1
|
Tarbali S, Dadkhah M, Saadati H. Lipophilic fluorescent products as a potential biomarker of oxidative stress: A link between central (brain) and peripheral (blood). JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:38. [PMID: 39239084 PMCID: PMC11376719 DOI: 10.4103/jrms.jrms_671_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/06/2024] [Accepted: 04/22/2024] [Indexed: 09/07/2024]
Abstract
Oxidative stress plays a key role in brain damage because of the sensitivity of brain tissue to oxidative damage. Biomarkers with easy measurement can be a candidate for reflecting the oxidative stress issue in humans. For this reason, we need to focus on specific metabolic products of the brain. End products of free radical reactions such as malondialdehydes form fluorescent products known as lipophilic fluorescent products (LFPs). The distinctive feature of LFPs is their autofluorescent properties. LFPs are detectable in the brain and cerebrospinal fluid. Furthermore, because of the diffusion into the bloodstream, these lipophilic molecules can be detected in the blood. Accumulations of these compounds produce more reactive oxygen species and increase the sensitivity of cells to oxidative damage. Hence, LFPs can be considered a danger signal for neurons and can be introduced as a strong index of oxidative damage both in the central and in the peripheral.
Collapse
Affiliation(s)
- Sepideh Tarbali
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
2
|
Ali M, Wani SUD, Dey T, Sridhar SB, Qadrie ZL. A common molecular and cellular pathway in developing Alzheimer and cancer. Biochem Biophys Rep 2024; 37:101625. [PMID: 38225990 PMCID: PMC10788207 DOI: 10.1016/j.bbrep.2023.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
Globally cancer and Alzheimer's disease (AD) are two major diseases and still, there is no clearly defined molecular mechanism. There is an opposite relation between cancer and AD which are the proportion of emerging cancer was importantly slower in AD patients, whereas slow emerging AD in patients with cancer. In cancer, regulation of cell mechanisms is interrupted by an increase in cell survival and proliferation, while on the contrary, AD is related to augmented neuronal death, that may be either produced by or associated with amyloid-β (Aβ) and tau deposition. Stated that the probability that disruption of mechanisms takes part in the regulation of cell survival/death and might be implicated in both diseases. The mechanism of actions such as DNA-methylation, genetic polymorphisms, or another mechanism of actions that induce alteration in the action of drugs with significant roles in resolving the finding to repair and live or die might take part in the pathogenesis of these two ailments. The functions of miRNA, p53, Pin1, the Wnt signaling pathway, PI3 KINASE/Akt/mTOR signaling pathway GRK2 signaling pathway, and the pathophysiological role of oxidative stress are presented in this review as potential candidates which hypothetically describe inverse relations between cancer and AD. Innovative materials almost mutual mechanisms in the aetiology of cancer and AD advocates novel treatment approaches. Among these treatment strategies, the most promising use treatment such as tyrosine kinase inhibitor, nilotinib, protein kinase C, and bexarotene.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G Nagar, Nagamagala, Bellur, Karnataka, 571418, India
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore, 560049, India
| | - Shahid Ud Din Wani
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Tathagata Dey
- Department of Pharmaceutical Chemistry, East Point College of Pharmacy, Bangalore, 560049, India
| | - Sathvik B. Sridhar
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates
| | | |
Collapse
|
3
|
Wu L, Arvai S, Wang SHJ, Liu AJ, Xu B. Differential diagnosis of mild cognitive impairment of Alzheimer's disease by Simoa p-tau181 measurements with matching plasma and CSF. Front Mol Neurosci 2024; 16:1288930. [PMID: 38260807 PMCID: PMC10800554 DOI: 10.3389/fnmol.2023.1288930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by a long preclinical phase. Although late-stage AD/dementia may be robustly differentiated from cognitively normal individuals by means of a clinical evaluation, PET imaging, and established biofluid biomarkers, disease differentiation between cognitively normal and various subtypes of mild cognitive impairment (MCI) remains a challenging task. Differential biomarkers for early-stage AD diagnosis with accessible biofluid samples are urgently needed. Misfolded phosphorylated tau aggregates (p-tau) are present in multiple neurodegenerative diseases known as "tauopathies", with the most common being AD. P-tau181 is a well-established p-tau biomarker to differentiate AD dementia from non-AD pathology. However, it is unclear if p-tau181 is capable of diagnosing MCI, an early AD stage, from cognitively normal subjects, or if it can discriminate MCI subtypes amnestic MCI (aMCI) from non-amnestic MCI (naMCI). Here we evaluated the capability of p-tau181 in diagnosing MCI from cognitively normal subjects and discriminating aMCI from naMCI subtypes. We collected matching plasma and CSF samples of a clinically diagnosed cohort of 35 cognitively normal, 34 aMCI, 17 naMCI, and 31 AD dementia cases (total 117 participants) with supplemental CSF Aβ42 and total tau AD biomarker levels and performed Simoa p-tau181 assays. The diagnostic capabilities of Simoa p-tau181 assays to differentiate these cohorts were evaluated. We found (i) p-tau181 can robustly differentiate MCI or aMCI from cognitively normal cohorts with matching plasma and CSF samples, but such differentiation is weaker in diagnosing naMCI from cognitively normal groups, (ii) p-tau181 is not capable of differentiating aMCI from naMCI cohorts, and (iii) either factor of Aβ or total tau burden markedly improved differentiation power to diagnose aMCI from cognitively normal group. Plasma and CSF p-tau181 levels may serve as a promising biomarker for diagnosing aMCI from normal controls in the preclinical phase. But more robust new biomarkers are needed to differentiate naMCI from cognitively normal cases or to discriminate between MCI subtypes, aMCI from naMCI.
Collapse
Affiliation(s)
- Ling Wu
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States
- Duke-UNC Alzheimer’s Disease Research Center, Durham, NC, United States
| | - Stephanie Arvai
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Shih-Hsiu J. Wang
- Duke-UNC Alzheimer’s Disease Research Center, Durham, NC, United States
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Andy J. Liu
- Duke-UNC Alzheimer’s Disease Research Center, Durham, NC, United States
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Bin Xu
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States
- Duke-UNC Alzheimer’s Disease Research Center, Durham, NC, United States
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, United States
| |
Collapse
|
4
|
Chatanaka MK, Sohaei D, Diamandis EP, Prassas I. Beyond the amyloid hypothesis: how current research implicates autoimmunity in Alzheimer's disease pathogenesis. Crit Rev Clin Lab Sci 2023; 60:398-426. [PMID: 36941789 DOI: 10.1080/10408363.2023.2187342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
The amyloid hypothesis has so far been at the forefront of explaining the pathogenesis of Alzheimer's Disease (AD), a progressive neurodegenerative disorder that leads to cognitive decline and eventual death. Recent evidence, however, points to additional factors that contribute to the pathogenesis of this disease. These include the neurovascular hypothesis, the mitochondrial cascade hypothesis, the inflammatory hypothesis, the prion hypothesis, the mutational accumulation hypothesis, and the autoimmunity hypothesis. The purpose of this review was to briefly discuss the factors that are associated with autoimmunity in humans, including sex, the gut and lung microbiomes, age, genetics, and environmental factors. Subsequently, it was to examine the rise of autoimmune phenomena in AD, which can be instigated by a blood-brain barrier breakdown, pathogen infections, and dysfunction of the glymphatic system. Lastly, it was to discuss the various ways by which immune system dysregulation leads to AD, immunomodulating therapies, and future directions in the field of autoimmunity and neurodegeneration. A comprehensive account of the recent research done in the field was extracted from PubMed on 31 January 2022, with the keywords "Alzheimer's disease" and "autoantibodies" for the first search input, and "Alzheimer's disease" with "IgG" for the second. From the first search, 19 papers were selected, because they contained recent research on the autoantibodies found in the biofluids of patients with AD. From the second search, four papers were selected. The analysis of the literature has led to support the autoimmune hypothesis in AD. Autoantibodies were found in biofluids (serum/plasma, cerebrospinal fluid) of patients with AD with multiple methods, including ELISA, Mass Spectrometry, and microarray analysis. Through continuous research, the understanding of the synergistic effects of the various components that lead to AD will pave the way for better therapeutic methods and a deeper understanding of the disease.
Collapse
Affiliation(s)
- Miyo K Chatanaka
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Dorsa Sohaei
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| |
Collapse
|
5
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
6
|
Ahulló-Fuster MA, Ortiz T, Varela-Donoso E, Nacher J, Sánchez-Sánchez ML. The Parietal Lobe in Alzheimer’s Disease and Blindness. J Alzheimers Dis 2022; 89:1193-1202. [DOI: 10.3233/jad-220498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The progressive aging of the population will notably increase the burden of those diseases which leads to a disabling situation, such as Alzheimer’s disease (AD) and ophthalmological diseases that cause a visual impairment (VI). Eye diseases that cause a VI raise neuroplastic processes in the parietal lobe. Meanwhile, the aforementioned lobe suffers a severe decline throughout AD. From this perspective, diving deeper into the particularities of the parietal lobe is of paramount importance. In this article, we discuss the functions of the parietal lobe, review the parietal anatomical and pathophysiological peculiarities in AD, and also describe some of the changes in the parietal region that occur after VI. Although the alterations in the hippocampus and the temporal lobe have been well documented in AD, the alterations of the parietal lobe have been less thoroughly explored. Recent neuroimaging studies have revealed that some metabolic and perfusion impairments along with a reduction of the white and grey matter could take place in the parietal lobe during AD. Conversely, it has been speculated that blinding ocular diseases induce a remodeling of the parietal region which is observable through the improvement of the integration of multimodal stimuli and in the increase of the volume of this cortical region. Based on current findings concerning the parietal lobe in both pathologies, we hypothesize that the increased activity of the parietal lobe in people with VI may diminish the neurodegeneration of this brain region in those who are visually impaired by oculardiseases.
