, 31-531 Krakow, Poland
| | - D Adamek
- Chair of Pathomorphology, Faculty of Medicine, Jagiellonian University, Grzegórzecka 16, 31-531 Krakow, Poland
| | - B Hesse
- European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France
| | - H Castillo-Michel
- European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France
| |
Collapse
|
25
|
Chaber R, Łach K, Arthur CJ, Raciborska A, Michalak E, Ciebiera K, Bilska K, Drabko K, Cebulski J. Prediction of Ewing Sarcoma treatment outcome using attenuated tissue reflection FTIR tissue spectroscopy. Sci Rep 2018; 8:12299. [PMID: 30120284 PMCID: PMC6098133 DOI: 10.1038/s41598-018-29795-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/18/2018] [Indexed: 01/10/2023] Open
Abstract
Ewing sarcoma is the second most common type of primary bone cancer and predominantly affects children and young people. Improved outcome prediction is key to delivering risk-adjusted, appropriate and effective care to cancer patients. Advances in the Fourier Transform Infrared (FTIR) spectroscopy of tissues enable it to be a non-invasive method to obtain information about the biochemical content of any biological sample. In this retrospective study, attenuated tissue reflection FTIR spectroscopy of biopsy samples from paediatric patients reveals spectral features that are diagnostic for Ewing Sarcoma. Furthermore, our results suggest that spectral features such as these may be of value for the prediction of treatment outcome independent to well-known, routinely used risk factors.
Collapse
Affiliation(s)
- Radosław Chaber
- Clinic of Paediatric Oncology and Haematology, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland.
| | - Kornelia Łach
- Clinic of Paediatric Oncology and Haematology, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | | | - Anna Raciborska
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, Warsaw, Poland
| | - Elżbieta Michalak
- Department of Pathology, Institute of Mother and Child, Warsaw, Poland
| | | | - Katarzyna Bilska
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, Warsaw, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Medical University of Lublin, Lublin, Poland
| | - Józef Cebulski
- Center for Innovation and Transfer of Natural Sciences and Engineering Knowledge, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
26
|
Torres C, Grippo PJ. Pancreatic cancer subtypes: a roadmap for precision medicine. Ann Med 2018; 50:277-287. [PMID: 29537309 PMCID: PMC6151873 DOI: 10.1080/07853890.2018.1453168] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/25/2018] [Accepted: 03/09/2018] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second cause of cancer-related deaths by 2020. Although it has traditionally been approached as a disease, accumulated evidences point to the clinical heterogeneity of this disease, which translate into disparity in outcomes among the patients. Much emphasis has been put into patient classification introducing a platform for more tailored therapies. In the last 10 years, there have been important advances in the understanding of the molecular pathogenesis of PDAC, which has culminated with a comprehensive integrated genomic analysis from RNA expression profiles. Bailey et al. defined four subtypes and the different transcriptional networks underlying them. Firstly, we briefly describe and compare different subtyping approaches, which are mostly based on tissue mRNA expression analysis. We propose that these latest approaches to disease classification embrace not only those patients that are surgically resectable (20%), but even patients ineligible for surgery. Such considerations will include possible reclassification of these specific subtypes, enabling more personalized diagnosis and individualized treatment. The ultimate goal of this review is to identify current challenges in this area and summarize current efforts in developing clinical modalities that can effectively identify these subtypes in order to advance Precision Medicine. KEY MESSAGES • Pancreatic cancer can no longer be considered as one disease. • The heterogeneity underlying pancreatic cancer patients makes therapeutic options based on one-size-fits-all approach ineffective. • Identifying patients that could benefit from a specific treatment would help to avoid futile therapy approaches and to improve outcomes and quality of life of those whose long-term survival is unpromising.
Collapse
Affiliation(s)
- Carolina Torres
- a Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| | - Paul J Grippo
- a Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
27
|
Rymsza T, Ribeiro EA, de Carvalho LFDCES, Bhattacharjee T, de Azevedo Canevari R. Human papillomavirus detection using PCR and ATR-FTIR for cervical cancer screening. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:238-246. [PMID: 29454252 DOI: 10.1016/j.saa.2018.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
The human papillomavirus (HPV) genital infection is considered one of the most common sexually transmitted diseases worldwide, and has been associated with cervical cancer. The objective of this study was to investigate the efficacy of the diagnostic methods: polymerase chain reaction (PCR) and Fourier transform infrared (FTIR) equipped with an ATR (Attenuated Total Reflectance) unit (Pike Tech) spectroscopy, to diagnose HPV infection in women undergoing gynecological examination. Seventeen patients (41.46%) of the 41 patients analyzed were diagnosed with exophytic/condyloma acuminate lesions by clinical analysis, 29 patients (70.7%) (G1 group) of the 41 patients, showed positive result for HPV cell injury by oncotic colpocitology and 12 patients (29.3%) (G2 group), presented negative result for cellular lesion and absence of clinical HPV lesion. Four samples were obtained per patient, which were submitted oncotic colpocitology analysis (Papanicolau staining, two samples), PCR (one sample) and ATR-FTIR analysis (one sample). L1 gene was amplified by PCR technique with specific GP5+/GP6+ and MY09/MY11 primers. PCR results were uniformly positive for presence of HPV in all analyzed samples. Multivariate analysis of ATR-FTIR spectra suggests no significant biochemical changes between groups and no clustering formed, concurring with results of PCR. This study suggests that PCR and ATR-FTIR are highly sensitive technique for HPV detection.