Collapse
Affiliation(s)
- Mónica Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University Complutense of Madrid, Spain
| | - Tomás Ortiz
- Department of Legal Medicine, Psychiatry and Pathology, Faculty of Medicine, University Complutense of Madrid, Spain
| | - Enrique Varela-Donoso
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University Complutense of Madrid, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - M. Luz Sánchez-Sánchez
- Physiotherapy in Motion, Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Sharma L, Sharma A, Kumar D, Asthana MK, Lalhlenmawia H, Kumar A, Bhattacharyya S, Kumar D. Promising protein biomarkers in the early diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1727-1744. [PMID: 35015199 DOI: 10.1007/s11011-021-00847-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an insidious, multifactorial disease that involves the devastation of neurons leading to cognitive impairments. Alzheimer's have compounded pathologies of diverse nature, including proteins as one important factor along with mutated genes and enzymes. Although various review articles have proposed biomarkers, still, the statistical importance of proteins is missing. Proteins associated with AD include amyloid precursor protein, glial fibrillary acidic protein, calmodulin-like skin protein, hepatocyte growth factor, matrix Metalloproteinase-2. These proteins play a crucial role in the AD hypothesis which includes the tau hypothesis, amyloid-beta (Aβ) hypothesis, cholinergic neuron damage, etc. The present review highlights the role of major proteins and their physiological functions in the early diagnosis of AD. Altered protein expression results in cognitive impairment, synaptic dysfunction, neuronal degradation, and memory loss. On the medicinal ground, efforts of making anti-amyloid, anti-tau, anti-inflammatory treatments are on the peak, having these proteins as putative targets. Few proteins, e.g., Amyloid precursor protein results in the formation of non-soluble sticky Aβ40 and Aβ42 monomers that, over time, aggregate into plaques in the cortical and limbic brain areas and neurogranin is believed to regulate calcium-mediated signaling pathways and thus modulating synaptic plasticity are few putative and potential forthcoming targets for developing effective anti-AD therapies. These proteins may help to diagnose the disease early, bode well for the successful discovery and development of therapeutic and preventative regimens for this devasting public health problem.
Collapse
Affiliation(s)
- Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Deepak Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Manish Kumar Asthana
- Department of Humanities & Social Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - H Lalhlenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences, Zemabawk, Aizawl, 796017, India
| | - Ashwani Kumar
- Council of Scientific and Industrial Research, Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173 229, India.
| |
Collapse
|
8
|
Bagheri F, Goudarzi I, Lashkarbolouki T, Elahdadi Salmani M, Goudarzi A, Morley-Fletcher S. The Combined Effects of Perinatal Ethanol and Early-Life Stress on Cognition and Risk-Taking Behavior through Oxidative Stress in Rats. Neurotox Res 2022; 40:925-940. [PMID: 35507233 DOI: 10.1007/s12640-022-00506-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/29/2022]
Abstract
Both prenatal ethanol and early-life stress have been shown to induce reduced risk-taking and explorative behavior as well as cognitive dysfunction in the offspring. In this study, we examined the effect of combined exposure to ethanol and early stress on maternal care, exploratory behavior, memory performances, and oxidative stress in male offspring. Pregnant rats were exposed to ethanol (4 g/kg) from gestational day (GD) 6-to postnatal day (PND) 14 and limited nesting material (LNS) from PND0-PND14 individually or in combination. Maternal behavior was evaluated during diurnal cycle. The level of corticosterone hormone and markers of oxidative stress were evaluated in the pups. Risk-taking and explorative behavior were assessed with the elevated-plus maze (EPM) test and cognitive behavior with the Morris water maze (MWM), novel object recognition (NORT), and object location memory (OLM) tests. In the mothers, perinatal alcohol or LNS either alone or in combination decreased maternal behavior. In the offspring, the combination of the two factors significantly increased the pup's plasma corticosterone concentration in comparison with ethanol and LNS alone. Reduced risk-taking behavior was observed in the ethanol, LNS and ethanol + LNS groups compared with the control group, and this was amplified in the co-exposure of ethanol and LNS groups. The MWM, NORT, and OLM tests revealed spatial and recognition memory impairment in the ethanol and LNS groups. This impairment was more profound in the co-exposure of ethanol and LNS. Also, we observed a significant decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and an increase in malondialdehyde (MDA) level in the hippocampus of ethanol and LNS co-exposed animals as compared with individual exposure of ethanol and LNS. While each factor independently produced similar outcomes, the results indicate that the dual exposure paradigm could significantly strengthen the outcomes.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran.
| | | | | | - Afsaneh Goudarzi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Morley-Fletcher
- UMR 8576, Univ. Lille, CNRS, UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France
| |
Collapse
|
9
|
Structure-constrained combination-based nonlinear association analysis between incomplete multimodal imaging and genetic data for biomarker detection of neurodegenerative diseases. Med Image Anal 2022; 78:102419. [DOI: 10.1016/j.media.2022.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
|
10
|
Assessment of lipophilic fluorescence products in β-amyloid-induced cognitive decline: A parallel track in hippocampus, CSF, plasma and erythrocytes. Exp Gerontol 2021; 157:111645. [PMID: 34843902 DOI: 10.1016/j.exger.2021.111645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Oxidative stress implicates in Alzheimer's disease (AD) pathophysiology, and associates with the creation of end products of free radical reactions, are known as lipophilic fluorescent products (LFPs). This study aimed to evaluate the probable parallel alterations in the spectral properties of the LFPs in the hippocampus tissues, cerebrospinal fluid (CSF), plasma, and erythrocytes during AD model induction by intra-cerebroventricular (ICV) amyloid β-protein fragment 25-35 (Aβ) injection. METHODS Male rats received an intra-ICV injection of Aβ. Hippocampus, CSF, plasma, and erythrocytes were harvested at 5, 14, and 21 days after Aβ injection. The fluorescent intensity of LFPs was assessed by spectrofluorimetry using synchronous fluorescence spectra 25 (SYN 25) and 50 (SYN 50) in the range of 250-500 nm. Hippocampal tissue malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured. Cognitive alterations were evaluated using Morris water maze (MWM) test. RESULTS The parallel significant rise in the fluorescence intensity of LFPs was detected in the hippocampus, CSF, plasma, and erythrocytes, 14, and 21 days after ICV-Aβ injection. These alterations were found in both types of synchronous spectra 25, and 50, and were coincided with hippocampal cognitive decline, the MDA rise, and decrease of SOD activity. There was a positive correlation between hippocampus homogenate, and plasma or CSF rise in fluorescence intensity. CONCLUSION Data showed that the Aβ increased hippocampal MDA, and decreased SOD activity, led to a higher rate of oxidative products and subsequently resulted in an increase in LFPs fluorescence intensity during the development of cognitive decline. LFPs' alterations reflect a comprehensive view of tissue redox status. The fluorescence properties of LFPs indicate their composition, which may pave the way to trace the different pathological states.
Collapse
|
11
|
Monk B, Rajkovic A, Petrus S, Rajkovic A, Gaasterland T, Malinow R. A Machine Learning Method to Identify Genetic Variants Potentially Associated With Alzheimer's Disease. Front Genet 2021; 12:647436. [PMID: 34194466 PMCID: PMC8238203 DOI: 10.3389/fgene.2021.647436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 01/17/2023] Open
Abstract
There is hope that genomic information will assist prediction, treatment, and understanding of Alzheimer's disease (AD). Here, using exome data from ∼10,000 individuals, we explore machine learning neural network (NN) methods to estimate the impact of SNPs (i.e., genetic variants) on AD risk. We develop an NN-based method (netSNP) that identifies hundreds of novel potentially protective or at-risk AD-associated SNPs (along with an effect measure); the majority with frequency under 0.01. For case individuals, the number of "protective" (or "at-risk") netSNP-identified SNPs in their genome correlates positively (or inversely) with their age of AD diagnosis and inversely (or positively) with autopsy neuropathology. The effect measure increases correlations. Simulations suggest our results are not due to genetic linkage, overfitting, or bias introduced by netSNP. These findings suggest that netSNP can identify SNPs associated with AD pathophysiology that may assist with the diagnosis and mechanistic understanding of the disease.