Collapse
Affiliation(s)
- Taciana Rymsza
- Laboratório de Biologia Molecular do Câncer, Universidade do Vale do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José dos Campos, 12244-000 São Paulo, SP, Brazil
| | - Eliane Aline Ribeiro
- Laboratório de Biologia Molecular do Câncer, Universidade do Vale do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José dos Campos, 12244-000 São Paulo, SP, Brazil
| | - Luis Felipe das Chagas E Silva de Carvalho
- Laboratório de Espectroscopia Vibracional Biomédica, Universidade do Vale do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José dos Campos, 12244-000 São Paulo, SP, Brazil; Departamento de Odontologia, Universidade de Taubaté, UNITAU, Rua dos Operários 53, Taubaté, 12020-270 São Paulo, SP, Brazil
| | - Tanmoy Bhattacharjee
- Laboratório de Nanosensores, Universidade do Vale do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José dos Campos, 12244-000 São Paulo, SP, Brazil
| | - Renata de Azevedo Canevari
- Laboratório de Biologia Molecular do Câncer, Universidade do Vale do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José dos Campos, 12244-000 São Paulo, SP, Brazil.
| |
Collapse
|
28
|
Yao J, Li Q, Zhou B, Wang D, Wu R. Advantages of infrared transflection micro spectroscopy and paraffin-embedded sample preparation for biological studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:25-30. [PMID: 29367023 DOI: 10.1016/j.saa.2018.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
Fourier-Transform Infrared micro-spectroscopy is an excellent method for biological analyses. In this paper, series metal coating films on ITO glass were prepared by the electrochemical method and the different thicknesses of paraffin embedding rat's brain tissue on the substrates were studied by IR micro-spetroscopy in attenuated total reflection (ATR) mode and transflection mode respectively. The Co-Ni-Cu alloy coating film with low cost is good reflection substrates for the IR analysis. The infrared microscopic transflection mode needs not to touch the sample at all and can get the IR spectra with higher signal to noise ratios. The Paraffin-embedding method allows tissues to be stored for a long time for re-analysis to ensure the traceability of the sample. Also it isolates the sample from the metal and avoids the interaction of biological tissue with the metals. The best thickness of the tissues is 4 μm.
Collapse
Affiliation(s)
- Jie Yao
- Nanjing Normal University, Nanjing 210023, China.
| | - Qian Li
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bo Zhou
- Nanjing Normal University, Nanjing 210023, China
| | - Dan Wang
- Nanjing Normal University, Nanjing 210023, China
| | - Rie Wu
- Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
29
|
Sarkar R, Chatterjee K, Ojha D, Chakraborty B, Sengupta S, Chattopadhyay D, RoyChaudhuri C, Barui A. Liaison between heme metabolism and bioenergetics pathways-a multimodal elucidation for early diagnosis of oral cancer. Photodiagnosis Photodyn Ther 2018; 21:263-274. [DOI: 10.1016/j.pdpdt.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
|
30
|
Depciuch J, Parlinska-Wojtan M. Comparing dried and liquid blood serum samples of depressed patients: An analysis by Raman and infrared spectroscopy methods. J Pharm Biomed Anal 2018; 150:80-86. [DOI: 10.1016/j.jpba.2017.11.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 11/24/2022]
|
31
|
Chrabaszcz K, Kochan K, Fedorowicz A, Jasztal A, Buczek E, Leslie LS, Bhargava R, Malek K, Chlopicki S, Marzec KM. FT-IR- and Raman-based biochemical profiling of the early stage of pulmonary metastasis of breast cancer in mice. Analyst 2018; 143:2042-2050. [DOI: 10.1039/c7an01883e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of FT-IR and Raman spectroscopies allowed the biochemical profiling of lungs and definition of the spectroscopic biomarkers of the early stage of pulmonary metastasis of breast cancer.
Collapse
Affiliation(s)
- Karolina Chrabaszcz
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
- Centre for Medical Genomics OMICRON
| | - Kamila Kochan
- Centre for Biospectroscopy
- School of Chemistry
- Monash University
- 3800 Australia
| | - Andrzej Fedorowicz
- Chair of Pharmacology
- Jagiellonian University Medical College
- Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
| | - Lisa S. Leslie
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology
- University of Illinois at Urbana–Champaign
- Urbana
- USA
| | - Rohit Bhargava
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology
- University of Illinois at Urbana–Champaign
- Urbana
- USA
- Department of Mechanical Science and Engineering
| | - Kamilla Malek
- Faculty of Chemistry
- Jagiellonian University
- Krakow
- Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
- Chair of Pharmacology
| | - Katarzyna M. Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
- Centre for Medical Genomics OMICRON
| |
Collapse
|
32
|
Cerusico N, Aybar JP, Lopez S, Molina SG, Chavez Jara R, Sesto Cabral ME, Valdez JC, Ben Altabef A, Ramos AN. FTIR spectroscopy of chronic venous leg ulcer exudates: an approach to spectral healing marker identification. Analyst 2018. [DOI: 10.1039/c7an01909b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic venous leg ulcer arises as a venous insufficiency complication and is a cause of great morbidity.
Collapse
Affiliation(s)
- Nicolas Cerusico
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Juan P. Aybar
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Silvana Lopez
- Servicio de Dermatología
- Hospital de Clínicas Presidente Nicolás Avellaneda
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Silvia G. Molina
- Servicio de Dermatología
- Hospital de Clínicas Presidente Nicolás Avellaneda
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Romina Chavez Jara
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Maria Eugenia Sesto Cabral
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Juan C. Valdez
- Instituto de Microbiología
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
- San Miguel de Tucumán
| | - Aida Ben Altabef
- INQUINOA-CONICET
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - Alberto N. Ramos
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| |
Collapse
|
33
|
Different Phases of Breast Cancer Cells: Raman Study of Immortalized, Transformed, and Invasive Cells. BIOSENSORS-BASEL 2016; 6:bios6040057. [PMID: 27916791 PMCID: PMC5192377 DOI: 10.3390/bios6040057] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
Breast cancer is the most prevalent cause of cancer-associated death in women the world over, but if detected early it can be treated successfully. Therefore, it is important to diagnose this disease at an early stage and to understand the biochemical changes associated with cellular transformation and cancer progression. Deregulated lipid metabolism has been shown to contribute to cell transformation as well as cancer progression. In this study, we monitored the biomolecular changes associated with the transformation of a normal cell into an invasive cell associated with breast cancer using Raman microspectroscopy. We have utilized primary normal breast cells, and immortalized, transformed, non-invasive, and invasive breast cancer cells. The Raman spectra were acquired from all these cell lines under physiological conditions. The higher wavenumber (2800–3000 cm−1) and lower wavenumber (700–1800 cm−1) range of the Raman spectrum were analyzed and we observed increased lipid levels for invasive cells. The Raman spectral data were analyzed by principal component–linear discriminant analysis (PC-LDA), which resulted in the formation of distinct clusters for different cell types with a high degree of sensitivity. The subsequent testing of the PC-LDA analysis via the leave-one-out cross validation approach (LOOCV) yielded relatively high identification sensitivity. Additionally, the Raman spectroscopic results were confirmed through fluorescence staining tests with BODIPY and Nile Red biochemical assays. Furthermore, Raman maps from the above mentioned cells under fixed conditions were also acquired to visualize the distribution of biomolecules throughout the cell. The present study shows the suitability of Raman spectroscopy as a non-invasive, label-free, microspectroscopic technique, having the potential of probing changes in the biomolecular composition of living cells as well as fixed cells.
Collapse
|
34
|
Gregório I, Zapata F, García-Ruiz C. Analysis of human bodily fluids on superabsorbent pads by ATR-FTIR. Talanta 2016; 162:634-640. [PMID: 27837882 DOI: 10.1016/j.talanta.2016.10.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/08/2016] [Accepted: 10/15/2016] [Indexed: 01/25/2023]
Abstract
Superabsorbent pads are composed of different layers with different grades of absorbent capacity, being the lower one the most absorbent layer. Due to their complexity, the analysis of bodily fluids on superabsorbent pads is certainly difficult. In this study, semen, vaginal fluid and urine stains placed on superabsorbent pads including sanitary napkins, panty-liners and diapers were non-destructively detected by Attenuated Total Reflectance (ATR) Fourier Transform Infrared spectroscopy (FTIR). In spite of the higher absorbent capacity of the lower layers, this technique was able to detect the three fluids on the upper layer of all pads, showing that bodily fluids are distributed within all layers. Additionally, mixtures of these bodily fluids prepared on superabsorbent pads and cotton were studied, since real forensic investigations involving sexual abuse cases usually deal with mixtures of these fluids. Due to their IR marked protein region (1800-1480cm-1), semen and vaginal fluid were easily distinguished from urine. However, since semen and vaginal fluid have both a high protein composition, that region of their IR signatures were quite similar, except for slight visual differences, that should be further analysed. Therefore, we propose ATR-FTIR as a suitable, presumptive, non-destructive and rapid approach to detect stains of human bodily fluids on the upper layer of superabsorbent pads from sexual crimes.