Collapse
Affiliation(s)
- Bradley Monk
- Department of Neurosciences, Center for Neural Circuits and Behavior, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Cognitive Science & Psychology IDP, University of California, San Diego, San Diego, CA, United States
| | - Andrei Rajkovic
- Department of Computer Science, Royal Holloway, University of London, Egham, United Kingdom
| | - Semar Petrus
- Institute for Genomic Medicine, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Aleks Rajkovic
- Department of Pathology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Terry Gaasterland
- Institute for Genomic Medicine, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Roberto Malinow
- Department of Neurosciences, Center for Neural Circuits and Behavior, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
12
|
Paroni G, Bisceglia P, Seripa D. Understanding the Amyloid Hypothesis in Alzheimer's Disease. J Alzheimers Dis 2020; 68:493-510. [PMID: 30883346 DOI: 10.3233/jad-180802] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The amyloid hypothesis (AH) is still the most accepted model to explain the pathogenesis of inherited Alzheimer's disease (IAD). However, despite the neuropathological overlapping with the non-inherited form (NIAD), AH waver in explaining NIAD. Thus, 30 years after its first statement several questions are still open, mainly regarding the role of amyloid plaques (AP) and apolipoprotein E (APOE). Accordingly, a pathogenetic model including the role of AP and APOE unifying IAD and NIAD pathogenesis is still missing. In the present understanding of the AH, we suggested that amyloid-β (Aβ) peptides production and AP formation is a physiological aging process resulting from a systemic age-related decrease in the efficiency of the proteins catabolism/clearance machinery. In this pathogenetic model Aβ peptides act as neurotoxic molecules, but only above a critical concentration [Aβ]c. A threshold mechanism triggers IAD/NIAD onset only when [Aβ]≥[Aβ]c. In this process, APOE modifies [Aβ]c threshold in an isoform-specific way. Consequently, all factors influencing Aβ anabolism, such as amyloid beta precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) gene mutations, and/or Aβ catabolism/clearance could contribute to exceed the threshold [Aβ]c, being characteristic of each individual. In this model, AP formation does not depend on [Aβ]c. The present interpretation of the AH, unifying the pathogenetic theories for IAD and NIAD, will explain why AP and APOE4 may be observed in healthy aging and why they are not the cause of AD. It is clear that further studies are needed to confirm our pathogenetic model. Nevertheless, our suggestion may be useful to better understand the pathogenesis of AD.
Collapse
Affiliation(s)
- Giulia Paroni
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
13
|
Kong W, Zheng Y, Xu W, Gu H, Wu J. Biomarkers of Alzheimer's disease in severe obstructive sleep apnea-hypopnea syndrome in the Chinese population. Eur Arch Otorhinolaryngol 2020; 278:865-872. [PMID: 32303882 DOI: 10.1007/s00405-020-05948-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/26/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Patients with severe obstructive sleep apnea-hypopnea syndrome are often accompanied by symptoms such as decreased cognitive function and daytime sleepiness, while cognitive function is often associated with biomarkers of Alzheimer's disease. Therefore, this study aims to explore the level of Alzheimer's disease biomarkers in the plasma of obstructive sleep apnea-hypopnea syndrome patients as well as the relationship between cognitive function and daytime sleepiness. METHODS Between May and July 2019, 35 patients requiring hospitalization for severe obstructive sleep apnea-hypopnea syndrome and 16 normal control patients were selected from West China Hospital. Alzheimer's disease biomarkers (Aβ40, Aβ42, t-tau, p-tau) in plasma were detected by ELISA in all 51 subjects. The differences in Alzheimer's disease biomarkers between the two groups were compared. In addition, a correlation analysis of disease-related indicators and univariate analysis of the risk factors of obstructive sleep apnea-hypopnea syndrome was conducted using the logistic regression model. RESULTS The plasma levels of Alzheimer's disease biomarkers (Aβ40, t-tau, p-tau) in patients with severe obstructive sleep apnea-hypopnea syndrome were significantly higher than those in the control group (29.24 ± 32.52, 13.18 ± 10.78, p = 0.049; 11.88 ± 7.05, 7.64 ± 4.17, p = 0.037; 26.31 ± 14.41, 17.34 ± 9.12, p = 0.027). Aβ42, Aβ40, t-tau, and p-tau were significantly negatively correlated with mean oxygen saturation, low oxygen saturation and Mini-Mental State examination scale scores, and positively correlated with oxygen desaturation index and Epworth Sleepiness Scale scores. T-tau and p-tau can be used as new risk factors for obstructive sleep apnea-hypopnea syndrome. CONCLUSION Alzheimer's disease biomarkers in the plasma of obstructive sleep apnea-hypopnea syndrome patients are higher than those in the control group, and the mechanism of action may be related to sleep disorders and night hypoxia. The Alzheimer's disease biomarkers deposited in plasma may also cause the decline of patients' cognitive function, increased daytime sleepiness and accelerate the progression of obstructive sleep apnea-hypopnea syndrome.
Collapse
Affiliation(s)
- Weili Kong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre and Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5G2M9, Canada.
| | - Hailing Gu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Dagan H, Flashner-Abramson E, Vasudevan S, Jubran MR, Cohen E, Kravchenko-Balasha N. Exploring Alzheimer's Disease Molecular Variability via Calculation of Personalized Transcriptional Signatures. Biomolecules 2020; 10:biom10040503. [PMID: 32225014 PMCID: PMC7226317 DOI: 10.3390/biom10040503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Despite huge investments and major efforts to develop remedies for Alzheimer’s disease (AD) in the past decades, AD remains incurable. While evidence for molecular and phenotypic variability in AD have been accumulating, AD research still heavily relies on the search for AD-specific genetic/protein biomarkers that are expected to exhibit repetitive patterns throughout all patients. Thus, the classification of AD patients to different categories is expected to set the basis for the development of therapies that will be beneficial for subpopulations of patients. Here we explore the molecular heterogeneity among a large cohort of AD and non-demented brain samples, aiming to address the question whether AD-specific molecular biomarkers can progress our understanding of the disease and advance the development of anti-AD therapeutics. We studied 951 brain samples, obtained from up to 17 brain regions of 85 AD patients and 22 non-demented subjects. Utilizing an information-theoretic approach, we deciphered the brain sample-specific structures of altered transcriptional networks. Our in-depth analysis revealed that 7 subnetworks were repetitive in the 737 diseased and 214 non-demented brain samples. Each sample was characterized by a subset consisting of ~1–3 subnetworks out of 7, generating 52 distinct altered transcriptional signatures that characterized the 951 samples. We show that 30 different altered transcriptional signatures characterized solely AD samples and were not found in any of the non-demented samples. In contrast, the rest of the signatures characterized different subsets of sample types, demonstrating the high molecular variability and complexity of gene expression in AD. Importantly, different AD patients exhibiting similar expression levels of AD biomarkers harbored distinct altered transcriptional networks. Our results emphasize the need to expand the biomarker-based stratification to patient-specific transcriptional signature identification for improved AD diagnosis and for the development of subclass-specific future treatment.
Collapse
Affiliation(s)
- Hila Dagan
- The Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University, Jerusalem 9190416, Israel;
| | - Efrat Flashner-Abramson
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
| | - Swetha Vasudevan
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
| | - Maria R. Jubran
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel—Canada, The Hebrew University School of Medicine, Jerusalem 9112102, Israel;
| | - Nataly Kravchenko-Balasha
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
- Correspondence:
| |
Collapse
|
15
|
Kirkland AE, Sarlo GL, Holton KF. The Role of Magnesium in Neurological Disorders. Nutrients 2018; 10:E730. [PMID: 29882776 PMCID: PMC6024559 DOI: 10.3390/nu10060730] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Magnesium is well known for its diverse actions within the human body. From a neurological standpoint, magnesium plays an essential role in nerve transmission and neuromuscular conduction. It also functions in a protective role against excessive excitation that can lead to neuronal cell death (excitotoxicity), and has been implicated in multiple neurological disorders. Due to these important functions within the nervous system, magnesium is a mineral of intense interest for the potential prevention and treatment of neurological disorders. Current literature is reviewed for migraine, chronic pain, epilepsy, Alzheimer’s, Parkinson’s, and stroke, as well as the commonly comorbid conditions of anxiety and depression. Previous reviews and meta-analyses are used to set the scene for magnesium research across neurological conditions, while current research is reviewed in greater detail to update the literature and demonstrate the progress (or lack thereof) in the field. There is strong data to suggest a role for magnesium in migraine and depression, and emerging data to suggest a protective effect of magnesium for chronic pain, anxiety, and stroke. More research is needed on magnesium as an adjunct treatment in epilepsy, and to further clarify its role in Alzheimer’s and Parkinson’s. Overall, the mechanistic attributes of magnesium in neurological diseases connote the macromineral as a potential target for neurological disease prevention and treatment.
Collapse
Affiliation(s)
- Anna E Kirkland
- Department of Psychology, Behavior, Cognition and Neuroscience Program, American University, Washington, DC 20016, USA.
| | - Gabrielle L Sarlo
- Department of Psychology, Behavior, Cognition and Neuroscience Program, American University, Washington, DC 20016, USA.
| | - Kathleen F Holton
- Department of Health Studies, American University, Washington, DC 20016, USA.
- Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA.
| |
Collapse
|
16
|
Zaky A, Bassiouny A, Farghaly M, El-Sabaa BM. A Combination of Resveratrol and Curcumin is Effective Against Aluminum Chloride-Induced Neuroinflammation in Rats. J Alzheimers Dis 2018; 60:S221-S235. [PMID: 28222524 DOI: 10.3233/jad-161115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Experimental studies have demonstrated that aluminum is an environmental toxin that induces neuroinflammation and the development of Alzheimer's disease. OBJECTIVE In this report, we investigated the beneficial effect of a combination of resveratrol and curcumin to reduce aluminum-induced neuroinflammation. METHOD We employed both an in vivo model of aluminum-induced neuroinflammation and an in vitro aluminum stimulated cultured PC-12 cells. Neuroinflammation in rats was assessed by measuring the expression of β-secretase, amyloid-β protein precursor, and γ-subunits (PS-1 and PS-2), along with the inflammatory COX-2, Il-1β, Il-1α, and TNF-α. Furthermore, we measured the expression profiles of neuro-protective Apurinic/apyrimidinic endonuclease 1 (APE1) protein and let-7c microRNA. In parallel, PC-12 cells were treated with 0.5 mM aluminum to induce a neuroinflammation-like state. In addition, curcumin effect, as a selective COX-2 expression inhibitor, was detected in a time course manner. RESULTS An overall significant attenuation of the inflammatory markers, as well as a decrease in the amyloidogenic mediators, was observed in resveratrol-curcumin treated rats. The therapeutic effect was also confirmed by transmission electron microscopic analysis of the brain cortexes. APE1 was significantly induced by resveratrol-curcumin combination. Both in vivo and in vitro studies indicated that Let-7c expression is significantly reduced after aluminum stimulation, an effect that was partially suppressed by co-addition of either resveratrol or curcumin and totally restored to the normal level by their combination. CONCLUSIONS The present study clearly indicates the synergistic and therapeutic effect of a resveratrol-curcumin combination. We also show that both compounds exert beneficial effect either cooperatively or through differential molecular mechanisms in counteracting aluminum-induced neuroinflammation.
Collapse
Affiliation(s)
- Amira Zaky
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmad Bassiouny
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mahitab Farghaly
- Department of Environmental Research at National Center for Social & Criminological Research, Giza, Egypt
| | - Bassma M El-Sabaa
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Soleimani E, Goudarzi I, Abrari K, Lashkarbolouki T. The combined effects of developmental lead and ethanol exposure on hippocampus dependent spatial learning and memory in rats: Role of oxidative stress. Food Chem Toxicol 2016; 96:263-72. [PMID: 27421826 DOI: 10.1016/j.fct.2016.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 01/31/2023]
Abstract
Either developmental lead or ethanol exposure can impair learning and memory via induction of oxidative stress, which results in neuronal damage. we examined the effect of combined exposure with lead and ethanol on spatial learning and memory in offspring and oxidative stress in hippocampus. Rats were exposed to lead (0.2% in drinking water) or ethanol (4 g/kg) either individually or in combination in 5th day gestation through weaning. On postnatal days (PD) 30, rats were trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done. Also, oxidative stress markers in the hippocampus were also evaluated. Results demonstrated that lead + ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency and average proximity in probe trial test. There was significant decrease in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities and increase of malondialdehyde (MDA) levels in hippocampus of animals co-exposed to lead and ethanol compared with their individual exposures. We suggest that maternal consumption of ethanol during lead exposure has pronounced detrimental effects on memory, which may be mediated by oxidative stress.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- Faculty of Biology, Damghan University, Damghan, Iran.
| | | | | |
Collapse
|
18
|
Tomasini MC, Borelli AC, Beggiato S, Ferraro L, Cassano T, Tanganelli S, Antonelli T. Differential Effects of Palmitoylethanolamide against Amyloid-β Induced Toxicity in Cortical Neuronal and Astrocytic Primary Cultures from Wild-Type and 3xTg-AD Mice. J Alzheimers Dis 2016; 46:407-21. [PMID: 25765918 DOI: 10.3233/jad-143039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Considering the heterogeneity of pathological changes occurring in Alzheimer's disease (AD), a therapeutic approach aimed both to neuroprotection and to neuroinflammation reduction may prove effective. Palmitoylethanolamide (PEA) has attracted attention for its anti-inflammatory/neuroprotective properties observed in AD animal models. OBJECTIVE AND METHODS We evaluated the protective role of PEA against amyloid-β₄₂ (Aβ₄₂) toxicity on cell viability and glutamatergic transmission in primary cultures of cerebral cortex neurons and astrocytes from the triple-transgenic murine model of AD (3xTg-AD) and their wild-type littermates (non-Tg) mice. RESULTS Aβ₄₂ (0.5 μM; 24 h) affects the cell viability in cultured cortical neurons and astrocytes from non-Tg mice, but not in those from 3xTg-AD mice. These effects were counteracted by the pretreatment with PEA (0.1 μM). Basal glutamate levels in cultured neurons and astrocytes from 3xTg-AD mice were lower than those observed in cultured cells from non-Tg mice. Aβ₄₂-exposure reduced and increased glutamate levels in non-Tg mouse cortical neurons and astrocytes, respectively. These effects were counteracted by the pretreatment with PEA. By itself, PEA did not affect cell viability and glutamate levels in cultured cortical neurons and astrocytes from non-Tg or 3xTg-AD mice. CONCLUSION The exposure to Aβ₄₂ induced toxic effects on cultured cortical neurons and astrocytes from non-Tg mice, but not in those from 3xTg-AD mice. Furthermore, PEA exerts differential effects against Aβ₄₂-induced toxicity in primary cultures of cortical neurons and astrocytes from non-Tg and 3xTg-AD mice. In particular, PEA displays protective properties in non-Tg but not in 3xTg-AD mouse neuronal cultured cells overexpressing Aβ.
Collapse
Affiliation(s)
- Maria Cristina Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy
| | | | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy.,LTTA Centre, University of Ferrara, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Italy
| | - Sergio Tanganelli
- IRET Foundation, Ozzano Emilia, Bologna, Italy.,Department of Medical Sciences, University of Ferrara, Italy.,LTTA Centre, University of Ferrara, Italy
| | - Tiziana Antonelli
- IRET Foundation, Ozzano Emilia, Bologna, Italy.,Department of Medical Sciences, University of Ferrara, Italy.,LTTA Centre, University of Ferrara, Italy
| |
Collapse
|
19
|
Demers-Lamarche J, Guillebaud G, Tlili M, Todkar K, Bélanger N, Grondin M, Nguyen AP, Michel J, Germain M. Loss of Mitochondrial Function Impairs Lysosomes. J Biol Chem 2016; 291:10263-76. [PMID: 26987902 PMCID: PMC4858975 DOI: 10.1074/jbc.m115.695825] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/04/2016] [Indexed: 02/04/2023] Open
Abstract
Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Demers-Lamarche
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| | - Gérald Guillebaud
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| | - Mouna Tlili
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Kiran Todkar
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| | - Noémie Bélanger
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Martine Grondin
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Angela P Nguyen
- the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Jennifer Michel
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Marc Germain
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| |
Collapse
|
20
|
Epitope Fingerprinting for Recognition of the Polyclonal Serum Autoantibodies of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:267989. [PMID: 26417591 PMCID: PMC4568325 DOI: 10.1155/2015/267989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 02/18/2015] [Indexed: 02/06/2023]
Abstract
Autoantibodies (aAb) associated with Alzheimer's disease (AD) have not been sufficiently characterized and their exact involvement is undefined. The use of information technology and computerized analysis with phage display technology was used, in the present research, to map the epitope of putative self-antigens in AD patients. A 12-mer random peptide library, displayed on M13 phages, was screened using IgG from AD patients with two repetitions. Seventy-one peptides were isolated; however, only 10 were positive using the Elisa assay technique (Elisa Index > 1). The results showed that the epitope regions of the immunoreactive peptides, identified by phage display analysis, were on the exposed surfaces of the proteins. The putative antigens MAST1, Enah, MAO-A, X11/MINT1, HGF, SNX14, ARHGAP 11A, APC, and CENTG3, which have been associated with AD or have functions in neural tissue, may indicate possible therapeutic targets.