Collapse
Affiliation(s)
- Inês Gregório
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering and Institute of Research in Police Sciences (IUICP), University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Félix Zapata
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering and Institute of Research in Police Sciences (IUICP), University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Carmen García-Ruiz
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering and Institute of Research in Police Sciences (IUICP), University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
35
|
Oliver KV, Vilasi A, Maréchal A, Moochhala SH, Unwin RJ, Rich PR. Infrared vibrational spectroscopy: a rapid and novel diagnostic and monitoring tool for cystinuria. Sci Rep 2016; 6:34737. [PMID: 27721432 PMCID: PMC5056377 DOI: 10.1038/srep34737] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/13/2016] [Indexed: 11/09/2022] Open
Abstract
Cystinuria is the commonest inherited cause of nephrolithiasis (~1% in adults; ~6% in children) and is the result of impaired cystine reabsorption in the renal proximal tubule. Cystine is poorly soluble in urine with a solubility of ~1 mM and can readily form microcrystals that lead to cystine stone formation, especially at low urine pH. Diagnosis of cystinuria is made typically by ion-exchange chromatography (IEC) detection and quantitation, which is slow, laboursome and costly. More rapid and frequent monitoring of urinary cystine concentration would significantly improve the diagnosis and clinical management of cystinuria. We used attenuated total reflection - Fourier transform infrared spectroscopy (ATR-FTIR) to detect and quantitate insoluble cystine in 22 cystinuric and 5 healthy control urine samples. Creatinine concentration was also determined by ATR-FTIR to adjust for urinary concentration/dilution. Urine was centrifuged, the insoluble fraction re-suspended in 5 μL water and dried on the ATR prism. Cystine was quantitated using its 1296 cm−1 absorption band and levels matched with parallel measurements made using IEC. ATR-FTIR afforded a rapid and inexpensive method of detecting and quantitating insoluble urinary cystine. This proof-of-concept study provides a basis for developing a high-throughput, cost-effective diagnostic method for cystinuria, and for point-of-care clinical monitoring
Collapse
Affiliation(s)
- Katherine V Oliver
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Annalisa Vilasi
- Mass Spectrometry and Proteomics, Institute of Biosciences and Bioresources, National Research Council of Italy, Naples, Italy
| | - Amandine Maréchal
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Shabbir H Moochhala
- UCL Centre for Nephrology, Royal Free Hospital, Pond Street, London NW3 2QG, United Kingdom
| | - Robert J Unwin
- UCL Centre for Nephrology, Royal Free Hospital, Pond Street, London NW3 2QG, United Kingdom
| | - Peter R Rich
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
36
|
Kasar S, Underbayev C, Hassan M, Ilev I, Degheidy H, Bauer S, Marti G, Lutz C, Raveche E, Batish M. Alterations in the mir-15a/16-1 Loci Impairs Its Processing and Augments B-1 Expansion in De Novo Mouse Model of Chronic Lymphocytic Leukemia (CLL). PLoS One 2016; 11:e0149331. [PMID: 26959643 PMCID: PMC4784815 DOI: 10.1371/journal.pone.0149331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
New Zealand Black (NZB) mice, a de novo model of CLL, share multiple characteristics with CLL patients, including decreased expression of miR-15a/16-1. We previously discovered a point mutation and deletion in the 3' flanking region of mir-16-1 of NZB and a similar mutation has been found in a small number of CLL patients. However, it was unknown whether the mutation is the cause for the reduced miR-15a/16-1 expression and CLL development. Using PCR and in vitro microRNA processing assays, we found that the NZB sequence alterations in the mir-15a/16-1 loci result in deficient processing of the precursor forms of miR-15a/16-1, in particular, we observe impaired conversion of pri-miR-15a/16-1 to pre-miR-15a/16-1. The in vitro data was further supported by derivation of congenic strains with replaced mir-15a/16-1 loci at one or both alleles: NZB congenic mice (NmiR+/-) and DBA congenic mice (DmiR-/-). The level of miR-15a/16-1 reflected the configuration of the mir-15a/16-1 loci with DBA congenic mice (DmiR-/-) showing reduced miR-15a levels compared to homozygous wild-type allele, while the NZB congenic mice (NmiR+/-) showed an increase in miR-15a levels relative to homozygous mutant allele. Similar to Monoclonal B-cell Lymphocytosis (MBL), the precursor stage of the human disease, an overall expansion of the B-1 population was observed in DBA congenic mice (DmiR-/-) relative to wild-type (DmiR+/+). These studies support our hypothesis that the mutations in the mir-15a/16-1 loci are responsible for decreased expression of this regulatory microRNA leading to B-1 expansion and CLL development.
Collapse
Affiliation(s)
- Siddha Kasar
- New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, United States of America
| | - Chingiz Underbayev
- New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, United States of America
| | | | - Ilko Ilev
- OSEL/CDRH/FDA White Oak, Maryland, United States of America
| | - Heba Degheidy
- CBER/FDA White Oak, Maryland, United States of America
| | - Steven Bauer
- CBER/FDA White Oak, Maryland, United States of America
| | - Gerald Marti
- OSEL/CDRH/FDA White Oak, Maryland, United States of America
| | - Carol Lutz
- New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, United States of America
| | - Elizabeth Raveche
- New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, United States of America
| | - Mona Batish
- New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, United States of America
- * E-mail:
| |
Collapse
|
37
|
Barlev E, Zelig U, Bar O, Segev C, Mordechai S, Kapelushnik J, Nathan I, Flomen F, Kashtan H, Dickman R, Madhala-Givon O, Wasserberg N. A novel method for screening colorectal cancer by infrared spectroscopy of peripheral blood mononuclear cells and plasma. J Gastroenterol 2016; 51:214-21. [PMID: 26112122 DOI: 10.1007/s00535-015-1095-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/04/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Early detection of colorectal cancer (CRC) can reduce mortality and morbidity. Current screening methods include colonoscopy and stool tests, but a simple low-cost blood test would increase compliance. This preliminary study assessed the utility of analyzing the entire bio-molecular profile of peripheral blood mononuclear cells (PBMCs) and plasma using Fourier transform infrared (FTIR) spectroscopy for early detection of CRC. METHODS Blood samples were prospectively collected from 62 candidates for CRC screening/diagnostic colonoscopy or surgery for colonic neoplasia. PBMCs and plasma were separated by Ficoll gradient, dried on zinc selenide slides, and placed under a FTIR microscope. FTIR spectra were analyzed for biomarkers and classified by principal component and discriminant analyses. Findings were compared among diagnostic groups. RESULTS Significant changes in multiple bands that can serve as CRC biomarkers were observed in PBMCs (p = ~0.01) and plasma (p = ~0.0001) spectra. There were minor but statistically significant differences in both blood components between healthy individuals and patients with benign polyps. Following multivariate analysis, the healthy individuals could be well distinguished from patients with CRC, and the patients with benign polyps were mostly distributed as a distinct subgroup within the overlap region. Leave-one-out cross-validation for evaluating method performance yielded an area under the receiver operating characteristics curve of 0.77, with sensitivity 81.5% and specificity 71.4%. CONCLUSIONS Joint analysis of the biochemical profile of two blood components rather than a single biomarker is a promising strategy for early detection of CRC. Additional studies are required to validate our preliminary clinical results.
Collapse
Affiliation(s)
- Eyal Barlev
- Department of Surgery B, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Udi Zelig
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel.
| | - Omri Bar
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel
| | - Cheli Segev
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel
| | - Shaul Mordechai
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Kapelushnik
- Pediatric Hemato-Oncology Unit, Soroka University Medical Center, Beer-Sheva, Israel
- Faculty of Medicine, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Institute of Hematology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Felix Flomen
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel
| | - Hanoch Kashtan
- Division of General Surgery, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Ram Dickman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Gastroenterology, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Osnat Madhala-Givon
- Department of Surgery B, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Wasserberg
- Department of Surgery B, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Gautam R, Deobagkar-Lele M, Majumdar S, Chandrasekar B, Victor E, Ahmed SM, Wadhwa N, Verma T, Kumar S, Sundaresan NR, Umapathy S, Nandi D. Molecular profiling of sepsis in mice using Fourier Transform Infrared Microspectroscopy. JOURNAL OF BIOPHOTONICS 2016; 9:67-82. [PMID: 25808727 DOI: 10.1002/jbio.201400089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/20/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Sepsis is a life threatening condition resulting from a high burden of infection. It is a major health care problem and associated with inflammation, organ dysfunction and significant mortality. However, proper understanding and delineating the changes that occur during this complex condition remains a challenge. A comparative study involving intra-peritoneal injection of BALB/c mice with Salmonella Typhimurium (infection), lipopolysaccharide (endotoxic shock) or thioglycollate (sterile peritonitis) was performed. The changes in organs and sera were profiled using immunological assays and Fourier Transform Infrared (FTIR) micro-spectroscopy. There is a rapid rise in inflammatory cytokines accompanied with lowering of temperature, respiratory rate and glucose amounts in mice injected with S. Typhimurium or lipopolysaccharide. FTIR identifies distinct changes in liver and sera: decrease in glycogen and protein/lipid ratio and increase in DNA and cholesteryl esters. These changes were distinct from the pattern observed in mice treated with thioglycollate and the differences in the data obtained between the three models are discussed. The combination of FTIR spectroscopy and other biomarkers will be valuable in monitoring molecular changes during sepsis.