Collapse
|
21
|
Sweeney MD, Sagare AP, Zlokovic BV. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease. J Cereb Blood Flow Metab 2015; 35:1055-68. [PMID: 25899298 PMCID: PMC4640280 DOI: 10.1038/jcbfm.2015.76] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/27/2015] [Accepted: 03/08/2015] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementias. In addition to genetics, environment, and lifestyle, growing evidence supports vascular contributions to dementias including dementia because of AD. Alzheimer's disease affects multiple cell types within the neurovascular unit (NVU), including brain vascular cells (endothelial cells, pericytes, and vascular smooth muscle cells), glial cells (astrocytes and microglia), and neurons. Thus, identifying and integrating biomarkers of the NVU cell-specific responses and injury with established AD biomarkers, amyloid-β (Aβ) and tau, has a potential to contribute to better understanding of the disease process in dementias including AD. Here, we discuss the existing literature on cerebrospinal fluid biomarkers of the NVU cell-specific responses during early stages of dementia and AD. We suggest that the clinical usefulness of established AD biomarkers, Aβ and tau, could be further improved by developing an algorithm that will incorporate biomarkers of the NVU cell-specific responses and injury. Such biomarker algorithm could aid in early detection and intervention as well as identify novel treatment targets to delay disease onset, slow progression, and/or prevent AD.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Petersen RB, Lissemore FM, Appleby B, Aggarwal N, Boyatzis R, Casadesus G, Cummings J, Jack A, Perry G, Safar J, Sajatovic M, Surewicz WK, Wang Y, Whitehouse P, Lerner A. From Neurodegeneration to Brain Health: An Integrated Approach. J Alzheimers Dis 2015; 46:271-83. [DOI: 10.3233/jad-150043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert B. Petersen
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Brian Appleby
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Neelum Aggarwal
- Department of Neurology, Rush University Medical Center, Chicago, IL, USA
| | - Richard Boyatzis
- Departments of Organizational Behavior, Cognitive Science, and Psychology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Jeff Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Anthony Jack
- Department of Philosophy, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- Department of Biology, University of Texas, San Antonio, TX, USA
| | - Jiri Safar
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Martha Sajatovic
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - Witold K. Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Yanming Wang
- Departments of Radiology, Chemistry, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Peter Whitehouse
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Alan Lerner
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
23
|
Inestrosa NC, Ríos JA, Cisternas P, Tapia-Rojas C, Rivera DS, Braidy N, Zolezzi JM, Godoy JA, Carvajal FJ, Ardiles AO, Bozinovic F, Palacios AG, Sachdev PS. Age Progression of Neuropathological Markers in the Brain of the Chilean Rodent Octodon degus, a Natural Model of Alzheimer's Disease. Brain Pathol 2015; 25:679-91. [PMID: 25351914 DOI: 10.1111/bpa.12226] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the leading cause of age-related dementia worldwide. Several models for AD have been developed to provide information regarding the initial changes that lead to degeneration. Transgenic mouse models recapitulate many, but not all, of the features of AD, most likely because of the high complexity of the pathology. In this context, the validation of a wild-type animal model of AD that mimics the neuropathological and behavioral abnormalities is necessary. In previous studies, we have reported that the Chilean rodent Octodon degus could represent a natural model for AD. In the present work, we further describe the age-related neurodegeneration observed in the O. degus brain. We report some histopathological markers associated with the onset progression of AD, such as glial activation, increase in oxidative stress markers, neuronal apoptosis and the expression of the peroxisome proliferative-activated receptor γ coactivator-1α (PGC-1α). With these results, we suggest that the O. degus could represent a new model for AD research and a powerful tool in the search for therapeutic strategies against AD.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro UC Síndrome de Down, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Juvenal A Ríos
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela S Rivera
- Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Juan M Zolezzi
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Carvajal
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Francisco Bozinovic
- Centro UC Síndrome de Down, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Neurosychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
24
|
Prados F, Cardoso MJ, Leung KK, Cash DM, Modat M, Fox NC, Wheeler-Kingshott CAM, Ourselin S. Measuring brain atrophy with a generalized formulation of the boundary shift integral. Neurobiol Aging 2015; 36 Suppl 1:S81-90. [PMID: 25264346 PMCID: PMC4288791 DOI: 10.1016/j.neurobiolaging.2014.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 11/28/2022]
Abstract
Brain atrophy measured using structural magnetic resonance imaging (MRI) has been widely used as an imaging biomarker for disease diagnosis and tracking of pathologic progression in neurodegenerative diseases. In this work, we present a generalized and extended formulation of the boundary shift integral (gBSI) using probabilistic segmentations to estimate anatomic changes between 2 time points. This method adaptively estimates a non-binary exclusive OR region of interest from probabilistic brain segmentations of the baseline and repeat scans to better localize and capture the brain atrophy. We evaluate the proposed method by comparing the sample size requirements for a hypothetical clinical trial of Alzheimer's disease to that needed for the current implementation of BSI as well as a fuzzy implementation of BSI. The gBSI method results in a modest but reduced sample size, providing increased sensitivity to disease changes through the use of the probabilistic exclusive OR region.
Collapse
Affiliation(s)
- Ferran Prados
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK.
| | - Manuel Jorge Cardoso
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Kelvin K Leung
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - David M Cash
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Marc Modat
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | | | - Sebastien Ourselin
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| |
Collapse
|
25
|
de la Monte SM. Type 3 diabetes is sporadic Alzheimer׳s disease: mini-review. Eur Neuropsychopharmacol 2014; 24:1954-60. [PMID: 25088942 PMCID: PMC4444430 DOI: 10.1016/j.euroneuro.2014.06.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/20/2014] [Indexed: 01/16/2023]
Abstract
Alzheimer׳s disease (AD) is the most common cause of dementia in North America. Growing evidence supports the concept that AD is a metabolic disease mediated by impairments in brain insulin responsiveness, glucose utilization, and energy metabolism, which lead to increased oxidative stress, inflammation, and worsening of insulin resistance. In addition, metabolic derangements directly contribute to the structural, functional, molecular, and biochemical abnormalities that characterize AD, including neuronal loss, synaptic disconnection, tau hyperphosphorylation, and amyloid-beta accumulation. Because the fundamental abnormalities in AD represent effects of brain insulin resistance and deficiency, and the molecular and biochemical consequences overlap with Type 1 and Type 2 diabetes, we suggest the term "Type 3 diabetes" to account for the underlying abnormalities associated with AD-type neurodegeneration. In light of the rapid increases in sporadic AD prevalence rates and vastly expanded use of nitrites and nitrates in foods and agricultural products over the past 30-40 years, the potential role of nitrosamine exposures as mediators of Type 3 diabetes is discussed.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Medicine, Pathology, Neurology, and Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 55 Claverick Street, Room 419, Providence, RI 02903, USA.
| |
Collapse
|
26
|
Zaky A, Mahmoud M, Awad D, El Sabaa BM, Kandeel KM, Bassiouny AR. Valproic acid potentiates curcumin-mediated neuroprotection in lipopolysaccharide induced rats. Front Cell Neurosci 2014; 8:337. [PMID: 25374508 PMCID: PMC4204527 DOI: 10.3389/fncel.2014.00337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/01/2014] [Indexed: 11/13/2022] Open
Abstract
The etiology of neuroinflammation is complex and comprises multifactorial, involving both genetic and environmental factors during which diverse genetic and epigenetic modulations are implicated. Curcumin (Cur) and valproic acid (VPA), histone deacetylase 1 inhibitor, have neuroprotective effects. The present study was designed with an aim to investigate the ability of co-treatment of both compounds (Cur or VPA, 200 mg/kg) for 4 weeks to augment neuroprotection and enhance brain recovery from intra-peritoneal injection of (250 μg/kg) lipopolysaccharide-stimulated neuroinflammatory condition on rat brain cortex. Cortex activation and the effects of combined treatment and production of proinflammatory mediators, cyclooxygenase-2 (COX-2), APE1, and nitric oxide/inducible nitric oxide synthase (iNOS) were investigated. Neuroinflammation development was assessed by histological analyses and by investigating associated indices [β-secretase (BACE1), amyloid protein precursor (APP), presenilin (PSEN-1), and PSEN-2)]. Furthermore we measured the expression profile of lethal-7 (let-7) miRNAs members a, b, c, e, and f in all groups, a highly abundant regulator of gene expression in the CNS. Protein and mRNA levels of neuroinflammation markers COX-2, BACE1, APP, and iNOS were also attenuated by combined therapy. On the other hand, assessment of the indicated five let-7 members, showed distinct expression profile pattern in the different groups. Let-7 a, b, and c disappeared in the induced group, an effect that was partially suppressed by co-addition of either Cur or VPA. These data suggest that the combined treatment induced significantly the expression of the five members when compared to rats treated with Cur or VPA only as well as to self-recovery group, which indicates a possible benefit from the synergistic effect of Cur-VPA combination as therapeutic agents for neuroinflammation and its associated disorders. The mechanism elucidated here highlights the particular drug-induced expression profile of let-7 family as new targets for future pharmacological development.
Collapse
Affiliation(s)
- Amira Zaky
- Department of Biochemistry, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Mariam Mahmoud
- Department of Biochemistry, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Doaa Awad
- Department of Biochemistry, Faculty of Science, Alexandria University Alexandria, Egypt
| | | | - Kamal M Kandeel
- Department of Biochemistry, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Ahmad R Bassiouny
- Department of Biochemistry, Faculty of Science, Alexandria University Alexandria, Egypt
| |
Collapse
|
27
|
Farrokhi E, Hosseini M, Beheshti F, Vafaee F, Hadjzadeh MAR, Dastgheib SS. Brain Tissues Oxidative Damage as A Possible Mechanism of Deleterious Effects of Propylthiouracil- Induced Hypothyroidism on Learning and Memory in Neonatal and Juvenile Growth in Rats. Basic Clin Neurosci 2014; 5:285-94. [PMID: 27284393 PMCID: PMC4656934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION The role of brain tissues oxidative damage in learning and memory impairments has been well documented. It is also well known that thyroid hormones have a critical role for the brain functions. The purpose of this study was to investigate the role of brain tissues oxidative damage as a possible mechanism of deleterious effects of propylthiouracil (PTU) - induced hypothyroidism on learning and memory in neonatal and juvenile growth in rats. METHODS Fourteen pregnant female Wistar rats were kept in separate cages. After delivery, they were randomly divided into two groups including control and PTU. Rats in the control group received normal drinking water, whereas the second group received drinking water supplemented with 0.02% PTU from the first day after delivery through the first two months of the life of offspring (the pups of rats). After 60 days, nine male offspring of each group were randomly selected and tested in the Morris water maze (MWM). Then, samples of blood were collected to measure thyroxine. Finally, the brains were removed and total thiol groups and molondialdehyde (MDA) concentrations were determined. RESULTS Compared to the control group's offspring, serum thyroxine levels in the PTU group's off spring were significantly low (P<0.001). In MWM, the escape latency and traveled path in the PTU group were significantly higher than that in the control group (P<0.01- P<0.001). In PTU group, the total thiol concentrations in both cortical and hippocampal tissues were significantly lower and MDA concentrations were higher than control group (P<0.001). DISCUSSION It seems that deleterious effect of hypothyroidism during neonatal and juvenile growth on learning and memory is at least in part due to brain tissues oxidative damage.