Collapse
Affiliation(s)
- Rekha Gautam
- Department of Inorganic and Physical Chemistry and Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Mukta Deobagkar-Lele
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Shamik Majumdar
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Bhagawat Chandrasekar
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Emmanuel Victor
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Syed Moiz Ahmed
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Nitin Wadhwa
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Taru Verma
- Bioengineering program, Indian Institute of Science, Bangalore, 560012, India
| | - Srividya Kumar
- Department of Inorganic and Physical Chemistry and Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | | | - Siva Umapathy
- Department of Inorganic and Physical Chemistry and Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Dipankar Nandi
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
39
|
Wang W, Zhao J, Short M, Zeng H. Real-time in vivo cancer diagnosis using Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2015; 8:527-45. [PMID: 25220508 DOI: 10.1002/jbio.201400026] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 05/02/2023]
Abstract
Raman spectroscopy has becoming a practical tool for rapid in vivo tissue diagnosis. This paper provides an overview on the latest development of real-time in vivo Raman systems for cancer detection. Instrumentation, data handling, as well as oncology applications of Raman techniques were covered. Optic fiber probes designs for Raman spectroscopy were discussed. Spectral data pre-processing, feature extraction, and classification between normal/benign and malignant tissues were surveyed. Applications of Raman techniques for clinical diagnosis for different types of cancers, including skin cancer, lung cancer, stomach cancer, oesophageal cancer, colorectal cancer, cervical cancer, and breast cancer, were summarized. Schematic of a real-time Raman spectrometer for skin cancer detection. Without correction, the image captured on CCD camera for a straight entrance slit has a curvature. By arranging the optic fiber array in reverse orientation, the curvature could be effectively corrected.
Collapse
Affiliation(s)
- Wenbo Wang
- Imaging Unit - Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., V5Z 1L3, Canada
- Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Jianhua Zhao
- Imaging Unit - Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., V5Z 1L3, Canada
- Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Michael Short
- Imaging Unit - Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., V5Z 1L3, Canada
| | - Haishan Zeng
- Imaging Unit - Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., V5Z 1L3, Canada
- Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
40
|
Bunaciu AA, Fleschin Ş, Aboul-Enein HY. Biomedical investigations using Fourier transform-infrared microspectroscopy. Crit Rev Anal Chem 2015; 44:270-6. [PMID: 25391565 DOI: 10.1080/10408347.2013.829389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
One of the most exciting recent developments in infrared spectroscopy has been the coupling of the spectrometer to an infrared microscope. The combination of the new infrared spectrometer and a microscope was a natural thought of scientists in these fields. This development has been so rewarding and so useful in solving today's chemical problems that infrared microspectroscopy has quickly become a significant subclassification of infrared spectroscopy. Infrared microspectroscopy has a much longer history than the recent enthusiasm would imply, however. The great interest in the use of infrared spectroscopy to solve biomedical problems that occurred in recent years shortly spread into the medical and biological fields. The aim of this review is to discuss the new developments in applications of FT-IR microspectroscopy in biomedical analysis, covering the period between 2008 and 2013.
Collapse
Affiliation(s)
- Andrei A Bunaciu
- a SCIENT - Research Center for Instrumental Analysis (S.C. CROMATEC_PLUS S.R.L.) , Bucharest , Romania
| | | | | |
Collapse
|
41
|
Abd El-Hakam R, Khalil S, Mahani R. Dielectric and FT-Raman spectroscopic approach to molecular identification of breast tumor tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:208-212. [PMID: 26142175 DOI: 10.1016/j.saa.2015.06.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
FT-Raman spectra and dielectric properties of benign and malignant women breast tissues in vitro were investigated. FT-Raman spectra for the malignant tissues showed a remarkably decrease in the lipid/protein ratio. Dielectric properties of women breast tissues measured in the low frequency range (42-10(6)Hz) were interpreted in spite of electrode polarization effect. Experimental results showed a contrast between the dielectric properties of malignant (Grade II) and benign tissues within the frequency range studied. The permittivity of malignant to normal breast tissue was found to be 160:1 while it could be 1.3:1 for fibrocystic breast tissues. These findings could contribute to distinguish between two breast tissues. The differences in spectral features between benign and malignant tissues may lead to breast cancer detection.