Collapse
Affiliation(s)
- Esmaeil Farrokhi
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Iran.,Corresponding Author: Mahmoud Hosseini, PhD, Address: Department of Physiology, School of Medicine, Azadi Square, Mashhad, Iran. Tel.: +98 (511) 8828565 / Fax: +98 (511) 8828564, E-mail:
| | - Farimah Beheshti
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Iran
| | - Farzaneh Vafaee
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa Al-Reza Hadjzadeh
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Iran
| | - Samaneh Sadat Dastgheib
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Iran
| |
Collapse
|
28
|
Abstract
Epidemics of obesity, diabetes, nonalcoholic fatty liver disease, and cognitive impairment/Alzheimer disease have emerged over the past 3 to 4 decades. These diseases share in common target-organ insulin resistance with a constellation of molecular and biochemical abnormalities that lead to organ/tissue degeneration over time. This article discusses the fundamental links among these diseases and how peripheral organ insulin resistance diseases contribute to cognitive impairment and neurodegeneration. A future role of endocrinologists and diabetologists could be to provide integrative diagnostic and treatment approaches for this collection of diseases that seem to share pathophysiological and pathogenetic bases.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Pathology (Neuropathology), Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Neurosurgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
29
|
Ruggeri B, Sarkans U, Schumann G, Persico AM. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl) 2014; 231:1201-16. [PMID: 24096533 DOI: 10.1007/s00213-013-3290-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/07/2013] [Indexed: 12/21/2022]
Abstract
RATIONALE Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder with onset during early childhood and typically a life-long course. The majority of ASD cases stems from complex, 'multiple-hit', oligogenic/polygenic underpinnings involving several loci and possibly gene-environment interactions. These multiple layers of complexity spur interest into the identification of biomarkers able to define biologically homogeneous subgroups, predict autism risk prior to the onset of behavioural abnormalities, aid early diagnoses, predict the developmental trajectory of ASD children, predict response to treatment and identify children at risk for severe adverse reactions to psychoactive drugs. OBJECTIVES The present paper reviews (a) similarities and differences between the concepts of 'biomarker' and 'endophenotype', (b) established biomarkers and endophenotypes in autism research (biochemical, morphological, hormonal, immunological, neurophysiological and neuroanatomical, neuropsychological, behavioural), (c) -omics approaches towards the discovery of novel biomarker panels for ASD, (d) bioresource infrastructures and (e) data management for biomarker research in autism. RESULTS Known biomarkers, such as abnormal blood levels of serotonin, oxytocin, melatonin, immune cytokines and lymphocyte subtypes, multiple neuropsychological, electrophysiological and brain imaging parameters, will eventually merge with novel biomarkers identified using unbiased genomic, epigenomic, transcriptomic, proteomic and metabolomic methods, to generate multimarker panels. Bioresource infrastructures, data management and data analysis using artificial intelligence networks will be instrumental in supporting efforts to identify these biomarker panels. CONCLUSIONS Biomarker research has great heuristic potential in targeting autism diagnosis and treatment.
Collapse
Affiliation(s)
- Barbara Ruggeri
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | | | | | | |
Collapse
|
30
|
Santucci R, Sinibaldi F, Patriarca A, Santucci D, Fiorucci L. Misfolded proteins and neurodegeneration: role of non-native cytochrome c in cell death. Expert Rev Proteomics 2014; 7:507-17. [DOI: 10.1586/epr.10.50] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Sultana R, Baglioni M, Cecchetti R, Cai J, Klein JB, Bastiani P, Ruggiero C, Mecocci P, Butterfield DA. Lymphocyte mitochondria: toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free Radic Biol Med 2013; 65:595-606. [PMID: 23933528 PMCID: PMC3849349 DOI: 10.1016/j.freeradbiomed.2013.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/23/2013] [Accepted: 08/02/2013] [Indexed: 11/18/2022]
Abstract
Alzheimer disease (AD) is an age-related neurodegenerative condition. AD is histopathologically characterized by the presence of three main hallmarks: senile plaques (rich in amyloid-β peptide), neuronal fibrillary tangles (rich in phosphorylated tau protein), and synapse loss. However, definitive biomarkers for this devastating disease in living people are still lacking. In this study, we show that levels of oxidative stress markers are significantly increased in the mitochondria isolated from lymphocytes of subjects with mild cognitive impairment (MCI) compared to cognitively normal individuals. Further, an increase in mitochondrial oxidative stress in MCI is associated with MMSE score, vitamin E components, and β-carotene. Further, a proteomics approach showed that alterations in the levels of thioredoxin-dependent peroxide reductase, myosin light polypeptide 6, and ATP synthase subunit β might be important in the progression and pathogenesis of AD. Increased understanding of oxidative stress and protein alterations in easily obtainable peripheral tissues will be helpful in developing biomarkers to combat this devastating disorder.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Mauro Baglioni
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jian Cai
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Jon B Klein
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Patrizia Bastiani
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Carmelinda Ruggiero
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy.
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| |
Collapse
|
32
|
The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it's time for reconciliation. Neurobiol Dis 2013; 62:144-59. [PMID: 24095978 DOI: 10.1016/j.nbd.2013.09.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/24/2013] [Indexed: 12/23/2022] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. These clinical features are due in part to the increase of reactive oxygen and nitrogen species that mediate neurotoxic effects. The up-regulation of the heme oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system is one of the earlier events in the adaptive response to stress. HO-1/BVR-A reduces the intracellular levels of pro-oxidant heme and generates equimolar amounts of the free radical scavengers biliverdin-IX alpha (BV)/bilirubin-IX alpha (BR) as well as the pleiotropic gaseous neuromodulator carbon monoxide (CO) and ferrous iron. Two main and opposite hypotheses for a role of the HO-1/BVR-A system in AD propose that this system mediates neurotoxic and neuroprotective effects, respectively. This apparent controversy was mainly due to the fact that for over about 20years HO-1 was the only player on which all the analyses were focused, excluding the other important and essential component of the entire system, BVR. Following studies from the Butterfield laboratory that reported alterations in BVR activity along with decreased phosphorylation and increased oxidative/nitrosative post-translational modifications in the brain of subjects with AD and amnestic mild cognitive impairment (MCI) subjects, a debate was opened on the real pathophysiological and clinical significance of BVR-A. In this paper we provide a review of the main discoveries about the HO/BVR system in AD and MCI, and propose a mechanism that reconciles these two hypotheses noted above of neurotoxic and the neuroprotective aspects of this important stress responsive system.
Collapse
|
33
|
Flynn JM, Melov S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med 2013; 62:4-12. [PMID: 23727323 PMCID: PMC3811078 DOI: 10.1016/j.freeradbiomed.2013.05.027] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022]
Abstract
The brain is a highly metabolically active tissue that critically relies on oxidative phosphorylation as a means for maintaining energy. One result of this process is the production of potentially damaging radicals such as the superoxide anion (O2(-)). Superoxide has the capacity to damage components of the electron transport chain and other cellular constituents. Eukaryotic systems have evolved defenses against such damaging moieties, the chief member of which is superoxide dismutase (SOD2), an enzyme that efficiently converts superoxide to the less reactive hydrogen peroxide (H2O2), which can freely diffuse across the mitochondrial membrane. Loss of SOD2 activity can result in numerous pathological phenotypes in metabolically active tissues, particularly within the central nervous system. We review SOD2's potential involvement in the progression of neurodegenerative diseases such as stroke and Alzheimer and Parkinson diseases, as well as its potential role in "normal" age-related cognitive decline. We also examine in vivo models of endogenous oxidative damage based upon the loss of SOD2 and associated neurological phenotypes in relation to human neurodegenerative disorders.
Collapse
Affiliation(s)
- James M Flynn
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
34
|
Holohan KN, Lahiri DK, Schneider BP, Foroud T, Saykin AJ. Functional microRNAs in Alzheimer's disease and cancer: differential regulation of common mechanisms and pathways. Front Genet 2013; 3:323. [PMID: 23335942 PMCID: PMC3547332 DOI: 10.3389/fgene.2012.00323] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/24/2012] [Indexed: 01/12/2023] Open
Abstract
Two of the main research priorities in the United States are cancer and neurodegenerative diseases, which are attributed to abnormal patterns of cellular behavior. MicroRNAs (miRNA) have been implicated as regulators of cellular metabolism, and thus are an active topic of investigation in both disease areas. There is presently a more extensive body of work on the role of miRNAs in cancer compared to neurodegenerative diseases, and therefore it may be useful to examine whether there is any concordance between the functional roles of miRNAs in these diseases. As a case study, the roles of miRNAs in Alzheimer's disease (AD) and their functions in various cancers will be compared. A number of miRNA expression patterns are altered in individuals with AD compared with healthy older adults. Among these, some have also been shown to correlate with neuropathological changes including plaque and tangle accumulation, as well as expression levels of other molecules known to be involved in disease pathology. Importantly, these miRNAs have also been shown to have differential expression and or functional roles in various types of cancer. To examine possible intersections between miRNA functions in cancer and AD, we review the current literature on these miRNAs in cancer and AD, focusing on their roles in known biological pathways. We propose a pathway-driven model in which some molecular processes show an inverse relationship between cancer and neurodegenerative disease (e.g., proliferation and apoptosis) whereas others are more parallel in their activity (e.g., immune activation and inflammation). A critical review of these and other molecular mechanisms in cancer may shed light on the pathophysiology of AD, and highlight key areas for future research. Conclusions from this work may be extended to other neurodegenerative diseases for which some molecular pathways have been identified but which have not yet been extensively researched for miRNA involvement.