Collapse
Affiliation(s)
- Rasha Abd El-Hakam
- Spectroscopy Dep., National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, P.O. 12622, Giza, Egypt
| | - Safaa Khalil
- Spectroscopy Dep., National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, P.O. 12622, Giza, Egypt
| | - Ragab Mahani
- Microwave Physics and Dielectrics Dep., National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
42
|
Current Advances in the Application of Raman Spectroscopy for Molecular Diagnosis of Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:561242. [PMID: 26180802 PMCID: PMC4477184 DOI: 10.1155/2015/561242] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 11/24/2022]
Abstract
Raman spectroscopy provides a unique biochemical fingerprint capable of identifying and characterizing the structure of molecules, cells, and tissues. In cervical cancer, it is acknowledged as a promising biochemical tool due to its ability to detect premalignancy and early malignancy stages. This review summarizes the key research in the area and the evidence compiled is very encouraging for ongoing and further research. In addition to the diagnostic potential, promising results for HPV detection and monitoring treatment response suggest more than just a diagnosis prospective. A greater body of evidence is however necessary before Raman spectroscopy is fully validated for clinical use and larger comprehensive studies are required to fully establish the role of Raman spectroscopy in the molecular diagnostics of cervical cancer.
Collapse
|
43
|
Early detection of breast cancer using total biochemical analysis of peripheral blood components: a preliminary study. BMC Cancer 2015; 15:408. [PMID: 25975566 PMCID: PMC4455613 DOI: 10.1186/s12885-015-1414-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/05/2015] [Indexed: 11/23/2022] Open
Abstract
Background Most of the blood tests aiming for breast cancer screening rely on quantification of a single or few biomarkers. The aim of this study was to evaluate the feasibility of detecting breast cancer by analyzing the total biochemical composition of plasma as well as peripheral blood mononuclear cells (PBMCs) using infrared spectroscopy. Methods Blood was collected from 29 patients with confirmed breast cancer and 30 controls with benign or no breast tumors, undergoing screening for breast cancer. PBMCs and plasma were isolated and dried on a zinc selenide slide and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra. Differences in the spectra of PBMCs and plasma between the groups were analyzed as well as the specific influence of the relevant pathological characteristics of the cancer patients. Results Several bands in the FTIR spectra of both blood components significantly distinguished patients with and without cancer. Employing feature extraction with quadratic discriminant analysis, a sensitivity of ~90 % and a specificity of ~80 % for breast cancer detection was achieved. These results were confirmed by Monte Carlo cross-validation. Further analysis of the cancer group revealed an influence of several clinical parameters, such as the involvement of lymph nodes, on the infrared spectra, with each blood component affected by different parameters. Conclusion The present preliminary study suggests that FTIR spectroscopy of PBMCs and plasma is a potentially feasible and efficient tool for the early detection of breast neoplasms. An important application of our study is the distinction between benign lesions (considered as part of the non-cancer group) and malignant tumors thus reducing false positive results at screening. Furthermore, the correlation of specific spectral changes with clinical parameters of cancer patients indicates for possible contribution to diagnosis and prognosis.
Collapse
|
44
|
Huang C, Kino S, Katagiri T, Matsuura Y. Infrared hollow optical fiber probes for reflectance spectral imaging. APPLIED OPTICS 2015; 54:4602-4607. [PMID: 25967522 DOI: 10.1364/ao.54.004602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Systems for infrared reflectance imaging are built with an FT-IR spectrometer, hollow optical fibers, and a high-speed infrared camera. To obtain reflectance images of biological samples, an optical fiber probe equipped with a light source at the distal end and a hybrid fiber probe composed of fibers for beam radiation and ones for image detection have been developed. By using these systems, reflectance spectral images of lipid painted on biomedical hard tissue, which provides reflectance of around 4%, are successfully acquired.
Collapse
|
45
|
Ramer G, Balbekova A, Schwaighofer A, Lendl B. Method for time-resolved monitoring of a solid state biological film using photothermal infrared nanoscopy on the example of poly-L-lysine. Anal Chem 2015; 87:4415-20. [PMID: 25809862 DOI: 10.1021/acs.analchem.5b00241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report time-resolved photothermal infrared nanoscopy measurements across a spectral range of more than 100 cm(-1) (1565 cm(-1) to 1729 cm(-1)) at nanoscale spatial resolution. This is achieved through a custom-built system using broadly tunable external cavity quantum cascade lasers in combination with a commercially available atomic force microscope. The new system is applied to the analysis of conformational changes of a polypeptide (poly-l-lysine) film upon temperature-induced changes of the humidity in the film. Changes of the secondary structure from β-sheet to α-helix could be monitored at a time resolution of 15 s per spectrum. The time-resolved spectra are well comparable to reference measurements acquired with conventional Fourier transform infrared microscopy.