Collapse
Affiliation(s)
- Kelly N Holohan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
OBJECTIVE Little is known about the role of oxidative stress in the pathogenesis of vascular dementia (VaD). The aim of this study was to investigate the biomarkers of oxidative stress in urine, as reflected by 8-hydroxydeoxyguanosine (8-OHdG), 8-isoprostaglandin F(2a) (8-isoPGF(2a)) and nitrotyrosine (NT) levels, in a group of well characterized VaD patients and in two control groups of Vascular Not Demented (VaND) patients and health y subjects. METHODS Ninety-six subjects from the Tianjin municipality in China were recruited. Forty-six patients were in the VaD group, 24 patients with VaND and 26 persons with no signs of cognitive disorder were employed as control groups. Urinary 8-OHdG and 8-isoPGF(2a) was performed using enzyme-linked immunosorbent assay (ELISA), and urinary NT levels were measured by chemiluminescence detection. RESULTS Significantly higher urinary 8-OHdG levels were detected in VaD patients compared to VaND patients and healthy control subjects. In contrast, urinary 8-isoPGF(2a) levels were significantly lower in VaD patients compared with two control groups. For NT levels, no statistically significant differences were observed among the three groups. CONCLUSION Increased urinary 8-OHdG level was a potential marker of oxidative stress in VaD patients. Furthermore, it is also important to take into account potential confounders in order to improve the identification of changes in the status of oxidative stress as related to VaD.
Collapse
|
36
|
Mandas A, Abete C, Putzu PF, la Colla P, Dessì S, Pani A. Changes in cholesterol metabolism-related gene expression in peripheral blood mononuclear cells from Alzheimer patients. Lipids Health Dis 2012; 11:39. [PMID: 22414021 PMCID: PMC3323438 DOI: 10.1186/1476-511x-11-39] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/14/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cholesterol homeostasis dysfunction has been reported to have role in the pathogenesis of Alzheimer disease (AD). Therefore, changes in cholesterol metabolism in blood components may help to develop new potential AD biomarkers. In this study changes in cholesterol metabolism-related gene expression genes were evaluated in peripheral blood mononuclear cells (PBMCs) from AD subjects, their first degree relatives (FDR) and two groups of age matched controls (C1 > 80 years, C2 < 60 years). The expression of three genes related to APP processing was also determined. RESULTS Results showed significantly different behavior (P = 0.000) in the expression of all analyzed genes among the 4 groups. An inverse correlation emerged between the age of controls and the propensity of their PBMCs to express selected genes. Moreover, when gene expression was evaluated in PBMCs from AD patients and compared with that of PBMCs from healthy subjects of the same age, LDL-R and APP mRNAs were most abundant in AD as compared C1 whereas SREBP-2 and particularly nCEH were present at much lower mRNA levels in AD-PBMCs. This study describes for the first time a differential expression profile of cholesterol and APP related genes in PBMCs from AD patients and their FDR. CONCLUSIONS We suggest that the expressions of cholesterol homeostasis and APP processing related genes in PBMC could be proposed as possible biomarkers to evaluate AD risk. In addition, gene expression in PBMC could be also used for diagnosis and development of therapeutic strategies as well as for personalized prediction in clinical outcome of AD.
Collapse
Affiliation(s)
- Antonella Mandas
- Department of Internal Medicine, University of Cagliari, Cittadella Universitaria, 09042- Monserrato (CA) Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Carmona P, Molina M, Calero M, Bermejo-Pareja F, Martínez-Martín P, Alvarez I, Toledano A. Infrared spectroscopic analysis of mononuclear leukocytes in peripheral blood from Alzheimer’s disease patients. Anal Bioanal Chem 2012; 402:2015-21. [DOI: 10.1007/s00216-011-5669-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
|
38
|
de la Monte SM. Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer's disease. Drugs 2012; 72:49-66. [PMID: 22191795 PMCID: PMC4550303 DOI: 10.2165/11597760-000000000-00000] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in North America. Growing evidence supports the concept that AD is fundamentally a metabolic disease that results in progressive impairment in the brain's capacity to utilize glucose and respond to insulin and insulin-like growth factor (IGF) stimulation. Moreover, the heterogeneous nature of AD is only partly explained by the brain's propensity to accumulate aberrantly processed, misfolded and aggregated oligomeric structural proteins, including amyloid-β peptides and hyperphosphorylated tau. Evidence suggests that other factors, including impaired energy metabolism, oxidative stress, neuroinflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into an overarching hypothesis to develop more realistic diagnostic and therapeutic approaches to AD. In this review, the interrelationship between impaired insulin and IGF signalling and amyloid-β pathology is discussed along with potential therapeutic approaches. Impairments in brain insulin/IGF signalling lead to increased expression of amyloid-β precursor protein (AβPP) and accumulation of AβPP-Aβ. In addition, they promote oxidative stress and deficits in energy metabolism, leading to the activation of pro-AβPP-Aβ-mediated neurodegeneration cascades. Although brain insulin/IGF resistance and deficiency can be induced by primary or secondary disease processes, the soaring rates of peripheral insulin resistance associated with obesity, diabetes mellitus and metabolic syndrome quite likely play major roles in the current AD epidemic. Both clinical and experimental data have linked chronic hyperinsulinaemia to cognitive impairment and neurodegeneration with increased AβPP-Aβ accumulation/reduced clearance in the CNS. Correspondingly, both the restoration of insulin responsiveness and the use of insulin therapy can lead to improved cognitive performance, although with variable effects on brain AβPP-Aβ load. On the other hand, experimental evidence supports the concept that the toxic effects of AβPP-Aβ can promote insulin resistance. Together, these findings suggest that a positive feedback loop of progressive neurodegeneration can develop whereby insulin resistance drives AβPP-Aβ accumulation, and AβPP-Aβ fibril toxicity drives brain insulin resistance. This phenomenon could explain why measuring AβPP-Aβ levels in cerebrospinal fluid or imaging of the brain has proven to be inadequate as a stand-alone biomarker for diagnosing AD, and why the clinical trial results of anti-AβPP-Aβ monotherapy have been disappointing. Instead, the aggregate data suggest that brain insulin resistance and deficiency must also be therapeutically targeted to halt AD progression or reverse its natural course. The positive therapeutic effects of different treatments that address the role of brain insulin/IGF resistance and deficiency, including the use of intranasal insulin delivery, incretins and insulin sensitizer agents are discussed along with potential benefits of lifestyle changes to modify risk for developing mild cognitive impairment or AD. Altogether, the data strongly support the notion that we must shift toward the implementation of multimodal rather than unimodal diagnostic and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| |
Collapse
|
39
|
Zengi O, Karakas A, Ergun U, Senes M, Inan L, Yucel D. Urinary 8-hydroxy-2'-deoxyguanosine level and plasma paraoxonase 1 activity with Alzheimer's disease. Clin Chem Lab Med 2011; 50:529-34. [PMID: 22098435 DOI: 10.1515/cclm.2011.792] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/31/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent cause of dementia and age is the most important risk factor for AD. Aging is associated with increased free radical production and oxidative stress plays an important role in the pathogenesis of AD. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is a biomarker indicating oxidative DNA damage. Paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-associated antioxidant enzyme and prevents especially oxidation of low-density lipoproteins. The aim of this study is to measure urinary 8-OHdG levels and serum PON1 activity in patients with AD. METHODS A total of 21 elderly patients diagnosed with moderate AD (10 men and 11 women, aged 76 ± 7.8 years) were included in the study. A total of 20 healthy elderly volunteers (11 men and nine women, aged 81 ± 7.2 years) were enrolled as a control group. Levels of urinary 8-OHdG, serum PON1 activity and lipid profile were determined in patients and controls. RESULTS Urinary 8-OHdG levels were significantly increased, but serum PON1 activity was significantly decreased in patients compared to controls. Lipid profile did not show a difference between the groups. There was a negative correlation between 8-OHdG levels and PON1 activity only in the patient group (r=-0.536). Analytical performance characteristics of the methods used were satisfactory. CONCLUSIONS In this study, evidence of increased oxidative DNA damage was determined in AD patients as well as decreased serum PON1 activity. Oxidant stress and oxidative DNA damage are important pathological processes in AD. The biomarkers, urinary 8-OHdG level and serum PON1 activity can be used to determine and monitor the status of patients with AD.
Collapse
Affiliation(s)
- Oğuzhan Zengi
- Department of Medical Biochemistry, Ankara Training and Research Hospital, Ministry of Health, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
40
|
Cata JP, Abdelmalak B, Farag E. Neurological biomarkers in the perioperative period. Br J Anaesth 2011; 107:844-58. [PMID: 22065690 DOI: 10.1093/bja/aer338] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rapid detection and evaluation of patients presenting with perioperative neurological dysfunction is of great clinical relevance. Biomarkers have been defined as biological molecules that can be used as an indicator of new onset or progression of a biological process or effect of treatment. Biomarkers have become increasingly important in this setting to supplement other modalities of diagnosis such as EEG, sensory- or motor-evoked potential, transcranial Doppler, near-infrared spectroscopy, or imaging methods. A number of neuro-proteins have been identified and are currently under investigation for potential to provide insights into injury severity, outcome, and the ability to monitor cellular damage and molecular events that occur during neurological injury. S100B is a protein released by glial cells and is considered a marker of blood-brain barrier dysfunction. Clinical studies in patients undergoing cardiac and non-cardiac surgery indicate that serum levels of S100B are increased intraoperatively and after operation. The neurone-specific enolase has also been extensively investigated as a potential marker of neuronal injury in the context of cardiac and non-cardiac surgery. A third biomarker of interest is the Tau protein, which has been linked to neurodegenerative disorders. Tau appears to be more specific than the previous two biomarkers since it is only found in the central nervous system. The metalloproteinase and ubiquitin C terminal hydroxylase-L1 (UCH-L1) are the most recently researched markers; however, their usefulness is still unclear. This review presents a comprehensive overview of S100B, neuronal-specific enolase, metalloproteinases, and UCH-L1 in the perioperative period.
Collapse
Affiliation(s)
- J P Cata
- Department of Anaesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | |
Collapse
|
41
|
Masad A, Tabner BJ, Mayes J, Allsop D. The amylin peptide implicated in type 2 diabetes stimulates copper-mediated carbonyl group and ascorbate radical formation. Free Radic Biol Med 2011; 51:869-75. [PMID: 21683137 DOI: 10.1016/j.freeradbiomed.2011.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/17/2022]
Abstract
Human amylin (hA), which is toxic to islet β-cells, can self-generate H(2)O(2), and this process is greatly enhanced in the presence of Cu(II) ions. Here we show that carbonyl groups, a marker of oxidative modification, were formed in hA incubated in the presence of Cu(II) ions or Cu(II) ions plus H(2)O(2), but not in the presence of H(2)O(2) alone. Furthermore, under similar conditions (i.e., in the presence of both Cu(II) ions and H(2)O(2)), hA also stimulated ascorbate radical formation. The same observations concerning carbonyl group formation were made when the histidine residue (at position 18) in hA was replaced by alanine, indicating that this residue does not play a key role. In complete contrast to hA, rodent amylin, which is nontoxic, does not generate H(2)O(2), and binds Cu(II) ions only weakly, showed none of these properties. We conclude that the hA-Cu(II)/Cu(I) complex is redox active, with electron donation from the peptide reducing the oxidation state of the copper ions. The complex is capable of forming H(2)O(2) from O(2) and can also generate (•)OH via Fenton chemistry. These redox properties of hA can explain its ability to stimulate copper-mediated carbonyl group and ascorbate radical formation. The formation of reactive oxygen species from hA in this way could hold the key to a better understanding of the damaging consequences of amyloid formation within the pancreatic islets of patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Atef Masad
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | |
Collapse
|
42
|
Blood-CNS barrier, neurodegeneration and neuroprotection: recent therapeutic advancements and nano-drug delivery. J Neural Transm (Vienna) 2011; 118:3-6. [PMID: 21225296 DOI: 10.1007/s00702-010-0542-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Umur EE, Oktenli C, Celik S, Tangi F, Sayan O, Sanisoglu YS, Ipcioglu O, Terekeci HM, Top C, Nalbant S, Kucukardali Y. Increased iron and oxidative stress are separately related to cognitive decline in elderly. Geriatr Gerontol Int 2011; 11:504-9. [DOI: 10.1111/j.1447-0594.2011.00694.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
|
45
|
Tabner BJ, Mayes J, Allsop D. Hypothesis: soluble aβ oligomers in association with redox-active metal ions are the optimal generators of reactive oxygen species in Alzheimer's disease. Int J Alzheimers Dis 2010; 2011:546380. [PMID: 21188175 PMCID: PMC3003964 DOI: 10.4061/2011/546380] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/08/2010] [Indexed: 11/20/2022] Open
Abstract
Considerable evidence points to oxidative stress in the brain as an important event in the early stages of Alzheimer's disease (AD). The transition metal ions of Cu, Fe, and Zn are all enriched in the amyloid cores of senile plaques in AD. Those of Cu and Fe are redox active and bind to Aβ in vitro. When bound, they can facilitate the reduction of oxygen to hydrogen peroxide, and of the latter to the hydroxyl radical. This radical is very aggressive and can cause considerable oxidative damage. Recent research favours the involvement of small, soluble oligomers as the aggregating species responsible for Aβ neurotoxicity. We propose that the generation of reactive oxygen species (i.e., hydrogen peroxide and hydroxyl radicals) by these oligomers, in association with redox-active metal ions, is a key molecular mechanism underlying the pathogenesis of AD and some other neurodegenerative disorders.
Collapse
Affiliation(s)
- Brian J Tabner
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | |
Collapse
|
46
|
Yang HJ, Joo Y, Hong BH, Ha SJ, Woo RS, Lee SH, Suh YH, Kim HS. Amyloid Precursor Protein Binding Protein-1 Is Up-regulated in Brains of Tg2576 Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:229-33. [PMID: 20827337 DOI: 10.4196/kjpp.2010.14.4.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 07/27/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022]
Abstract
Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of amyloid precursor protein and serves as a bipartite activation enzyme for the ubiquitin-like protein, NEDD8. Previously, it has been reported that APP-BP1 rescues the cell cycle S-M checkpoint defect in Ts41 hamster cells, that this rescue is dependent on the interaction of APP-BP1 with hUba3. The exogenous expression of APP-BP1 in neurons has been reported to cause DNA synthesis and apoptosis via a signaling pathway that is dependent on APP-BP1 binding to APP. These results suggest that APP-BP1 overexpression contributes to neurodegeneration. In the present study, we explored whether APP-BP1 expression was altered in the brains of Tg2576 mice, which is an animal model of Alzheimer's disease. APP-BP1 was found to be up-regulated in the hippocampus and cortex of 12 month-old Tg2576 mice compared to age-matched wild-type mice. In addition, APP-BP1 knockdown by siRNA treatment reduced cullin-1 neddylation in fetal neural stem cells, suggesting that APP-BP1 plays a role in cell cycle progression in the cells. Collectively, these results suggest that increased expression of APP-BP1, which has a role in cell cycle progression in neuronal cells, contributes to the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hyun Jung Yang
- Department of Food and Nutrition, Kookmin University College of Natural Sciences, Seoul 136-702, Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zivković L, Spremo-Potparević B, Plecas-Solarović B, Djelić N, Ocić G, Smiljković P, Siedlak SL, Smith MA, Bajić V. Premature centromere division of metaphase chromosomes in peripheral blood lymphocytes of Alzheimer's disease patients: relation to gender and age. J Gerontol A Biol Sci Med Sci 2010; 65:1269-74. [PMID: 20805239 DOI: 10.1093/gerona/glq148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chromosomal alterations are a feature of both aging and Alzheimer's disease (AD). This study examined if premature centromere division (PCD), a chromosomal instability indicator increased in AD, is correlated with aging or, instead, represents a de novo chromosomal alteration due to accelerating aging in AD. PCD in peripheral blood lymphocytes was determined in sporadic AD patients and gender and age-matched unaffected controls. Metaphase nuclei were analyzed for chromosomes showing PCD, X chromosomes with PCD (PCD,X), and acrocentric chromosomes showing PCD. AD patients, regardless of age, demonstrated increased PCD on any chromosome and PCD on acrocentric chromosomes in both genders, whereas an increase in frequency of PCD,X was expressed only in women. This cytogenetic analysis suggests that PCD is a feature of AD, rather than an epiphenomenon of chronological aging, and may be useful as a physiological biomarker that can be used for disease diagnosis.
Collapse
Affiliation(s)
- Lada Zivković
- Institute of Physiology, Department of Biology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Goate A, Holtzman DM. Biomarkers will revolutionize the way we diagnose and treat Alzheimer’s disease. Biomark Med 2010; 4:1-2. [DOI: 10.2217/bmm.10.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Alison Goate
- Department of Psychiatry, B8134, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, B8111, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO 63110, USA
| |
Collapse
|
49
|
Hosseini M, Dastghaib SS, Rafatpanah H, Hadjzadeh MAR, Nahrevanian H, Farrokhi I. Nitric oxide contributes to learning and memory deficits observed in hypothyroid rats during neonatal and juvenile growth. Clinics (Sao Paulo) 2010; 65:1175-81. [PMID: 21243293 PMCID: PMC2999716 DOI: 10.1590/s1807-59322010001100021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 08/23/2010] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Severe cognitive impairment follows thyroid hormone deficiency during the neonatal period. The role of nitric oxide (NO) in learning and memory has been widely investigated. METHODS This study aimed to investigate the effect of hypothyroidism during neonatal and juvenile periods on NO metabolites in the hippocampi of rats and on learning and memory. Animals were divided into two groups and treated for 60 days from the first day of lactation. The control group received regular water, whereas animals in a separate group were given water supplemented with 0.03% methimazole to induce hypothyroidism. Male offspring were selected and tested in the Morris water maze. Samples of blood were collected to measure the metabolites of NO, NO2, NO3 and thyroxine. The animals were then sacrificed, and their hippocampi were removed to measure the tissue concentrations of NO2 and NO3. DISCUSSION Compared to the control group's offspring, serum thyroxine levels in the methimazole group's offspring were significantly lower (P<0.01). In addition, the swim distance and time latency were significantly higher in the methimazole group (P<0.001), and the time spent by this group in the target quadrant (Q1) during the probe trial was significantly lower (P<0.001). There was no significant difference in the plasma levels of NO metabolites between the two groups; however, significantly higher NO metabolite levels in the hippocampi of the methimazole group were observed compared to controls (P<0.05). CONCLUSION These results suggest that the increased NO level in the hippocampus may play a role in the learning and memory deficits observed in childhood hypothyroidism; however, the precise underlying mechanism(s) remains to be elucidated.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | | | |
Collapse
|