Collapse
Affiliation(s)
- Georg Ramer
- Vienna University of Technology, Institute for Chemical Technologies and Analytics, Getreidemarkt 9/164 UPA, 1060 Vienna, Austria
| | - Anna Balbekova
- Vienna University of Technology, Institute for Chemical Technologies and Analytics, Getreidemarkt 9/164 UPA, 1060 Vienna, Austria
| | - Andreas Schwaighofer
- Vienna University of Technology, Institute for Chemical Technologies and Analytics, Getreidemarkt 9/164 UPA, 1060 Vienna, Austria
| | - Bernhard Lendl
- Vienna University of Technology, Institute for Chemical Technologies and Analytics, Getreidemarkt 9/164 UPA, 1060 Vienna, Austria
| |
Collapse
|
46
|
Wan C, Cao W, Cheng C. Research of Recognition Method of Discrete Wavelet Feature Extraction and PNN Classification of Rats FT-IR Pancreatic Cancer Data. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:564801. [PMID: 25548717 PMCID: PMC4274863 DOI: 10.1155/2014/564801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
Sprague-Dawley (SD) rats' normal and abnormal pancreatic tissues are determined directly by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy method. In order to diagnose earlier stage of SD rats pancreatic cancer rate with FT-IR, a novel method of extraction of FT-IR feature using discrete wavelet transformation (DWT) analysis and classification with the probability neural network (PNN) was developed. The differences between normal pancreatic and abnormal samples were identified by PNN based on the indices of 4 feature variants. When error goal was 0.01, the total correct rates of pancreatic early carcinoma and advanced carcinoma were 98% and 100%, respectively. It was practical to apply PNN on the basis of ATR-FT-IR to identify abnormal tissues. The research result shows the feasibility of establishing the models with FT-IR-DWT-PNN method to identify normal pancreatic tissues, early carcinoma tissues, and advanced carcinoma tissues.
Collapse
Affiliation(s)
- Chayan Wan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Wenqing Cao
- Shandong Exit-Entry Inspection and Quarantine Technology Center, Qingdao 266002, China
| | - Cungui Cheng
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
47
|
Simonova D, Karamancheva I. Application of Fourier Transform Infrared Spectroscopy for Tumor Diagnosis. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0106] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Krishna CM, Kurien J, Mathew S, Rao L, Maheedhar K, Kumar KK, Chowdary MVP. Raman spectroscopy of breast tissues. Expert Rev Mol Diagn 2014; 8:149-66. [DOI: 10.1586/14737159.8.2.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Sheng D, Wu Y, Wang X, Huang D, Chen X, Liu X. Comparison of serum from gastric cancer patients and from healthy persons using FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 116:365-369. [PMID: 23973580 DOI: 10.1016/j.saa.2013.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/16/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
Since serum can reflect human beings' physiological and pathological conditions, FTIR spectroscopy was used to compare gastric cancer patients' serum with healthy persons' serum in this study. The H2959/H2931, H1646/H1550, H1314/H1243, H1453/H1400 and H1080/H1550 ratios were calculated, among these ratios, the H2959/H2931 ratio might be a standard for distinguishing gastric cancer patients from healthy persons. Then curve fitting was processed using Gaussian curves in the 1140-1000 cm(-1) region, and the result showed that the RNA/DNA ratios of gastric cancer patients' serum were obviously lower than those of healthy persons' serum. The results suggest that FTIR spectroscopy may be a potentially useful tool for diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Daping Sheng
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China; The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | | | | | | | | | | |
Collapse
|
50
|
Ghadi FE, Malhotra A, Ghara AR, Dhawan DK. Modulation of Fourier transform infrared spectra and total sialic acid levels by selenium during 1,2 dimethylhydrazine-induced colon carcinogenesis in rats. Nutr Cancer 2013; 65:92-8. [PMID: 23368918 DOI: 10.1080/01635581.2013.741756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study investigated the modulatory potential of selenium supplementation, if any, on Fourier transform infrared (FTIR) spectra in brush border membranes (BBM) of colons and on serum total sialic acid as well as lipid bound sialic acid during 1,2 dimethyl hydrazine (DMH)-induced colorectal carcinogenesis in rats. The FTIR spectra of BBM from the colons of DMH-treated rats revealed a significant increase in the lipid contents but showed a significant decline in the protein contents. Further, decrease in the collagen as well as creatine contents was also noticed in the colons of DMH-treated rats. Supplementation with selenium appreciably restored protein as well as collagen contents and resulted in decreased lipids levels in the colons of DMH-treated rats. Interestingly, a significant increase in the levels of total sialic acid in serum of DMH-treated rats was observed which, however, got moderated significantly upon selenium supplementation. Moreover, no significant changes were observed in the levels of lipid bound sialic acid in all the treated groups as compared to controls. In conclusion, the present study suggested that supplementation of selenium act as a chemopreventive agent and delays considerably the process of colon carcinogenesis.
Collapse
|